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ABSTRACT

Generating high-quality semantic segmentation results from food images remains
a challenging task, particularly in the presence of complex boundaries and class
imbalance. Existing methods often struggle with blurred edges and underperform
on long-tailed categories, limiting their generalizability in practical scenarios. To
address these issues, we propose FOCUS, a novel semantic segmentation frame-
work designed to enhance boundary precision and improve underrepresented class
recognition. Specifically, we introduce a frequency-based strategy that selectively
processes high-frequency components via differential convolution and integrates
explicit edge supervision during training. This enables the model to better cap-
ture fine-grained boundary details and improves edge discriminability. To mit-
igate class imbalance, we introduce an enhanced gradient allocation mechanism
that applies targeted matching supervision to underrepresented categories, thereby
amplifying learning signals for low-shot classes and improving classification ac-
curacy. Extensive experiments on benchmark datasets, FoodSeg103, UECFood-
PixComplete, and Food50Seg, show that FOCUS consistently outperforms exist-
ing approaches in both boundary quality and underrepresented class performance,
validating its architectural effectiveness and robust generalization capability.

1 INTRODUCTION

Image Region Corresponding  Gradient Information  Corresponding High-frequency Information

Figure 1: Gradient and frequency representation in food images. The green box shows gradient
information, while the blue box highlights high-frequency components from the Fourier transform,
with edges exhibiting abundant high-frequency content and high gradients.

Semantic segmentation of food images is a fundamental task in food computing, enabling various
downstream applications such as food quality assessment Zhang et al. (2021b) and nutritional anal-
ysis He et al. (2020). Early approaches primarily relied on pixel-wise classification and performed
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well when high-quality pixel-level annotations were available. However, in the food domain, such
fine-grained annotations are often scarce, with datasets typically providing only coarse polygonal
labels, which poses significant challenges for conventional methods. To overcome these limitations,
recent research has increasingly adopted the mask classification paradigm Cheng et al. (2021), which
directly predicts object-level masks. This strategy not only improves boundary localization but also
enhances category recognition, thereby achieving higher-quality food image segmentation Min et al.
(2019).

Despite recent advances, the inherent visual complexity and high intra-class variability of food items
continue to present significant challenges for achieving robust segmentation. One major obstacle is
the low quality of mask proposals near object boundaries. This issue arises primarily from the ir-
regular and diverse shapes of food items Lin et al. (2017), as well as boundary interference caused
by common food presentation styles such as overlapping and stacking. To address this, prior works
have explored supervised attention mechanisms Chen et al. (2020) to enhance boundary awareness
and refine mask predictions. However, these approaches typically rely on standard convolutional
operations, which do not explicitly model boundary-specific structures. Because traditional convo-
lutions operate over broad and unconstrained receptive fields, they often fail to effectively capture
fine-grained edge details, resulting in suboptimal boundary localization. Therefore, improving mask
proposal accuracy in boundary regions remains critical for advancing segmentation quality in food
image analysis.

Another critical challenge observed in real-world scenarios is the pronounced class imbalance Cui
et al. (2019), where certain categories are represented by only a limited number of training sam-
ples. These rare classes pose greater difficulties for model optimization, necessitating more effective
strategies to fully exploit the available data during training. In food image generation, rare categories
such as unique dishes or uncommon ingredients, are typically underrepresented, resulting in limited
supervision and sparse gradient updates. Consequently, models struggle to learn stable and discrim-
inative feature representations. As a result, the accuracy of mask classification for these classes is
significantly compromised. Prior studies have attempted to mitigate class imbalance through ap-
proaches such as data augmentation Ghiasi et al. (2021) and loss re-weighting Wang et al. (2021).
While these methods offer some improvement, they generally rely on explicit adjustments to the loss
function or sample distribution and fail to provide richer and more diverse gradient signals. How-
ever, they rarely explore the optimization process from an algorithmic perspective. Consequently,
they often fall short of fundamentally addressing the low mask classification accuracy associated
with underrepresented classes.

