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Abstract

In the task of semi-supervised video object segmentation, the input is the binary
mask of an object in the first frame, and the desired output consists of the corre-
sponding masks of that object in the subsequent frames. Existing leading solutions
have two main drawbacks: 1) an expensive and typically-supervised training on
videos; 2) a large memory footprint during inference. Here we present a training-
free solution, with a low-memory footprint, that yields state-of-the-art results. The
proposed method combines pre-trained deep learning-based features (trained on
still images) with more classical methods for streaming-data clustering. Designed
to adapt to temporal concept drifts and generalize to diverse video content with-
out relying on annotated images or videos, the method eliminates the need for
additional training or fine-tuning, ensuring fast inference and immediate applica-
bility to new videos. Concretely, we represent an object via a dynamic ensemble
of temporally- and spatially-coherent mixtures over a representation built from
pre-trained ViT features and positional embeddings. A convolutional conditional
random field further improves spatial coherence and helps reject outliers. We
demonstrate the efficacy of the method on key benchmarks: the DAVIS-2017 and
YouTube-VOS 2018 validation datasets. Moreover, by the virtue of the low-memory
footprint of the compact cluster-based representation, the method scales gracefully
to high-resolution ViT features. Our code is available at https://github.com/BGU-
CS-VIL/Training-Free-VOS.

1 Introduction

Video Object Segmentation (VOS), a key computer-vision task, aims to distinguish objects of interest
from the background across a sequence of video frames. In Semi-supervised VOS (SVOS), the
topic of this paper, the user provides the mask of the object in the first frame (while in the case of
unsupervised VOS, no mask is given), and the task is to propagate that mask to the next frames.
Prior to the revolution of Deep Learning (DL), SVOS relied heavily on traditional techniques like
color-based segmentation, point trajectories, and optical flow. However, the emergence of DL-based
methods has significantly outpaced those traditional techniques. Thus, today DL-based methods
dominate the field of SVOS. Note that according to the standard terminology in the area of VOS, the
term "semi-supervised" in the name SVOS refers to the nature of the task (that is, the fact that a user
provides the mask in the first frame), not the nature of the solution. In other words, solutions to the
SVOS task can be either supervised, semi-supervised, or unsupervised. For example, a supervised
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Figure 1: Method overview. Starting from the initial frame, the features of the object are extracted
and modeled using an ensemble of von Mises-Fisher (vMF) mixtures, where each mixture has a
different number of components. The higher the number of components, the finer the scale that
the mixture captures. This multi-scale representation lets us capture phenomena such as drastic
changes in the size/resolution of the object. The background is modeled using another such mixture
ensemble. Next, all of the mixtures are updated in a streaming and memory-efficient manner at
each subsequent frame. A maximum-a-posteriori rule is applied over all of the vMF components
in the ensemble to generate a preliminary segmentation mask, which is then further refined by a
convolutional Conditional Random Field. The iterative process progresses through the frames.

DL solution to SVOS typically requires multiple labeled videos to train on. In contrast, the approach
proposed in this paper requires neither supervision nor learning on videos.

The main strategy employed by DL-based SVOS methods revolves around pixel-level matching
to establish inter-frame correspondence. This is achieved by creating pixel-to-pixel connections
between the current frame and the preceding ones. That strategy, however, often has two main
limitations: 1) the need for an extensive training on large-scale (and typically annotated) video
datasets; 2) a significant memory footprint due to the storage requirements of (dense representations
of) previous frames for pixel matching. Addressing those prevalent challenges, we propose an
unsupervised, adaptive, and compact SVOS method. By combining DL and classical techniques
and capitalizing on the widespread practice of representing features as points on a hypersphere, the
proposed model incorporates an ensemble of temporally- and spatially-coherent von Mises-Fisher
(vMF) mixtures. The mixtures are updated dynamically in a streaming manner, together with a
convolutional implementation of a Conditional Random Field (CRF).

