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Abstract001

In recent years, multimodal large language002
models (MLLMs) have made significant003
progress but continue to face inherent chal-004
lenges in multimodal reasoning, which re-005
quires multi-level (e.g., perception, reasoning)006
and multi-granular (e.g., multi-step reasoning007
chain) advanced inferencing. Prior work on008
estimating model confidence tends to focus on009
the overall response for training and calibration,010
but fails to assess confidence in each reason-011
ing step, leading to undesirable hallucination012
snowballing. In this work, we present MM-013
Boundary, a novel framework that advances014
the knowledge boundary awareness of MLLMs015
through reasoning step confidence calibration.016
To achieve this, we incorporate complemen-017
tary textual and cross-modal self-rewarding sig-018
nals to estimate confidence at each step of the019
MLLM reasoning process. In addition to su-020
pervised fine-tuning MLLM on this set of self-021
rewarded confidence estimation signal for ini-022
tial confidence expression warm-up, we further023
introduce a reinforcement learning stage with024
multiple reward functions for further aligning025
model knowledge and calibrating confidence at026
each reasoning step, enhancing reasoning chain027
self-correction. Empirical results show that028
MMBoundary significantly outperforms exist-029
ing methods across diverse domain datasets030
and metrics, achieving an average of 7.5% re-031
duction in multimodal confidence calibration032
errors and up to 8.3% improvement in task per-033
formance.1034

1 Introduction035

Although multimodal large language models036

(MLLMs) demonstrate exceptional abilities in037

cross-modal reasoning, the reliability of their re-038

sponses remains uncertain due to the inherent chal-039

lenges of multimodal reasoning (Chiang et al.,040

2023; Zhou et al., 2023; Huang et al., 2024a; Chen041

1Our code will be released in the final version.
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Turkish attire. They are engaging in a traditional dance that 
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(Ground Truth: The city is Konya)
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Figure 1: Confidence calibration on reasoning step en-
ables MLLMs to express natural language confidence
statements during inference, enhancing self-correction
of low-confidence steps and ultimately reasoning toward
correct answers. Traditional methods calibrate model
confidence solely on entire response, which can lead to
incorrect answers with high confidence. Due to space
limitations, only the reasoning chain of our method is
presented. The red and purple color indicates incorrect
knowledge and confidence estimates, respectively.

et al., 2024). In particular, erroneous knowledge 042

can occur not only at the cross-modal reasoning 043

level but also in the early stages of visual percep- 044

tion. However, MLLMs typically fail to explic- 045

itly indicate their uncertainty to avoid the propa- 046

gation and amplification of errors knowledge (Liu 047

et al., 2024a; Huang et al., 2024b; Bai et al., 2024; 048

Guan et al., 2024). Therefore, it is crucial to en- 049

able MLLMs to accurately express confidence for 050

each reasoning step during inference, enhancing 051

reasoning chain self-correction. 052
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Prior work on estimating model confidence tends053

to focus on the overall response for training and054

calibration (Yang et al., 2023; Zhang et al., 2023;055

Lyu et al., 2024; Xu et al., 2024). However, these056

methods fail to enable the trained models to ex-057

press confidence estimates for different knowledge058

within generated content. As shown in Figure 1059

(upper part), the trained MLLM generates incor-060

rect information at the visual perception level (i.e.,061

misidentifying the "drum" as a "shield") without062

expressing its uncertainty, causing significant devi-063

ations in reasoning chain and ultimately producing064

an incorrect answer. Moreover, due to the logical065

coherence of the reasoning, the model still gener-066

ates a high confidence score in its overall response.067

Therefore, in this work, we propose MMBound-068

ary, a reinforced fine-tuning framework for ad-069

vancing MLLM knowledge boundary awareness070

by reasoning step confidence calibration. Our071

method enables the model to express natural lan-072

guage confidence statement for each generated sen-073

tence, enhancing reasoning chain self-correction074

by scaling inference-time. Specifically, we in-075

troduce a confidence estimation module that in-076

tegrates three effective text-based uncertainty meth-077

ods—namely, length-normalized log probability,078

mean token entropy, and tokenSAR—and incorpo-079

rates cross-modal constraint (i.e., CLIPScore) to080

model the self-rewarded confidence signal from the081

perspective of its internal states. Then, we propose082

a mutual mapping between the detected score and083

predefined confidence statements to achieve two084

objectives: (1) by inserting confidence statements085

after the associated knowledge and training the086

model via supervised learning, we enable the model087

to naturally generate natural language statements088

for each sentence, similar to human expression; (2)089

by integrating internally detected confidence scores090

and those converted from model expressed state-091

ments into the reward modeling for reinforcement092

learning, we can achieve further confidence calibra-093

tion, reducing the inaccuracy of model-expressed094

confidence. Moreover, we annotate the reference095

reasoning chains of training data to facilitate rigor-096

ous evaluation of MLLMs’ knowledge at different097

reasoning levels, and incorporate model knowledge098

calibration into the reward modeling, encouraging099

MLLMs to faithfully express confidence while im-100

proving response quality.101

Experimental results from both automatic and102

human evaluations across diverse domain datasets103

demonstrate that MMBoundary significantly re-104

duces confidence calibration errors while simul- 105

taneously enhancing task performance. 106

The contributions of our work can be summa- 107

rized as follows: 108

• We present a novel framework, MMBoundary, 109

for advancing the knowledge boundary aware- 110

ness of multimodal language models through rea- 111

soning step confidence calibration. 112

• We introduce a confidence estimation module to 113

flexibly obtain confidence scores for each gener- 114

ated sentence, and propose a confidence score- 115

statement mapping to contribute to training the 116

model to naturally output confidence statements 117

and help in reward modeling of reinforcement 118

learning for further confidence calibration. 119

• Empirical results show that MMBoundary sig- 120

nificantly outperforms existing methods, achiev- 121

ing an average reduction of 7.5% in multimodal 122

confidence calibration errors and up to 8.3% im- 123

provement in task performance. 124

2 Problem Formulation 125

Given a model πθ with parameter θ, prior work fo- 126

cuses on enabling the model to output a confidence 127

estimate for its entire response, formalized as: 128

y = [z1, z2, . . . , zT , c] (1) 129

Here, zt represents the t-th generated sentence, c 130

denotes the overall confidence estimate, T is the to- 131

tal number of sentences in the response. However, 132

the trained model often assign high confidence in- 133

correctly. Therefore we aims to train models to 134

express fine-grained confidence estimate for each 135

sentence during inference for enhancing reasoning 136

chain self-correction. Thus, the output: 137

y = [z1, c1, z2, c2, . . . , zT , cT ] (2) 138

Each pair (zt, ct) represents the t-th sentence gener- 139

ated by the model and its corresponding confidence 140

statement, respectively. 141

3 Methodology 142

Our framework consists of two stages: the confi- 143

dence expression warm-up stage and the reinforce- 144

ment learning stage, as shown in Figure 2. 145

3.1 Confidence Expression Warm-Up 146

3.1.1 Internal Confidence Estimation 147

Previous work primarily relies on model response 148

consistency as a confidence indicator. However, 149
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Question: Which animal's 

feet are also adapted for 

swimming? Choices: 
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Ground Truth: Lava gull