To address aforementioned challenges of boundary ambiguity and underrepresented class learning,
we propose a novel framework, FOCUS, which enhances both mask proposal quality and mask clas-
sification, thereby improving overall segmentation accuracy. From a frequency-aware perspective (
Figure 1), boundary regions exhibit sharp gradient transitions and abundant high-frequency compo-
nents, reflecting the complexity of object edges. To effectively capture these signals, we introduce a
Frequency-Aware Boundary Modeling mechanism that replaces standard convolution with differen-
tial convolution to explicitly incorporate edge priors. And this design employs a supervised attention
mechanism to capture subtle boundary variations while balancing high- and low-frequency informa-
tion, thereby generating more accurate masks. To further improve classification performance for
underrepresented categories, we introduce an extra matching strategy that assigns multiple queries
to each foreground object, thereby expanding their effective receptive fields without modifying the
overall training paradigm (Figure 2). This strategy provides more diverse gradient signals, enabling
stronger supervision and more stable learning for these underrepresented classes.

Our main contributions are as follows:

• We propose FOCUS, a novel mask classification-based semantic segmentation framework
tailored for food images. FOCUS effectively addresses the challenges of food image
segmentation and achieves state-of-the-art (SOTA) performance on multiple benchmark
datasets, as validated by extensive ablation studies and qualitative results.

• We present a new edge representation paradigm that combines frequency-domain selective
filtering with differential convolution. This design decouples fine-grained edge signals
from background noise, enabling more accurate boundary modeling and addressing long-
standing difficulties in capturing intricate object boundaries.
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(a) One-to-One Matching (b) One-to-Many Matching

(c) Gradient-Enhanced Underrepresented 
Class Matching(Ours)

Common Class Query

Common Class Target Underrepresented Class Target

Underrepresented Class Query

Common Class Match Underrepresented Class Match

Matching Scope of 
Common Class Queries

Matching Scope of 
Underrepresented Class Queries

Figure 2: A comparison between existing matching strategies, including One-to-One Matching and
One-to-Many Matching, and the Gradient-Enhanced Underrepresented Class Matching (Ours)

• We introduce a gradient-enhanced matching strategy that dynamically allocates extra
queries to underrepresented and critical categories. This strategy improves classification
accuracy and stabilizes training under class imbalance, thereby strengthening the overall
effectiveness of the mask segmentation pipeline.

2 METHOD

2.1 OVERVIEW

Figure 3 illustrates the overall architecture of the proposed FOCUS framework, which consists of
three main components: (1) the foundational backbone and pixel decoder for feature extraction,
(2) the Frequency-Aware Boundary Modeling (FABM) that enriches boundary representations in
critical feature maps, and (3) the Gradient-Enhanced Underrepresented Class Matching (GEUCM),
which allocates extra queries to underrepresented classes to enhance classification accuracy.

2.2 FREQUENCY-AWARE BOUNDARY MODELING

Boundary regions typically exhibit sharp gradient transitions and rich high-frequency components,
reflecting the inherent complexity of object edges. To effectively capture these signals, we design
a Frequency-Aware Boundary Modeling (FABM) module, inspired by concepts from FADC Chen
et al. (2024a) and DEA-Net Chen et al. (2024b). However, unlike the FADC and DEA-Net methods
that perform fine-grained frequency decomposition, our approach simplifies frequency division into
high and low frequencies, processing only the high-frequency components for further refinement.
FABM primarily consists of a Frequency-Differentiated Block (FDB) and a convolutional layer.

Frequency Difference Block FDB primarily comprises two components: frequency-based feature
selection and difference convolution. By isolating high-frequency signals and capturing pixel-level
changes through difference-structured kernels, FDB effectively combines local detail sensitivity
with global structural awareness for robust edge modeling.

Specifically, given an input feature map Fin, frequency-based feature selection first employs the
Fast Fourier Transform (FFT) to map it from the spatial domain to the frequency domain. Then,
based on a predefined frequency threshold α, two binary masks are constructed to represent the low-
frequency and high-frequency components of the input feature, respectively. Finally, the frequency-
domain feature is element-wise multiplied with these two masks and projected back into the spatial
domain via the Inverse FFT, yielding the high- and low-frequency feature representations divided
by the threshold.

Flow = F−1(MlowF(Fin)), Fhigh = F−1(MhighF(Fin)), (1)
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Figure 3: Architectural diagram of the proposed FOCUS framework. Given an input image, our
model extracts multi-level features through a backbone and pixel decoder. These features, together
with learnable queries, are fed into a Transformer decoder to produce the final segmentation output.
To enhance the mask proposal quality and mask classification accuracy, we accordingly introduce
two key modules: (a) FABM, which strengthens boundary representations in critical feature maps,
and (b) GEUCM, which allocates additional queries to underrepresented classes to boost classifica-
tion accuracy.

