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Abstract

Multi-objective reinforcement learning algorithms (MORL) extend standard re-
inforcement learning (RL) to scenarios where agents must optimize multiple—
potentially conflicting—objectives, each represented by a distinct reward function.
To facilitate and accelerate research and benchmarking in multi-objective RL prob-
lems, we introduce a comprehensive collection of software libraries that includes:
(i) MO-Gymnasium, an easy-to-use and flexible API enabling the rapid construc-
tion of novel MORL environments. It also includes more than 20 environments
under this APIL. This allows researchers to effortlessly evaluate any algorithms on
any existing domains; (ii) MORL-Baselines, a collection of reliable and efficient
implementations of state-of-the-art MORL algorithms, designed to provide a solid
foundation for advancing research. Notably, all algorithms are inherently compati-
ble with MO-Gymnasium; and (iii) a thorough and robust set of benchmark results
and comparisons of MORL-Baselines algorithms, tested across various challenging
MO-Gymnasium environments. These benchmarks were constructed to serve as
guidelines for the research community, underscoring the properties, advantages,
and limitations of each particular state-of-the-art method.?

1 Introduction

Research in reinforcement learning (RL) algorithms (Sutton and Barto, 2018) has gained significant
attention in recent years, in great part due to its remarkable success in a range of challenging
problems (Mnih et al., 2015b; Silver et al., 2017; Bellemare et al., 2020). This led to a substantial
increase in the number of papers published in the field every year. The rapid growth of RL research,
however, has not necessarily been accompanied by the design of well-thought and reliable tools
allowing for appropriate evaluation practices, resulting in a reproducibility crisis within the field. This
resulted, e.g., in researchers often questioning the validity and reproducibility of results presented in
influential papers (Agarwal et al., 2021; Patterson et al., 2023).

There are several reasons why reproducibility is often a challenge in RL. A key factor is the significant
amount of time required to train RL agents, which makes it difficult for researchers to gather
sufficient data to perform rigorous statistical analyses of empirical results. As a consequence, some
authors may claim superior performance over state-of-the-art techniques without adequate evidence.

* Authors contributed equally to this work.

*MO-Gymnasium and MORL-Baselines are available at https://github.com/Farama-Foundation/
mo-gymnasium and https://github.com/LucasAlegre/morl-baselines, respectively. The benchmark
results are available on openrlbenchmark: https://wandb.ai/openrlbenchmark/MORL-Baselines.
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Additionally, papers often do not provide sufficient information—such as hyperparameter values and
implementation optimizations—to allow for the reliable reproducibility of their results. Finally, the
use of environment implementations that lack standardization also contributes to this challenge. To
address such issues, several libraries and experimentation protocols have been proposed in the RL
ecosystem (Brockman et al., 2016; Agarwal et al., 2021; Raffin et al., 2021; Huang et al., 2022b).

As RL garners increasing interest, its subfield, Multi-Objective Reinforcement Learning (MORL), is
simultaneously attracting notable attention within the RL research community (Hayes et al., 2022).
MORL algorithms tackle problems where an agent has to optimize multiple—possibly conflicting—
objectives. Each of these objectives is represented via a distinct reward function. In this setting, agents
typically aim to find optimal decision-making policies defined with respect to different compromises
or trade-offs between the objectives. Examples of MORL problems include the widely-used set of
Mujoco (Todorov et al., 2012) tasks, which model compromises between an agent’s objectives. As an
example, the reward function of the half-cheetah agent is a weighted combination of velocity- and
energy-related terms, where the weights are pre-determined and kept constant. However, allowing
for such weights (i.e., for the relative importance of objectives) to change may induce significantly
different optimal behaviors (Xu et al., 2020). While the goal of standard RL algorithms is to learn a
single policy, specialized in optimizing a single reward function, MORL algorithms typically search
for a set of policies such that given any compromises between objectives, a corresponding optimal
(or near-optimal) policy is in the set. Designing and properly evaluating MORL algorithms shares
the difficulties encountered when designing and empirically testing RL techniques—with additional
challenges particular to multi-objective settings. Yet, to the best of our knowledge, there are currently
no public standard libraries providing reliable implementations of widely-used MORL domains and
state-of-the-art MORL algorithms, designed particularly to facilitate research in the field.

In this paper, we introduce a comprehensive suite of benchmark MORL environments and reliable
implementations of widely-used MORL algorithms, designed to facilitate the construction of repro-
ducible empirical performance evaluation of existing and novel multi-objective techniques. First, we
introduce MO-Gymnasium (Section 4), an easy-to-use and flexible API enabling the rapid construc-
tion of novel MORL environments. As of now, this API includes over 20 environments with diverse
characteristics. This allows researchers to evaluate, with minimal effort, any algorithms compatible
with our extendable API in any existing domains. Secondly, we introduce MORL-Baselines (Sec-
tion 5), a collection of reliable and efficient implementations of state-of-the-art MORL algorithms
designed to provide a solid foundation for advancing MORL research. Notably, all such algorithms
are inherently compatible with MO-Gymnasium. Finally, in Section 6 we provide a thorough and
robust set of benchmark results and comparisons of MORL-Baselines algorithms tested across var-
ious challenging MO-Gymnasium environments. These benchmarks were constructed to serve as
guidelines for the research community, underscoring the properties, advantages, and limitations of
each particular state-of-the-art method.

2 Related work

The challenge of reproducing experimental results in machine learning research is widely acknowl-
edged. The significance of this issue has risen to such a degree that top-tier conferences like NeurIPS
have implemented reproducibility programs aimed at improving the standards for conducting, com-
municating, and evaluating research in the field (Pineau et al., 2020). The RL field is directly affected
by this issue, as highlighted by different authors. For example, Engstrom et al. (2020) show that
optimizations at the implementation level of deep RL algorithms can be more impactful than ex-
perimenting with different algorithms. Similarly, Huang et al. (2022a) investigated and identified
the existence of 37 particular code-level tricks necessary to achieve state-of-the-art results when
deploying the PPO algorithm (Schulman et al., 2017a). Agarwal et al. (2021) point out the lack
of statistically significant results in numerous papers published in the field, despite many of them
claiming to introduce techniques that outperform the state-of-the-art. Finally, an in-depth discussion
of issues pertaining to methodologies used to conduct empirical evaluation in RL is presented by
Patterson et al. (2023). These issues include, among others, inadequate tuning of the hyperparameters
of baselines algorithms when deployed on new environments, averaging performance metrics over a
limited number of runs, absence of random seed control, and environment overfitting.

