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Abstract

Uncertainty quantification (UQ) is essential for building reli-
able and trustworthy large language models (LLMs). How-
ever, conventional Bayesian or ensemble-based UQ meth-
ods are computationally intractable at the scale of modern
LLMs and often require white-box access to model param-
eters or logits. This paper introduces a two-level ensemble
framework for black-box uncertainty estimation that oper-
ates entirely at inference time, without retraining or architec-
tural modification. The method is theoretically grounded in
the law of total variance, decomposing total predictive uncer-
tainty into aleatoric and epistemic components. The inner en-
semble captures stochasticity and ambiguity through repeated
stochastic decoding, while the outer ensemble approximates
parameter uncertainty via semantically perturbed prompts
that serve as proxy samples from the implicit posterior. By
measuring variance in a continuous embedding space, our
framework yields interpretable and scalable uncertainty es-
timates across diverse LLMs. Experiments on the TriviaQA
and Truthful QA benchmarks demonstrate that our black-box
estimator achieves AUROC performance comparable to or
surpassing state-of-the-art white-box baselines, while offer-
ing meaningful uncertainty decomposition that distinguishes
linguistic ambiguity from knowledge uncertainty.

1 Introduction & Related Work

Uncertainty quantification (UQ) has become a cornerstone
of trustworthy Al, providing principled ways to interpret
model confidence, handle out-of-distribution data, and en-
sure reliable decision-making in high-stakes applications.
Bayesian neural networks (BNNs) offer a theoretically
grounded framework for uncertainty estimation by maintain-
ing a distribution over model parameters instead of point es-
timates (Neal 1996; Gal and Ghahramani 2016). However,
while Bayesian methods have been successfully applied to
moderate-scale vision models, their extension to modern
large language models (LLMs) with hundreds of billions of
parameters remains computationally infeasible.

Advances in LLMs have highlighted their remarkable
generative and reasoning capabilities, but also their tendency
to produce overconfident or inconsistent predictions. Un-
derstanding and quantifying uncertainty in these models is
critical for applications such as factuality assessment, hal-
lucination detection, and active learning. Yet, existing UQ
techniques in deep learning either require expensive retrain-

ing, such as Bayesian inference or deep ensembles (Laksh-
minarayanan, Pritzel, and Blundell 2017) or specific neural
architectures and evidential formulations (Sensoy, Kaplan,
and Kandemir 2018; Osband et al. 2023), limiting their scal-
ability to modern LLMs.

More recent work has adapted UQ to the LLM setting
through both white-box and black-box approaches, where
the former category exploits internal model signals such
as token-level logits or hidden states to estimate semantic
uncertainty or detect hallucinations (Kadavath et al. 2022;
Fadeeva et al. 2023; Kuhn, Gal, and Farquhar 2023; Far-
quhar et al. 2024). Black-box methods treat the model as a
generator and infer uncertainty from behavioral consistency
or learned scoring across sampled outputs (Lin, Trivedi, and
Sun 2024; Gao et al. 2024; Xiao et al. 2025; Yaldiz et al.
2025). Recent surveys (Zhou et al. 2024; Choubey et al.
2025) provide systematic overviews of emerging directions.

In this paper, we propose a scalable black-box two-level
ensemble framework that estimates both aleatoric and epis-
temic uncertainty directly from model outputs. Inspired by
the law of total variance, our method decomposes total un-
certainty into within-prompt variability and cross-prompt
disagreement. The inner ensemble reflects stochastic decod-
ing noise, while the outer ensemble introduces structured se-
mantic perturbations that emulate parameter posterior sam-
pling. Representing generated texts in a continuous em-
bedding space enables variance-based uncertainty decom-
position, providing richer insights than entropy-based token
measures and yielding interpretable and scalable uncertainty
estimates for black-box LLMs. While prior work has also
considered input perturbations or paraphrases for UQ (Gao
et al. 2024; Li et al. 2025), here we make a formal connec-
tion to uncertainty decomposition through the outer ensem-
ble in Bayesian language. In contrast, (Hou et al. 2023) also
modeled uncertainty from a Bayesian perspective but relied
on an input clarification and required training an additional
classification head. Their method treats the average predic-
tive entropy as epistemic uncertainty (EU) and the mutual
information term as aleatoric uncertainty (AU), representing
a different modeling paradigm from ours.