Reasoning Chain

1. The image shows the feet of an Atlantic puffin. 

2. The feet are webbed, with a broad structure. 

3. Webbed feet help animals push through water.

4. The lava gull also has webbed feet. 

5. The tokay gecko has wide, sticky toes, which 

are not adapted for swimming…

[S1] The image shows a baseball game with a batter and catcher in action.

[S3] The colors and style are indicative of the New York Yankees.

[S4] So, in this image, Yankees are the team batting in the away game.

[S2] The batter is wearing a gray and blue uniform with distinct details.

[S3] The tokay gecko has sticky toes …

[S4] The lava gull has webbed feet...

[S1] The feet in the image are webbed, …

[S2] Webbed feet makes animals…

Figure 2: The overview of MMBoundary, which consists of two stages. The initial stage trains MLLMs via
supervised learning to generate natural language confidence statement for each sentence, similar to human expression.
The second stage employs reinforcement learning with three intuitively designed reward functions to further calibrate
the expressed confidence estimates and enhance knowledge alignment. represents the internal states (i.e., the log
probability of tokens) of model and the estimated internal confidence.

these methods fail to assess confidence across dis-150

tinct knowledge in generated content and do not151

consider the correlation between the response and152

the visual information, limiting their applicability153

in multimodal scenarios. In this section, we pro-154

pose to leverage multiple text-based uncertainty155

methods and incorporate visual constraint to es-156

timate model’s confidence. Drawing on recent157

research (Xiao et al., 2022; Fadeeva et al., 2023;158

Vashurin et al., 2024), we utilize the following effi-159

cient and effective uncertainty estimation methods160

to create our confidence indicator:161

(1) Length-normalized log probability calcu-162

lates the average negative log probability of the163

tokens generated:164

ULNLP(y,x;θ) = exp

{
− 1

L
logP (y | x,θ)

}
, (3)165

where x denotes the input, y denotes the output,166

and θ represents the model parameters.167

(2) Mean token entropy (Fomicheva et al., 2020)168

computes the average entropy for each token in the169

generated sentence:170

UMTE(y,x;θ) =
1

L

∑L

l=1
H(yl | y<l,x,θ), (4)171

where H(yl | y<l,x,θ) is an entropy of the token172

distribution P (yl | y<l,x,θ).173

(3) TokenSAR (Duan et al., 2024) computes the 174

weighted average of the negative log probability 175

of generated tokens, considering their relevance 176

to the entire generated text. For a given sentence 177

similarity function g(·, ·) and token relevance func- 178

tion RT (yk,y,x) = 1− g(x ∪ y,x ∪ y \ yk), the 179

resulting estimate is computed as: 180

UTokenSAR(y,x;θ) = 181

−
∑L

l=1
R̃T (yl,y,x) logP (yl | y<l,x,θ), (5) 182

where R̃T (yk,y,x) =
RT (yk,y,x)∑L
l=1 RT (yl,y,x)

. 183

184

(4) CLIPScore (Hessel et al., 2021) evaluates 185

the relevance between the generated sentence and 186

input image. Since CLIP’s vision encoder aligns 187

with the target MLLM’s, we employ CLIPScore 188

to represent the sentence-image uncertainty. For 189

an image with visual CLIP embedding v and a 190

sentence with textual CLIP embedding s: 191

UCLIPScore(v, s) = max (cos(v, s), 0) (6) 192

We normalize Ui across the entire dataset using 193

min-max normalization to ensure their values are 194

within the range [0, 1]. Then, we compute the final 195

weighted average as: 196
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Figure 3: We preset a confidence statement pool for
each confidence score. The five levels correspond to un-
certain, slightly uncertain, moderately confident, highly
confident, and fully confident. More statements are
shown in Appendix A.

UFinal = w0ULNLP + w1UMTE197

+ w2UTokenSAR + w3UCLIPScore (7)198

where wi are the respective weights for each com-199

ponent. The closer UFinal is to 0, the greater the200

certainty of model. Then, we use the distribution201

of UFinal to define confidence levels for the model,202

considering the uneven distribution of UFinal. Con-203

fidence levels Cv from 5 to 1 correspond to the204

intervals of UFinal as [0, µ - σ, µ + σ, µ + 2σ, µ205

+ 3σ, 1], with higher confidence levels indicating206

greater model confidence. Here, µ and σ represents207

the average and the standard deviation of UFinal.208

We further validate the effectiveness of this confi-209

dence level classification method in Section 5.2.210

3.1.2 Confidence Score-Statement Mapping211

This module, as shown on the right side of Figure 2,212

aims to establish a mutual mapping between the de-213

tected score and predefined confidence statements.214

First, we construct statement pools for each confi-215

dence level, as shown in Figure 3. These statements216

can be naturally appended to the end of sentences,217

providing a concise expression of the model’s confi-218

dence estimates, similar to human expression. Dur-219

ing the Confidence Expression Warm-Up Stage, we220

randomly select statements from the corresponding221

pools based on the detected scores and insert them222

into the model’s original response to create data for223

fine-tuning. In the Reinforcement Learning Stage,224

after obtaining the confidence statements from the225

model’s output, we encode these statements into226

vectors using an encoder model2 and compute the227

cosine similarity with all embeddings in the differ-228

ent confidence pools to achieve reverse mapping of229

statements to confidence scores.230

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

3.1.3 Supervised Fine-Tuning 231

Specifically, the model undergoes fine-tuning on 232

our constructed data D consisting of tuples: (x,y), 233

where the input x comprises an image I and a ques- 234

tion Q. At step st, the sentence with its confidence 235

statement (zt, ct) are generated by model’s policy 236

πθ. The next state st+1 is: 237

st+1 =

{
x, t = 0

[st, zt, ct], 1 ≤ t ≤ T
(8) 238

We fine-tune the vanilla model via supervised learn- 239

ing. The loss function can be written as: 240

LFT (θ) = −E(x,y)∼D

[
T∑
t=1

log πθ(zt, ct|st)