To address these concerns, several RL libraries have been developed to provide more reliable baselines.
For example, Gymnasium (Towers et al., 2023) (formerly known as OpenAI Gym (Brockman et al.,



2016)) provides a standard API and a collection of reference environments for RL research and
experimentation. Furthermore, various libraries have been published that contain well-tested, reliable,
and continually maintained implementations of RL algorithms; e.g., Stable-Baselines 3 (Raffin
et al., 2021) and cleanRL (Huang et al., 2022b). Finally, recent initiatives such as openrlbenchmark
(Huang et al., 2023) facilitate the analysis of various learning metrics, and tackle the reproducibility
challenge via experiment tracking software such as Weights and Biases, which makes it easier to,
e.g., make hyperparameters of different baselines publicly available (Biewald, 2020). Other subfields
of RL, such as multi-agent RL. (MARL), have also benefited from standard baseline libraries. In
MARL, PettingZoo (Terry et al., 2021) is often used to design novel environments, and EPyMARL
(Papoudakis et al., 2021) is commonly used when designing new learning algorithms. Zhu et al.
(2023) recently introduced D4MORL, a repository that includes datasets specifically designed to
evaluate MORL algorithms in the offline setting. Although these subareas of RL have reaped the
benefits from standardized libraries, to the best of our knowledge, there are currently no publicly
available (and widely adopted) standard libraries providing reliable implementations of widely-used
MORL domains and state-of-the-art MORL algorithms, designed to facilitate research in the field.

As discussed by Hayes et al. (2022); Cassimon et al. (2022), various benchmark problems have
been proposed to evaluate MORL methods. However, these benchmarks have not yet been made
available via standardized APIs or centralized repositories. Arguably, this has made the experimental
reproducibility of MORL algorithms harder, time-consuming, and error-prone. MORL-Glue (Vam-
plew et al., 2017) represents an attempt to establish a centralized repository of MORL benchmarks.
However, this library has not been widely adopted due to the fact that it is implemented in Java
and targets tabular problems, whilst the community currently focuses on using Python and deep RL
techniques. Our first contribution, MO-Gymnasium, addresses this issue by introducing a standard
API and set of reference environments for MORL.

Although some published works on MORL make their code publicly available (Yang et al., 2019;
Abels et al., 2019; Xu et al., 2020), these implementations are not often maintained by their authors.
This makes reproducing empirical results a usually time-consuming and error-prone process. Our
second contribution, MORL-Baselines, tackles this challenge. It includes a set of clear, well-
structured, regularly maintained, and reliable implementations of MORL algorithms. Importantly, all
such algorithms are compatible with MO-Gymnasium’s API.

Finally, recall that the performance of newly proposed algorithms is generally compared with
previously-published baselines. However, the methodology employed in conducting experiments is
not always scientifically rigorous. To address this issue, we introduce a dataset of training results of
MORL-Baselines algorithms when evaluated on all MO-Gymnasium environments. This dataset is
available through openrlbenchmark and includes information about all hyperparameters used by each
algorithm, in each experiment, thereby allowing researchers to compare new algorithms with such
existing baselines without having to retrain models from scratch.

3 Multi-objective reinforcement learning

In MORL, the interaction of an agent with its environments is modeled via a multi-objective Markov
decision process (MOMDP) (Roijers et al., 2013). MOMDPs differ from standard MDPs (Sutton and
Barto, 2018) only in that a MOMDP’s reward function is vector-valued. A MOMDP is defined as a
tuple M = (S, A, p,r, j1,7), where S is a state space, .4 is an action space, p(-|s, a) is the distribution
over next states given state s and action a, r : S X A x § — R™ is a multi-objective reward function
containing m objectives,  is an initial state distribution, and v € [0, 1) is a discounting factor. A
policy 7 : S — A is a function mapping states to actions. Let Sy, A;, and Ry = r(Sy, Az, Sit1)
denote the random variables corresponding to state, action, and vector reward, respectively, at time
step t. The multi-objective value function of a policy 7 in state s is defined as

vT(s) = E,

> VR | S = s] : (1

=0

where E[-] denotes expectation with respect to trajectories induced by the policy w. We denote

v™ £ Eg,u[V"(So)] as the value vector of policy . Notice that v™ is an m-dimensional vector
whose i-th component is the expected return of 7 under the ¢-th objective.



In contrast to single-objective RL, comparing the values of two different policies is not straightforward
in MORL. For instance, a policy that achieves higher expected return with respect to one objective
may, as a result, have lower performance with respect to other objectives. Hence, in MORL, policies
are typically evaluated and compared in terms of a user utility function (or scalarization function),
u : R™ — R, which is a mapping from the multi-objective value of policy 7, v”, to a scalar.

Let u be a monotonically increasing utility function; i.e., a function such that the utility increases if
the value of one objective can be improved without decreasing the value of other objectives. Then,
the value vector v” of an optimal policy with respect to w is in a Pareto frontier (PF). The PF of a
MOMDP is a set of nondominated multi-objective value vectors:

FALNT | Aa'st.vT =, v}, where v =, v7 = (Vi: o] >oF )A(Fi:of >0 ). (2)

In particular, linear utility functions linearly combine the value of a policy under each of the m
objectives using a set of weights w € R™: u(v™, w) £ v™ . w, where each element of w € R™
specifies the relative importance of each objective. The space of weight vectors, W, is an m-
dimensional simplex so that ). w; = 1,w; > 0,4 = 1,...,m. Under such a utility scheme, the PF
corresponds to a convex coverage set (CCS), as shown by Roijers et al. (2013).

MORL algorithms can be classified in terms of whether they are single-policy (i.e., they learn
a single policy that optimizes one particular utility w), or multi-policy (i.e., they learn a set of
policies with the goal of approximating the PF). When non-linear utility functions are considered, the
optimization procedure of a MORL problem can also be defined with respect to the expected scalarized
return (ESR), E[u(}",2, 7' R¢)], or the scalarized expected return (SER), u(E[>",°,v'Ry]). For a
thorough review of MORL concepts and definitions, we refer the reader to Hayes et al. (2022).

4 MO-Gymnasium

In this section, we introduce our first

contribution: MO-Gymnasium.> MO- import mo_gymnasium as mo_gym

Gymnasium is an easy-to-use and flex- env = mo_gym.make (’minecart-v0’)

ible API enabling the rapid construc- ©obs, info = env.reset()

tion of novel MORL environments, for _ in range(1000):

and a collection of regularly main- action = policy (obs) . .
tained and thoroughly tested environ- obs, rews, term, trunc, info = env.step(action)
ment implementations. Figure 1: An example of how MO-Gymnasium can be used.

