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Abstract

Speculative decoding significantly acceler-
ates language model inference by enabling
a lightweight draft model to propose multi-
ple tokens that a larger target model veri-
fies simultaneously. However, applying this
technique to vision-language models (VLMs)
presents two fundamental challenges: small
language models that could serve as efficient
drafters lack the architectural components to
process visual inputs, and their token predic-
tions fail to match those of VLM target mod-
els that consider visual context. We intro-
duce Multimodal Adaptation and Self-Data
Distillation for Speculative Decoding of Vision-
Language Models (MASSV), which transforms
existing small language models into effective
multimodal drafters through a two-phase ap-
proach. MASSV first connects the target
VLM’s vision encoder to the draft model via
a lightweight trainable projector, then applies
self-distilled visual instruction tuning using re-
sponses generated by the target VLM to align
token predictions. Comprehensive experiments
across the Qwen2.5-VL and Gemma3 model
families demonstrate that MASSV increases
accepted length by up to 30% and delivers end-
to-end inference speedups of up to 1.46x com-
pared to conventional text-only drafting base-
lines on visually-grounded tasks.

1 Introduction

Large language models (LLMs) have transformed
artificial intelligence by delivering breakthrough
capabilities in reasoning (Jaech et al., 2024;
DeepSeek-Al et al., 2025), code generation (Hui
et al., 2024; Li et al., 2023), and natural language
understanding (OpenAl et al., 2023; Gemini Team
et al., 2023; Anthropic et al., 2024; Grattafiori et al.,
2024). However, these achievements come with
substantial computational costs, particularly during
inference. The fundamental constraint arises from
autoregressive generation, where each token must

be predicted sequentially based on all previous to-
kens, creating an inherent bottleneck that limits par-
allelization. Speculative decoding (SD) addresses
this bottleneck by leveraging smaller draft models
to generate multiple candidate tokens autoregres-
sively, which are then verified in parallel by the
larger target model (Chen et al., 2023; Leviathan
et al., 2023). This technique reduces sequential
operations while preserving the original output dis-
tribution, effectively amortizing the computational
cost and enabling substantial inference speedups
without quality degradation.

While SD has been well-studied for text-only
models, extending it to vision-language models
(VLMs) introduces unique challenges. VLMs pro-
cess multimodal inputs by mapping image fea-
tures and text tokens into a joint embedding space,
enabling sophisticated visual reasoning capabili-
ties (Radford et al., 2021; Liu et al., 2023). This
multimodal conditioning presents two fundamen-
tal challenges for SD: (1) architectural incompat-
ibility, as small language models lack the compo-
nents to process visual inputs, and (2) distribution
mismatch, as unimodal draft models cannot eftec-
tively capture the visually-grounded nature of the
target VLM’s outputs. Previous approaches have
addressed these challenges either by excluding im-
age tokens entirely or by training small multimodal
models from scratch (Gagrani et al., 2024). The
former approach fails to leverage visual informa-
tion, while the latter requires substantial compu-
tational resources and may still suffer from distri-
bution misalignment. Lee et al. (2024) explored
ensemble-based methods that combine multiple
drafting strategies through batch inference. How-
ever, these ensemble approaches do not fundamen-
tally address the distribution mismatch between
draft and target models, instead relying on averag-
ing predictions from multiple unaligned drafters.
Neither of these approaches fully exploit the poten-
tial of existing model families or directly optimize
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Figure 1: End-to-end wallclock speedups when drafting for Qwen2.5-VL 7B Instruct at temperature 7' = 0 with

speculation length v = 5. The baseline uses Qwen2.5-1.5B
consistently yields the highest speedups across all categories

as a text-only drafter (image tokens removed). MASSV
, achieving up to 1.46x on COCO captioning and 1.28 x

overall. The gains are most pronounced for visually grounded tasks, demonstrating the importance of multimodal
adaptation and self-distilled visual instruction for accelerating VLM inference.

for the distribution alignment needed for SD.

We introduce Multimodal Adaptation and Self-
Data Distillation for Speculative Decoding of
Vision- Language Models (MASSV), a principled
method for adapting smaller language models from
the same family as the target VLM to serve as
efficient multimodal draft models. Our approach
consists of two key components. First, we formu-
late the multimodal drafting problem as mapping
from a target VLM’s vision-language embedding
space to a draft LM’s embedding space, construct-
ing a drafter by connecting the target VLM’s vi-
sion encoder and multimodal projector to a smaller
language model from the same family. Second,
we propose a training methodology centered on
self-data distillation (Thangarasa et al., 2025; Yang
et al., 2024) to align the draft model’s distribution
with the target model’s, specifically optimizing for
higher token acceptance rates during SD. As shown
in Figure 1, MASSYV achieves significant end-to-
end speedups, particularly on visually grounded
tasks, demonstrating the importance of multimodal
adaptation and self-data distillation for improving
acceptance rate of draft tokens. Our contributions
are as follows:

* We propose MASSYV, a comprehensive frame-
work that combines (1) a architectural adapta-
tion connecting target VLM components with
smaller language models from the same fam-
ily, and (2) a self-data distillation technique
specifically designed to align multimodal dis-
tributions for improved token acceptance.

