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Abstract001

Speculative decoding significantly acceler-002
ates language model inference by enabling003
a lightweight draft model to propose multi-004
ple tokens that a larger target model veri-005
fies simultaneously. However, applying this006
technique to vision-language models (VLMs)007
presents two fundamental challenges: small008
language models that could serve as efficient009
drafters lack the architectural components to010
process visual inputs, and their token predic-011
tions fail to match those of VLM target mod-012
els that consider visual context. We intro-013
duce Multimodal Adaptation and Self-Data014
Distillation for Speculative Decoding of Vision-015
Language Models (MASSV), which transforms016
existing small language models into effective017
multimodal drafters through a two-phase ap-018
proach. MASSV first connects the target019
VLM’s vision encoder to the draft model via020
a lightweight trainable projector, then applies021
self-distilled visual instruction tuning using re-022
sponses generated by the target VLM to align023
token predictions. Comprehensive experiments024
across the Qwen2.5-VL and Gemma3 model025
families demonstrate that MASSV increases026
accepted length by up to 30% and delivers end-027
to-end inference speedups of up to 1.46x com-028
pared to conventional text-only drafting base-029
lines on visually-grounded tasks.030

1 Introduction031

Large language models (LLMs) have transformed032

artificial intelligence by delivering breakthrough033

capabilities in reasoning (Jaech et al., 2024;034

DeepSeek-AI et al., 2025), code generation (Hui035

et al., 2024; Li et al., 2023), and natural language036

understanding (OpenAI et al., 2023; Gemini Team037

et al., 2023; Anthropic et al., 2024; Grattafiori et al.,038

2024). However, these achievements come with039

substantial computational costs, particularly during040

inference. The fundamental constraint arises from041

autoregressive generation, where each token must042

be predicted sequentially based on all previous to- 043

kens, creating an inherent bottleneck that limits par- 044

allelization. Speculative decoding (SD) addresses 045

this bottleneck by leveraging smaller draft models 046

to generate multiple candidate tokens autoregres- 047

sively, which are then verified in parallel by the 048

larger target model (Chen et al., 2023; Leviathan 049

et al., 2023). This technique reduces sequential 050

operations while preserving the original output dis- 051

tribution, effectively amortizing the computational 052

cost and enabling substantial inference speedups 053

without quality degradation. 054

While SD has been well-studied for text-only 055

models, extending it to vision-language models 056

(VLMs) introduces unique challenges. VLMs pro- 057

cess multimodal inputs by mapping image fea- 058

tures and text tokens into a joint embedding space, 059

enabling sophisticated visual reasoning capabili- 060

ties (Radford et al., 2021; Liu et al., 2023). This 061

multimodal conditioning presents two fundamen- 062

tal challenges for SD: (1) architectural incompat- 063

ibility, as small language models lack the compo- 064

nents to process visual inputs, and (2) distribution 065

mismatch, as unimodal draft models cannot effec- 066

tively capture the visually-grounded nature of the 067

target VLM’s outputs. Previous approaches have 068

addressed these challenges either by excluding im- 069

age tokens entirely or by training small multimodal 070

models from scratch (Gagrani et al., 2024). The 071

former approach fails to leverage visual informa- 072

tion, while the latter requires substantial compu- 073

tational resources and may still suffer from distri- 074

bution misalignment. Lee et al. (2024) explored 075

ensemble-based methods that combine multiple 076

drafting strategies through batch inference. How- 077

ever, these ensemble approaches do not fundamen- 078

tally address the distribution mismatch between 079

draft and target models, instead relying on averag- 080

ing predictions from multiple unaligned drafters. 081

Neither of these approaches fully exploit the poten- 082

tial of existing model families or directly optimize 083
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Figure 1: End-to-end wallclock speedups when drafting for Qwen2.5-VL 7B Instruct at temperature T = 0 with
speculation length γ = 5. The baseline uses Qwen2.5-1.5B as a text-only drafter (image tokens removed). MASSV
consistently yields the highest speedups across all categories, achieving up to 1.46× on COCO captioning and 1.28×
overall. The gains are most pronounced for visually grounded tasks, demonstrating the importance of multimodal
adaptation and self-distilled visual instruction for accelerating VLM inference.