Our method uses features from a pre-trained unsupervised deep neural network – trained on still
images, not videos – but does not require training by itself as it only performs inference. The method
fits multiple vMF mixtures to each object of interest (and to the background) in the initial frame. The
fact that we employ multi-scale modeling (where each mixture has its own number of components)
lets us represent the object at multiple levels of granularity. In subsequent frames, pixels are assigned
to the most probable component (across all of the components in all of the mixtures in all of the
objects). The mixture ensembles themselves are updated dynamically while taking into account
temporal and spatial coherence. Following established stream clustering techniques [13], we apply a
weighted window with a kernel function that reduces the weight of older frames, mitigating memory
consumption and improving computational efficiency without storing extensive history of dense
representations of past frames. Our model adapts to concept drifts in the objects of interest or the
background. We improve spatial consistency by constraining pixel-component membership based
on location and refine results using a Pixel-Adaptive Convolutional CRF (PAC-CRF) [37], fostering
pixel consistency and awareness of outliers. Together with outlier-rejection mechanisms, the method
mitigates error propagation across frames.
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To summarize, our key contributions are: 1) We demonstrate that a synergy between classical and
DL techniques can provide an effective solution for SVOS that achieves state-of-the-art results
on the DAVIS-2017 and YouTube-VOS 2018 datasets. 2) By leveraging unsupervised pre-trained
image-based features, our method eliminates the need for further training, and in particular no
training on videos is required (unlike most competitors which require large-scale video datasets
for training). 3) Our method has a low-memory footprint by storing only cluster-level information,
as opposed to dense past-frame representations. Thus, the method does not only scale better than
competing ones but also enables handling high-resolution features for higher-quality segmentation.

2 Related work

The evolution of SVOS methods. From older SVOS methods based on classic vision tech-
niques [11, 9, 21, 50, 10, 5], the focus has shifted to DL-based SVOS methods, also known as
one-shot VOS. Early semi-supervised methods focused on online fine-tuning of a pre-trained network,
exemplified by OSVOS [6]. In fact, OSVOS pioneered the online fine-tuning of pre-trained networks
in SVOS. However, OSVOS is prone to overfitting and fails to adapt to gradual concept drifts in
the objects of interest. To address these issues, numerous extensions and refinements to OSVOS
were proposed. OnAVOS [41] introduced additional fine-tuning with high-confidence frames in
order to handle gradual concept drifts, albeit at the cost of increased computational complexity.
Maninis et al. [28] integrated semantic information into the predictions via Mask R-CNN [17],
thereby reducing the dependency on temporal smoothness. In an innovative departure from common
practice, BubbleNets [16] proposed selecting the most suitable frame for annotation, challenging
the conventional practice of annotating the first frame. Other works addressed different aspects of
the OSVOS algorithm. For example, OSNM [47] utilized network modulation for more efficient
fine-tuning, while A-Game [20] employed a Gaussian Mixture Model to better capture both the
foreground and the background. Other noteworthy and relevant works include, but are not limited to,
FRTM [35], LWL [4], and TAODA [51].

The emergence of matching-based methods. Recently, pixel matching methods have gained
prominence due to their superior speed and results [15]. These methods, which either implicitly
predict inter-frame similarities or explicitly match features between pixel pairs across frames, have
been adopted by recent SVOS methods [22, 18, 3], leading to state-of-the-art performance.

Unresolved issues and evolving developments in SVOS. Constructing discriminative feature
embeddings with temporal consistency is crucial for reliable correspondence. This is typically
achieved by training backbone networks on large-scale video datasets such as OxUvA [39], YouTube-
VOS [46], TrackingNet [46], and Kinetics-400 [8]. Most existing methods store dense feature
representations of multiple previous frames and perform spatial correlation to propagate information
across frames. However, this significantly increases memory consumption, while reducing the number
of reference frames degrades the performance. Hence, finding a memory-efficient way to propagate
the information is of paramount importance for achieving accurate and robust segmentation results.

3 Method

We start with the task definition. In the SVOS task, the user provides (only for the first frame) a
binary mask for each object of interest. Let (M1

o )
Nobj
o=1 denote the masks where Nobj is the number of

objects. Those (non-overlapping) Nobj masks imply another mask, M1
Nobj+1, which represents the

background at time t = 1 (i.e., the first frame). That mask is formed by taking the binary complement
of the union of (M1

o )
Nobj
o=1 . We will henceforth treat the background as just another object unless

stated otherwise. For each time t = 2, 3, . . . , T , where T is the total number of frames, the goal is to
estimate the corresponding masks, denoted by (M t

o)
Nobj+1
o=1 .