* We provide extensive empirical evaluations
demonstrating significant improvements in ac-
ceptance rates across multiple model families,
with speedups reaching up to 1.28x overall on
multimodal tasks.

* We present detailed ablations revealing that
self-data distillation is crucial for multimodal
drafting, improving distribution alignment be-
tween draft and target models particularly for
visually-grounded tasks.

2 Preliminaries

We establish the necessary background for our ap-
proach. First, we review SD, an inference accel-
eration technique that uses a smaller draft model
to propose tokens that are verified by a larger tar-
get model. Second, we describe VLMs, which
combine visual encoders with language models to
process multimodal inputs. Finally, we discuss
how SD has been adapted for VLMs, including the
text-only drafting baseline we compare against.

Speculative decoding is a technique for acceler-
ating LLM generation without altering the distri-
bution of the generation output (Leviathan et al.,
2023; Chen et al., 2023). In each iteration of
the algorithm, a draft model M, generates mul-
tiple draft tokens that are verified in parallel by
the target model M. The algorithm continues it-
erating until an end-of-sequence (EOS) token is
generated or the max sequence length is reached.
Formally, let X;.;, = X1, X3, ..., Xy be the input
sequence for the current iteration. M, first au-
toregressively samples ~ draft tokens X;{1.14~,
where token X;; is sampled with probability
q(X¢+4i| X1:44i—1). Next, M,, computes the proba-
bilities p(X¢i| X1:44i-1) fori = 1,2, ...,y + 1in
parallel with one forward call. These probabilities
are used to evaluate the draft tokens sequentially,
with the probability of accepting token X;,; being

: P(Xppi| Xait4i—1) :
min (1, PSP CRTY ) If the token is accepted,

it is added to the generation output and the next to-
ken is evaluated. Otherwise, if the token is rejected,
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Figure 2: Detailed architecture of MASSYV illustrating: (1) the two-phase training methodology consisting of
multimodal projector pretraining followed by self-distilled visual instruction tuning, and (2) the deployment
configuration for draft token generation during speculative decoding inference. Components marked with the
snowflake remain frozen during training to preserve their parameters, while components with the flame are trainable.
This architecture enables efficient knowledge transfer from the target vision-language model to the smaller draft
model while maintaining alignment in their token distributions.

a new token is sampled from the residual distribu-
tion norm(max(p(+[X1:t4i—1) —q(-| X1:¢4i-1), 0))
and the iteration ends. Sampling from the resid-
ual distribution ensures the output distribution of
the speculative decoding algorithm is the same
as the target’s output distribution. In the degen-
erate case where sampling is disabled (tempera-
ture = 0), the algorithm simplifies to greedy de-
coding. The draft model generates tokens by se-
lecting X;; = argmax, q(x|X1.44;—1). During
verification, token X;,; is accepted if and only if
Xi4i = argmaxy p(z|X1.44i-1). If rejected, the
token is set to arg max, p(z|Xi.444-1)-

Vision-language models (VLMs) process mul-
timodal inputs, consisting of visual and text to-
kens, by mapping the tokens into a joint embed-
ding space. A VLM consists of three components:
a vision encoder ¢, multimodal projector gy, and
a language model M,,. Given an input consisting of
tokens X7.; and visual information I, a VLM first
extracts m features Hy.,, = ¢;(I) from the image
using the vision encoder. These image features
are then projected into the joint embeddings space
Vi = go(H;) fori € {1,...,m}. Finally, the VLM
samples the next token X1 from p(-|X1.4, Viim),
where p(-|-) denotes the conditional probability dis-
tribution of M. Note that directly using SD to ac-
celerate a VLM on multimodal inputs requires the
drafter to also be a VLM. However, Gagrani et al.
(2024) show that a small language model (SLM)
can be used as an effective drafter by conditioning
it only on the text tokens in the input. Concretely,

given an SLM drafter M, the draft token X, is
sampled from q(+|Xj.44,—1) fori = 1,...,7y. We
refer to this as text-only drafting and use it as the
baseline in our experiments.