]
(9) 241

3.2 Reinforcement Learning 242

As noted by Xu et al., 2024, the model undergo- 243

ing supervised training tends to generate uniform 244

confidence levels, which may impact task perfor- 245

mance. Therefore, we employ reinforcement learn- 246

ing with reward signals involving model knowledge 247

alignment, internal confidence and external confi- 248

dence calibration to encourage model to faithfully 249

express confidence while simultaneously improv- 250

ing the quality of responses. Specifically, we sam- 251

ple questions from the training data and prompt the 252

model to generate responses. 253

(1) Knowledge Accuracy Reward evaluates 254

whether the knowledge in generated response is 255

aligned with annotated reference chain, thereby 256

ensuring the reliability of the generated content. 257

Specifically, if the t-th generated sentence zt 258

matches the knowledge in reference chain, RKAt 259

is 1. Refer to the "Step Matched" example in Fig- 260

ure 6. After evaluating all generated sentences, the 261

reward is normalized: RKA = 1
T

∑T
t=1RKAt , T 262

is the total number of sentences. 263

(2) Expected Calibration Reward is consistent 264

with Xu et al. (2024), but we extend it to sentence- 265

level. This reward function measure the correlation 266

between the expressed confidence and the ground 267

truth. The reward function is formalized as follows: 268

REC =
1

T

T∑
t=1

[1− 2 · (I(zt)− EV(ct))
2] (10) 269

where I(·) is the indicator function that returns 270

1 if the sentence is correct compared with refer- 271

ence chain, and 0 otherwise. EV(ct) represents 272
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the expressed confidence score, which is obtained273

by mapping and normalizing the confidence state-274

ments generated by the model. The confidence275

score is normalized between 0 and 1.276

(3) Confidence Self-Calibration Reward is based277

on the consistency between the expressed confi-278

dence and internal confidence of MLLMs:279

RCS =
1

T

T∑
t=1

[1− 2 · (IV(zt)− EV(ct))
2] (11)280

where IV(zt) represents the internal confidence281

score, which is estimated by our method in Se-282

cion 3.1.1. This reward encourages the model to283

express its confidence level as accurately as possi-284

ble, aligning its external expression with internal285

belief. Thus, the overall reward for response is:286

R = αRKA + βREC + γRCS (12)287

Lastly, we employ the Proximal Policy Optimiza-288

tion (PPO) algorithm (Schulman et al., 2017) for289

training. The model’s policy objectives is:290

LRL(θ) = −Ey∼πθold

[
min

(
πθ(zt, ct|st)
πθold(zt, ct|st)

Ât,

clip
(

πθ(zt, ct|st)
πθold(zt, ct|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
(13)

291

The advantage estimate Ât (Schulman et al., 2015)292

is derived by calculating the difference between the293

anticipated future rewards under the current policy294

and the baseline or value function. Implementation295

and data details can be found in Appendix B.296

4 Experiments297

4.1 Dataset298

In order to evaluate the model’s robustness and299

generalizability across diverse scenarios, we select300

the following datasets from different domains: A-301

OKVQA (Schwenk et al., 2022), a general domain302

dataset designed to evaluate models on complex vi-303

sual question answering tasks involving multi-hop304

reasoning, commonsense understanding, and exter-305

nal knowledge integration; ScienceVQA (Lu et al.,306

2022), a large-scale multimodal dataset designed307

for science question answering, featuring questions308

across natural science, social science, and language309

science; CulturalVQA (Nayak et al., 2024), a310

visual question-answering benchmark evaluating311

MLLMs on understanding geo-diverse cultural con-312

cepts beyond general scene understanding.313

4.2 Reasoning Chain Annotation 314

To simultaneously calibrate the model’s knowledge 315

and confidence levels, we conduct detailed reason- 316

ing chain annotations for each question in the train- 317

ing dataset. As shown in Figure 5, for each ques- 318

tion, we prompt the GPT-4o to generate analysis 319

(inference chain) structured in the perception and 320

reasoning level. The former identifies key visual 321

elements in the image that are most relevant to the 322

question and answer, while the latter provides gran- 323

ularity reasoning that justifies why the answer is 324

correct. Each level should include concise, inter- 325

connected sentences, with each sentence conveying 326

a single piece of knowledge. Then, we perform fil- 327

tering and quality evaluation to ensure the accuracy 328

and consistency. Due to space limitations, please 329

refer to Appendix C for more details. 330

4.3 Evaluation Metrics 331

Consistent with previous research (Chen et al., 332

2022; Xu et al., 2024), We evaluate models from 333

three perspectives using six different metrics: 334

(1) Confidence Calibration Performance: We 335

adopt 3 calibration metrics. First, we use the Ex- 336

pected Calibration Error (ECE) score (Guo et al., 337

2017). Then, we extend the ECE score to measure 338

the confidence calibration error of each knowledge 339

within reasoning chain, which we refer to as Multi- 340

granularity Expected Calibration Error (MECE). 341

The MECE score evaluates the correlation between 342

the confidence estimates expressed in generated 343

sentences and their corresponding correctness, as 344

shown in Figure 6. Details of MECE computation 345

process is in the Appendix D.1. For all responses 346

A generated by MLLMs: 347

MECE =
1

|A|
∑
a∈A

1

|a|
∑

(z,c)∈a

|I(z)− conf(c)|

(14) 348

Here, a represents the model’s response to the ques- 349

tion, while z and c represent the sentences in the 350

response and their corresponding confidence state- 351

ments, respectively. Conf(·) represents the numeri- 352

cal value of the confidence statement. 353

(2) Task Performance: We adopt 2 metrics. First, 354

we measure the typical Accuracy. Second, to iden- 355

tify model responses containing erroneous knowl- 356

edge and mitigate the risk of them being assigned 357

high confidence, we evaluate the quality of the 358

model’s reasoning chain by employing the metric 359

in Reasoning Chain F1 score (Ho et al., 2022). 360

This metric compares the information contained in 361
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Model
A-OKVQA ScienceVQA CulturalVQA

ECE (↓) MECE (↓) Acc (↑) F1 (↑) ECE (↓) MECE (↓) Acc (↑) F1 (↑) ECE (↓) MECE (↓) Acc (↑) F1 (↑)