Our unsupervised method for the SVOS task, depicted in Fig. 1, can be summarized as follows.
We extract features from video frames (§ 3.1) and model the within-object feature distribution via
a multi-scale dynamic ensemble of vMF mixtures (§ 3.2). We use a streaming-data Expectation-
Maximization algorithm to update the parameters of the mixtures (§ 3.3). We assign pixels to
objects based on the component-wise posterior probabilities in the entire ensemble of each object
(§ 3.4). For robustness, we disregard outliers during the parameter-estimation steps, and further
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improve the results by incorporating a Pixel-Adaptive Convolutional CRF (§ 3.5) for additional outlier
management and segmentation refinement. For examples of qualitative results see, e.g., Fig. 2.

3.1 Feature extraction

The feature representation we use consists of ViT features [1] and positional embeddings [40]. For
the ViT features, we use the publicly-available pre-trained weights of XCiT (Cross-Covariance Image
Transformer) [1], that had been trained in a self-supervised manner as outlined in [7].

Let Npixels be the number of pixels in each frame. Let X̃t = (x̃t
i)

N
i=1 denote the ViT features

extracted from It (the video frame at time t), where N is the number of features. For example, if
the ViT features are extracted using non-overlapping 8 × 8 patches, then N = Npixels/64. The
XCiT variant, like its DINO-ViT counterpart, excels in extracting rich and discriminative features
from images [2], but with an added advantage of better handling high-resolution images. In our
case, we employ an XCiT model that yields a feature vector x̃t

i ∈ R384 for each image patch i.
To capture the spatial relationships between neighboring pixels, we extend each ViT feature, x̃t

i,
with its corresponding rotary positional embedding, ρ(i), as per the methodology detailed in Su et
al. [38]. This embedding represents the 2D spatial location of the ViT feature in a 64-dimensional
space. Consequently, we form the extended feature vector xt

i = (x̃it, wρ · ρ(i)) (where wρ > 0
is the weight of the positional embeddings), normalized such that ∥xt

i∥ℓ2 = 1. We denote by
Xt = (xt

i)
N
i=1 the collection of all these unit-length (extended) features at time t. Finally, given the

initial masks, (M t
o)

Nobj+1
o=1 , we partition X1, the features at t = 1, into (X1

o )
Nobj+1
o=1 such that, for

each o ∈ (1, . . . , Nobj + 1), X1
o represents the features that correspond to M1

o .

3.2 Modeling the within-object feature distribution via a multi-scale vMF mixture

In our pursuit of capturing intricate patterns in high-dimensional data while ensuring computational
efficiency, we turn to vMF mixtures; namely, a mixture model whose each component is a vMF
distribution (defined below). These mixtures, known for their simple structure that depends solely on
mean directions and concentration parameters, are highly efficient computationally. They are also
adept at modeling data on a unit hypersphere, which is a prevalent form of representation for deep
features. Since often the feature distribution of an object is not only complex but also dependent
on its size (e.g., when the object-to-camera distance increases, the object resolution decreases and
fine details tend to disappear, which in term affects the distribution), we advocate for a multi-scale
approach, using a mixture ensemble. For each object, we employ S independent vMF mixture models,
each corresponding to a different scale or granularity. This way, we capture details at multiple scales.

The vMF distribution is a probability distribution over Sd−1 ≜ {x : x ∈ Rd, ∥x∥ℓ2 = 1}, the unit
sphere in Rd. Its probability density function (pdf), evaluated at x ∈ Sd−1, is

vMF(x;µ, τ) ≜ Cd(τ) exp(τµ
⊤x) (1)

where µ ∈ Sd−1 is the mean and τ > 0 is the concentration parameter. The normalizer Cd(τ)
depends only on τ and has a closed form that appears in Appendix A.

Let s ∈ {1, . . . , S}. Mixture s for object o at time t is defined as follows:
Ks∑
k=1

αt
o,s,kvMF(x;µt

o,s,k, τ
t
o,s,k). (2)

Here, αt
o,s,k represents the mixing proportions while µt

o,s,k and τ to,s,k are the mean and concentration
parameter, respectively, of component k at time t. The predefined number of components, Ks, is
different for every s and represents the scale of the mixture. The full set of parameters describing
object o at time t is θto =

(
(αt

o,s,k, θ
t
o,s,k)

Ks

k=1

)S
s=1

, where θto,s,k = (µt
o,s,k, τ

t
o,s,k).