for the distribution alignment needed for SD.084

We introduce Multimodal Adaptation and Self-085

Data Distillation for Speculative Decoding of086

Vision- Language Models (MASSV), a principled087

method for adapting smaller language models from088

the same family as the target VLM to serve as089

efficient multimodal draft models. Our approach090

consists of two key components. First, we formu-091

late the multimodal drafting problem as mapping092

from a target VLM’s vision-language embedding093

space to a draft LM’s embedding space, construct-094

ing a drafter by connecting the target VLM’s vi-095

sion encoder and multimodal projector to a smaller096

language model from the same family. Second,097

we propose a training methodology centered on098

self-data distillation (Thangarasa et al., 2025; Yang099

et al., 2024) to align the draft model’s distribution100

with the target model’s, specifically optimizing for101

higher token acceptance rates during SD. As shown102

in Figure 1, MASSV achieves significant end-to-103

end speedups, particularly on visually grounded104

tasks, demonstrating the importance of multimodal105

adaptation and self-data distillation for improving106

acceptance rate of draft tokens. Our contributions107

are as follows:108

• We propose MASSV, a comprehensive frame-109

work that combines (1) a architectural adapta-110

tion connecting target VLM components with111

smaller language models from the same fam-112

ily, and (2) a self-data distillation technique113

specifically designed to align multimodal dis-114

tributions for improved token acceptance.115

• We provide extensive empirical evaluations116

demonstrating significant improvements in ac-117

ceptance rates across multiple model families,118

with speedups reaching up to 1.28x overall on119

multimodal tasks.120

• We present detailed ablations revealing that 121

self-data distillation is crucial for multimodal 122

drafting, improving distribution alignment be- 123

tween draft and target models particularly for 124

visually-grounded tasks. 125

2 Preliminaries 126

We establish the necessary background for our ap- 127

proach. First, we review SD, an inference accel- 128

eration technique that uses a smaller draft model 129

to propose tokens that are verified by a larger tar- 130

get model. Second, we describe VLMs, which 131

combine visual encoders with language models to 132

process multimodal inputs. Finally, we discuss 133

how SD has been adapted for VLMs, including the 134

text-only drafting baseline we compare against. 135

Speculative decoding is a technique for acceler- 136

ating LLM generation without altering the distri- 137

bution of the generation output (Leviathan et al., 138

2023; Chen et al., 2023). In each iteration of 139

the algorithm, a draft model Mq generates mul- 140

tiple draft tokens that are verified in parallel by 141

the target model Mp. The algorithm continues it- 142

erating until an end-of-sequence (EOS) token is 143

generated or the max sequence length is reached. 144

Formally, let X1:t = X1, X2, ..., Xt be the input 145

sequence for the current iteration. Mq first au- 146

toregressively samples γ draft tokens Xt+1:t+γ , 147

where token Xt+i is sampled with probability 148

q(Xt+i|X1:t+i−1). Next, Mp computes the proba- 149

bilities p(Xt+i|X1:t+i−1) for i = 1, 2, ..., γ + 1 in 150

parallel with one forward call. These probabilities 151

are used to evaluate the draft tokens sequentially, 152

with the probability of accepting token Xt+i being 153

min
(
1, p(Xt+i|X1:t+i−1)

q(Xt+i|X1:t+i−1)

)
. If the token is accepted, 154

it is added to the generation output and the next to- 155

ken is evaluated. Otherwise, if the token is rejected, 156
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Figure 2: Detailed architecture of MASSV illustrating: (1) the two-phase training methodology consisting of
multimodal projector pretraining followed by self-distilled visual instruction tuning, and (2) the deployment
configuration for draft token generation during speculative decoding inference. Components marked with the
snowflake remain frozen during training to preserve their parameters, while components with the flame are trainable.
This architecture enables efficient knowledge transfer from the target vision-language model to the smaller draft
model while maintaining alignment in their token distributions.