DPV 0.563 0.582 0.650 0.512 0.593 0.611 0.582 0.414 0.624 0.650 0.334 0.482
DPS 0.511 0.554 0.675 0.535 0.574 0.575 0.575 0.427 0.572 0.594 0.354 0.485
SC 0.435 0.492 0.701 0.548 0.463 0.534 0.602 0.442 0.491 0.554 0.371 0.511
Multisample 0.413 0.430 0.683 0.543 0.446 0.500 0.596 0.434 0.463 0.505 0.362 0.538
SaySelf 0.345 0.384 0.734 0.603 0.386 0.462 0.633 0.483 0.375 0.437 0.417 0.571
CSR 0.408 0.437 0.785 0.618 0.453 0.503 0.694 0.502 0.472 0.513 0.435 0.582
RCE 0.361 0.394 0.788 0.620 0.413 0.475 0.671 0.497 0.408 0.453 0.412 0.577
DRL 0.395 0.453 0.746 0.614 0.476 0.513 0.654 0.485 0.453 0.502 0.392 0.564
MMBoundary 0.316 0.304 0.835 0.661 0.354 0.392 0.703 0.565 0.337 0.361 0.448 0.665

Warm-Up Stage
w/o ULNLP 0.327 0.343 0.815 0.642 0.369 0.421 0.698 0.548 0.356 0.397 0.423 0.639
w/o UMTE 0.337 0.332 0.824 0.653 0.385 0.441 0.682 0.536 0.349 0.378 0.430 0.643
w/o UTSAR 0.324 0.358 0.813 0.627 0.352 0.417 0.694 0.546 0.361 0.403 0.438 0.655
w/o UCLIPS 0.337 0.354 0.806 0.631 0.372 0.435 0.681 0.532 0.358 0.394 0.426 0.637
w UMax 0.362 0.386 0.774 0.583 0.391 0.467 0.663 0.494 0.378 0.425 0.403 0.589
w/o S-SMapping 0.340 0.362 0.793 0.634 0.377 0.443 0.684 0.531 0.365 0.398 0.427 0.602

Reinforcement Learning Stage
w/o RKA 0.325 0.347 0.802 0.629 0.334 0.410 0.686 0.535 0.348 0.370 0.437 0.632
w/o REC 0.332 0.357 0.819 0.635 0.363 0.426 0.712 0.548 0.359 0.392 0.422 0.648
w/o RCS 0.343 0.368 0.857 0.648 0.372 0.449 0.693 0.556 0.368 0.417 0.436 0.640
w/o RL 0.392 0.427 0.768 0.581 0.419 0.481 0.663 0.495 0.408 0.456 0.419 0.595

Table 1: The evaluation results of models and various ablations of our framework. CulturalVQA is the out-of-
distribution dataset. w/o ULNLP , w/o UMTE , w/o UTSAR, and w/o UCLIPS represent MMBoundary without the
three text-based uncertainty estimation methods and visual information uncertainty estimation, respectively; w
UMax indicates the confidence determined using the max pooling method from the four uncertainty estimation
scores; w/o S-SMapping denotes MMBoundary without confidence score-statement mapping; w/o RKA, w/o REC ,
and w/o RCS represent MMBoundary without knowledge accuracy reward, expected calibration reward, and
confidence self-calibration reward, respectively; w/o RL denotes MMBoundary without reinforcement learning.

Model
A-OKVQA ScienceVQA CulturalVQA

Faithful Concise Granular Avg. Faithful Concise Granular Avg. Faithful Concise Granular Avg.

Multisample 4.20 5.17 4.06 4.47 4.77 5.24 4.53 4.85 3.91 5.63 4.72 4.75
SaySelf 7.28 7.49 6.47 7.08 7.49 7.18 6.28 6.98 7.12 6.81 6.58 6.83
CSR 6.47 5.73 5.82 6.01 6.74 5.61 6.40 6.23 6.38 5.45 5.86 5.89
RCE 6.73 6.58 7.41 6.90 7.55 6.92 7.12 7.19 6.84 6.19 6.82 6.62
DRL 6.54 6.13 6.95 6.54 6.81 5.97 6.34 6.37 6.55 5.63 6.07 6.08
MMBoundary 7.83 7.25 8.18 7.75 8.35 7.46 8.02 7.94 7.66 7.17 8.26 7.69

Table 2: The human evaluation results of strong baselines and our framework.

the predictions and references. We present imple-362

mentation details in the Appendix D.3.363

(3) Human Evaluation: Automated model eval-364

uation may not accurately capture the subtle dif-365

ferences between different responses (Goyal et al.,366

2022; Ho et al., 2022). Therefore, we conduct ad-367

ditional manual evaluation. We provide a panel368

of three graduate students with 50 random entries369

from each setting, asking them to evaluate whether370

each entry meets the following criteria and to give371

a score from 1 to 10, consistent with (Xu et al.,372

2024). 1) Faithful: whether the response faith-373

fully expresses the confidence; 2) Concise: whether374

the response conveys necessary information clearly375

and without excess; 3) Granularity: whether the 376

response contains confidence estimates for distinct 377

knowledge. The final result is the average score. 378

4.4 Baselines 379

We compare with the following methods: (1)DPV: 380

direct prompting the vanilla MLLMs to give a 381

response with a confidence score; (2) DPS: di- 382

rect prompting the vanilla MLLMs to give a re- 383

sponse with a confidence statement; (3) SC (Xiong 384

et al., 2023): deriving the confidence estimates 385

of MLLMs based on diverse sampling; (4) Mul- 386

tisample (Yang et al., 2023): training MLLMs 387

to generate confidence estimates that align with 388
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Dateset Mean Var Std <0.1

A-OKVQA 0.0443 0.0015 0.0397 96%
ScienceVQA 0.0578 0.0014 0.0374 93%
CulturalVQA 0.0522 0.0015 0.0397 94%

Table 3: Comparison between our internal confidence
estimation (ICE) and widely adapted self-consistency-
based estimation (SCE). We compute |CICE − CSCE| to
demonstrate the correlation between the two methods.