Mlow(u, v) =

{
1, max(|u|, |v|) < α

0, otherwise
, Mhigh(u, v) = 1−Mlow(u, v) (2)

Here, F and F−1 denote the FFT and inverse FFT, respectively. Mlow and Mhigh are binary masks
used to extract the corresponding low- and high-frequency components, and u and v indicate the
frequency coordinates along the width and height dimensions. The resulting Flow and Fhigh represent
the low-frequency and high-frequency spatial-domain features, respectively.

Next, a learnable convolutional layer is applied to selectively retain or suppress specific frequency
components. By convolving the input feature Fin with this convolutional layer, two weighting
maps, Wlow and Whigh, are generated to modulate the low-frequency and high-frequency features,
respectively.

Wlow = Convlow(Fin),Whigh = Convhigh(Fin). (3)

F̃low = Wlow ⊙ Flow, F̃high = Whigh ⊙ Fhigh. (4)

Here, Wlow,Whigh ∈ R1×H×W are represent spatial selection maps learned from the input feature
Fin through Convlow and Convhigh, respectively. The weighted low- and high-frequency features
are denoted as F̃low and F̃high, respectively.

The weighted high-frequency feature F̃high is further enhanced through a series of difference convo-
lutions, which strengthen edge and fine-grained details, producing the feature Fdc.

Fdc = DConv(F̃high), (5)

The enhanced high-frequency feature is then fused with the weighted low-frequency feature F̃low
through element-wise addition to obtain the fused representation Ffusion.

Ffusion = Fdc + F̃low. (6)
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Finally, Ffusion is further refined via a standard convolutional layer and combined with the original
input feature Fin to produce the final output Fout.

Fout = Conv(Ffusion) + Fin. (7)

Difference Convolution Difference convolution employs differential kernels to highlight local pixel
variations, making it effective for capturing gradients, edges, and structural details Yu et al. (2021);
Su et al. (2021). Different kernel configurations (e.g., horizontal, vertical, angular, and central)
emphasize gradient changes along specific directions Yu et al. (2020); Chen et al. (2024b). Unlike
prior studies that mainly focus on designing new variants, our work integrates these operations with
frequency-based feature selection in the FABM module, enabling explicit boundary enhancement
for segmentation.The difference convolution can be formulated as follows:

Y (i, j) =

1∑
k=−1

1∑
l=−1

I(i+ k, j + l) ·W (k, l), (8)

where Y (i, j) is the pixel value of the output image after difference convolution, I(i + k, j + l)
is the pixel value of the input image at the position (i + k, j + l), and W (k, l) is the weight of
the kernel at the corresponding position. In difference convolution, the kernel is designed with a
differential structure. For example, in a horizontal 3×3 convolution, only the left and right columns
contain learnable parameters, the middle column is fixed to zero, and the parameters in the same
row are constrained to be negatives of each other. This design highlights pixel differences along the
horizontal direction, thereby enhancing gradients and edge features.

Formally, the kernel can be expressed as:

W =

[−a1 0 a1
−a2 0 a2
−a3 0 a3

]
,

where a1, a2, a3 are learnable parameters.

FABM Loss Design To further enhance the model’s ability to capture object contours, we introduce
an additional boundary prediction branch alongside the original mask classification loss. The loss is
defined as LFABM = Ledge+λclsLcls, where all loss terms in LFABM are computed using the predicted
and ground-truth edge maps. The boundary supervision follows the same binary cross-entropy and
Dice formulation used for mask prediction: Ledge = λceLce + λdiceLdice. By explicitly supervising
boundary information, this branch encourages the model to focus on precise contour details, leading
to clearer boundary representations and improved overall segmentation performance.

2.3 GRADIENT-ENHANCED UNDERREPRESENTED CLASS MATCHING

The following section introduces the definition of underrepresented classes specific to our task, and
then elaborates on the design of the Gradient-Enhanced Underrepresented Class Matching module.

Definition of Underrepresented Class In real-world food image datasets, category distributions
are typically imbalanced, with certain classes appearing rarely or consistently yielding poor segmen-
tation performance. We collectively refer to these as underrepresented classes to facilitate targeted
optimization.