3.3 Parameter estimation via Expectation-Maximization

We adapt the widely-used Expectation-Maximization (EM) framework [12] to estimate the parameters
of our vMF mixtures in a streaming-data manner, tailoring it specifically for VOS. The algorithm is
applied independently and in parallel to each mixture.
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Our EM algorithm consists of two stages. The Expectation step (E-step) calculates the posterior
probabilities of component membership (i.e., feature-to-component assignment), integrating spatial
coherence to improve segmentation accuracy. In the Maximization step (M-step), we update the
mixture parameters to maximize the expected log-likelihood, introducing modifications to handle the
streaming nature of video data and manage memory efficiently.

3.3.1 E-step: calculating posterior probability with spatial coherence

In the E-step we incorporate spatial coherence, a crucial factor in VOS. Let us assume that, at time t,
pixel i was assigned to object o (we will later explain how pixels are assigned to objects). For each
mixture s of the S mixtures associated with object o, we do the following. For every k = 1, . . . ,Ks,
let qto,s,k,i be the posterior probability that, at time t, pixel i belongs to component k (of mixture s)
given the observed feature xt

i and the current estimate of (αt
o,s,k, θ

t
o,s,k)

Ks

k=1. Let N t
o be the number of

nonzero pixels in M t
o and, in a slight abuse of notation, let (xt

i)
Nt

o
i=1 denote the object features at time

t. We modify the calculation of the posterior probability, qto,s,k,i, by integrating a spatial constraint.
This constraint is expressed as an indicator function that respects both the current parameter estimates
and the spatial information inherited from the previous frame, t− 1. This approach ensures a smooth
transition between frames and improves the spatial integrity of objects in the video sequence. Taken
together, the modified posterior probability is

qto,s,k,i = p(zo,s,i = k|xt
i, θ

t
o,s,k) · I(xt

i,µ
t−1
o,s,k) (3)

where zo,s,i is the assignment of xt
i to a component in mixture s in object o, p(zo,s,i = k|xt

i, θ
t
o,s,k) ∝

p(xt
i|θto,s,k) = vMF(xt

i;µ
t
o,s,k, τ

t
o,s,k), and the binary-valued indicator function,

I(xt
i,µ

t−1
o,s,k) =

{
1 ρ(i)⊤ρ(µt−1

o,s,k) > rs
0, otherwise

, (4)

returns 1 if xt
i has a positional embedding that closely matches ρ(µt−1

o,s,k), the positional part of the
mean of cluster k from the previous frame. The quality of the match is measured in terms of cosine
similarity. Note that the assignment also depends on a certain threshold, rs, which in turn depends on
the number of clusters, Ks. As Ks increases, a higher degree of similarity is required, reflecting the
finer granularity of the mixture. If no such pixel exists, the function returns 0, effectively preventing
the current pixel from being assigned to cluster k. This approach ensures spatial coherence.

3.3.2 M-step: parameter estimation

We first provide the details for the M-step while ignoring the streaming nature of the data, and then
later, in § 3.3.3, explain how we account for the streaming. In the M-step, the parameters are updated
to maximize the expected log-likelihood. We iteratively update a set of sufficient statistics that
encapsulate the critical properties of the data and the model. Concretely, at time t we compute

Ht
o,s,k = (ht,1

o,s,k, h
t,2
o,s,k)

Ks

k=1 ≜

(∑Nt
o

i=1
qto,s,k,i,

∑Nt
o

i=1
qto,s,k,ix

t
i

)Ks

k=1

. (5)

The M-step uses well-known closed-form solutions for the estimated parameters of the vMF distribu-
tion. In particular, to estimate the concentration parameters we employ an approximation scheme
based on the continued fraction method, supplemented with a correction term:

µt
o,s,k =

ht,2
o,s,k

||ht,2
o,s,k||

, Rt
o,s,k =

||ht,2
o,s,k||

ht,1
o,s,k

, τ to,s,k ≈
d ·Rt

o,s,k − (Rt
o,s,k)

3

1− (Rt
o,s,k)

2
, αt

o,s,k =
ht,1
o,s,k∑Ks

k=1 h
t,1
o,s,k

.