the confidence derived from self-consistency; (5)389

SaySelf (Xu et al., 2024): analyzing inconsisten-390

cies in multiple sampled responses, with the re-391

sulting data used for supervised fine-tuning and392

then confidence estimates calibrated through rein-393

forcement learning based on task supervision; (6)394

CSR (Zhou et al., 2024): converting the calibrated395

reward into the model’s confidence score and uti-396

lize DPO (Rafailov et al., 2024) for optimization;397

(7) RCE: training the model to first generate a398

complete response and then produce confidence399

estimates for each sentence; (8) DRL: directly400

employing our reinforcement learning method to401

train model. We use LLaVA-NEXT 7B (Liu et al.,402

2024b) as backbone model for all methods. We403

also conduct experiments on Qwen2VL 7B (Wang404

et al., 2024) in Appendix E.405

4.5 Main Experimental Results406

Confidence Calibration Performance. We407

present the ECE and MECE results in Table 1 and408

the AUROC results in Appendix (Table 8), which409

measure the correlation between the expressed con-410

fidence and the ground truth. The findings indicate411

that MMBoundary outperforms other methods in412

reducing confidence calibration errors and enhanc-413

ing the ability to distinguish confidence between414

correct and incorrect answers (AUROC). This con-415

clusion is validated on both in-distribution datasets416

(AOKVQA and ScienceVQA, with a rating in-417

crease of 7.5%) and out-of-distribution datasets418

(CulturalVQA, showing an increase of 6.6%), high-419

lighting the generality of our framework.420

Task Performance. We comprehensively evalu-421

ate the task performance of the model using the422

final answer accuracy and the Reasoning Chain F1423

score, as presented in Table 1. The results show424

that our method surpasses other baselines across425

three datasets, achieving up to 8.3% improvement426

in CulturalVQA. Unlike CSR and SaySelf, which427

rely solely on task-oriented reward or the expected428

calibration reward, our approach integrates knowl-429
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Figure 4: Performance improvement of strong baselines
and our model compared to the base model in visual
perception and cross-modal reasoning level of MLLMs.
We report the results on ScienceVQA.

edge alignment along with internal and external 430

confidence calibration into reward modeling. The 431

results demonstrate that our framework improves 432

the model’s knowledge boundary awareness while 433

simultaneously enhancing its task performance. We 434

conduct paired t-tests on the experimental results 435

of MMBoundary, showing significant advantages 436

over the baselines (p-value < 0.05). 437

Human Evaluation. We conduct human evalu- 438

ation of the responses generated by our method 439

and other strong baselines across the dimensions 440

of Faithful, Concise, and Granular, with the results 441

shown in Table 2 and Figure 7. We observe that 442

our framework demonstrates statistically signifi- 443

cant improvements over three dimensions. SaySelf 444

performs well in the concise dimension for content, 445

but it is designed only to estimate confidence for 446

the entire response, lacking the ability to generate 447

confidence for each step of the reasoning process. 448

We perform a Kappa test on the faithfulness eval- 449

uation results to assess inter-annotator agreement, 450

obtaining a Kappa value of 0.79. 451

5 Discussion 452

5.1 Influence of Different Components 453

We conduct extensive ablation study to verify the 454

effectiveness of different components, with results 455

shown below Table 1. Compared to the version 456

without RL, supervised fine-tuning enable model to 457

express confidence during inference. Incorporating 458

RL with our reward signals further improves con- 459

fidence precision, with an average 9.2% increase 460

in the MECE score. For different rewards, RKA 461

primarily affects task performance, removing it re- 462
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sults in an average performance drop of 3.1%. In463