Contributions. Our main contributions are threefold:

1. We present a unified formulation of uncertainty decom-
position for generative language models, bridging the
Bayesian and embedding-based perspectives.



2. We propose a practical two-level ensemble estimator that
approximates aleatoric and epistemic uncertainty using
only model outputs.

3. Our experimental results show that the method matches
and sometimes surpasses some token logit-based white-
box methods, and that the decomposed uncertainties are
meaningful: aleatoric uncertainty reveals ambiguity or
unusual words, and epistemic uncertainty represents the
model’s knowledge to specific facts or terms.

2 Background

Bayesian Neural Networks
BNNs provide a principled probabilistic framework for
modeling uncertainty in deep learning (Goan and Fookes
2020). Instead of learning deterministic parameters, a BNN
treats each weight 6 as a random variable drawn from a prior
distribution p(#). Given a dataset D = {(z;, y:)}j=1, training
a BNN aims to infer the posterior distribution over parame-
ters: p(6 | D) « p(D | 0) p(#), where p(D | ) denotes the
likelihood of the observed data under the model.

The predictive distribution for a new input x is then ob-
tained by marginalizing over the posterior:

p<y|x,D>:/p<y|x,e>p<e|D)d@

=Epoip)[p(y | 2,0)].

This integral can be interpreted as an ensemble of model
predictions weighted by the posterior probability of each pa-
rameter configuration (Hiillermeier and Waegeman 2021).
From this formulation, one can decompose the total predic-
tive uncertainty into two components: aleatoric and epis-
temic (Kendall and Gal 2017; Hiillermeier and Waegeman
2021).

Approximating Parameter Uncertainty via Input
Perturbation

Directly sampling from a parameter posterior p(6 | D) is
infeasible for LLMs. Following the local equivalence prin-
ciple (Wang and Ji 2024), we approximate small parameter
variations A# by structured perturbations in the input em-
bedding space: f(z + Az,0) =~ f(z,0 + A6).

Under local linearity, perturbing the input embedding =
induces output changes statistically similar to parameter un-
certainty. Thus, p(y | 2, D) = Eyan(p(y | © + Az, 0)],
where p(Ax) defines the distribution of input perturbations.
This perspective allows us to treat semantically similar vari-
ants of a prompt as samples from the implicit posterior,
bridging Bayesian theory with black-box model usage.

Types and Quantification of Uncertainty

Aleatoric uncertainty (AU) captures inherent random-
ness or noise in the data and persists even with perfectly
known parameters. Epistemic uncertainty (EU) reflects the
model’s lack of knowledge due to limited or biased train-
ing data and decreases as more data are observed (Depeweg
et al. 2018; Mucsanyi, Kirchhof, and Oh 2024). The un-
certainty components take different forms depending on the
prediction type:

Classification. For categorical predictions with p(y | z, 6)
obtained via softmax,

AU = Eypoip) [H[p(y | 2,0)]], EU = I[y,0 |z, D],
TU = Hlp(y | z, D)]

where H|-] denotes Shannon entropy and I[-] is the mu-
tual information between model parameters and predictions
(Depeweg et al. 2018; Wang 2024).

Regression. For continuous outputs parameterized by
(po(x),0%(z)) (Amini et al. 2020),

AU = Ep(9|D) [O'g (m)]a EU = Varmg‘p)[ug (:c)},
TU = AU + EU.

This decomposition links data noise (AU) and model uncer-
tainty (EU), forming the theoretical basis for our proposed
black-box uncertainty estimation method for LLM:s.

3 Proposed Method: Uncertainty
Quantification via Ensemble-of-Ensembles

We propose a scalable and theoretically grounded frame-
work for estimating both aleatoric and epistemic uncertainty
in LLMs for the black-box setting. The core idea is to ap-
proximate the Bayesian prediction through two nested en-
sembles — one over input perturbations and another over
stochastic model outputs. This two-level structure captures
both intrinsic randomness in decoding and variability in
model behavior under small semantic perturbations, en-
abling principled uncertainty decomposition.