3 Methodology

We introduce a method to adapt an SLM into
an effective draft model for LLaVA-style VLM,
which employ a modular architecture of separate vi-
sion encoder and language model components con-
nected via a projection layer that maps image fea-
tures into the language model’s embedding space.
Our approach integrates the target VLM’s frozen
vision encoder into the SLM through a randomly
initialized MLP-based projector, preserving archi-
tectural compatibility while enabling visual pro-
cessing. We then align the adapted model with the
target VLM through a two-phase training proto-
col: (1) the projector is pretrained on paired image-
text data to establish visual grounding; and (2) the
model undergoes self-distilled visual instruction
tuning to optimize token-level distribution align-
ment. The overall architecture is shown in Figure 2.

3.1 Architectural Adaptation

Let MY"™ = (¢, g§, M) denote the target VLM,
where gZ) is the vision encoder, gg is the multi-
modal projector, and M), is the language model.
Let M, be an SLM from the same model family as
M,,. While our method can be applied to any small
language model, this work specifically focuses on
text-only SLMs from the same model family as



the larger VLM. This choice ensures that the draft
model’s tokenizer and vocabulary are compatible
with those of the target during SD. Although re-
cent work has demonstrated approaches to handle
heterogeneous vocabularies (Timor et al., 2025),
these techniques trade latency for vocabulary com-
patibility. Furthermore, existing methods have not
demonstrated their effectiveness in handling multi-
ple modalities, as required for VLMs. Due to these
limitations and considerations beyond the scope of
this work, we leave exploring vocabulary hetero-
geneity in multimodal SD for future research.

We construct the VLM drafter M )™ as follows,
M™M= ( I»ngM ), where ¢ is the shared
vision encoder from the target VLM, gi is a ran-
domly initialized multimodal projector, and M,
is the draft SLM. The projector g;i has the same
architecture as gy, but its output dimension dg,
is set to match the embedding dimension of M,
gi : R%is — Rem where dy is the vision en-
coder’s output dimension and d_, is the embed-
ding dimension of M,. We choose to share the
vision encoder between the target and the drafter,
since this ensures that the drafter and target pro-
cess the same visual features Hy.,,, = d)?(] ) for a
given image input /. This architectural choice also
reduces compute cost by avoiding redundant vision
encoding operations.

3.2 Multimodal Alignment

Multimodal Projector Pretraining Following Liu
et al. (2024b), we first pretrain the multimodal pro-
jector gfp by training the VLM drafter with the
vision encoder and SLM backbone frozen. Given a
pretraining dataset Dpre = {(I;, C;) ¥ ;=1 of image-
caption pairs, we optimize,

N |Gl

=33 logay(cilel V), ()

j=1i=1

['pre (1/)) =

where V; = g (¢}(1;)) are the projected visual
features, cé is the i-th token of caption C}, and
¢y denotes the distribution of the draft VLM with
projector parameters . Only v is updated during
this phase while ¢¥ and M, remain frozen.
Self-Distilled Visual Instruction Tuning (SD-
ViT) In this phase, we introduce SDViT, an ap-
proach that employs SDD to align the drafter’s
distribution with the target’s multimodal distribu-
tion. Let D = {(I;, X;, y;) }I_, be a visual instruc-
tion dataset, where [; is the image input, X; is the
text instruction, and y; is the reference response.

The original SDD formulation by Thangarasa et al.
(2025); Yang et al. (2024) generates target outputs
using task-specific contexts and templates. In con-
trast, for SD, our objective is to align the drafter’s
token-level predictions with the target’s. There-
fore, we directly use the target VLM to generate
responses, y; = sampley,, . (p(-|1;, X;)), where p
denotes the target VLM’s distribution conditioned
on both image I; and text instruction X;. This cre-
ates a self-distilled dataset D’ = {(I;, X;, y.)}7-,
We then fine-tune the drafter with its vision encoder
frozen to minimize,

n |y1

==Y logga(yily"* T, X, Vi),

1=1 k=1
2)
where V; = g, 4 (¢1(I;)) are the projected visual fea-

‘CSDVIT

tures, yz is the k-th token of the target’s response,
and gg denotes the drafter’s distribution with pa-
rameters 6 = {1, §,} (projector and SLM parame-
ters). In contrast to generic visual instruction tun-
ing with fixed dataset labels, our self-distillation
strategy trains the drafter on the target’s actual out-
puts, directly optimizing for the acceptance mech-
anism in SD. SDVIT addresses this through di-
verse sampling, where the target VLM generates
responses across different temperature values with
top-p sampling, creating a varied dataset that better
represents the full response distribution. Specif-
ically, draft tokens are accepted with probability

: p(Xt|X1.¢,1)
min <1’ q(X¢|X1:6,1)

outputs rather than generic labels, we maximize
the overlap between the drafter’s distribution ¢ and
the target’s distribution p, leading to higher token
acceptance rates during inference. Our results in
Section 4.2 show that this alignment translates to
improved token acceptance rates during SD.