Unlike classical ML settings, which rely on fixed datasets, RL problems typically do not; this makes
replication of experimental results challenging. Indeed, even small differences in the definition of
environment can have a significant impact on the performance of algorithms.

To address this issue and facilitate research when it comes to the standard RL settings, Gymnasium
(Towers et al., 2023) (formerly Gym (Brockman et al., 2016)) introduces an API and collection
of versioned environments. With millions of downloads, this is currently the de facto standard
library in RL, enabling researchers to easily test their algorithms on a variety of problems. Despite
its widespread use, Gymnasium is limited to modeling single-objective MDPs. It has since been
expanded in various ways; e.g., PettingZoo extends it to MARL settings and D4AMORL to offline
MORL. To the best of our knowledge, there are currently no publicly available and widely adopted
libraries providing reliable implementations of MORL domains and state-of-the-art MORL algorithms,
designed to facilitate research in the field.

We address this limitation by introducing MO-Gymnasium—previously known as MO-Gym (Alegre
et al., 2022b). MO-Gymnasium’s API is designed to be as similar as possible to Gymnasium’s API.
This allows it to inherit many of the features in Gymnasium, such as wrappers—features that allow
individual properties of a domain to be modified—while extending the original API only where
and when necessary. This makes MO-Gymnasium automatically backward compatible with a wide
range of MORL benchmark domains. The key difference between these two frameworks is that,
in MO-Gymnasium, rewards returned after the execution of an action (i.e., after a call of the step
method) are vectors rather than scalars (see Figure 1). MO-Gymnasium is available on PyPI and can
be installed via pip install mo-gymnasium. Importantly, we highlight that MO-Gymnasium is

3The documentation of MO-Gymnasium is available at https: //mo-gymnasium.farama.org.
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Figure 2: A few of the environments available in MO-Gymnasium. From left to right: deep-sea-
treasure, mo-halfcheetah, mo-supermario, minecart, and resource-gathering.

an official part of the projects maintained by the Farama Foundation, and is considered a mature and
well-supported library by the research community.

Environments. Currently, MO-Gymnasium includes over 20 environments commonly used in the
MORL literature—including environments with discrete and continuous state and action spaces—such
as deep-sea-treasure (Vamplew et al., 2011), four-room (Alegre et al., 2022a), mo-supermario (Yang
et al., 2019), minecart (Abels et al., 2019), and mo-halfcheetah (Xu et al., 2020). In Figure 2 we
depict a few of the currently available environments. See Appendix B for a detailed description of
each environment. This large collection of environments allows designers to thoroughly assess the
performance of novel algorithms in different scenarios. In environments in which the true PF is
known, it can be accessed via the pareto_front () method available in the MO-Gymnasium’s APL
Additionally, for reproducibility purposes, each environment is labeled with a version number; e.g.,
"-v0". Each time an environment is modified in a way that may affect algorithms’ performances, the
domain’s version number is incremented.

Wrappers. MO-Gymnasium introduces MORL-specific wrappers such as MONormalizeReward,
which normalizes a given component of the reward vector; and LinearReward, a wrapper that linearly
scalarizes the reward function of a MOMDP environment, transforming it into a standard MDP. The
latter feature makes MO-Gymnasium directly compatible with widely-used RL libraries compatible
with Gymnasium, such as Stable-Baselines 3 (Raffin et al., 2021) and cleanRL (Huang et al., 2022b).

5 MORL-Baselines

In this section, we introduce MORL-Baselines*, a collection of reliable and efficient implementations
of state-of-the-art MORL algorithms, designed to provide a solid foundation for advancing research
in MORL. To the best of our knowledge, this stands as the first open-source repository encompassing
a multitude of MORL algorithms. Notably, all such algorithms are inherently compatible with
MO-Gymnasium’s API.

It is well known that the performance of learning algorithms is closely tied to their specific implemen-
tations (Engstrom et al., 2020). Unfortunately, details such as implementation-specific optimizations
are seldom discussed in research papers, which makes reproducibility and comparisons challenging.
To address this issue, some authors provide access to their codebases. While this is a positive step,
codebases are often not regularly maintained and may become outdated, rendering replication difficult.
Thus, libraries like Stable-Baselines 3 (Raffin et al., 2021) and cleanRL (Huang et al., 2022b) have
been designed with the goal of regularly maintaining state-of-the-art algorithms. These codebases are
well documented, thoroughly tested, and offer top-notch performance on the algorithms they imple-
ment. This allows researchers to start coding novel methods by extending existing implementations
rather than starting from scratch. These libraries also provide useful tools for research purposes, such
as efficient replay buffer implementations, performance reports, and evaluation methods.

MORL-Baselines includes more than 10 state-of-the-art MORL algorithms, all of which are compati-
ble with MO-Gymnasium. Up to this point, no similar libraries were available. MORL-Baselines
offers a range of features to aid researchers in designing new algorithms, such as methods to compute
and analyze Pareto fronts, perform evaluation w.r.t. various metrics, replay buffers, and experiment
tracking tools. Below, we provide a list of the algorithms currently available via MORL-Baselines,
along with a description of the settings in which they are applicable.

*MORL-Baselines documentation is available at: https://lucasalegre.github.io/morl-baselines.
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Table 1: Algorithms currently implemented in MORL-Baselines. (*) PCN and PQL are designed to
tackle deterministic environments. (**) OLS is an algorithm-agnostic method for generating reward
weights, or preferences; it does not assume any particular type of observation or action spaces.

. Single or Utitlity Observation Action
Algorithm
multi-policy function space space
MOQL (Van Moffaert et al., 2013a) Single Linear Disc. Disc.
B . Non-linear, ) .
EUPG (Roijers et al., 2018a) Single Disc. Disc.
ESR
MPMOQL (Van Moffaert et al., 2013a) Multi Linear Disc. Disc.
) Non-linear, . .
PQL (Van Moftfaert and Nowé, 2014) Multi Disc. Disc.
SER (*)
OLS (Roijers, 2016) Multi Linear [ (¥%) [ (¥%)
Envelope (Yang et al., 2019) Multi Linear Cont. Disc.
PGMORL (Xu et al., 2020) Multi Linear Cont. Cont.
. Non-linear, .
PCN (Reymond et al., 2022) Multi Cont. Disc.
ESR/SER (*)
GPI-LS & . .
Multi Linear Cont. Any
GPI-PD (Alegre et al., 2023)
CAPQL (Lu et al., 2023) Multi Linear Cont. Cont.