(6)

To circumvent the computational expense of directly calculating the modified Bessel function (which
appears in Cd(·)), we adopt an alternative method to compute the log-likelihood log p(xt

i|θto,s,k)
using the mean vector µt

o,s,k and the concentration parameter τ to,s,k. Specifically, we leverage the
fact that the normalizing constant Cd(τ

t
o,s,k) depends solely on τ to,s,k and can be approximated [36]

by a simpler expression (see Appendix A). This enables us to express the log-likelihood as follows:

log p(xt
i|θto,s,k) = N t

oτ
t
o,s,k(µ

t
o,s,k)

⊤x+N t
o logCd(τ

t
o,s,k), (7)
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Figure 2: Qualitative examples.

Figure 3: Memory utilization. This graph illus-
trates the memory consumption as a function of
the feature map size, comparing our method with
scenarios using different numbers of reference
frames (1, 5, and 21). Notably, our method re-
quires less memory than even the scenario with
a single reference frame. The feature dimension
for this evaluation is set to 384.

where ⊤ denotes transpose and x denotes the (Euclidean) sample mean of the data points. We now
address the dynamic characteristics of video data.

3.3.3 Memory-efficient dynamic updates and temporal coherence

In the dynamic environment of video sequences, objects may experience occlusion, reemergence, or
gradual appearance changes due to, e.g., varying lighting conditions. Addressing these challenges,
and inspired by [13], our method integrates temporal coherence into the clustering procedure using
time-weighted sufficient statistics. We devise these statistics as a weighted sum of data values
across multiple frames, with weights diminishing exponentially over time. By maintaining historical
records of a limited length, and updating the time-weighted statistics for each frame, we efficiently
manage space, memory, and time complexity. Data from the preceding frame is retained only if its
(time-decaying) weight exceeds a certain threshold. Concretely, we employ a time-decaying weight
K(t, t′) = 2λ(t−t′) where the user-defined λ > 0 controls the correlation between sequential frames.
As a result, older frames are assigned lower weights. Similarly to [13], we modify the sufficient
statistics accordingly, and obtain a streaming-data variant of Eq. 5:

Ht
o,s,k = (ht,1

o,s,k, h
t,2
o,s,k)

Ks

k=1 ≜

 t∑
t′=1

K(t, t′)

Nt
o∑

i=1

qt
′

o,s,k,i,

t∑
t′=1

K(t, t′)

Nt
o∑

i=1

qt
′

o,s,k,ix
t
i

Ks

k=1

. (8)

Our method’s efficient information propagation from prior frames results in smoother transitions
and improves the temporal coherence of the segmentation. Retaining (weighted) sufficient statistics
from previous frames helps with the detection of reappearing, previously-occluded, objects or parts.
Importantly, our memory consumption is determined by the number of clusters in the model, not N ,
the (much larger) feature map size. This drastically reduces memory usage during inference (see
Fig. 3) and enables us to obtain a compact representation. Moreover, this drastic memory reduction
(in comparison to methods which rely on saving history of dense representations) enables us to use
higher-resolution features than the competitors (see, e.g., Fig. 4). Importantly, as K(t, t′) decreases
when |t− t′| increases and eventually decays to zero, in practice we store the sufficient statistics from
time t′ only until time t′ + 15 and then discard it.

3.4 Pixel-to-object assignment

Given the estimated models from time t, in the subsequent frame we extract features Xt+1 and assign
labels to each pixel based on the mixture (from time t) that has the highest probability for any of its
components. By employing the maximum-a-posteriori (MAP) rule, we determine the component
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Figure 4: Benefits of high-resolution. Each row presents an original video frame (left) and our results obtained
when using features at either low resolution (middle) or high resolution (right). Note the finer details achieved
at high resolution. While it is fairly obvious that higher resolution is better, our point here is that competing
methods (e.g., [3, 24]) usually cannot handle such a resolution due to the increased computational and memory
demands. This is unlike our method which has a low-memory footprint. Please zoom in for optimal viewing.