). By training on the target’s

4 Empirical Results
4.1 Experimental Setup

Draft and Target Models. Our evaluation lever-
ages two distinct model families: the Qwen2.5-VL
Instruct (Bai et al., 2025) and instruction-tuned
Gemma3 (Gemma Team et al., 2025). Specifically,
for Qwen2.5-VL, we set the 7B model as our pri-
mary target, applying MASSV to Qwen2.5-1.5B
Instruct. Similarly, for Gemma3, we target the 12B
IT variant and adapt Gemma3-1B IT using MASSV.
We selected these specific SLMs because they are
from the same model families as the larger target
models and were readily available as checkpoints



Target Model Method LLaVal1l50k LLaVA-Bench GQA COCO Overall
Temperature = 0
Qwen25-VL 7B Baseline  2.37 (1.00x)  2.61 (1.00x) _ 2.59 (1.00x) 2.21 (1.00x) __ 2.46 (1.00x)
Instruct MASSV 321 (1.24x)  3.12(1.16x) 328 (1.26x) 3.26 (1.46x)  3.20:0 74 (1.28x)
Qwen2.5-VL 32B  Baseline  2.46 (1.00x) __ 2.70 (1.00x) _ 2.79 (1.00x) 248 (1.00x) __ 2.61 (1.00x)
Instruct MASSV  3.12(1.26x)  2.90(1.07x)  3.19(1.13x) 3.09 (1.23x)  3.040.5 (1.17x)
Baseline  2.71 (1.00x)  2.72 (1.00x) _ 2.75 (1.00x) 2.84 (1.00X) __ 2.76 (1.00x)
Gemma3-12BIT — \iagqy 330 (1.19x)  3.00(I.11x)  3.07 (118x) 341 (1.24x) 3.19:0.45 (1.18x)
Baseline 249 (1.00x) 270 (1.00x) _ 2.61 (1.00x) 2.73 (1.00X) __ 2.65 (1.00x)
Gemma3-27BIT — \1Agsy 300 (120x) 284 (1.05x)  2.86 (1.09x) 324 (1.20x) 2.99.0.4: (1.14%)
Temperature = 1
Qwen2.5-VL 7B Baseline  2.47 (1.00x)  2.75 (1.00x) _ 2.63 (1.00x) 241 (1.00x) __ 2.58 (1.00x)
Instruct MASSV ~ 335(1.26x) 298 (1.09x)  3.19(1.19x) 3.31(1.35x) 3.18:0.60 (1.22x)
Qwen2.5-VL 32B  Baseline  2.48 (1.00X) __ 2.69 (1.00x) _ 2.75 (1.00x) _ 2.56 (1.00x) __ 2.63 (1.00x)
Instruct MASSV  3.01(1.25x)  2.87(1.09x)  3.00(1.09x) 3.04 (1.19x) 29705 (1.15x)
Gemmas.1op p Baseline  2.67(1.00x) 279 (1.00x)  278(L.00x) 294 (1.00x) 282 (1.00x)
MASSV ~ 3.08(1.13x)  2.82(1.05x)  3.01 (1.10x) 3.37 (1.16x)  3.06:0.24 (1.11x)
Baseline  2.57 (1.00x) _ 2.67 (1.00x) _ 2.63 (1.00x) 2.73 (1.00x) __ 2.67 (1.00x)
Gemma3-27BIT  \iagsy 281 (1.09x)  262(1.02x)  2.82(1.07x) 3.13(1.15x) 2.84:0.17 (1.08x)

Table 1: Mean accepted lengths (7) and speedups across model families, tasks, and temperatures (" € {0,1})
with speculation length v = 5. Values show tokens accepted per target VLM forward pass, with speedup ratios in
parentheses (normalized to baseline). MASSV consistently outperforms the text-only baseline (Gagrani et al., 2024),
achieving substantial gains on visually-grounded tasks like COCO captioning (+47.5% at T' = 0: 2.21 — 3.26) and
improving overall acceptance (+30.1% for Qwen2.5-VL 7B: 2.46 — 3.20). MASSYV delivers practical efficiency
with 1.28 x end-to-end speedup for Qwen2.5-VL 7B at T' = 0 and generalizes effectively to larger models without

requiring direct alignment.