5.1 Implemented algorithms

Table 1 lists the algorithms currently supported by MORL-Baselines and the MORL settings they
tackle. Algorithms employing neural networks as function approximators were implemented using
PyTorch (Paszke et al., 2019), and tabular algorithms rely on NumPy (Harris et al., 2020). Algorithms
in Table 1 are described according to whether they produce a single policy (based on user-provided
utility functions) or multiple policies (i.e., to approximate a CCS or a PF). Additionally, notice that
some algorithms optimize w.r.t. the ESR while others optimize w.r.t. SER (Section 3). Finally, notice
that MORL-Baselines’ algorithms may support different observation and action spaces (e.g., images).

Tabular algorithms. Multi-objective Q-learning (MOQL) (Van Moffaert et al., 2013b) is an
extension of the classic tabular Q-learning algorithm (Watkins, 1989) that learns and stores the Q-
values of each objective separately. A scalarization function is then used to convert these Q-values into
a scalar quantity, allowing agents to select an action. Multi-policy MOQL, which consists of running
MOQL multiple times with different preferences, can be instantiated using different methods that
select which preference weight vector will be optimized next by a corresponding specialized policy.
Currently, MORL-Baselines supports randomly generated weight vectors, Optimistic Linear Support
(OLS) (Roijers, 2016), and Generalized Policy Improvement Linear Support (GPI-LS) (Alegre et al.,
2023). Pareto Q-learning (PQL) (Van Moffaert and Nowé, 2014) aims at simultaneously learning all
policies in the Pareto front by storing sets of non-dominated Q-values. These sets are then converted
into scalars (using metrics similar to the ones discussed in the next section) that guide the selection of
actions during the learning phase. This algorithm is only compatible with deterministic environments.

Deep MORL algorithms. The Expected Utility Policy Gradient (EUPG) algorithm (Roijers et al.,
2018b) introduced a policy gradient update capable of taking into account both the return achieved
up to the current moment, as well as future returns, in order to determine expected utilities in
an ESR setting. However, although it employs a neural network as the policy, it has only been



evaluated in discrete settings. The Envelope algorithm (Yang et al., 2019) uses a single neural
network conditioned on a weight vector (Abels et al., 2019) to approximate the CCS. Prediction-
Guided MORL (PGMORL) (Xu et al., 2020) is an evolutionary algorithm that maintains a population
of policies learned using PPO (Schulman et al., 2017b). This algorithm focuses on predicting, at
each iteration, the most promising weight vectors and policies to select for further training in order
to more effectively enhance the PF. Pareto Conditioned Networks (PCN) (Reymond et al., 2022)
employs a neural network conditioned on a given desired return per objective. This network is
trained via supervised learning to predict which actions produce the desired return in deterministic
environments. GPI-LS (Alegre et al., 2023) employs GPI (Barreto et al., 2017) to combine policies
in its learned CCS and prioritize the weight vectors on which agents should train at each moment.
GPI-Prioritized Dyna (GPI-PD) is a model-based extension of GPI-LS that uses a learned model of
the environment and GPI to prioritize experiences in the replay buffer. Concave-Augmented Pareto
Q-learning (CAPQL) (Lu et al., 2023) employs a multi-objective extension of SAC (Haarnoja et al.,
2018) by conditioning the actor and critic networks on the rewards weight vector.

5.2 Evaluation metrics

Recall that in single objective RL settings, policies are evaluated in terms of their corresponding
expected returns. In MORL settings, by contrast, they are typically evaluated using multi-objective
metrics computed based on Pareto fronts. While these metrics are widely adopted by the multi-
objective optimization community, the MORL community has yet to establish a consensus on which
metrics should be preferred in each particular problem or setting. For this reason, our framework
supports all commonly-used MORL metrics—see below. These metrics can be split into two groups:
utility-based metrics, which assume particular properties of the utility function (e.g., linearity), and
axiomatic metrics, which do not make assumptions but may produce less informative performance
information to users. For a thorough discussion of these metrics, see Hayes et al. (2022).

Expected utility (7). If the utility function w is linear, it is possible to express the expected utility
over a distribution of rewards weights, WV, via the expected utility (EU) metric (Zintgraf et al., 2015).
Let IT be a set of policies and F = {v™|7 € II} be its corresponding approximate PF. Then, the EU
metric is defined as:

EU(F) = Ew~w [max~ v -w] .
vTeF

Maximum utility loss (). Zintgraf et al. (2015) introduced this metric to quantify the maximum
utility loss that results from using an approximate PF, F, rather than a reference PF, Z°. It is defined
as follows: _ )
MUL(F, Z) = max(max v" -w — max v" - w).
weWw v*eZ vreF

Inverted generational distance (|). This metric characterizes the convergence rate of an approximate
PF, F, towards a reference PF, Z (Coello Coello and Reyes Sierra, 2004). If the reference front is
unknown, it is usually defined/constructed by aggregating the best value vectors observed after several
executions of the underlying RL algorithm. The inverted generation distance (IGD) is computed as:

- 1
IGD(F,2)= — min [[v* — v72.
#2)- \/ > min v v

v*eZ

Sparsity (J). This metric characterizes the diversity of the policies in a given PF. A diverse set of
policies allows users to choose from qualitatively different behaviors based on the trade-offs they

may wish to optimize (Xu et al., 2020). The sparsity of an approximate PF, F, is given by:

m |]}\—1
~ 1 . )
S(F) = =—=>_ D (£;() = £, + 1)),
‘}-| -1 j=1 i=1
where L is the sorted list of the values of the j-th objective considering all policies in F,and L;(3)
is the i-th value in £;.

>If the true PF of the MOMDP, F, is known, then typically Z = F.



Hypervolume (7). This is a hybrid metric quantifying both a PF’s rate of convergence and the
diversity of the policies in it. Given an approximate PF, F, and a reference point, v ¢, the hypervolume
metric (Zitzler, 1999) is defined as:

HV(F %) = | volume(vie 7).
vrTEeF

where volume(vyr, v7) is the volume of the hypercube spanned by the reference vector, v, and
the vector, v”. The reference point used in the hypervolume computation is typically an estimate of
the worst-possible return per objective. For instance, one can use as reference point the vector fj—i"v,
where ry, is a vector with the minimum value for each objective in any given possible state.