To formalize this, consider a dataset with n food categories. We begin by computing the occurrence
frequency of each category, defined as the number of training images in which the category appears
divided by the total number of training images. We then identify the k least frequent categories
as a candidate underrepresented class set. From this set, we exclude j categories that demonstrate
strong model performance on a validation set, those whose IoU or accuracy exceed a predefined
threshold m. The remaining k − j categories form Category Set A. Next, we evaluate segmentation
performance on the remaining n − k categories and select the j worst-performing ones based on
the same metric, forming Category Set B. The final underrepresented class set is defined as the
union of Category Sets A and B, capturing both rare and underperformed categories. The remaining
categories are referred to as common categories.

Gradient-Enhanced Underrepresented Class Matching (GEUCM)
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In the One-to-One matching scheme (Figure 2(a)), m queries generate m predicted masks, which are
matched to n ground-truth masks using a cost matrix that computes pairwise losses. The Hungarian
algorithm then solves the resulting m × n assignment problem. The remaining (m − n) queries
(typically close to 100 vs. few food objects) are labeled ”no object,” introducing a large number
of negative samples that dilute gradients for underrepresented classes. Although recent studies Li
et al. (2024) have explored the One-to-Many matching (Figure 2(b)), assigning extra matches purely
based on class frequency may degrade the performance of common classes, leading to suboptimal
results in food segmentation.

To address this issue, we build on two key observations. First, rare classes contain few positive
instances, and their gradients are easily overwhelmed by abundant negatives Li et al. (2024), in-
creasing their match count strengthens their gradient signals and improves optimization balance.
Second, queries naturally exhibit spatial biases Carion et al. (2020). For example, underrepresented
classes in food images often occur in spatially predictable regions. Allocating dedicated queries to
these classes promotes class-specific spatial priors, strengthening both their detectability and seg-
mentability. Motivated by these insights, we propose Gradient-Enhanced Underrepresented Class
Matching (GEUCM), a simple yet effective strategy that assigns extra matching queries for under-
represented categories. This enhances their gradient signals without compromising the learning of
common categories, improving gradient distribution during training and ultimately boost overall
segmentation performance.

Our approach consists of two steps. First, we apply One-to-One Matching for m common queries,
covering all ground-truth masks, comprising n common and u underrepresented masks. Second, we
employ One-to-Many Matching (Figure 2(c)) for e extra queries targeting the u underrepresented
classes, where each target is matched with k queries, with k defined as a hyperparameter. The
matching strategies of these two steps operate independently, yielding a total of m + u × (k + 1)
matched pairs. The full procedure is outlined in Algorithm 1.

Algorithm 1 Gradient-Enhanced Underrepresented Class Matching
Input: A query set consisting of m common queries for all ground-truth masks and e extra queries
for underrepresented ground-truth masks; a mask set containing n common ground-truth masks and
u underrepresented ground-truth masks (for a single image inference).
Parameter: k (number of extra matches per underrepresented ground-truth masks)
Output: n+ u× (k + 1) matched query-mask pairs

1: Initialize:M1 ← ∅,M2 ← ∅
2: Step 1: One-to-One Matching
3: Compute a matching loss matrix between the m common queries and all (n + u) ground-truth

masks.
4: Use the Hungarian algorithm to find the minimum-cost one-to-one assignment and store the

results inM1.
5: Step 2: Gradient-Enhanced One-to-Many Matching
6: for t = 1 to k do
7: Compute a matching loss matrix between the remaining e extra queries and u underrepre-

sented ground-truth masks.
8: Apply the Hungarian algorithm to select a match per underrepresented ground-truth masks

and updateM2; remove the assigned queries from the extra query pool.
9: end for

10: returnM1 ∪M2.

3 EXPERIMENTS

3.1 DATASETS

FoodSeg103 Wu et al. (2021) is a large-scale dataset for food image semantic segmentation, con-
taining 7118 high-quality images with pixel-level annotations across 103 common food categories.
It presents challenges such as diverse categories, complex boundaries, and severe class imbalance,
making it a strong benchmark for segmentation performance.