In this work, we adopt the variance-based formulation
for uncertainty estimation. The inference process is modeled
as a stochastic mapping

fo. e(’) d
=y = folr) —e(y) € RY,
where fy denotes the LLM and e(-) is an embedding func-
tion projecting the textual output into a continuous space.
This representation bridges the discrete nature of text and the
continuous formalism of uncertainty. Additional discussion
on the rationale for adopting this formulation is provided in
the Supplementary Material.

Overview and Intuition

Formally, let the LLM define a conditional generative func-
tion fp : X — ), where 6 are fixed parameters. Each gener-
ated text y = fg(a(ci) can be represented as a continuous em-
bedding e(y) € R® via an encoder e(-). We seek to estimate
the predictive variance of the embedding representation:

Var(e(y)) = Ep(an [Var(e(y) | = + Az)]
+ Varp(Agc) (E[G(y) | T+ Ax])v (1)

where Az denotes perturbations in the input space. The
first term of Eq. (1) represents aleatoric uncertainty — ex-
pected within-input variability — while the second term cap-
tures epistemic uncertainty arising from systematic differ-
ences across semantically perturbed inputs.



Two-Level Ensemble Framework

Generating Semantically Perturbed Inputs. Producing
meaningful perturbations for discrete text inputs is nontriv-
ial. We adopt a localized embedding perturbation strategy
(Hu et al. 2024). Detailed algorithmic steps and hyperpa-
rameter settings are provided in Supplementary Material.
Outer Ensemble. We first generate N perturbed versions
{z1,...,zn} of the original input = using above strategies.
Each x; represents a small semantic deviation (e.g., para-
phrase or embedding-space perturbation) and serves as a
proxy sample from the implicit parameter posterior.

Inner Ensemble. For each perturbed input x;, we perform
M independent stochastic forward passes using the same
model fy and fixed decoding hyperparameters (e.g., temper-
ature, top-p sampling). This inner loop captures variability
due to sampling noise and inherent ambiguity in the model’s
output distribution p(y | x;, 6).

Estimation Procedure. Let e(y; ;) denote the embedding
of the j-th output generated for input x;. We compute the
sample mean and covariance across the M stochastic sam-
ples for each perturbed input, and aggregate these statistics
across N outer perturbations to estimate the total, aleatoric,
and epistemic uncertainty components:
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i = ﬁz eWig),  Ti= 51y (e(ig) — pa)(e(yiy) — ),

Jj=1

N N
Us= %) 3, Up = 55> (wi— 1) (i — )",
=1 =1
N o~
B= ) i Ur =Ua +Us. @

Il
-

7

Equation (2) compactly summarizes the complete uncer-
tainty estimation process. Here, u 4 measures the expected
within-input covariance (aleatoric uncertainty), g captures
the variance of mean embeddings across perturbed inputs
(epistemic uncertainty), and Z]T is their sum, corresponding
to total predictive uncertainty under the law of total vari-
ance. This formulation maintains both mathematical rigor
and computational efficiency, making it suitable for large-
scale LLM inference.

Algorithm 1 summarizes the entire pipeline.

4 Experiments
Experimental Setup

We evaluate our proposed approach on question answer-
ing (QA) tasks using the TriviaQA (Joshi et al. 2017) and
TruthfulQA (Lin, Hilton, and Evans 2021) datasets. Our
primary results are reported on TriviaQA, while additional
experiments on Truthful QA using smaller models are pre-
sented in Supplementary Material. The objective is to exam-
ine whether model uncertainty can reliably predict answer
correctness, quantified by Area Under the ROC Curve
(AURQQC), a standard metric for uncertainty estimation. De-
tailed experimental settings can be found in Supplementary
Material Sec 5.