5.3 Additional features

In addition to providing implementations of the algorithms and evaluation metrics discussed above,
MORL-Baselines also provides a range of tools to assist researchers in designing new algorithms.
These resources include a data structure for storing Pareto fronts and Pareto filtering functions, meth-
ods for policy evaluation with automated metric and PF reporting via Weights and Biases (Biewald,
2020), scalarization functions, various neural network architectures, as well as methods for gener-
ating videos of policies trajectories (e.g., via GIF files). For a comprehensive discussion of these
functionalities, we refer the reader to Appendix C.2.

6 Benchmark dataset

Our final contribution is a comprehensive collection of benchmark results evaluating MORL-Baselines
algorithms on a diverse set of MO-Gymnasium environments.® These results are compiled in a
dataset hosted in and integrated into the openrlbenchmark framework (Huang et al., 2023). Access to
such a dataset enables users performing new experiments to combine, compare, and aggregate the
corresponding new results with the ones in the dataset, visualizing them in real-time using Weights
and Biases (W&B) dashboards. They also allow users to manipulate raw data based on subsequent
analyses, compare performance metrics of new algorithms w.r.t. state-of-the-art techniques without
having to retrain the latter, and store the associated hyperparameters and command lines for each
run. For instance, users can access the approximate Pareto fronts identified by each algorithm in our
benchmark via the W&B dashboard, under the panel named ‘eval/front’.

6.1 Proof-of-concept experiments using MORL-Baselines and MO-Gymnasium

In this section, we use MORL-Baselines and MO-Gymnasium to perform various proof-of-concept
empirical experiments and discuss their corresponding results. Our goal is to highlight the type of
experiments, comparisons, and analyses—of different algorithms on various domains, and under
different performance metrics—that are possible using our framework. Given the potentially high
cost of training algorithms, we performed 10 runs of each algorithm on each environment. Notice that
while experimental results with tighter confidence intervals may be conducted (by performing more
runs), our goal here is solely to highlight the capabilities of our libraries—not to fully evaluate all
existing algorithms. The hyperparameters used on each run can be found in the W&B dashboards.”
Examples of the W&B user interface through which our benchmark dataset can be analyzed are shown
in the appendices.® Notice that some algorithms were trained over more timesteps than others since
they may be fast but not as sample efficient; e.g., PGMORL relies on PPO (Schulman et al., 2017a),
which is computationally faster but less sample efficient than GPI-LS, which relies on TD3 (Fujimoto
et al., 2018a).
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Figure 4: Performance of MORL algorithms on the minecart-vO domain w.r.t. training samples.

6.2 Results and discussion of the proof-of-concept experiments

Figures 3, 4, 5, and 6 present the performance of various MORL-Baselines algorithms when eval-
uated on a few representative MO-Gymnasium environments. They show, in particular, the mean
and corresponding 95% confidence intervals with respect to the evaluation metrics introduced in
Section 5.2. In the Appendix, we provide the complete set of experimental results and comparisons.

Figure 3 presents the performance of various tabular MORL algorithms available on MORL-Baselines,
when evaluated in the classic deep-sea-treasure domain. Notice that the PQL and GPI-LS algorithms
have similar performance and achieve near-zero maximum utility loss and Inverted Generational
Distance. This indicates that they successfully identify the true Pareto front.

Figure 4 depicts the performance of various MORL algorithms that support discrete action spaces in
minecart-v0. GPI-PD significantly outperforms all other baselines (when considering all performance
metrics) in terms of sample efficiency and asymptotic performance. This empirical result supports
recent observations by Alegre et al. (2022a) about the crucial role of efficient prioritization schemes
when constructing PFs and selecting training experiences. Interestingly, notice that even though PCN
was designed to tackle deterministic MOMDPs, it still outperforms the Envelope algorithm.
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Figure 5: Peformance of MORL algorithms on the mo-halfcheetah-v4 domain. Pareto fronts were
constructed by identifying (across all runs) the front with the highest Expected Utility after a given
training budget (5SM steps for PGMORL, 100k for GPI-PD, 200k for the others).

Finally, Figures 5 and 6 present the performance of MORL algorithms that support continuous action
spaces in the mo-halfcheetah-v4 and mo-hopper-2d-v4 domains, respectively. In mo-halfcheetah,

SThese results can be viewed and analyzed at https://wandb.ai/openrlbenchmark/MORL-Baselines.

"We also include a description of the high-performance computers at the University of Luxembourg (Varrette
et al., 2014) and Vrije Universiteit Brussel on which experiments were conducted. Training all algorithms on all
environments, using various random seeds, required approximately 3 months of computation time.

8 An overview of the command lines used to conduct each experiment can be found at https://github.
com/LucasAlegre/morl-baselines/issues/43.
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Figure 6: Performance of MORL algorithms on mo-hopper-2d-v4 w.r.t. training time (in minutes).

GPI-based algorithms perform better w.r.t. the hypervolume and expected utility metrics. PGMORL
and CAPQL, by contrast, perform better w.r.t. the Sparsity metric—they are able to identify denser
Pareto fronts, as shown in the rightmost plot. Recall that sample efficiency often comes at the
cost of execution time. To investigate this trade-off, we show, in Figure 6, performance results in
the mo-hopper domain with respect to training time (in minutes). These experiments suggest that
PGMORL performs well in terms of training time, in contrast to previous experiments where it
had a qualitatively different behavior when analyzed with respect to sample complexity. In these
experiments, both GPI-based algorithms still dominated all other baselines.

7 Conclusion

We introduced a comprehensive collection of software libraries for reliable benchmarking and research
in MORL. MO-Gymnasium and MORL-Baselines are the first libraries providing standardized APIs
and extensible sets of environments and state-of-the-art MORL algorithms. Our framework also
includes a thorough set of benchmark results comparing a wide range of algorithms in various
environments. These can be used as guidelines by the community, underscoring the properties and
limitations of different techniques. By making this toolkit open source and extensible—and thus
open to contributions from other researchers—we hope to provide a solid foundation for reproducible
research in MORL. This work will allow researchers and end users to seamlessly deploy existing
algorithms on various MORL domains, speeding up experiments, facilitating algorithm evaluation,
and being more conducive to reproducible experimental results.