on HuggingFace. We utilize text-only drafting with
the off-the-shelf SL.M as our baseline (1.00x).
Drafter Training for Multimodal Adapta-
tion. The draft model training process consists
of two distinct phases and requires only moder-
ate compute infrastructure, achievable with stan-
dard research hardware (e.g., four-GPU server with
current-generation accelerators). Initially, we pre-
train each drafter for one epoch on the LLaVA-
Pretrain-LCS-558K ! dataset, using a global batch
size of 256 and a learning rate of 1 x 10™*. Subse-
quently, we fine-tune the models on data distilled
from the LLaVA-mix-665K 2 dataset for another
epoch with a batch size of 128 and learning rate 2
x 107, See Appendix A for more details.
Evaluation Tasks. We conduct evaluations
using four multimodal benchmarks: LLaVA In-
struct 150k (Liu et al., 2023), LLaVA-Bench (In-
the-Wild) 3, GQA (Hudson and Manning, 2019),
and image captioning prompts from COCO Test
2017 (Lin et al., 2015). Performance is measured
by mean accepted length (7), which quantifies the
average number of tokens accepted per forward

"https://huggingface.co/datasets/liuhaotian/LLaVA-
Pretrain

Zhttps://huggingface.co/datasets/liuhaotian/LLaVA-
Instruct-150K/blob/main/llava_v1_5_mix665k.json

3https://huggingface.co/datasets/liuhaotian/llava-bench-
in-the-wild

pass of the target model, directly correlating to
speedup independent of hardware. Evaluation set-
tings and prompts for GQA reasoning and COCO
Captioning tasks are provided in Appendix B.

4.2 Results

Our results demonstrate MASSV’s significant im-
provements over the text-only baseline across all
evaluated settings (see Table 1). At temperature
T = 0, MASSV achieves a noticeable increase
in mean accepted length (MAL), most notably
improving by 30.1% (from 2.46 to 3.20) for the
Qwen2.5-VL 7B Instruct model. Similarly, at
T = 1, MASSV attains a MAL improvement
of 23.3% (from 2.58 to 3.18). These improve-
ments are consistent across different downstream
tasks, with the largest relative gains observed in
visually intensive tasks such as COCO caption-
ing. For instance, MASSV increases MAL by
47.5% (2.21 to 3.26) on COCO captioning tasks
at T'" = 0, highlighting the importance of multi-
modal drafting for visually-grounded generations.
Moreover, MASSV consistently outperforms the
baseline on the Gemma3 family despite their sig-
nificant architectural differences (e.g., dynamic vi-
sual token count in Qwen2.5-VL versus interleaved
sliding window attention in Gemma3). Specifically,
MASSYV improves MAL by 15.6% (2.76 to 3.19)
on Gemma3-12B IT at T' = 0, demonstrating its
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Figure 3: Mean accepted lengths when drafting for Qwen2.5-VL 7B Instruct at temperature 7' = 0 with speculation
length v = 5. The baseline uses Qwen2.5-1.5B as a text-only drafter (image tokens removed). MASSV achieves a
substantial improvement in token acceptance across all tasks, increasing overall mean accepted length from 2.46 to

3.20 (+30.1%).

effectiveness across diverse VLMs.

Generalization to Larger Model Variants. We
also evaluated MASSV on larger variants within
each model family, specifically Qwen2.5-VL 32B
and Gemma3-27B. Although we did not directly
apply SDVIT to these larger targets, we hypoth-
esized that MASSYV, when applied to smaller dis-
tilled versions (7B and 12B), could still benefit their
larger counterparts due to their shared architecture
and distillation lineage. Our empirical results con-
firm this hypothesis, demonstrating that MASSV
provides meaningful gains even when scaling up
within the same model family. This finding is par-
ticularly impactful as it allows substantial com-
putational and time savings by enabling MASSV
adaptation on smaller, more efficient targets, which
can subsequently generalize to larger models.

End-to-end Inference Speedups. The mean ac-
cepted length improvements translate directly to
substantial wall-clock speedups during inference.
MASSYV achieves an overall end-to-end speedup
of 1.28x for Qwen2.5-VL 7B Instruct at tempera-
ture 7' = 0, with even higher speedups on specific
tasks such as COCO captioning (1.46x). These
speedups remain consistent across model families,
with Gemma3-12B IT achieving 1.18x accelera-
tion. Notably, MASSV demonstrates effective scal-
ability to larger models, achieving 1.17 x speedup
for Qwen2.5-VL 32B and 1.14 x for Gemma3-27B,
despite not requiring direct alignment on these
larger targets. These results show that MASSV’s
improved token acceptance rates translate to mean-
ingful practical efficiency gains.

5 Ablation Studies

We investigate the impact of self-distilled visual in-
struction tuning on distribution alignment, and we
examine whether multimodal capability provides

meaningful benefits over text-only drafting.