a new token is sampled from the residual distribu-157

tion norm(max(p(·|X1:t+i−1)−q(·|X1:t+i−1), 0))158

and the iteration ends. Sampling from the resid-159

ual distribution ensures the output distribution of160

the speculative decoding algorithm is the same161

as the target’s output distribution. In the degen-162

erate case where sampling is disabled (tempera-163

ture = 0), the algorithm simplifies to greedy de-164

coding. The draft model generates tokens by se-165

lecting Xt+i = argmaxx q(x|X1:t+i−1). During166

verification, token Xt+i is accepted if and only if167

Xt+i = argmaxx p(x|X1:t+i−1). If rejected, the168

token is set to argmaxx p(x|X1:t+i−1).169

Vision-language models (VLMs) process mul-170

timodal inputs, consisting of visual and text to-171

kens, by mapping the tokens into a joint embed-172

ding space. A VLM consists of three components:173

a vision encoder ϕI , multimodal projector gθ, and174

a language modelMp. Given an input consisting of175

tokens X1:t and visual information I , a VLM first176

extracts m features H1:m = ϕI(I) from the image177

using the vision encoder. These image features178

are then projected into the joint embeddings space179

Vi = gθ(Hi) for i ∈ {1, ...,m}. Finally, the VLM180

samples the next token Xt+1 from p(·|X1:t, V1:m),181

where p(·|·) denotes the conditional probability dis-182

tribution of Mp. Note that directly using SD to ac-183

celerate a VLM on multimodal inputs requires the184

drafter to also be a VLM. However, Gagrani et al.185

(2024) show that a small language model (SLM)186

can be used as an effective drafter by conditioning187

it only on the text tokens in the input. Concretely,188

given an SLM drafter Mq, the draft token Xt+i is 189

sampled from q(·|X1:t+i−1) for i = 1, ..., γ. We 190

refer to this as text-only drafting and use it as the 191

baseline in our experiments. 192

3 Methodology 193

We introduce a method to adapt an SLM into 194

an effective draft model for LLaVA-style VLMs, 195

which employ a modular architecture of separate vi- 196

sion encoder and language model components con- 197

nected via a projection layer that maps image fea- 198

tures into the language model’s embedding space. 199

Our approach integrates the target VLM’s frozen 200

vision encoder into the SLM through a randomly 201

initialized MLP-based projector, preserving archi- 202

tectural compatibility while enabling visual pro- 203

cessing. We then align the adapted model with the 204

target VLM through a two-phase training proto- 205

col: (1) the projector is pretrained on paired image- 206

text data to establish visual grounding; and (2) the 207

model undergoes self-distilled visual instruction 208

tuning to optimize token-level distribution align- 209

ment. The overall architecture is shown in Figure 2. 210

211

3.1 Architectural Adaptation 212

Let MVLM
p = (ϕpI , g

p
θ ,Mp) denote the target VLM, 213

where ϕpI is the vision encoder, gpθ is the multi- 214

modal projector, and Mp is the language model. 215

Let Mq be an SLM from the same model family as 216

Mp. While our method can be applied to any small 217

language model, this work specifically focuses on 218

text-only SLMs from the same model family as 219
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the larger VLM. This choice ensures that the draft220

model’s tokenizer and vocabulary are compatible221

with those of the target during SD. Although re-222

cent work has demonstrated approaches to handle223

heterogeneous vocabularies (Timor et al., 2025),224

these techniques trade latency for vocabulary com-225

patibility. Furthermore, existing methods have not226

demonstrated their effectiveness in handling multi-227

ple modalities, as required for VLMs. Due to these228

limitations and considerations beyond the scope of229

this work, we leave exploring vocabulary hetero-230

geneity in multimodal SD for future research.231

We construct the VLM drafterMVLM
q as follows,232

MVLM
q = (ϕpI , g

q
ψ,Mq), where ϕpI is the shared233

vision encoder from the target VLM, gqψ is a ran-234

domly initialized multimodal projector, and Mq235

is the draft SLM. The projector gqψ has the same236

architecture as gpθ , but its output dimension dqout237

is set to match the embedding dimension of Mq,238

gqψ : Rdvis → Rd
q
emb where dvis is the vision en-239

coder’s output dimension and dqemb is the embed-240

ding dimension of Mq. We choose to share the241

vision encoder between the target and the drafter,242

since this ensures that the drafter and target pro-243

cess the same visual features H1:m = ϕpI(I) for a244

given image input I . This architectural choice also245

reduces compute cost by avoiding redundant vision246

encoding operations.247

3.2 Multimodal Alignment248

Multimodal Projector Pretraining Following Liu249

et al. (2024b), we first pretrain the multimodal pro-250

jector gqψ by training the VLM drafter with the251

vision encoder and SLM backbone frozen. Given a252

pretraining dataset Dpre = {(Ij , Cj)}Nj=1 of image-253

caption pairs, we optimize,254

Lpre(ψ) = −
N∑
j=1

|Cj |∑
i=1

log qψ(c
i
j |c1:i−1

j , Vj), (1)255

where Vj = gqψ(ϕ
p
I(Ij)) are the projected visual256

features, cij is the i-th token of caption Cj , and257

qψ denotes the distribution of the draft VLM with258

projector parameters ψ. Only ψ is updated during259

this phase while ϕpI and Mq remain frozen.260

Self-Distilled Visual Instruction Tuning (SD-261

ViT) In this phase, we introduce SDViT, an ap-262

proach that employs SDD to align the drafter’s263

distribution with the target’s multimodal distribu-264

tion. Let D = {(Ii, Xi, yi)}ni=1 be a visual instruc-265

tion dataset, where Ii is the image input, Xi is the266

text instruction, and yi is the reference response.267

The original SDD formulation by Thangarasa et al. 268

(2025); Yang et al. (2024) generates target outputs 269

using task-specific contexts and templates. In con- 270

trast, for SD, our objective is to align the drafter’s 271

token-level predictions with the target’s. There- 272

fore, we directly use the target VLM to generate 273

responses, y′i = sampletop-p(p(·|Ii, Xi)), where p 274

denotes the target VLM’s distribution conditioned 275

on both image Ii and text instruction Xi. This cre- 276

ates a self-distilled dataset D′ = {(Ii, Xi, y
′
i)}ni=1. 277

We then fine-tune the drafter with its vision encoder 278

frozen to minimize, 279

LSDViT(θ) = −
n∑
i=1

|y′i|∑
k=1

log qθ(y
′k
i |y′1:k−1

i , Xi, Vi),

(2) 280

where Vi = gqψ(ϕ
p
I(Ii)) are the projected visual fea- 281

tures, y′ki is the k-th token of the target’s response, 282

and qθ denotes the drafter’s distribution with pa- 283

rameters θ = {ψ, θq} (projector and SLM parame- 284

ters). In contrast to generic visual instruction tun- 285

ing with fixed dataset labels, our self-distillation 286

strategy trains the drafter on the target’s actual out- 287

puts, directly optimizing for the acceptance mech- 288

anism in SD. SDViT addresses this through di- 289

verse sampling, where the target VLM generates 290

responses across different temperature values with 291

top-p sampling, creating a varied dataset that better 292

represents the full response distribution. Specif- 293

ically, draft tokens are accepted with probability 294

min
(
1, p(Xt|X1:t,I)

q(Xt|X1:t,I)