Limitations and future work. In the benchmarks we presented in this paper, we did not perform
exhaustive hyperparameter tuning. Our main goal with these experiments was to validate our
implementations and showcase the learning behavior of the algorithms in our framework with respect
to different evaluation metrics. For this reason, such empirical results should be interpreted as
proof-of-concept and may still be further improved with the aid of the MORL community. In future
work, we will continue maintaining all algorithms in MORL-Baselines, and plan to augment the set of
techniques available through our framework. We also plan to introduce new features for automating
hyperparameter tuning. We do not anticipate any negative societal impacts of this work.
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Appendix

This appendix contains supplementary material about MO-Gymnasium and MORL-Baselines. In
Section A, we provide general information such as the links to our libraries, licenses, and maintenance
plan. In Section B, we describe in detail all environments available in MO-Gymnasium, and in
Section C we present all features of MORL-Baselines. Finally, in Section D, we provide in more
detail the experimental setting and results of our benchmarks.

A General information

A.1 Links

The MO-Gymnasium documentation is accessible at: https://mo-gymnasium. farama.org and
its code repository at: https://github.com/Farama-Foundation/M0-Gymnasium.

The MORL-Baselines documentation is available at: https://lucasalegre.github.
io/morl-baselines and its code repository at: https://github.com/LucasAlegre/
morl-baselines.

The openrlbenchmark code and early documentation are available at: https://github.com/
openrlbenchmark/openrlbenchmark.

Our training metrics and results, hosted by Weights and Biases, are available at: https://wandb.
ai/openrlbenchmark/MORL-Baselines.

A.2 Licenses

MO-Gymnasium, MORL-Baselines, and openrlbenchmark are under the MIT License. We, the
authors, bear all responsibility in case of violation of rights.

A.3 Maintenance

MO-Gymnasium is maintained by the authors, with the support of the Farama Foundation team.’
MORL-Baselines is currently maintained by the authors, with the support of the community. openrl-
benchmark is still under development, yet a large community of researchers is already using it to
upload RL training data.

B MO-Gymnasium

Below, we provide a description of each environment currently available in MO-Gymnasium.
Figure 7 presents a visualization of each environment. A comprehensive list and documenta-
tion of the environments available through the MO-Gymnasium API, along with the definition
of their observation and action spaces, can be found on the documentation website: https:
//mo-gymnasium.farama.org/environments/all-environments. We have plans to intro-
duce more challenging environments in the future.

B.1 deep-sea-treasure-v0

This domain, originally proposed by Vamplew et al. (2011), is a classic MORL problem in which the
agent is a submarine that must collect a treasure while taking into account a time penalty. At each
step, the agent perceives its current location as x, y coordinates ina 11 x 11 grid world, and its actions
correspond to movement in one of the four cardinal directions. Hence, in this domain, the state space
is defined as S = {0, ...,10}2, and the action space is A = {up, down, left, right}. We use the same
treasures’ values as defined by Yang et al. (2019). A version of this domain with a concave Pareto
frontier (Vamplew et al., 2011) is also available with identifier deep-sea-treasure-concave-v0. The

‘https://farama.org/tean.
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Figure 7: Visualization of the environments currently available in MO-Gymnasium.

multi-objective reward function of this domain, r(s,a, s') € R?, is defined as:

r1(s,a,s") = value of treasure in state s,

ro(s,a,s") = —1.

B.2 resource-gathering-v0

In this domain, an agent must collect the gold or gem available in a 5 x 5 grid world while
avoiding being killed by enemies (Barrett and Narayanan, 2008). The state space is defined as
S ={0,...,4}% x {0,1}? and denotes the agent’s current position and two binary variables rep-
resenting whether the agent carries gold or diamond. Its action space representing movements in
the four cardinal directions is A = {up, down, left, right}. There are two enemies that have a 10%
chance of killing the agent if it is in the same cell. The multi-objective reward function of this domain,
r(s,a,s’) € R3, is defined as:

r1(s,a,s’) = —1if killed by enemy in s, else 0,
r9(s,a, s’) = +1 if returned home with gold, else 0,

r3(s,a,s’) = +1 if returned home with gem, else 0.

B.3 breakable-bottles-v0
This domain consists of a grid corridor with 5 cells. The agents must collect bottles from the source

location and deliver them to the destination cell (Vamplew et al., 2021). Its action space is defined as
A = {right, left, pick_up_bottle}. Every time step, the agent has a 10% chance of dropping one of the
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bottles it is currently carrying. The multi-objective reward function of this domain, r(s, a, s') € R3,
is defined as:

r(s,a,s’) = —1,

ro(s,a,s’) = +25 x #bottles_delivered,
r3(s,a,s’) = f(s") — f(s), where f(s) = —1 if dropped any bottles in s, else 0.

B4 fishwood-v0

This is a simple MORL problem in which the agent controls a fisherman who can either fish or go
collect wood (Roijers et al., 2018b). There are only two discrete states, and the agent can decide
between fishing or collecting wood, i.e. S = {fishing, woods} and A = {go_fish, go_wood}. The
multi-objective reward function of this domain, r(s, a, s") € R2, is defined as:

ri(s,a, s’) = +1 if in the woods, with 90% probability, else 0,
ro(s,a,s") = +1if in fishing, with 10% probability, else 0.

B.5 four-room-v0

This is a classic grid world environment in the literature of successor features (SFs) (Barreto et al.,
2017). Importantly, Alegre et al. (2022a) showed that any problem in the SFs framework can be
mapped to a MORL problem. In this domain, the agent can collect three different types of items (see
Figure 7(e)). Its state space is defined by the z, y coordinates of the agent as well as a binary vector
stating which items have been collected, the actions are going into one of the four cardinal directions.
Formally, S = {0,...,12}? x {0,1}'2, and A = {up, down, left, right}. The multi-objective reward
function of this domain, r(s, a, s’) € R3, is defined as:

r1(s,a,s’) = +1if collected a blue square (or is in goal location), else 0,
ro(s,a,s’) = +1if collected a green triangle (or is in goal location), else 0,

r3(s,a,s’) = +1 if collected a red circle (or is in goal location), else 0.

B.6 fruit-tree-v0

This domain is modeled as a full binary tree of parameterized depth (d € {5,6,7}) (Yang et al.,
2019). The agent starts at the root node and can choose to move left or right until reaching a leaf
node. The state space encodes the current position in the tree as a vector, which contains the current
depth and the corresponding node: S = {0,...,d} x {0,...,29"1}. The action space is defined
as A = {left,right}. Every leaf contains a fruit with a different value for the nutrients: protein,
carbs, fats, vitamins, minerals, and water. The multi-objective reward function of this domain,
r(s,a,s’) € RS, is defined as:

ri(s,a,s") = value of nutrient i in s’, fori =1...6.