6
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UECFoodPixComplete Okamoto & Yanai (2021) is a refined dataset for food classification and
segmentation, comprising 10,000 images from 102 Japanese food categories. It improves upon the
original UEC-FoodPix by manually correcting approximately 9,000 masks, addressing limitations
of bounding box–based annotations and improving segmentation precision.

Food50Seg Aslan et al. (2020) includes 5,000 images across 50 food categories, with 100 pixel-level
annotated images per class. It also provides 120,000 augmented images with various distortions,
such as lighting variation, JPEG compression, and blur, enabling robustness evaluation.

3.2 EVALUATION METRICS

Following prior work, we evaluate model performance using mean Intersection over Union (mIoU),
overall accuracy (aAcc), and mean accuracy (mAcc).

mIoU =
1

C

C∑
i=1

TPi

TPi + FPi + FNi
, aAcc =

∑C
i=1 TPi∑C

i=1(TPi + FNi)
, mAcc =

1

C

C∑
i=1

TPi

TPi + FNi
.

(9)

Here, C represents the total number of classes, and the TPi denotes the number of pixels correctly
classified as class i; FPi refers to the number of pixels incorrectly predicted as class i; and FNi

represents the number of pixels whose true label is class i but are misclassified as other classes.

Method FoodSeg103 UECFoodPixComplete
mIoU↑ aAcc↑ mAcc↑ mIoU↑ aAcc↑ mAcc↑

G
eneralIm

age
Segm

entation

FPNKirillov et al. (2019) 27.28 75.23 36.7 53.34 83.93 67.21
DeeplabV3+Chen et al. (2018) 31.04 79.32 42.66 55.50 66.80 -
CCNetHuang et al. (2019) 28.6 78.90 47.80 64.62 87.96 77.50
UpernetXiao et al. (2018) 39.8 82.02 52.37 59.35 86.64 74.44
SETRZheng et al. (2021) 45.1 83.53 57.44 65.41 86.02 77.36
SegformerXie et al. (2021) 38.67 80.29 48.96 64.89 88.25 76.98
KNetZhang et al. (2021a) 40.18 82.01 52.01 64.88 87.63 76.94
FADCChen et al. (2024a) 50.77 85.10 63.14 - - -
VimZhu et al. (2024) 42.58 81.73 54.42 65.17 86.01 75.76
VMambaLiu et al. (2024) 44.38 82.94 55.99 64.18 86.37 75.63
GCNetYang et al. (2025) 46.25 83.94 56.21 65.33 87.46 76.73
SegMAN Fu et al. (2025) 50.14 85.22 62.11 68.24 88.14 80.39

Food
Im

age
Segm

entation
STPPNWang et al. (2022) 40.3 82.13 53.98 - - -
Window AttentionDong et al. (2021) 31.4 77.62 40.3 - - -
ReLeM-CCNetWu et al. (2021) 47.10 85.50 59.50 - -
FoodSAMLan et al. (2023) 46.42 84.10 58.27 66.14 88.47 78.01
CANetDong et al. (2024) 37.21 - 47.33 68.90 - 80.60
FDSNet Xiao et al. (2025) 47.34 - 60.04 - - -
Mask2FormerCheng et al. (2022) 51.37 86.40 64.39 68.39 89.34 78.68
Ours 52.84 86.89 65.72 71.24 90.24 81.09

Table 1: Performance comparison of different methods on FoodSeg103(%) and UECFoodPixCom-
plete(%). Best results are in bold, second-best are underlined.

3.3 IMPLEMENTATION DETAILS

All experiments are implemented in PyTorch and conducted on two NVIDIA RTX 3090 GPUs with
a total batch size of 4 (2 images per GPU). The model is trained using the AdamW optimizer with
an initial learning rate of 0.0001, following a cosine annealing schedule that gradually decays the
learning rate to zero. α, k, and u are set to 0.5, 2, and 20, respectively, while the threshold m is set to
0.3, 0.5, and 0.7 on the FoodSeg103, UECFoodPixComplete, and Food50Seg datasets, respectively.
Unless otherwise specified, all hyperparameters are aligned with those in the Mask2Former baseline.
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Method Food50Seg
mIoU↑ aAcc↑ mAcc↑