)
. By training on the target’s 295

outputs rather than generic labels, we maximize 296

the overlap between the drafter’s distribution q and 297

the target’s distribution p, leading to higher token 298

acceptance rates during inference. Our results in 299

Section 4.2 show that this alignment translates to 300

improved token acceptance rates during SD. 301

4 Empirical Results 302

4.1 Experimental Setup 303

Draft and Target Models. Our evaluation lever- 304

ages two distinct model families: the Qwen2.5-VL 305

Instruct (Bai et al., 2025) and instruction-tuned 306

Gemma3 (Gemma Team et al., 2025). Specifically, 307

for Qwen2.5-VL, we set the 7B model as our pri- 308

mary target, applying MASSV to Qwen2.5-1.5B 309

Instruct. Similarly, for Gemma3, we target the 12B 310

IT variant and adapt Gemma3-1B IT using MASSV. 311

We selected these specific SLMs because they are 312

from the same model families as the larger target 313

models and were readily available as checkpoints 314

4



Target Model Method LLaVa 150k LLaVA-Bench GQA COCO Overall
Temperature = 0

Qwen2.5-VL 7B
Instruct

Baseline 2.37 (1.00x) 2.61 (1.00x) 2.59 (1.00x) 2.21 (1.00x) 2.46 (1.00x)
MASSV 3.21 (1.24x) 3.12 (1.16x) 3.28 (1.26x) 3.26 (1.46x) 3.20↑0.74 (1.28x)

Qwen2.5-VL 32B
Instruct

Baseline 2.46 (1.00x) 2.70 (1.00x) 2.79 (1.00x) 2.48 (1.00x) 2.61 (1.00x)
MASSV 3.12 (1.26x) 2.90 (1.07x) 3.19 (1.13x) 3.09 (1.23x) 3.04↑0.43 (1.17x)

Gemma3-12B IT Baseline 2.71 (1.00x) 2.72 (1.00x) 2.75 (1.00x) 2.84 (1.00x) 2.76 (1.00x)
MASSV 3.30 (1.19x) 3.00 (1.11x) 3.07 (1.18x) 3.41 (1.24x) 3.19↑0.43 (1.18x)

Gemma3-27B IT Baseline 2.49 (1.00x) 2.70 (1.00x) 2.61 (1.00x) 2.73 (1.00x) 2.65 (1.00x)
MASSV 3.00 (1.20x) 2.84 (1.05x) 2.86 (1.09x) 3.24 (1.20x) 2.99↑0.34 (1.14x)

Temperature = 1
Qwen2.5-VL 7B
Instruct

Baseline 2.47 (1.00x) 2.75 (1.00x) 2.63 (1.00x) 2.41 (1.00x) 2.58 (1.00x)
MASSV 3.35 (1.26x) 2.98 (1.09x) 3.19 (1.19x) 3.31 (1.35x) 3.18↑0.60 (1.22x)

Qwen2.5-VL 32B
Instruct

Baseline 2.48 (1.00x) 2.69 (1.00x) 2.75 (1.00x) 2.56 (1.00x) 2.63 (1.00x)
MASSV 3.01 (1.25x) 2.87 (1.09x) 3.00 (1.09x) 3.04 (1.19x) 2.97↑0.34 (1.15x)

Gemma3-12B IT Baseline 2.67 (1.00x) 2.79 (1.00x) 2.78 (1.00x) 2.94 (1.00x) 2.82 (1.00x)
MASSV 3.08 (1.13x) 2.82 (1.05x) 3.01 (1.10x) 3.37 (1.16x) 3.06↑0.24 (1.11x)

Gemma3-27B IT Baseline 2.57 (1.00x) 2.67 (1.00x) 2.63 (1.00x) 2.73 (1.00x) 2.67 (1.00x)
MASSV 2.81 (1.09x) 2.62 (1.02x) 2.82 (1.07x) 3.13 (1.15x) 2.84↑0.17 (1.08x)

Table 1: Mean accepted lengths (τ ) and speedups across model families, tasks, and temperatures (T ∈ {0, 1})
with speculation length γ = 5. Values show tokens accepted per target VLM forward pass, with speedup ratios in
parentheses (normalized to baseline). MASSV consistently outperforms the text-only baseline (Gagrani et al., 2024),
achieving substantial gains on visually-grounded tasks like COCO captioning (+47.5% at T = 0: 2.21 → 3.26) and
improving overall acceptance (+30.1% for Qwen2.5-VL 7B: 2.46 → 3.20). MASSV delivers practical efficiency
with 1.28× end-to-end speedup for Qwen2.5-VL 7B at T = 0 and generalizes effectively to larger models without
requiring direct alignment.