contrast, the removal of REC and RCS leads to a464

maximum decrease of 6.4% in the confidence cali-465

bration performance. The UTSAR having the most466

significant impact on confidence calibration. More-467

over, the conversion between confidence scores468

and statements (S-SMapping) positively impacts the469

model’s confidence calibration, resulting in an av-470

erage improvement of 4.8%.471

5.2 Effectiveness of Confidence Estimation472

To evaluate the effectiveness of our proposed inter-473

nal confidence estimation (ICE), we compare our474

method with the self-consistency-based confidence475

estimation method (SCE) (Yang et al., 2023; Xu476

et al., 2024). We randomly sample 50 data from477

three datasets and compare the confidence scores of478

the model’s responses from approaches above. We479

compute |CICE − CSCE|. The results are shown in480

Table 3. We observe that the confidence estimation481

bias between the two methods is small for the vast482

majority of samples (over 93% are less than 0.1).483

On the ScienceVQA dataset, the average difference484

in confidence scores between the two methods is485

0.0578, indicating that for a given answer from486

the model, our method has only about 6 instances487

of deviation compared to the post-hoc confidence488

estimation method (based on 100 resamplings).489

5.3 Effectiveness of Confidence Calibration490

We further investigate the confidence calibration491

(MECE) and task performance (F1) of our method492

across different reasoning levels in MLLMs, specif-493

ically focusing on visual perception and cross-494

modal reasoning. The results is presented in Fig-495

ure 4. Our method achieves a significant improve-496

ment in confidence calibration at the perception497

level (an increase of 20.4%), which contributes to a498

38.5% improvement in the accuracy of the reason-499

ing chain. Furthermore, at the reasoning level, ben-500

efiting from the strengthened knowledge boundary501

in the visual understanding stage, both the confi-502

dence calibration score and the reasoning chain F1503

score show improvements, surpassing the strongest504

baseline by 19.7% and 27.4%, respectively.505

6 Related Work506

Hallucinations and Uncertainty Estimation. Ef-507

forts have been made towards evaluating the hal-508

lucinations in the VLMs (Liu et al., 2023; Gunjal509

et al., 2024; Zhang et al., 2024b; Wu et al., 2024).510

As a fundamental approach to detecting model hal- 511

lucination, uncertainty estimation (UE) has long 512

attracted significant attention, which fall into two 513

types: black-box and white-box. Black-box meth- 514

ods only require the generated text and most 515

of these methods are based on self-consistency 516

(Fomicheva et al., 2020; Kuhn et al., 2023; Lin 517

et al., 2023). White-box methods rely on access 518

to logits and internal layer outputs. They encom- 519

pass information-based, density-based and sam- 520

ple diversity-based approaches (Malinin and Gales, 521

2020; Kadavath et al., 2022; Vazhentsev et al., 522

2023; Kuhn et al., 2023; Fadeeva et al., 2024; Duan 523

et al., 2024). Instead of rely on self-consistency 524

prompting, we propose leveraging the model’s in- 525

ternal states to quantify the confidence. 526

Confidence Calibration of Language Model. In- 527

creasing attention has been directed toward en- 528

hancing the models’ awareness of their knowledge 529

boundaries and enabling them to express their con- 530

fidence in outputs when encountering uncertainty 531

(Lin et al., 2022; Xiong et al., 2023; Yang et al., 532

2023; Lyu et al., 2024; Xu et al., 2024; Zhang et al., 533

2024a). Zhang et al. (2024a) introduce R-tuning 534

to encourage LLMs to express "certain/not cer- 535

tain". Xu et al. (2024) goes further to teach the 536

model to express more fine-grained confidence es- 537

timates along with self-reflective rationales. How- 538

ever, these methods focus solely on the entire re- 539

sponse. Therefore, we propose MMBoundary to 540

train VLMs to express fine-grained confidence es- 541

timates for each reasoning step during inference, 542

enhancing reasoning chain self-correction. 543

7 Conclusion 544

In this work, we present MMBoundary, a novel 545

framework that advances the knowledge bound- 546

ary awareness of multimodal models through rea- 547

soning step confidence calibration. We incorpo- 548

rates complementary textual and cross-modal self- 549

rewarding signals to estimate confidence at each 550

step of the MLLM reasoning process. In addition 551

to supervised fine-tuning MLLM for initial confi- 552

dence expression warm-up, we further introduce a 553

reinforcement learning stage with multiple reward 554

functions for further calibrating model confidence. 555

Empirical results demonstrate that our framework 556

significantly outperforms existing methods, achiev- 557

ing an average reduction of 7.5% in multimodal 558

confidence calibration errors and up to 8.3% im- 559

provement in task performance. 560
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Limitation561

Our framework aims to enable MLLMs to au-562

tonomously generate natural language confidence563

statements during inference, enhancing reasoning564

chain self-correction. A limitation of our work565

is our method involves using the model’s inter-566

nal states and uncertainty methods to assess the567

model’s confidence. However, more research is568

needed to determine whether uncertainty methods569

can accurately reflect the model’s confidence in its570

output. Ablation experiments on the uncertainty571

methods indicate that the four carefully selected572

methods provide gains for the model. Additionally,573

we explore the correlation between the proposed574

internal confidence estimation method and the self-575

consistency method. The results show that our met-576

ric, without requiring multiple samples, achieves577

performance comparable to methods that rely on578

multiple samples.579
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A The Value-Statement Mapping Table808

We have preset 40 concise statements for each level.809

Table 4 presents additional confidence statements.810

These statements are concise and express the se-811

mantics of the corresponding confidence levels,812

allowing for seamless integration into sentences813

generated by the model, making them suitable for814

training generative language models.815

B Implementation Details816

Our experiment involves three distinct datasets: A-817

OKVQA(Schwenk et al., 2022), ScienceVQA(Lu818

et al., 2022), and CulturalVQA(Nayak et al., 2024).819

The first two datasets are in-domain datasets, and820

our training data comes from the training sets of821

these two datasets, while CulturalVQA is an out-822

of-domain dataset. Since the test sets for all three823

datasets are not publicly available, we cannot accu-824

rately annotate the reasoning chain for MECE and825

Reasoning Chain F1 evaluation. Therefore, we use826

the validation sets of AOKVQA and ScienceVQA827

Score Statement

1 but I can’t confirm this. / I’m uncertain about
this. / I’m not sure about that. / This answer
may be wrong. / I can’t guarantee this an-
swer. / I’m unsure about this. / I can’t be
sure about this. / This answer is unclear to
me. / This might be imprecise. / This could
be questionable. (. . . )

2 and it may need checking / it might not be
right. / but I’m not sure. / and it might be
slightly off. / though it’s not perfect. / but
it may need confirmation. / though there’s
some doubt. / though it may not hold up. /
though I feel a bit unsure. / but there’s minor
hesitation. (...)

3 but I can’t guarantee perfection. / I can’t be
entirely sure / but it’s not beyond all doubt.
/ though minor errors might exist. / but it’s
not fully certain. / though small flaws are
possible. / but it’s not completely precise.
/ but it’s not entirely error-free. / though
it’s not fully verified. / though it’s open to
review. (...)

4 and this seems trustworthy. / and I believe
this is right. / and I’m quite confident in this.
/ and this feels reliable to me. / and I trust
this is correct. / and this seems very likely
true. / and this appears reliable. / and this
fits the context well. / and I’m confident this
is right. / and this is well-reasoned. (...)

5 with total certainty. / with no doubts at all. /
and I’m absolutely sure about this. / and I’m
fully confident in this. / with total certainty.
/ and this is undoubtedly correct. / and this
is entirely reliable. / and it’s unquestionably
right. / with complete confidence. / and I
guarantee this is right. (...)

Table 4: The confidence score-statement mapping table.
The five scores correspond to uncertain, slightly uncer-
tain, moderately confident, highly confident, and fully
confident. We preset 40 confidence statements for each
score.

for in-domain testing of the model. For Cultur- 828

alVQA, which only has a non-public test set, we 829

manually selected and annotated 800 samples from 830

it to serve as the test set. 831

For the construction of the warm-up dataset, we 832

deploy the vLLM model with a temperature set- 833

ting of 0.1 and number of log probabilities to re- 834

turn per output token of 10. We collect a total of 835

19K Question-Image pairs from the training sets of 836

A-OKVQA and ScienceVQA. For each Question- 837

Image pair, we prompt the model to generate the 838

reasoning chain and calculate the model’s confi- 839

dence score for each sentence, resulting in 55K 840

sentences with confidence statements, with w0, w1, 841
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Question: Which city of the 

Turkey is the origin of the 

performers depicted in the image? 

Answer: Konya

Image level

1. The image shows a group of performers dressed in traditional Turkish attire, 

likely meant to evoke a sense of historical significance. 

2. The performers are engaged in a traditional dance involving drums.

3. Turkish folk performers are often accompanied by traditional instruments like 

the saz, a long-necked stringed instrument.

Reasoning level

1. This dance style is associated with the Whirling Dervishes, known for their 

spinning movements as part of a meditative practice.

2. The Whirling Dervishes are followers of the Mevlevi Sufi order, which 

emphasizes music and dance as spiritual expressions.

3. The Mevlevi order originated in Konya, Turkey, which is renowned for its 

association with Rumi, the famed Sufi mystic and poet.