G
eneralIm

age
Segm

entation

DeeplabV3+Chen et al. (2018) 70.01 84.94 81.26
CCNetHuang et al. (2019) 74.25 82.56 81.36
UpernetXiao et al. (2018) 71.29 83.65 82.59
SETRZheng et al. (2021) 84.48 91.71 89.35
SegformerXie et al. (2021) 85.14 90.94 88.56
KNetZhang et al. (2021a) 83.74 92.27 90.18
VimZhu et al. (2024) 82.95 88.85 90.63
VMambaLiu et al. (2024) 84.18 91.11 90.92
GCNetYang et al. (2025) 86.38 90.34 91.20
SegMAN Fu et al. (2025) 89.57 95.48 95.37
Mask2FormerCheng et al. (2022) 92.77 96.45 96.17
Ours 93.42 96.78 97.02

Table 2: Performance comparison of different methods on Food50Seg(%).

wxr

00000283

00000284

Original Image

Ground Truth

FoodSAM

Mask2Fomer

GCNet

Ours

Figure 4: Visualization of food image segmentation across different segmentation frameworks, in-
cluding FOCUS. FOCUS demonstrates better performance in terms of segmentation edge precision
and mask classification accuracy..

3.4 COMPARISON RESULTS

Quantitative Comparison We compare our proposed model against both recent SOTA general-
purpose segmentation models and methods tailored to food image segmentation. As shown in Ta-
ble 1 and Table 2, our method consistently outperforms all baselines, achieving new SOTA results
across all datasets and metrics. While Mask2Former ranks as the second-best in most cases, our
model surpasses it by a notable margin. Specifically, our model achieves mIoU scores of 71.24%
on UECFoodPixComplete, 93.42% on Food50Seg, and 52.84% on FoodSeg103, representing a
+1.47% improvement over Mask2Former on the most challenging dataset, FoodSeg103. This dataset
presents a particularly challenging scenario due to its higher visual complexity and severe category
imbalance, making these improvements even more significant.

Qualitative Comparison Figure 4 presents the qualitative comparison across different methods.
Our approach demonstrates superior classification accuracy, particularly in challenging scenarios. In
the first column, it accurately distinguishes overlapping components such as cucumber and chicken.

8
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In the second column, our model correctly identifies egg, while GCNet and Mask2Former misclas-
sify it as pie and cake, respectively. In the final column, our method successfully recognizes Chinese
butter and precisely delineates the spoon within it, highlighting its strong capability in handling fine-
grained targets and complex scenes.

3.5 ABLATION STUDY

In this section, we conduct ablation studies on FoodSeg103 to evaluate the effectiveness of the
proposed components: FABM and GEUCM. As shown in Table 3a, both modules independently
enhances model performance, and their combination yields the best results, showing clear synergy.

FABM GEUCM mIoU↑ aAcc↑ mAcc↑
51.37 86.40 64.39

✓ 52.49 86.54 65.24
✓ 52.24 86.55 64.40

✓ ✓ 52.84 86.89 65.72

(a)

Level1 Level2 mIoU↑ aAcc↑ mAcc↑
51.37 86.40 64.39

✓ 51.85 86.02 64.24
✓ 51.95 86.70 64.11

✓ ✓ 52.49 86.54 65.24

(b)

Table 3: (a)Ablation study of different modules on FoodSeg103(%). (b)Ablation study of FDB on
FoodSeg103 (%). Level1 correspond to output features from the first stage of the backbone, while
Level2 represents the final output feature from the Pixel Decoder. The first row of the table data
(without checkmarks) represents the baseline.

α mIoU↑ aAcc↑ mAcc↑
0.25 52.18 86.07 65.21
0.5 52.49 86.54 65.24

0.75 52.44 86.24 64.93

(a)

mIoU↑ aAcc↑ mAcc↑
w/o LFABM 51.94 86.38 64.72
w/ LFABM 52.49 86.54 65.24

(b)

Table 4: (a) Ablation study of α on the FoodSeg103 (%). (b) Ablation study on the LFABM the
FoodSeg103 (%).

80(60:20) 100(80:20) 120(100:20) 150(100:50)

50.75

51.00

51.25

51.50

51.75

52.00

52.25

m
Io

U
 (%

)

OOM
OMM
GEUCM(underrepresented)
GEUCM(common)

Figure 5: Comparison of different match-
ing strategies in GEUCM on FoodSeg103
(%). The blue line denotes One-to-One
Matching for all queries (OOM), the or-
ange line denotes One-to-Many Matching
for all queries (OMM), the green line rep-
resents GEUCM with extra queries for un-
derrepresented classes, and the red line
represents GEUCM with extra queries for
common classes. The vertical axis in-
dicates segmentation performance, while
the horizontal axis shows the total num-
ber of queries. Numbers in parentheses
specify the number of common and extra
queries, respectively.