with the highest probability for each pixel, and then assign the pixel to the object associated with that
component. In other words, for every o ∈ {1, . . . , Nobj + 1} we compute

pt+1
i,o ≜ Pr(pixel i at time t+ 1 belongs to object o) ∝ max

s:s∈1,...,S

(
max

k:k∈1,...,Ks

p(xt+1
i |θto,s,k)

)
(9)

and then assign the pixel to object according to argmaxo:o∈{1,...,Nobj+1} p
t+1
i,o . Next, we generate

the (non-overlapping) masks for time t+ 1, (M t+1)Nobj+1
o=1 via

M t+1
o (i) =

{
1, if o = argmaxo′ p

t+1
i,o

0, otherwise
(10)

where M t+1
o (i) denotes pixel i of M t+1

o′ .

3.5 Refining the segmentation using outlier rejection and a convolutional CRF

Recall that the initial mask is the sole ground truth reference that the method has access to. Thus, as
the video sequence unfolds, the presence of outliers poses a substantial challenge to the accuracy
of the clustering process. These outliers, which stem from factors such as occlusions, illumination
changes, or noise, might hurt the integrity of existing clusters or lead to confusing them with unrelated
clusters. Our approach for mitigating such potential sources of error incorporates two strategies:
outlier rejection and a refinement using a convolutional CRF.

In the initial phase, we exclude points from the parameter-estimation step when the pixel-to-object
assignment is inconclusive. Specifically, if the score of a pixel’s second-best match closely rivals that
of its best match, we consider that pixel an outlier. We then employ the Pixel-Adaptive Convolutional
CRF (PAC-CRF) [37] to further refine the segmentation. PAC-CRF, with its fixed window connections
around each pixel, effectively filters noise while preserving segmentation coherence. It bolsters our
outlier handling strategy by enabling the exclusion of points where the PAC-CRF prediction conflicts
with our initial prediction. After several EM steps (where the M step excludes the outliers), we apply
PAC-CRF again, leveraging the source image to improve the pixel-wise accuracy and the segmentation
quality. Furthermore, we leverage the learnability of the PAC-CRF’s pairwise potentials’ weights and
optimize them using Focal-Loss [26, 30]. This optimization, carried out over a few gradient steps
with the ground-truth annotation from the first frame, ensures that our method adapts well to the
given data, leading to improved performance and more accurate segmentation maps (Fig. 2).

4 Results

In this section, we present the performance of the proposed method on the DAVIS-2017 and YouTube-
VOS datasets. A subsequent subsection delves into our adeptness at harnessing features from deeper
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INO [33]

Ours

Figure 5: Qualitative examples on DAVIS-2017, comparing our results (third row) with one of the
key competitors (second row).

Table 1: Results on DAVIS-2017 validation in terms of the mask (J ) and boundary (F) accuracy
(IoU). The subscript [·]r denotes the recall of the metric, while [·]m signifies the mean.

Method Training Video Dataset (Duration) J&Fm Jm Jr Fm Fr

Unsupervised

Colorization[42] Kinetics (800 hours) 34.0 34.6 34.1 32.7 26.8
CorrFlow[23] OxUvA (14 hours) 50.3 48.4 53.2 52.2 56.0
TimeCycle[44] VLOG (344 hours) 48.7 46.4 50.0 50.0 48.0
UVC[25] Kinetics (800 hours) 60.9 59.3 68.8 62.7 70.9
MuG[27] OxUvA (14 hours) 54.3 52.6 57.4 56.1 58.1
MAST[22] Youtube-VOS (5.58 hours) 65.5 63.3 73.2 67.6 77.7
CRW[18] Kinetics (800 hours) 68.3 65.5 78.6 71.0 82.9
ContrastCorr[43] TrackingNet (140 hours) 63.0 60.5 - 65.5 -
VFS[45] Kinetics (800 hours) 66.7 64.0 - 69.4 -
JSTG[49] Kinetics (800 hours) 68.7 65.8 77.7 71.6 84.3
DULVS[3] TrackingNet (140 hours) 69.4 67.1 80.9 71.7 84.8
CLTC[19] Youtube-VOS (5.58 hours) 70.3 67.9 78.2 72.6 83.7
DINO[7] No training video is required 71.4 67.9 80.7 74.9 87.8
LIIR[24] Youtube-VOS (5.58 hours) 72.1 69.7 81.4 74.5 85.9
INO[33] Kinetics (833 hours) 72.5 68.7 82.0 76.3 89.0
Ours No training video is required 76.3 73.8 85.6 78.7 89.2
Supervised