on HuggingFace. We utilize text-only drafting with315

the off-the-shelf SLM as our baseline (1.00x).316

Drafter Training for Multimodal Adapta-317

tion. The draft model training process consists318

of two distinct phases and requires only moder-319

ate compute infrastructure, achievable with stan-320

dard research hardware (e.g., four-GPU server with321

current-generation accelerators). Initially, we pre-322

train each drafter for one epoch on the LLaVA-323

Pretrain-LCS-558K 1 dataset, using a global batch324

size of 256 and a learning rate of 1 x 10-4. Subse-325

quently, we fine-tune the models on data distilled326

from the LLaVA-mix-665K 2 dataset for another327

epoch with a batch size of 128 and learning rate 2328

x 10-5. See Appendix A for more details.329

Evaluation Tasks. We conduct evaluations330

using four multimodal benchmarks: LLaVA In-331

struct 150k (Liu et al., 2023), LLaVA-Bench (In-332

the-Wild) 3, GQA (Hudson and Manning, 2019),333

and image captioning prompts from COCO Test334

2017 (Lin et al., 2015). Performance is measured335

by mean accepted length (τ ), which quantifies the336

average number of tokens accepted per forward337

1https://huggingface.co/datasets/liuhaotian/LLaVA-
Pretrain

2https://huggingface.co/datasets/liuhaotian/LLaVA-
Instruct-150K/blob/main/llava_v1_5_mix665k.json

3https://huggingface.co/datasets/liuhaotian/llava-bench-
in-the-wild

pass of the target model, directly correlating to 338

speedup independent of hardware. Evaluation set- 339

tings and prompts for GQA reasoning and COCO 340

Captioning tasks are provided in Appendix B. 341

4.2 Results 342

Our results demonstrate MASSV’s significant im- 343

provements over the text-only baseline across all 344

evaluated settings (see Table 1). At temperature 345

T = 0, MASSV achieves a noticeable increase 346

in mean accepted length (MAL), most notably 347

improving by 30.1% (from 2.46 to 3.20) for the 348

Qwen2.5-VL 7B Instruct model. Similarly, at 349

T = 1, MASSV attains a MAL improvement 350

of 23.3% (from 2.58 to 3.18). These improve- 351

ments are consistent across different downstream 352

tasks, with the largest relative gains observed in 353

visually intensive tasks such as COCO caption- 354

ing. For instance, MASSV increases MAL by 355

47.5% (2.21 to 3.26) on COCO captioning tasks 356

at T = 0, highlighting the importance of multi- 357

modal drafting for visually-grounded generations. 358

Moreover, MASSV consistently outperforms the 359

baseline on the Gemma3 family despite their sig- 360

nificant architectural differences (e.g., dynamic vi- 361

sual token count in Qwen2.5-VL versus interleaved 362

sliding window attention in Gemma3). Specifically, 363

MASSV improves MAL by 15.6% (2.76 to 3.19) 364

on Gemma3-12B IT at T = 0, demonstrating its 365

5

https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
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Figure 3: Mean accepted lengths when drafting for Qwen2.5-VL 7B Instruct at temperature T = 0 with speculation
length γ = 5. The baseline uses Qwen2.5-1.5B as a text-only drafter (image tokens removed). MASSV achieves a
substantial improvement in token acceptance across all tasks, increasing overall mean accepted length from 2.46 to
3.20 (+30.1%).