5.1 Effect of Self-Distilled Visual Instruction
Tuning

We assess the role of self-distilled distillation in
our method by comparing drafters trained with SD-
ViT versus standard fine-tuning on a vanilla dataset.
Specifically, we adapt Qwen2.5-1.5B Instruct and
Gemma3-1B IT into drafters for Qwen2.5-VL 7B
Instruct and Gemma3-12B IT, respectively. Fig-
ure 3 demonstrates the efficacy of MASSV with
SDVIT (green bar) for Qwen2.5-VL 7B Instruct
across diverse multimodal benchmarks. MASSV
exhibits substantial performance gains, most promi-
nently in COCO Captioning where the mean ac-
cepted length increases from 2.21 to 3.26 tokens
(+47.5%). Table 2 summarizes our comprehensive
ablation study on SDVIT across both target mod-
els: Qwen2.5-VL 7B Instruct and Gemma3-12B IT.
The quantitative evaluation results demonstrate the
critical importance of self-distilled visual instruc-
tion tuning for effective multimodal SD. For the
Gemma3 architecture, without SDVIT (denoted as
MASSV /o spviT), the Gemma3-1B IT draft model
exhibits a significant performance regression, with
mean accepted length deteriorating to 2.33 com-
pared to the baseline’s 2.74 (a 13% decrease in
acceptance rate). This indicates that naive architec-
tural adaptation without distribution alignment can
be notably detrimental to performance. In contrast,
when enhanced with SDVIiT, the model achieves a
mean accepted length of 3.14, representing a sub-
stantial 14.6% improvement over the baseline and a
1.18x speedup. These results highlight the critical
role of distribution alignment in multimodal SD.

Distribution Analysis. To understand the mech-
anism behind these improvements, we analyze the
distribution alignment between drafters and tar-
gets. For each multimodal input, we compute



Target Model Method T Speedup
Baseline 2.46 1.00x

8&2‘3{5 VLTB  MASSVaesowr 256 1.04x
MASSV 3.20 1.28x
Baseline 2.74 1.00x

Gemma3-12B IT MASSVW/O SDViT 2.33 0.87x
MASSV 3.14 1.18x

Table 2: Ablation results on the effect of SDViT on draft-
ing performance. Qwen2.5-1.5B Instruct and Gemma3-
1B IT are the base SLMs used to create drafters for
Qwen2.5-VL 7B Instruct and Gemma3-12B IT, respec-
tively. The reported mean accepted lengths (7) are mea-
sured on the overall multimodal speculative decoding
benchmark dataset at temperature = 0.

the Total Variation Distance (TVD) between the
drafter’s and target’s output token distributions.
The TVD measures the maximum difference be-
tween two probability distributions: TVD(P, Q) =
2> ex |P(x) — Q(x)|, where P and Q are the
target and drafter token distributions, respectively,
and & is the vocabulary. TVD is particularly rele-
vant in the context of SD, as it bounds the expected
probability that tokens proposed by the draft model
will be rejected by the target model. By minimizing
TVD through our SDViT approach, we directly op-
timize for higher token acceptance rates, which ex-
plains the improved mean accepted length observed
in our experiments. For discrete distributions like
token probabilities, TVD ranges from 0 (identi-
cal distributions) to 1 (completely disjoint distri-
butions). Figure 4 shows the resulting distribution.
The drafter trained with SDViT produces signifi-
cantly more tokens with output distributions closely
matching the target. This demonstrates that SDViT
enables the drafter to more faithfully reproduce the
target model’s token-level behavior. These results
indicate that: (1) SDD substantially improves dis-
tribution alignment between drafter and target, and
(2) distribution alignment contributes more to draft-
ing performance than raw multimodal capability.

5.2 Text-Only vs Multimodal Drafting

Given that distribution alignment appears more im-
portant than multimodal capability, we investigate
whether multimodal processing provides any bene-
fit over text-only drafting. This question is partic-
ularly relevant since text-only drafting could offer
computational advantages by avoiding visual en-
coding operations during the draft phase.

We evaluate our VLM drafters in text-only mode
by discarding visual tokens from the input, thereby
using only the language model backbone of our

B MASSV
1.2 MASSV w/o SDVIT
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Figure 4: Histogram of total variation distances (TVD),
comparing the Qwen2.5-1.5B drafters trained with (pur-
ple) and without (orange) self-distilled visional instruc-
tion (SDVIT) against the Qwen2.5-VL 7B target model
on our multimodal SD benchmark. MASSYV yields a
highly skewed distribution concentrated at low TVD
values, indicating tighter alignment with the target’s to-
ken distribution. In contrast, MASSV,,, spvitT produces
a broader, heavier-tailed distribution, reflecting reduced
alignment. The left-skewed shape of the MASSV distri-
bution quantitatively suggests that SDViT narrows the
distributional gap between draft and target.