OSVOS[6] DAVIS-2016 (0.5 hours) 60.3 56.6 63.8 63.9 73.8
TVOS[48] DAVIS-2017 + Youtube-VOS (6 hours) 72.6 69.9 - 74.7 -
STM[31] DAVIS-2017 + Youtube-VOS (6 hours) 81.7 79.2 - 84.3 -

networks and superior resolutions. Video demonstrations can be found here. Details regarding our
implementation are available in Appendix B.

4.1 Evaluation on DAVIS-2017 and YouTube-VOS

We report the results on two widely-used SVOS benchmarks: YouTube-VOS [46] and DAVIS
2017 [34]. Commonly used metrics for assessing VOS performance include the Jaccard’s index
(J) [14], which calculates the intersection-over-union (IoU) of the object mask, and the F-measure
(F) [29], which assesses the contour accuracy. These metrics provide comprehensive insight into the
segmentation performance by evaluating both the object area and contour precision. We report the
mean IoU for mask and contour, denoted as Jm and Fm, as well as the recall Jr and Fr, which are

8
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Table 2: DAVIS-2017 (train)
Method J&Fm Jm Jr Fm Fr

DULVS 68.0 64.4 75.4 71.7 81.3
LIIR 63.9 60.3 69.7 67.5 75.4
INO 67.7 62.4 71.7 73.0 84.1
Ours 73.9 80.0 77.9 77.9 88.1

Table 3: DAVIS-2017 (test-dev)
Method J&Fm Jm Jr Fm Fr

DULVS 58.3 54.5 64.7 62.0 70.1
LIIR 50.3 47.6 54.7 52.9 60.2
INO 61.9 56.5 63.8 67.3 77.6
Ours 66.5 63.3 74.5 69.6 80.1

calculated using an IoU threshold of 0.5. The metric J&Fm represents the average of Jm and Fm.
For a fair comparison, we use the same video resolution as the competing methods, despite the fact
that our method can process higher resolutions than them.

DAVIS 2017. The DAVIS-2017 dataset [34], featuring high-quality videos with diverse object
appearances and challenging motion patterns, is a widely-accepted SVOS benchmark. On the
DAVIS-2017 validation set (Table 1), our method demonstrated top-tier scores in the Jaccard index,
F-measure, and J&Fm metrics. Specifically, our results include a J&Fm score of 76.3, Jm of
73.8, Jr of 85.6, Fm of 78.7, and Fr of 89.2. These results clearly outperform the other methods (see
also Fig. 5). We also evaluated our method on the DAVIS-2017 training and test-dev sets, collectively
constituting 90 additional sequences. These sets allowed for a broader performance assessment, with
the training set offering an extra dimension of evaluation since it is not included in the training data
of the methods we compared with. Results from the test-dev set, officially validated by the evaluation
server, further demonstrate our method’s efficacy (Table 2 & Table 3). Qualitative results from these
extended evaluations are available in Appendix C.

YouTube-VOS. The YouTube-VOS dataset [46] serves as a large-scale benchmark for SVOS, intro-
ducing a variety of complexities such as occlusions, scale changes, and motion blur. Unique to this
dataset is the division of object classes between the training and validation sets, where only a subset is
shared, allowing the benchmark to distinguish between ‘seen’ and ‘unseen’ categories. Our method’s
scores, obtained through the official evaluation server, showcase its adaptability in navigating these
complex situations, surpassing the performance of several state-of-the-art approaches (Table 6).

4.2 Performance and feature analysis

Our method adeptly processes high-resolution features, distinguishing it from other models con-
strained by memory, as illustrated in Table 4. While merely adopting deeper backbones does not
guarantee superior outcomes [45], our model showcases its capability to harness the strengths of
DINOv2’s [32] features. To counteract the reduced spatial information inherent in DINOv2 due
to its larger patch size, We concatenated the DINOv2 features with the XCiT features we had pre-
viously used. This approach ensures a rich and comprehensive representation of the visual scene.
As demonstrated in Table 5, our method effectively capitalizes on the enhanced features from both
deeper backbones and higher spatial resolutions.