Algorithm 1: Two-Level Ensemble UQ for LLMs

Require: LLM fy, embedding e(-), input z, outer size N,
inner size M
Ensure: Aleatoric U 4, Epistemic Ug
1: Generate paraphrase pool {z} }< . store embeddings
{ela})}
2: fori =1to N do

> Outer ensemble

3 zi+—argming: D(e(x) +N(0,€1), e(x},))

4 for j = 1to M do > Inner ensemble
5: E;«+ E;U{e(fo(x;))} b stochastic decoding
6 end for

7: wi < mean(E;), ¥;<cov(E;)

8: end for

10: Up 5> (i — 1) (i — ) T return Ua, Up

Models. We conduct experiments on four representa-
tive large language models: LLaMA3-70B, LLaMA3-8B,
Qwen2.5-72B, and Qwen2.5-7B (Dubey et al. 2024; Bai
et al. 2025). All models are evaluated under identical con-
ditions using 20 inner samples (M = 20) and 20 outer per-
turbations (N = 20).

Evaluation Metric. We measure answer correctness using
two complementary criteria: (1) Cosine Similarity between
the generated and reference answer embeddings (threshold
> 0.8) (Reimers and Gurevych 2019), and (2) ROUGE-
L overlap score (threshold > 0.5) (Lin 2004). Uncertainty
is decomposed into total, aleatoric, and epistemic compo-
nents using Eq. (2). We report AUROC scores for each un-
certainty component, reflecting how effectively uncertainty
distinguishes correct from incorrect generations.

Baselines. We compare our approach against six represen-
tative uncertainty estimation methods: G-NLL (Aichberger,
Schweighofer, and Hochreiter 2024), Predictive Entropy
(PE) and Length-Normalized Predictive Entropy (LN-
PE) (Malinin and Gales 2020), Semantic Entropy (SE),
Length-Normalized Semantic Entropy (LN-SE), and Dis-
crete Semantic Entropy (D-SE) (Farquhar et al. 2024;
Kuhn, Gal, and Farquhar 2023). Among them, G-NLL, PE,
LN-PE, SE, and LN-SE are white-box, requiring access to
token-level probabilities; D-SE and our method operate in a
fully black-box setting using only generated text.

Results

Table 1 reports AUROC scores measuring the correla-
tion between predicted uncertainty and answer correctness
on the TriviaQA (no-context) dataset. White-box baselines
(G-NLL, PE/LN-PE, SE/LN-SE) require token-level log-
its, whereas D-SE method and our proposed approach are
strictly black-box, relying only on generated text.

Overall Comparison. Across all four models, our
Ensemble-of-Ensembles is better than the black-box base-
line and matches or sometimes even surpasses white-box
baselines while using only black-box access. For example,
on LLaMA3-70B, total uncertainty achieves TU=0.7967
(cosine), exceeding G-NLL (0.7474) and PE (0.7649); on



Ours Black-box White-box
Model Correctness
AU EU TU D-SE \ G-NLL PE LN-PE SE LN-SE
LLaMA3-70B Cosine (> 0.8) 0.712  0.791 |0.796 0.622 0.747 0.764 0.781 0.561 0.683
RougeL (> 0.5) 0.727 0.725 [0.774 0.639 0.788 0.767 0.761 0.545 0.659
Cosine (> 0.8) 0.760| 0.621  0.749 0.632 0.741 0.672 0.727 0.672 0.673
Qwen2.5-72B 12
RougeL (> 0.5) [0.798| 0.594 0.766 0.673 0.782 0.710 0.775 0.709 0.710
LLaMA3-8B Cosine (> 0.8) 0.782| 0.556 0.756 0.740 0.817 0.758 0.829 0.783 0.786
RougeL (> 0.5) |0.811| 0.531 0.770 0.771 0816 0.737 0.819 0.775 0.775
Qwen2.5-7B Cosine (> 0.8) 0.781| 0.552 0.754 0.695 0.828 0.764 0.813 0.756 0.756
RougeL (> 0.5) |0.792| 0.535 0.760 0.738 0.845 0.785 0.838 0.784 0.782

Table 1: Comparison of uncertainty-correctness correlation (AUROC) across models and methods on TriviaQA (no-context).
Numbers in bold represent the overall best performance, underlined numbers indicate the top-performing white-box method,

and numbers indicate the top-performing black-box method.