B.7 mo-mountaincar-v0

This domain, introduced by Vamplew et al. (2011), is a multi-objective version of the classic mountain
car problem (Moore, 1990). The state space is defined by a vector stating the agent’s current x-
position and its velocity, S = [—1.2,0.6] x [—0.07,0.07]. Its actions consist in accelerating to the
left, right, or doing nothing: A = {reverse, forward, none}. Unlike the single-objective version, the
agent is also penalized for applying the reverse and forward actions, which leads to different policies
depending on the trade-offs between these penalties. The multi-objective reward function of this
domain, r(s,a,s’) € R?, is defined as:

’]"1(8,0,,8/) = _]-7
ro(s,a,s8') = —1if a = reverse, else 0,
r3(s,a,s’) = —1if a = forward, else 0.

A continuous action version of this domain is also available with identifier mo-mountaincar-
continuous-v0. In this version, the action space is a speed vector A = [—1,1], and the reward
function contains two components: a time penalty and a fuel penalty.
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ri(s,a,s") = —1,

7"2(3, a, S/) = 7”&“2.

B.8 minecart-v0

This domain consists of a cart that must collect two different ores and return them to the base while
minimizing fuel consumption (Abels et al., 2019). The agent perceives its environment through a
7-dimensional vector containing the agent x, y position, the current speed of the cart, its orientation
(sin and cos), and the percentage of occupied capacity in the cart by each ore: S = [—1,1]° x [0, 1]2.
The agent has the choice between 6 actions: .4 = {mine, left, right, accelerate, brake, do nothing}.
Each mine in Figure 7(h) has a different distribution over two types of ores. Fuel is consumed at every
time step, and extra fuel is consumed when the agent accelerates or selects the mine action. A version
of this domain with deterministic values for the ores is also available as minecart-deterministic-vO0.
The multi-objective reward function of this domain, r(s, a, s’) € R3, is defined as:

r1(s,a,s") = quantity of ore 1 collected if s’ is inside the base, else 0,
ro(s, a,s") = quantity of ore 2 collected if s’ is inside the base, else 0,
r3(s,a,s") = —0.005 — 0.0251{a = accelerate} — 0.051{a = mine}.

B.9 mo-lunar-lander-v2

This domain is a multi-objective version of the lunar lander environment available in Gym-
nasium (Towers et al., 2023). The state is an 8-dimensional vector: the x,y coordinates of
the lander, its linear velocities in x & vy, its angle, its angular velocity, and two booleans
that represent whether each leg is in contact with the ground or not: S = [-1.5,1.5]? x
[-5,5] x [—m, 7] x [=5,5] x {0,1}2. The action space consists of four actions: A =
{do nothing, fire left orientation engine, fire main engine, fire right engine}. A continuous action
version of this domain is also available with identifier mo-lunar-lander-continuous-v2. In this
variant, the first coordinate of the action determines the throttle of the main engine, while the second
coordinate specifies the throttle of the lateral boosters, A = [—1,1]2. The multi-objective reward
function of this domain, r(s, a, s’) € R?, is defined as:'°

r1(s,a,s") = +100 if landed successfully, — 100 if crashed, else 0,

/

ro(s, a, s’) = shaping reward,

( )
r3(s,a, s") = fuel cost of the main engine
r4(s,a,s’) = fuel cost of the side engines.

B.10 mo-highway-v0

This domain is a multi-objective version of the autonomous driving environment introduced by
Leurent (2018). In this domain, the agent controls a vehicle on a multilane highway populated with
other vehicles, it perceives its coordinates as well as coordinates from other vehicles. Formally,
the state space is given by an array of size V' x F, where V represents the number of vehicles
in the environment and F' are the features describing each vehicle, e.g. velocity, position, angle.
The agent’s actions consist in changing lanes, accelerating or decelerating, or doing nothing, i.e.
A = {lane left, idle, lane right, faster, slower}. The multi-objective reward function of this domain,
r(s,a,s’) € R3, is defined as:

r1(8,a, s") = normalized forward speed of the vehicle,
(8, a, s") = bonus for driving in the rightmost lane,

r3(s,a,s") = —1 if vehicle crashed, else 0.

All three reward functions above are zeroed when the agent is off the road.

10See https://gymnasium. farama.org/environments/box2d/lunar_lander for details on the shap-
ing reward.
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B.11 mo-highway-fast-v0

This is a more computationally efficient version of mo-highway-v0 with reduced number of lanes and
vehicles. The reward function, state, and action spaces are kept the same as the original environment.

B.12 water-reservoir-v0

This domain simulates a water reservoir and is implemented as defined by Castelletti et al. (2012).
The agent perceives a floating point number corresponding to the current amount of water in the
reservoir: S C RT. The agent executes a continuous action corresponding to the amount of water
the dam will release in a day: A C R™. The action space can also be specified to be normalized, in
which case the action is expressed as a percentage of water to release: A = [0, 1]. The multi-objective
reward function of this domain, r(s, a, s’) € R?, is defined as:

r1(s,a,s") = cost due to excess level w.r.t. a flooding threshold (upstream),
ro(s,a, s’) = deficit in the water supply w.r.t. the water demand,
r3(s,a, s") = deficit in hydroelectric supply wrt hydroelectric demand,

r4(s,a, s’) = cost due to excess level w.r.t. a flooding threshold (downstream).

By default, only rewards r; and ro are used. However, the user has the option to instantiate the
environment using all four reward functions.

B.13 mo-reacher-v4

This domain is also a classic in the SFs literature (Barreto et al., 2017; Alegre et al., 2022a). It consists
of a two-joint robot arm that must reach different target locations with the tip of its arm, implemented
using the Mujoco robotics simulator (Todorov et al., 2012). The agent’s state space S C R® consists
of the sine and cosine of the angles of the central and elbow joints, as well as their angular velocities.
The action space, originally continuous, is discretized using 3 bins per dimension corresponding to
maximum positive torque (+1), negative torque (-1), and zero torque for each actuator. This results in
a total of 9 possible actions: A = {—1,0, 1}2. The multi-objective reward function r(s, a, s') € R*
is defined as:

ri(s,a,s") =1 — 4A(target,), fori = 1...4, 3)

where A(target;) is the Euclidean distance between the tip of the robot’s arm and the i-th target’s
location.