Target Model Method T
Qwen2.5-VL 7B Text-Only  2.84
Instruct Multimodal ~ 3.20

Text-Only  2.99

Gemma3-12B IT Multimodal  3.19

Table 3: Ablation results on the performance of text-
only drafting. The VLM drafter’s language model back-
bone serves as a text-only drafter by discarding all visual
tokens. Mean accepted lengths (7) are measured on the
overall benchmark dataset at temperature = 0.

adapted drafter. This approach mirrors the baseline
strategy used in prior work (Gagrani et al., 2024),
where standard SLMs trained from scratch serve
as drafters for VLM targets without processing any
visual information. Table 3 shows that multimodal
drafting consistently outperforms text-only drafting
across both model families. The improvements are
substantial: 12.7% higher mean accepted length for
Qwen2.5-VL (3.20 vs. 2.84) and 6.7% higher for
Gemma3 (3.19 vs. 2.99). These gains demonstrate
that while distribution alignment is the primary fac-
tor in drafting performance, incorporating visual
information provides additional benefits for pre-
dicting the target VLM’s outputs. The advantage of
multimodal drafting likely stems from its ability to
condition token predictions on the actual visual con-
tent, particularly for visually-grounded tokens such
as object names, spatial relationships, and visual
attributes. While text-only drafting must rely solely
on linguistic patterns and context, multimodal draft-
ing can leverage direct visual evidence to better



predict the target VLM’s outputs. Based on these
observations, we focus exclusively on multimodal
drafting in our main experiments (Section 4). This
choice ensures we capture the full benefits of vi-
sual information while maintaining strong distribu-
tion alignment through SDViT. As we demonstrate
across multiple model families and tasks, this com-
bination of multimodal capability and distribution
alignment yields consistent improvements in SD
performance.

6 Related Work

Speculative decoding has emerged as a promising
technique for accelerating LLM inference with-
out compromising output quality. This approach
leverages smaller, faster draft models to autoregres-
sively generate multiple candidate tokens, which
are then verified in parallel by the larger target
model in a single forward pass (Leviathan et al.,
2023; Chen et al., 2023). The theoretical founda-
tions of this technique were established by identi-
fying conditions under which speculative propos-
als can preserve the original model’s output distri-
bution (Leviathan et al., 2023). Recent advance-
ments include tree-structured variants (Li et al.,
2024b,a; Wang et al., 2025; Chen et al., 2024),
self-drafting (Elhoushi et al., 2024; Zhang et al.,
2024; Liu et al., 2024a; Xia et al., 2025), N-gram-
based (Stewart et al., 2024; Ou et al., 2024) and
retrieval-based (He et al., 2024; Yang et al., 2023)
that further enhance inference efficiency. However,
these approaches have primarily focused on text-
only models, where the draft and target operate
within the same modality space.

Multimodal Speculative Decoding. Extending
speculative decoding to vision-language models
introduces fundamental challenges absent in uni-
modal settings. Gagrani et al. (2024) conducted ini-
tial explorations in this domain by evaluating sev-
eral draft model variants with the LLaVA-7B archi-
tecture (Liu et al., 2024b). Their analysis across im-
age question-answering, captioning, and reasoning
tasks revealed modest token acceptance rates, with
the multimodal variant achieving only marginal im-
provements over text-only counterparts. Detailed
traces demonstrated that while drafters successfully
predicted function words and repeated tokens, they
struggled with visually-grounded content, high-
lighting two fundamental challenges: (1) architec-
tural misalignment between drafters and vision-
language targets, and (2) distributional divergence
between text-only priors and visually-informed out-

puts. Lee et al. (2024) introduced a batch-based
approach that combines predictions from multiple
drafting methods to increase the likelihood of to-
ken acceptance. While their ensemble technique
improves empirical performance without parameter
overhead, it operates primarily as a post-hoc aggre-
gation mechanism rather than addressing the under-
lying distributional divergence between individual
drafters and the target model. Our MASSV frame-
work directly addresses these limitations through
principled vision-language alignment techniques.

Draft Model Alignment. Self-distillation uses
a model’s own outputs as training targets, extend-
ing traditional knowledge distillation approaches.
While Yang et al. (2024) showed self-distillation
can bridge distribution gaps during language model
fine-tuning and Thangarasa et al. (2025) demon-
strated its effectiveness in mitigating catastrophic
forgetting in pruned models, we extend these
insights to multimodal drafting. In particular,
SD? (Lasby et al., 2025) apply SDD to fine-grained
sparse draft models, aligning them closely with
their original dense counterparts and yielding sub-
stantially higher mean accepted lengths than undis-
tilled sparse drafters. Unlike previous work, we
explicitly formulate self-distillation as an optimiza-
tion for token acceptance probability in the specu-
lative decoding framework. By training our draft
model on responses generated by the target VLM
itself rather than fixed dataset labels, we align the
draft model’s distribution with that of the target’s.