effectiveness across diverse VLMs.366

Generalization to Larger Model Variants. We367

also evaluated MASSV on larger variants within368

each model family, specifically Qwen2.5-VL 32B369

and Gemma3-27B. Although we did not directly370

apply SDViT to these larger targets, we hypoth-371

esized that MASSV, when applied to smaller dis-372

tilled versions (7B and 12B), could still benefit their373

larger counterparts due to their shared architecture374

and distillation lineage. Our empirical results con-375

firm this hypothesis, demonstrating that MASSV376

provides meaningful gains even when scaling up377

within the same model family. This finding is par-378

ticularly impactful as it allows substantial com-379

putational and time savings by enabling MASSV380

adaptation on smaller, more efficient targets, which381

can subsequently generalize to larger models.382

End-to-end Inference Speedups. The mean ac-383

cepted length improvements translate directly to384

substantial wall-clock speedups during inference.385

MASSV achieves an overall end-to-end speedup386

of 1.28× for Qwen2.5-VL 7B Instruct at tempera-387

ture T = 0, with even higher speedups on specific388

tasks such as COCO captioning (1.46×). These389

speedups remain consistent across model families,390

with Gemma3-12B IT achieving 1.18× accelera-391

tion. Notably, MASSV demonstrates effective scal-392

ability to larger models, achieving 1.17× speedup393

for Qwen2.5-VL 32B and 1.14× for Gemma3-27B,394

despite not requiring direct alignment on these395

larger targets. These results show that MASSV’s396

improved token acceptance rates translate to mean-397

ingful practical efficiency gains.398

5 Ablation Studies399

We investigate the impact of self-distilled visual in-400

struction tuning on distribution alignment, and we401

examine whether multimodal capability provides402

meaningful benefits over text-only drafting. 403

5.1 Effect of Self-Distilled Visual Instruction 404

Tuning 405

We assess the role of self-distilled distillation in 406

our method by comparing drafters trained with SD- 407

ViT versus standard fine-tuning on a vanilla dataset. 408

Specifically, we adapt Qwen2.5-1.5B Instruct and 409

Gemma3-1B IT into drafters for Qwen2.5-VL 7B 410

Instruct and Gemma3-12B IT, respectively. Fig- 411

ure 3 demonstrates the efficacy of MASSV with 412

SDViT (green bar) for Qwen2.5-VL 7B Instruct 413

across diverse multimodal benchmarks. MASSV 414

exhibits substantial performance gains, most promi- 415

nently in COCO Captioning where the mean ac- 416

cepted length increases from 2.21 to 3.26 tokens 417

(+47.5%). Table 2 summarizes our comprehensive 418

ablation study on SDViT across both target mod- 419

els: Qwen2.5-VL 7B Instruct and Gemma3-12B IT. 420

The quantitative evaluation results demonstrate the 421

critical importance of self-distilled visual instruc- 422

tion tuning for effective multimodal SD. For the 423

Gemma3 architecture, without SDViT (denoted as 424

MASSVw/o SDViT), the Gemma3-1B IT draft model 425

exhibits a significant performance regression, with 426

mean accepted length deteriorating to 2.33 com- 427

pared to the baseline’s 2.74 (a 13% decrease in 428

acceptance rate). This indicates that naive architec- 429

tural adaptation without distribution alignment can 430

be notably detrimental to performance. In contrast, 431

when enhanced with SDViT, the model achieves a 432

mean accepted length of 3.14, representing a sub- 433

stantial 14.6% improvement over the baseline and a 434

1.18x speedup. These results highlight the critical 435

role of distribution alignment in multimodal SD. 436

Distribution Analysis. To understand the mech- 437

anism behind these improvements, we analyze the 438

distribution alignment between drafters and tar- 439

gets. For each multimodal input, we compute 440
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Target Model Method τ Speedup
Baseline 2.46 1.00x

Qwen2.5-VL 7B
Instruct MASSVw/o SDViT 2.56 1.04x

MASSV 3.20 1.28x
Baseline 2.74 1.00x

Gemma3-12B IT MASSVw/o SDViT 2.33 0.87x
MASSV 3.14 1.18x

Table 2: Ablation results on the effect of SDViT on draft-
ing performance. Qwen2.5-1.5B Instruct and Gemma3-
1B IT are the base SLMs used to create drafters for
Qwen2.5-VL 7B Instruct and Gemma3-12B IT, respec-
tively. The reported mean accepted lengths (τ ) are mea-
sured on the overall multimodal speculative decoding
benchmark dataset at temperature = 0.

the Total Variation Distance (TVD) between the441

drafter’s and target’s output token distributions.442

The TVD measures the maximum difference be-443

tween two probability distributions: TVD(P,Q) =444
1
2

∑
x∈X |P (x) − Q(x)|, where P and Q are the445

target and drafter token distributions, respectively,446

and X is the vocabulary. TVD is particularly rele-447

vant in the context of SD, as it bounds the expected448

probability that tokens proposed by the draft model449

will be rejected by the target model. By minimizing450

TVD through our SDViT approach, we directly op-451

timize for higher token acceptance rates, which ex-452

plains the improved mean accepted length observed453

in our experiments. For discrete distributions like454

token probabilities, TVD ranges from 0 (identi-455

cal distributions) to 1 (completely disjoint distri-456

butions). Figure 4 shows the resulting distribution.457

The drafter trained with SDViT produces signifi-458

cantly more tokens with output distributions closely459

matching the target. This demonstrates that SDViT460

enables the drafter to more faithfully reproduce the461

target model’s token-level behavior. These results462

indicate that: (1) SDD substantially improves dis-463

tribution alignment between drafter and target, and464

(2) distribution alignment contributes more to draft-465

ing performance than raw multimodal capability.466

5.2 Text-Only vs Multimodal Drafting467

Given that distribution alignment appears more im-468

portant than multimodal capability, we investigate469

whether multimodal processing provides any bene-470

fit over text-only drafting. This question is partic-471

ularly relevant since text-only drafting could offer472

computational advantages by avoiding visual en-473

coding operations during the draft phase.474

We evaluate our VLM drafters in text-only mode475

by discarding visual tokens from the input, thereby476

using only the language model backbone of our477
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Figure 4: Histogram of total variation distances (TVD),
comparing the Qwen2.5-1.5B drafters trained with (pur-
ple) and without (orange) self-distilled visional instruc-
tion (SDViT) against the Qwen2.5-VL 7B target model
on our multimodal SD benchmark. MASSV yields a
highly skewed distribution concentrated at low TVD
values, indicating tighter alignment with the target’s to-
ken distribution. In contrast, MASSVw/o SDViT produces
a broader, heavier-tailed distribution, reflecting reduced
alignment. The left-skewed shape of the MASSV distri-
bution quantitatively suggests that SDViT narrows the
distributional gap between draft and target.