Qwen2.5-72B, AU=0.7600 is the strongest single indicator
of correctness. These trends underscore the practicality of
our method for proprietary/API LLMs without logits.

Large Models. For high-capacity LLMs, the proposed
method produces robust and consistent AUROC scores.
In LLaMA3-70B, epistemic uncertainty (EU=0.7914) cor-
relates closely with correctness, reflecting the model’s
confidence in factual output. On Qwen2.5-72B, however,
aleatoric uncertainty dominates (AU=0.7600), suggesting
that variability from perturbed inputs is the primary contrib-
utor to overall uncertainty.

This behavior can be partly attributed to differences in
training data scale and diversity — Qwen’s corpus, though
extensive, is smaller and less heterogeneous than LLaMA’s,
which limits the model’s ability to capture comprehensive
world knowledge. Consequently, its epistemic uncertainty
becomes less informative, reflecting insufficient knowledge
coverage rather than genuine model doubt.

Small Models. For lower-capacity models, epistemic uncer-
tainty (EU) becomes less reliable (= 0.53-0.56 AUROC),
often showing weak alignment with correctness. This is ex-
pected, as smaller models exhibit high sensitivity to para-
phrasing, which can lead to substantially varied outputs.
Such instability arises from their limited capacity and in-
sufficient knowledge coverage, which hinders understanding
of complex or rare vocabulary (Cox et al. 2025). As a re-
sult, their epistemic responses are dominated by superficial
variations rather than genuine model doubt (Ahdritz et al.
2024). Conversely, aleatoric uncertainty (AU) remains high
(= 0.78-0.81 AUROC), reflecting the inherent stochasticity
of generation and the models’ vulnerability to noise and am-
biguity. Overall, these observations suggest that small mod-
els’ uncertainties are shaped more by input sensitivity than
well-calibrated knowledge estimation.

These findings demonstrate that our perturbation-based
approximation effectively captures both intrinsic (aleatoric)
and model-level (epistemic) components without requiring
access to internal token distributions.

Key Insights. Three consistent trends emerge: (1) AU is
the most consistent predictor of correctness across all mod-
els; (2) EU becomes meaningfully predictive only when fac-
tual coverage is sufficient (e.g., LLaMA3-70B), but loses re-
liability for smaller or less broadly trained models; (3) TU
serves as a strong overall indicator when both EU and AU
are informative (e.g., LLaMA3-70B on TriviaQA and results
on Truthful QA). However, when EU becomes unreliable for
various reasons, AU tends to outperform TU.

Overall, our method achieves comparable or superior re-
liability to white-box approaches, offering a scalable, in-
terpretable, and generalizable framework for UQ in LLMs.
Further experimentation on different models and tasks is re-
quired to better understand when the proposed method is
most suitable.

5 Conclusion

We have presented a scalable, inference-time framework for
black-box uncertainty quantification in LLMs that requires
no retraining or access to logits, using a two-level ensem-
ble that decomposes aleatoric and epistemic components
via nested sampling over stochastic decoding and semantic
perturbations, measured in a continuous embedding space.
Our estimator matches or outperforms white-box baselines
such as G-NLL and PE on QA tasks while providing in-
terpretable decomposition. Empirically, AU is consistently
a reliable correlate of correctness across scales which cap-
tures the ambiguity in input; EU is informative for mod-
els with stronger factual grounding (e.g., LLaMA3-70B) but
weakens for smaller models or those trained on less diverse
corpora. These findings support black-box UQ as a prac-
tical tool for hallucination detection, risk-sensitive genera-
tion, and data acquisition. Such work can inform uncertainty
mitigation strategies to improve model performance, with
uncertainty-guided fine-tuning (e.g. high EU cases highlight
the model’s lacks of knowledge in specific topic, we can
fine-tune the model on related dataset), uncertainty-aware
RAG or uncertainty-driven output aggregation strategies.
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