Table 4: FPS across resolutions. Comparison
on Tesla V100-32GB, excluding feature extrac-
tion. OOM stands for "Out Of Memory".

Resolution Feat. Size Ours [33] [3]

120 × 210
384 8.25 0.13 0.14
768 6.50 0.11 0.12
1152 5.25 0.10 0.11

240 × 420
384 1.55 OOM OOM
768 1.28 OOM OOM
1152 1.10 OOM OOM

Table 5: DAVIS-2017 (val) with DINOv2 fea-
tures. Fusion with our features elevates perfor-
mance. "×2" denotes using features with twice
the spatial resolution. DINOv2 "S" and "B"
stand for "small" and "base", respectively.

Method J&Fm Jm Fm

+ DINO2-S 0.776 0.754 0.798
+ DINO2-B 0.782 0.760 0.804
×2 + DINO2-S 0.784 0.762 0.806
×2 + DINO2-B 0.803 0.780 0.825

4.3 Ablation study

We performed an ablation study (Fig. 6) to analyze the influence of different parts of the method
on the performance. The combination of outlier detection and segmentation refinement showed a
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Table 6: Results on YouTube-VOS 2018 (val)

Method Seen Unseen

M
ea

n

Jm Fm Jm Fm

Unsupervised

Colorize[42] 43.1 38.6 36.6 37.4 38.9
CorrFlow[23] 50.6 46.6 43.8 45.6 46.6
MAST[22] 63.9 64.9 60.3 67.7 64.2
DULVS[3] 70.2 71.9 66.5 74.8 70.6
CLTC[19] 66.2 67.9 63.2 71.7 67.3
LIIR[24] 67.9 69.7 65.7 73.8 69.3
INO[33] 70.7 73.2 65.6 75.6 71.3
Ours 72.0 74.2 66.2 73.7 71.5
Supervised

OSVOS[6] 59.8 60.5 54.2 60.7 58.8
TVOS[48] 67.1 69.4 56.5 63.0 71.6
STM[31] 79.7 84.2 72.8 80.9 79.4

76.3

74.1

74.2

66.6

λ = ∞

73.9

λ = 2.0

75.6

λ = 1.0

70

S = 1
73.1

S = 2

74.1

S = 5

76.0

73.6

wρ = 0

75.0

wρ = 5

75.2

wρ = 10

74, 7

wρ = 30

w/o CRF refinement
w/o outliers removal
Varying λ

w/o I
Varying S
Varying wρ

Figure 6: Ablation study of model parame-
ters. We report the J&Fm score evaluated
on DAVIS-2017 val. Our baseline configura-
tion (the centered one) is: S = 10, λ = 0.33,
wρ = 15.

synergistic improvement in performance, with each contributing significantly when implemented
separately. The necessity of our streaming mechanism was underscored when we observed a notable
performance drop while solely relying on the previous frame for initializing mixture parameters
(λ = ∞). Furthermore, examining the number of mixtures per object, we notice a substantial
performance boost when increasing the number of mixtures from one to two, underscoring the
importance of multi-scale object representations. However, the added benefit started to decay with
further increase, leading us to settle on S = 10 mixtures in our reported results. Concerning spatial
components, removing positional embeddings (i.e., wρ = 0) resulted in a major performance drop,
confirming their essential role. Additionally, the introduction of the indicator function led to an
additional positive effect on performance.

5 Conclusion

We proposed a novel SVOS approach that achieves state-of-the-art results on challenging bench-
marks. Our memory-conscious strategy also opens possibilities for processing high-resolution videos,
suggesting a valuable avenue for future video understanding research.

5.1 Limitations

The proposed method faces difficulties in two scenarios (see Appendix D for examples). The first is
related to re-identification challenges, where occlusion between multiple similar instances of the same
object type (e.g., two camels) makes it challenging to assign correct labels to each instance. This
limitation stems from the method’s lack of explicit object identity representation and modeling of
temporal dynamics, which could help disambiguate overlapping objects. The second scenario occurs
in the presence of a strong motion blur. The method is sensitive to such a blur, likely because the ViT
features were trained on still images, not videos. This limitation becomes more pronounced when
motion blur persists across consecutive frames, as then the error propagation is more significant.
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