Target Model Method τ
Qwen2.5-VL 7B
Instruct

Text-Only 2.84
Multimodal 3.20

Gemma3-12B IT Text-Only 2.99
Multimodal 3.19

Table 3: Ablation results on the performance of text-
only drafting. The VLM drafter’s language model back-
bone serves as a text-only drafter by discarding all visual
tokens. Mean accepted lengths (τ ) are measured on the
overall benchmark dataset at temperature = 0.

adapted drafter. This approach mirrors the baseline 478

strategy used in prior work (Gagrani et al., 2024), 479

where standard SLMs trained from scratch serve 480

as drafters for VLM targets without processing any 481

visual information. Table 3 shows that multimodal 482

drafting consistently outperforms text-only drafting 483

across both model families. The improvements are 484

substantial: 12.7% higher mean accepted length for 485

Qwen2.5-VL (3.20 vs. 2.84) and 6.7% higher for 486

Gemma3 (3.19 vs. 2.99). These gains demonstrate 487

that while distribution alignment is the primary fac- 488

tor in drafting performance, incorporating visual 489

information provides additional benefits for pre- 490

dicting the target VLM’s outputs. The advantage of 491

multimodal drafting likely stems from its ability to 492

condition token predictions on the actual visual con- 493

tent, particularly for visually-grounded tokens such 494

as object names, spatial relationships, and visual 495

attributes. While text-only drafting must rely solely 496

on linguistic patterns and context, multimodal draft- 497

ing can leverage direct visual evidence to better 498
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predict the target VLM’s outputs. Based on these499