7 Conclusion

In this work, we present MASSYV, a method to
transform SLLMs into highly efficient speculative
drafters for VLMs. MASSYV addresses challenges
like architectural incompatibility and distribution
mismatch by grafting the frozen vision encoder
of the target VLM onto the draft model via a
trainable projector and aligning the drafter’s token
distribution through fine-tuning on self-generated
vision-language data. Across both Qwen2.5-VL
and Gemma3 model families, MASSV increases
mean accepted length by 16-30% with end-to-end
inference speedups of up to 1.46x. Ablation studies
show that SDD is critical for distribution align-
ment, and full multimodal drafting consistently
outperforms text-only approaches. Given its gen-
eralizability and demonstrated performance gains,
MASSYV presents a readily deployable solution for
significantly accelerating VLM inference across
diverse architectures and tasks.



Limitations

While this work establishes a comprehensive frame-
work for constructing a drafter VLM using an SLM
from the same family as the target VLM, there is
scope for exploring the use of SLMs that come
from a different model family. We chose to focus
on using SLMs from the same model family as the
target, since this ensures that the draft model’s tok-
enizer and vocabulary are compatible with those of
the target during speculative decoding. Overcom-
ing this limitation would allow producing efficient
multimodal draft models for a wider range of mul-
timodal target models. Another limitation of our
method is that it is applicable specifically for the
VLM architecture. While we chose to focus on
this architecture due to its widespread use, there is
scope for exploring the construction of multimodal
drafters for multimodal targets that have different
architectures.
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A Additional Training Details

The training curves presented in Figure 5 illustrate
the convergence patterns for both phases of the
MASSYV methodology described in Section 3. In
Phase 1 (Multimodal Alignment), the multimodal
projector pretraining loss exhibits rapid conver-
gence within the first 500 steps, starting from ap-
proximately 8.0 and stabilizing around 2.5 by step
2000. This demonstrates effective knowledge trans-
fer from the target VLM’s vision encoder to the
draft model via the trainable projector. Phase 2
(Self-Distilled Visual Instruction Tuning) shows
a more gradual optimization process with the loss
starting at approximately 2.6 and stabilizing around
1.1 with minor fluctuations across 5000 training
steps. These training dynamics align with our
experimental setup where each drafter was first
pretrained for one epoch on the LLaVA-Pretrain-
LCS-558K dataset (batch size 256, learning rate
1073), followed by fine-tuning on data distilled
from LLaVA-mix-665K (batch size 128, learning
rate 2 X 107°) using the target VLM. The conver-
gence patterns show successful training of both the
multimodal projector and subsequent distribution
alignment through self-distilled visual instruction
tuning.

B Additional Evaluation Details

Inference Settings. During inference, all drafters
run on a single H100 GPU, with speculation length
set to v = 5. We evaluate performance at sampling
temperatures 7' € {0, 1}.

Prompt Templates. The following prompt tem-
plates were used during the evaluations described
in Section 4.1. The GQA prompt explicitly requests
reasoning explanations alongside answers, evaluat-
ing the model’s visual reasoning capabilities. The
COCO Captioning prompt elicits detailed image
descriptions without stylistic constraints. These
standardized prompts ensure consistent evaluation
across all model variants (baseline, MASSV with-
out SDViT, and full MASSYV), enabling fair com-
parison of mean accepted length and end-to-end
speedup metrics. By maintaining these consistent
prompt templates, we facilitate meaningful perfor-
mance comparison not only within our experimen-
tal framework but also with previously published re-
sults in multimodal speculative decoding research.
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Figure 5: Training loss curves obtained during the
two-phase MASSV training process when adapting
Qwen2.5-1.5B Instruct into a VLM drafter for Qwen2.5-
VL 7B Instruct. (a) shows the cross-entropy loss dur-
ing multimodal projector pretraining, which rapidly
decreases from ~8.0 to ~2.5 within 2000 steps, in-
dicating efficient adaptation of the trainable projector.
(b) displays the loss trajectory during fine-tuning with
self-generated target VLM responses, with stable con-
vergence around 1.1 across 5000 training steps, demon-
strating successful token distribution alignment between
the draft and target models.

Prompt for COCO Captioning Evaluation
Examine the provided image carefully
and generate a comprehensive description.
Please include relevant details about ob-
jects, their spatial relationships, activities,
attributes, and any other notable visual ele-
ments.



Prompt for GQA Evaluation

For the following question, provide a de-
tailed explanation of your reasoning pro-
cess. Please analyze the visual elements sys-
tematically and articulate each step of your
thought process leading to the final answer.

{{Question}}
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