Ablation of FDB in FABM We evaluated the effectiveness of the Frequency Difference Block
(FDB) in FABM by inserting it at different feature levels and analyzing its impact on segmentation
performance. As shown in Table 3b, incorporating FDB at individual feature levels yields clear gains
in both mIoU and aACC. Integrating FDB across all levels achieves the highest mIoU, the primary
metric for segmentation, highlighting the benefit of full-level deployment.

Choice of α in FABM We perform an ablation study on the threshold α used for binary high–low
frequency separation in FABM. As shown in Table 4a, the performance is not highly sensitive to the
choice of α. The results indicate that boundary refinement cues in food images are largely captured
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Method mIoU aAcc mAcc
SegformerXie et al. (2021) 50.10 82.36 61.77
KNetZhang et al. (2021a) 52.21 82.41 67.34
VMambaLiu et al. (2024) 51.64 81.23 66.85
SegMANFu et al. (2025) 53.21 83.77 67.84

Mask2formerCheng et al. (2022) 54.96 84.19 68.55
Ours 55.39 84.31 69.02

Table 5: Performance comparison of different methods on ADE20K(%).

by high-frequency components, thus, further subdividing the frequency spectrum would introduce
unnecessary complexity without meaningful gains. Therefore, we set α to 0.5 in all experiments.

Ablation of FABM Loss To validate the contribution of the FABM Loss, we conducted an abla-
tion study that isolates this term. As shown in Table 4b, removing the LFABM leads to a clear drop in
in multiple metrics, confirming the effectiveness of the edge-aware constraint.

Choice of Matching Strategy in GEUCM As shown in Figure 5, our results demonstrate that,
compared to other matching strategies, the proposed GEUCM(underrepresented) consistently deliv-
ers the best performance across various settings by introducing extra matching mechanisms exclu-
sively for underrepresented classes. This highlights the effectiveness of our matching strategy.

Additionally, we observe that increasing the number of queries can somewhat enhance segmentation.
However, this improvement is not guaranteed, when the proportion of extra matches becomes too
large (i.e., an excessive number of underrepresented classes), performance may decline. This is
likely because common classes are already optimized, offering limited room for further gains, and
excessive attention may shift learning capacity away from the underrepresented classes.

3.6 COMPLEXITY ANALYSIS

We performed a comprehensive assessment of the computational efficiency of the proposed compo-
nents. For FABM, both the FFT-based frequency decomposition and the multi-branch convolutional
design are computationally lightweight, adding only approximately 4M parameters and 13 GFLOPs.
For GEUCM, the additional cost primarily arises from the extra queries. With 20 extra queries (i.e.,
u = 20), GEUCM contributes fewer than 1M additional parameters and about 4 GFLOPs. In total,
our method introduces roughly 5M additional parameters and 17 GFLOPs relative to the baseline,
demonstrating that the performance gains are achieved with minimal computational overhead.

3.7 GENERALIZATION ANALYSIS

To assess our method’s generalization, we perform additional experiments on ADE20K Zhou et al.
(2017). We compare our method with the several SOTA methods. As shown in Table 5, our ap-
proach achieves mIoU, aAcc, and mAcc scores of 55.4, 84.3, and 69.0, respectively. Relative to
the second-best method, Mask2Former, this represents absolute improvements of 0.4%, 0.1%, and
0.5%, demonstrating that our method generalizes well beyond the food segmentation domain.

4 CONCLUSION

In this study, we present FOCUS, a semantic segmentation framework tailored for food images that
enhances both the mask proposal quality and mask classification accuracy. Specifically, we intro-
duce a frequency-oriented edge enhancement module that sharpens boundary details during mask
proposal generation, and a Gradient-Enhanced Underrepresented Class Matching strategy that as-
signs extra queries to underrepresented classes, thereby improving classification accuracy. Extensive
evaluations on three benchmark food-image datasets demonstrate the effectiveness of our approach
in advancing segmentation performance.
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