4. So the answer is Konya.

Redundant

Irrelevant

Image level

1. The image shows a group of performers in traditional Turkish attire. 

2. The performers are engaged in a traditional dance involving drums. 

Reasoning level

1. This dance style is associated with the Whirling Dervishes.

2. Whirling Dervishes are followers of the Mevlevi Sufi order. 

3. The Mevlevi order originated in Konya, Turkey.

4. So the answer is Konya.

Filter

Generate

Quality 

Evaluate

Figure 5: The Annotation Pipeline. We first prompt GPT-4o to generate an analysis (reasoning chain) structured at
the perception and reasoning levels. Then, we have GPT-4o filter and correct the initially annotated chains. Finally,
manual data quality control is conducted to ensure accuracy and reliability.

and w2 all set to 0.3 in internal confidence estima-842

tion module. During the warm-up stage, we use the843

AdamW optimizer with a 10% warm-up ratio, a844

learning rate of 1.0e-4, and a batch size of 16. In the845

reinforcement learning phase, we randomly sam-846

ple data from the training set for training, for each847

question, we sample N = 3, with a learning rate848

of 1e-5 and a batch size of 16. In all experiments,849

training was conducted on a single A100-80GB850

GPU.851

C The Reasoning Chain Annotation852

To obtain the necessary fine-grained knowledge853

of visual perception and cross-modal reasoning in854

visual question-answering for calibrating the multi-855

level confidence of MLLMs, we conduct reasoning856

chain annotation on knowledge-extensive datasets857

from three different domains.858

C.1 The Annotation Pipeline859

The pipeline of reasoning chain annotation is pre-860

sented in Figure 5. We first prompt the GPT-4o861

to generate analysis (reasoning chain) structured862

in the perception and reasoning level. The former863

identifies key visual elements in the image that are 864

most relevant to the question and answer, while the 865

latter provides granularity reasoning that justifies 866

why the answer is correct. Each level should in- 867

clude concise, interconnected sentences, with each 868

sentence conveying a single piece of knowledge. 869

As shown in the upper right corner of the figure, the 870

initially obtained reasoning chain may contain re- 871

dundant information and irrelevant content. There- 872

fore, we use GPT-4o again to correct the content of 873

the reasoning chain, filtering out redundancy and 874

unrelated information to ensure that each sentence 875

is concise and accurate. Then, we conduct anno- 876

tation quality control to ensure the accuracy and 877

consistency of the data. The prompt is provided in 878

Appendix F. 879

C.2 Quality Evaluation 880

After the machine annotation is completed, we 881

randomly selected 50 samples from each of the 882

three datasets and asked two graduate students 883

to evaluate the data quality. The evaluation met- 884

rics included: (1)Accurate: the reasoning chain 885

is relevant to the question and contains no wrong 886
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Metric Accurate Concise Complete

Rate (%) 96.8 91.3 93.5

Table 5: The Likert Scale results of annotated data. We
report the proportion of data with a rating greater than 4
(i.e., Agree).

knowledge; (2) Concise: each sentence is concise887

and contains no redundant information; (3) Com-888

plete: the reasoning chain formed by each sentence889

accurately explains the answer to the correspond-890

ing question without omitting relevant knowledge.891

We use a Likert Scale to evaluate each indicator,892

with a scoring range from 1 to 5, where 1 indi-893

cates ’Strongly Disagree’ and 5 indicates ’Strongly894

Agree.’ The results are shown in Table 5. We report895

the proportion of data with a rating greater than 4896

(i.e., Agree). The results indicate that the majority897

of the data meet the three criteria. We conduct a898

Kappa test on the accuracy evaluation results of the899

two graduate students, yielding a Kappa value of900

0.75, which indicates a high level of consistency901

between the evaluators.902

D The Details of Evaluation Metrics903

D.1 The Multi-granular Expected Calibration904

Error (MECE)905

As shown in Figure 6, after comparing the knowl-906

edge contained in the predictions and references,907

we obtain sentences where the knowledge in pre-908

dictions and references aligns. Then, we calcu-909

late the Expected Calibration Error (ECE) for each910

sentence one by one, and finally derive the Multi-911

granular Expected Calibration Error (MECE):912

ECE(a) =
1

|a|
∑

(z,c)∈a

|I(z)− Conf(c)| (15)913

914

MECE(A) =
1

|A|
∑
a∈A

ECE(a) (16)915

Here, A represents the entire test set, and a de-916

notes the reasoning chain generated by the model,917

which consists of multiple sentences. (z, c) repre-918

sent a sentence and its corresponding confidence919

statement, respectively. I(·) is the indicator func-920

tion that returns 1 if the sentence is correct when921

compared with the reference chain, and 0 other-922

wise. Conf(·) represents the numerical value of the923

confidence statement.924

D.2 AUROC 925

We adopt the AUROC score (Hendrycks and Gim- 926

pel, 2016), which measures the ability of models to 927

distinguish between correct and incorrect responses 928

across different threshold settings. 929

AUROC =

∫ 1

0
TPR(FPR−1(x)) dx (17) 930

where x denotes the threshold confidence level, 931

TPR represents the true positive rate at this thresh- 932

old, and FPR indicates the false positive rate cor- 933

responding to the threshold. The result is shown in 934

Table 8. 935

D.3 Reasoning Chian F1 Score 936

We use the Reasoning Chain F1 score (Ho et al., 937

2022) to evaluate the quality of the reasoning 938

chains generated by the model. We compare the 939

knowledge contained in the predictions and refer- 940

ences. First, we split the predicted and reference 941

chains into “steps” by sentence. We then compute 942

a matrix of pairwise similarity scores before using 943

a threshold to classify “matches.” Since a single 944

predicted sentence may contain multiple reference 945

knowledge, we keep separate counts of precise pre- 946

dicted sentences and covered reference sentences. 947

These counts are then micro-averaged to calculate 948

the overall precision, recall, and F1 scores for the 949

test set: 950

Precision =
Matched

Prediction
,Recall =

Covered
Reference

(18) 951

Taking the answer in Figure 6 as an example, we 952

have: Prediction = 4, Reference = 6, Matched = 3, 953

Covered = 3. We then calculate the F1 score: 954

F1 = 2× Precision × Recall
Precision + Recall

(19) 955

Drawing on the study of (Ho et al., 2022), we se- 956

lect a large RoBERTa model (cross-encoder/stsb- 957

roberta-large) with a similarity threshold of 0.64. 958

E Experiments of MMBoundary on 959

Qwen 960

To prove that our method can generalize on multi- 961

ple models, we also implement the baseline ap- 962

proaches and MMBoundary on Qwen2VL 7B 963

(Wang et al., 2024). 964

F Prompt 965

F.1 GPT-4o Annotation Prompt 966

F.2 GPT-4o Refinement Prompt 967
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[R1] The image shows a group of 

performers in traditional Turkish attire

Reference Chain

[R2] The performers are engaged in a 

traditional dance involving drums

[R3] This dance style is associated 

with the Whirling Dervishes

[S1] The image shows three men 

dancing with a drum and wearing 

traditional attire, with total certainty.

Predicted Chain

[S2] The setting appears to be a 

traditional venue, and it need checking. 

[S3] Given the attire and dance style, it 

is likely associated with the Whirling 

Dervishes, but it’s not fully certain.