observations, we focus exclusively on multimodal500

drafting in our main experiments (Section 4). This501

choice ensures we capture the full benefits of vi-502

sual information while maintaining strong distribu-503

tion alignment through SDViT. As we demonstrate504

across multiple model families and tasks, this com-505

bination of multimodal capability and distribution506

alignment yields consistent improvements in SD507

performance.508

6 Related Work509

Speculative decoding has emerged as a promising510

technique for accelerating LLM inference with-511

out compromising output quality. This approach512

leverages smaller, faster draft models to autoregres-513

sively generate multiple candidate tokens, which514

are then verified in parallel by the larger target515

model in a single forward pass (Leviathan et al.,516

2023; Chen et al., 2023). The theoretical founda-517

tions of this technique were established by identi-518

fying conditions under which speculative propos-519

als can preserve the original model’s output distri-520

bution (Leviathan et al., 2023). Recent advance-521

ments include tree-structured variants (Li et al.,522

2024b,a; Wang et al., 2025; Chen et al., 2024),523

self-drafting (Elhoushi et al., 2024; Zhang et al.,524

2024; Liu et al., 2024a; Xia et al., 2025), N-gram-525

based (Stewart et al., 2024; Ou et al., 2024) and526

retrieval-based (He et al., 2024; Yang et al., 2023)527

that further enhance inference efficiency. However,528

these approaches have primarily focused on text-529

only models, where the draft and target operate530

within the same modality space.531

Multimodal Speculative Decoding. Extending532

speculative decoding to vision-language models533

introduces fundamental challenges absent in uni-534

modal settings. Gagrani et al. (2024) conducted ini-535

tial explorations in this domain by evaluating sev-536

eral draft model variants with the LLaVA-7B archi-537

tecture (Liu et al., 2024b). Their analysis across im-538

age question-answering, captioning, and reasoning539

tasks revealed modest token acceptance rates, with540

the multimodal variant achieving only marginal im-541

provements over text-only counterparts. Detailed542

traces demonstrated that while drafters successfully543

predicted function words and repeated tokens, they544

struggled with visually-grounded content, high-545

lighting two fundamental challenges: (1) architec-546

tural misalignment between drafters and vision-547

language targets, and (2) distributional divergence548

between text-only priors and visually-informed out-549

puts. Lee et al. (2024) introduced a batch-based 550

approach that combines predictions from multiple 551

drafting methods to increase the likelihood of to- 552

ken acceptance. While their ensemble technique 553

improves empirical performance without parameter 554

overhead, it operates primarily as a post-hoc aggre- 555

gation mechanism rather than addressing the under- 556

lying distributional divergence between individual 557

drafters and the target model. Our MASSV frame- 558

work directly addresses these limitations through 559

principled vision-language alignment techniques. 560

Draft Model Alignment. Self-distillation uses 561

a model’s own outputs as training targets, extend- 562

ing traditional knowledge distillation approaches. 563

While Yang et al. (2024) showed self-distillation 564

can bridge distribution gaps during language model 565

fine-tuning and Thangarasa et al. (2025) demon- 566

strated its effectiveness in mitigating catastrophic 567

forgetting in pruned models, we extend these 568

insights to multimodal drafting. In particular, 569

SD2 (Lasby et al., 2025) apply SDD to fine-grained 570

sparse draft models, aligning them closely with 571

their original dense counterparts and yielding sub- 572

stantially higher mean accepted lengths than undis- 573

tilled sparse drafters. Unlike previous work, we 574

explicitly formulate self-distillation as an optimiza- 575

tion for token acceptance probability in the specu- 576

lative decoding framework. By training our draft 577

model on responses generated by the target VLM 578

itself rather than fixed dataset labels, we align the 579

draft model’s distribution with that of the target’s. 580

7 Conclusion 581

In this work, we present MASSV, a method to 582

transform SLMs into highly efficient speculative 583

drafters for VLMs. MASSV addresses challenges 584

like architectural incompatibility and distribution 585

mismatch by grafting the frozen vision encoder 586

of the target VLM onto the draft model via a 587

trainable projector and aligning the drafter’s token 588

distribution through fine-tuning on self-generated 589

vision-language data. Across both Qwen2.5-VL 590

and Gemma3 model families, MASSV increases 591

mean accepted length by 16-30% with end-to-end 592

inference speedups of up to 1.46x. Ablation studies 593

show that SDD is critical for distribution align- 594

ment, and full multimodal drafting consistently 595

outperforms text-only approaches. Given its gen- 596

eralizability and demonstrated performance gains, 597

MASSV presents a readily deployable solution for 598

significantly accelerating VLM inference across 599

diverse architectures and tasks. 600
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Limitations601

While this work establishes a comprehensive frame-602

work for constructing a drafter VLM using an SLM603

from the same family as the target VLM, there is604

scope for exploring the use of SLMs that come605

from a different model family. We chose to focus606

on using SLMs from the same model family as the607

target, since this ensures that the draft model’s tok-608

enizer and vocabulary are compatible with those of609

the target during speculative decoding. Overcom-610

ing this limitation would allow producing efficient611

multimodal draft models for a wider range of mul-612

timodal target models. Another limitation of our613

method is that it is applicable specifically for the614

VLM architecture. While we chose to focus on615

this architecture due to its widespread use, there is616

scope for exploring the construction of multimodal617

drafters for multimodal targets that have different618

architectures.619
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A Additional Training Details776

The training curves presented in Figure 5 illustrate777

the convergence patterns for both phases of the778

MASSV methodology described in Section 3. In779

Phase 1 (Multimodal Alignment), the multimodal780

projector pretraining loss exhibits rapid conver-781

gence within the first 500 steps, starting from ap-782

proximately 8.0 and stabilizing around 2.5 by step783

2000. This demonstrates effective knowledge trans-784

fer from the target VLM’s vision encoder to the785

draft model via the trainable projector. Phase 2786

(Self-Distilled Visual Instruction Tuning) shows787

a more gradual optimization process with the loss788

starting at approximately 2.6 and stabilizing around789

1.1 with minor fluctuations across 5000 training790

steps. These training dynamics align with our791

experimental setup where each drafter was first792

pretrained for one epoch on the LLaVA-Pretrain-793

LCS-558K dataset (batch size 256, learning rate794

10−3), followed by fine-tuning on data distilled795

from LLaVA-mix-665K (batch size 128, learning796

rate 2× 10−5) using the target VLM. The conver-797

gence patterns show successful training of both the798

multimodal projector and subsequent distribution799

alignment through self-distilled visual instruction800

tuning.801

B Additional Evaluation Details802

Inference Settings. During inference, all drafters803

run on a single H100 GPU, with speculation length804

set to γ = 5. We evaluate performance at sampling805

temperatures T ∈ {0, 1}.806

Prompt Templates. The following prompt tem-807

plates were used during the evaluations described808

in Section 4.1. The GQA prompt explicitly requests809

reasoning explanations alongside answers, evaluat-810

ing the model’s visual reasoning capabilities. The811

COCO Captioning prompt elicits detailed image812

descriptions without stylistic constraints. These813

standardized prompts ensure consistent evaluation814

across all model variants (baseline, MASSV with-815

out SDViT, and full MASSV), enabling fair com-816

parison of mean accepted length and end-to-end817

speedup metrics. By maintaining these consistent818

prompt templates, we facilitate meaningful perfor-819

mance comparison not only within our experimen-820

tal framework but also with previously published re-821

sults in multimodal speculative decoding research.822
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(b) Phase 2: Self-Distilled Visual Instruction Tuning

Figure 5: Training loss curves obtained during the
two-phase MASSV training process when adapting
Qwen2.5-1.5B Instruct into a VLM drafter for Qwen2.5-
VL 7B Instruct. (a) shows the cross-entropy loss dur-
ing multimodal projector pretraining, which rapidly
decreases from ∼8.0 to ∼2.5 within 2000 steps, in-
dicating efficient adaptation of the trainable projector.
(b) displays the loss trajectory during fine-tuning with
self-generated target VLM responses, with stable con-
vergence around 1.1 across 5000 training steps, demon-
strating successful token distribution alignment between
the draft and target models.

Prompt for COCO Captioning Evaluation
Examine the provided image carefully
and generate a comprehensive description.
Please include relevant details about ob-
jects, their spatial relationships, activities,
attributes, and any other notable visual ele-
ments.

823
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Prompt for GQA Evaluation
For the following question, provide a de-
tailed explanation of your reasoning pro-
cess. Please analyze the visual elements sys-
tematically and articulate each step of your
thought process leading to the final answer.
{{Question}}

824
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