R2

R6[R4] Whirling Dervishes are 

followers of the Mevlevi Sufi order

[R5] The Mevlevi order originated in 

Konya, Turkey

[R6] So the answer is Konya

[S4] So the performers are from Konya, 

but I’m not sure.

R3

Step Matched

ECE(R2,S1)

ECE(R6,S4)

ECE(R3,S3)

Step ECE

Figure 6: Example of MECE and Reasoning Chain F1 calculation.

Model
A-OKVQA ScienceVQA CulturalVQA

ECE (↓) MECE (↓) Acc (↑) F1 (↑) ECE (↓) MECE (↓) Acc (↑) F1 (↑) ECE (↓) MECE (↓) Acc (↑) F1 (↑)

Multisample 0.437 0.463 0.665 0.557 0.467 0.492 0.613 0.415 0.443 0.512 0.335 0.513
SaySelf 0.324 0.381 0.727 0.632 0.332 0.445 0.628 0.523 0.397 0.426 0.352 0.586
CSR 0.413 0.463 0.774 0.623 0.433 0.534 0.702 0.517 0.482 0.503 0.394 0.562
RCE 0.372 0.427 0.793 0.647 0.401 0.483 0.686 0.504 0.436 0.475 0.425 0.597
DRL 0.406 0.442 0.762 0.628 0.435 0.523 0.641 0.487 0.465 0.493 0.384 0.552
MMBoundary 0.305 0.348 0.806 0.664 0.346 0.426 0.713 0.562 0.354 0.385 0.437 0.634

Table 6: Experimental Results on a different base model, Qwen2VL 7B (Wang et al., 2024).

Model A-OKVQA ScienceVQA

ECE (↓) MECE (↓) ECE (↓) MECE (↓)

MMBoundary 0.316 0.324 0.354 0.405
w/ UIC 0.358 0.387 0.406 0.479

Table 7: The comparative study of confidence level
segmentation methods. UIC (uniform interval for con-
fidence level segmentation) means simply divides the
interval [0, 1] directly into five equal segments, with
each segment corresponding to a confidence level.

Model A-OKVQA Sci-VQA Cul-VQA

Multisample 0.5016 0.5429 0.4904
SaySelf 0.6872 0.6118 0.6261
CSR 0.5238 0.5713 0.4931
RCE 0.6037 0.5902 0.6059
DRL 0.4956 0.5028 0.4576
MMBoundary 0.6635 0.6786 0.7108

Table 8: The AUROC experimental results.

S
c
o
re

10

8

6

4

2

Faithful Concise Granular

Multisample SaySelf Conf-CSR Ours

Figure 7: Boxplots of human evaluation scores on the
A-OKVQA dataset.
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GPT-4o Annotation Prompt

You will receive a question , an accompanying image , the correct answer , and
the corresponding rationales. Follow these steps to generate your analysis (
reasoning chain) structured in two levels.

Each level should include concise , interconnected sentences , with each
sentence conveying a single piece of knowledge. Ensure the reasoning chain
covers all necessary knowledge points concisely , with each sentence in this
reasoning chain is essential and avoid adding redundant or irrelevant
sentences.

The levels are as follows:
**Image level **: Identify key visual elements in the image that are mostly
relevant to the question and answer. Format these sentences in JSON , like: ['
sentence 1', ..., 'sentence i'].
** Reasoning level **: Based on the extracted visual elements , provide logical
reasoning that justifies why the answer is correct. Format these in JSON as
well: ['sentence i+1', 'sentence i+2', ..., 'So, the answer is ...'].

The sentences in both levels together should form a coherent chain of
reasoning that clearly explains why the answer is correct. Ensure that each
sentence builds upon the previous one to complete the reasoning chain. In the
final sentence of the reasoning level , provide a clear conclusion with the
answer , like: 'So, the answer is ...'.

Refer to the example below:
Please answer the following question:
Image: (Three people in traditional clothing holding drums , performing a form
of the 'whirling dervishes ' ritual .)
Question: Which city in Turkey is the origin of the performers depicted in the
image?

Answer: Konya
Analysis: {{'Image_level ': [], 'Reasoning_level ': []}}
Your output:
Analysis: {{

'Image_level ': [
'The image shows a group of performers in traditional Turkish attire ',
'The performers are engaged in a traditional dance involving drums '

],
'Reasoning_level ': [

'This dance style is associated with the Whirling Dervishes ',
'Whirling Dervishes are followers of the Mevlevi Sufi order ',
'The Mevlevi order originated in Konya , Turkey ',
'So the answer is Konya '

]}}

Now , please answer the following question:
Image: image
Question: {question}
Answer: {answer}
Analysis :{{

'Image_level ': [],
'Reasoning_level ': []
}}

Your output:
Analysis:

Figure 8: GPT-4o annotation prompt.
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GPT-4o Refinement Prompt

Now , the following analysis (reasoning chain) is structured.
Image_level and Reasoning_level together form a complete reasoning chain.
Please filter out any irrelevant sentences to maintain a concise reasoning
chain , including only the essential sentences.

Refer to the example below:
Image: (Three people in traditional clothing holding drums , performing a form
of the 'whirling dervishes ' ritual .)
Question: Which city in Turkey is the origin of the performers depicted in the
image?

Answer: Konya
Analysis :{{

'Image_level ': [
'The image shows a group of performers dressed in traditional Turkish
attire , likely meant to evoke a sense of historical significance.',
'The performers are engaged in a traditional dance involving drums.',
'Turkish folk performers are often accompanied by traditional
instruments like the saz , a long -necked stringed instrument.'

],
'Reasoning_level ': [

'This dance style is associated with the Whirling Dervishes , known for
their spinning movements as part of a meditative practice.',

'The Whirling Dervishes are followers of the Mevlevi Sufi order , which
emphasizes music and dance as spiritual expressions.',

'The Mevlevi order originated in Konya , Turkey , which is renowned for
its association with Rumi , the famed Sufi mystic and poet.',
'So the answer is Konya.'

]}}

Your output:
Analysis :{{

'Image_level ': [
'The image shows a group of performers in traditional Turkish attire
.',
'The performers are engaged in a traditional dance involving drums.'

],
'Reasoning_level ': [

'This dance style is associated with the Whirling Dervishes.',
'Whirling Dervishes are followers of the Mevlevi Sufi order.',
'The Mevlevi order originated in Konya , Turkey.',
'So the answer is Konya.'

]}}

Now:
Image: (image)
Question: {question}
Answer: {answer}
Analysis: {analysis}
Your output:
Analysis:

Figure 9: GPT-4o Refinement prompt.
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