B.14 mo-hopper-v4

This domain is a multi-objective version of the Gymnasium’s Hopper-v4 environment. The state
space S C R!! consists in velocities, angles, and position of each part of the robot. An action
represents the torques applied at the hinge joints, A = [—1, 1]. In this modified version, the agent
must balance optimizing for its forward speed, jumping height, and energy cost. A version of this
environment with a two-dimensional reward function is available with identifier mo-hopper-2d-v4.
The multi-objective reward function r(s, a, s') € R? is defined as:

r1(s,a, s") = velocity of the agent in the x-axis direction,
(s, a, s") = height of the agent over the z-axis,

r3(s,a,8") = —|lalf3.

B.15 mo-halfcheetah-v4

This domain is a multi-objective version of the Gymnasium’s HalfCheetah-v4 environment. The
state space encodes the velocities, angles, and position of each part of the robot: S C R'7. Also,
the actions are the torque to apply at each joint: A = [—1, 1]%. The multi-objective reward function
r(s,a,s’) € R? is defined as:

r1(s,a, s’) = forward speed of the agent,

ra(s,a,s") = —|lalf3.
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B.16 mo-supermario-v0

This domain consists of the first level of the Super Mario Bros. video game. It is imple-
mented using Gym Super Mario (Kauten, 2018). In this environment, the observations con-
sist of RGB frames of the game, and the actions are the following combination of buttons:
A = {NOOP, right, right + A, right + B, right + A + B, A, left}. The multi-objective reward function
r(s,a,s’) € R® is defined similarly as defined by Yang et al. (2019):
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C MORL-Baselines

This section describes MORL-Baselines in more detail. MORL-Baselines is a comprehensive
library that offers dependable, validated, well-documented, and efficient implementations of MORL
algorithms. The library goes beyond supporting existing algorithm implementations by equipping
researchers with valuable tools to streamline the process of designing future MORL algorithms. In
the remainder of this section, we describe the algorithms, features, and provide a few examples of the
user interface brought by this library.

C.1 Algorithms

All the algorithms currently supported in MORL-Baselines are listed in Table 1 of the main paper. A
few algorithms also have variants that the user can select by instantiating the agents with different
parameters. In particular, our implementation of Multi-Policy MO Q-Learning (Van Moffaert et al.,
2013a) can be derivated in multiple ways. For instance, the weights can be generated randomly,
using OLS (Roijers, 2016), or using GPI-LS (Alegre et al., 2023). Moreover, using GPI (Barreto
et al., 2017) to select actions can be enabled or not, as well as using model-based learning with
GPI-PD (Alegre et al., 2023).

More details on the implementations are available in our documentation and GitHub reposi-
tory. For example, see the documentation of PGMORL https://lucasalegre.github.io/
morl-baselines/algos/multi_policy/pgmorl/.

C.2 Additional features

Aside from the algorithms, MORL-Baselines provides a set of utilities allowing the user to construct
novel MORL algorithms. These are listed below.

Pareto frontier filters. Our library provides a set of functions that permit to filter Pareto-dominated
points out of a set of points. The signatures and documentation of these functions can be found in our
documentation at https://lucasalegre.github.io/morl-baselines/features/pareto.

Policies evaluation. In order to build a Pareto front of policies, it is necessary to assess the values
of the policies currently undergoing training in the environment. To standardize the evaluation
process and enable fairer comparisons, we offer a collection of functions specifically designed for
evaluating these policies. Furthermore, we have implemented a function that receives a Pareto front
as input and records all metrics to Weights and Biases (W&B). This approach is employed across all
multi-policy algorithms to ensure standardized metric logging. Additionally, we provide a method
to initialize all components with a seed, including making PyTorch deterministic. The documen-
tation related to these can be found at https://lucasalegre.github.io/morl-baselines/
features/evaluations/.

Performance metrics. As outlined in the main paper, there are multiple metrics that can be used
to evaluate a given Pareto front in order to compare different algorithms. We offer a collection of
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metrics implementations for this purpose, including Hypervolume, Inverted Generational Distance,
Maximum Utility Loss, Sparsity, and Expected Utility. These implementations accept a Pareto front
as input and produce a scalar value representing the corresponding metric value. More details can
be found at https://lucasalegre.github.io/morl-baselines/features/performance_
indicators/.

Scalarization functions. Although most of the MORL algorithms rely on weighted sum scalar-
ization, there are still cases where the user utility can be captured by non-linear schemes. To
solve such an issue, we provide other scalarization schemes such as the Chebyshev scalariza-
tion function as used in Van Moffaert et al. (2013b). More details can be found at https:
//lucasalegre.github.io/morl-baselines/features/scalarization/.

Reward weights utils. There are many ways to generate weight vectors to scalarize vectorized
rewards. These can, for instance, be randomly sampled or generated as equidistant points from the
weight simplex, e.g., via the Riesz s-Energy method (Blank et al., 2021).!! These helpers can be
found at https://lucasalegre.github.io/morl-baselines/features/weights/.

Experience replay buffers. In RL algorithms, experience replay buffers play a crucial role as
they store experienced tuples collected via interacting with the environment. These are usually used
for updating the agent’s policy and/or value functions via sampling. There are various approaches
to designing these buffers. For instance, Abels et al. (2019) propose an experience replay buffer
that maintains diverse samples to enable the learning of diverse policies. On the other hand, Alegre
et al. (2023) rely on a prioritized experience replay buffer. We make these implementations available
so that researchers can incorporate them into novel algorithms. More details can be found at
https://lucasalegre.github.io/morl-baselines/features/buffers.

Neural networks. Neural networks are the main component used in modern deep MORL algorithms.
There are many possible architectures and enhancements related to the usage of such function
approximators, e.g. Convolutional Neural Networks are usually used on environments with image-
based observations, and Polyak update is used when the algorithm relies on target networks. We
provide a few helpers related to neural networks in MORL-Baselines; see https://lucasalegre.
github.io/morl-baselines/features/networks/.

Miscellaneous utils. Finally, there are a couple of other methods that have been reused in MORL-
Baselines. For example, we provide utilities to capture GIFs from the policy executions, or a linearly
decaying value for epsilon-greedy exploration, as in Mnih et al. (2015a). All these utilities are listed
at https://lucasalegre.github.io/morl-baselines/features/misc.

C.3 User interface

This section gives some insight into the user interface provided by Weights and Biases to visualize
and manipulate the training results.

Figure 8 shows an example of the real-time metrics obtained during the training. In this example we
have a view of the multi-objective metrics described in the main paper, as well as a live view of the
Pareto front found by various algorithms runs. Figure 9 illustrates the overview of a run. It provides
information on the exact version of the library that was used (via git commit identifier), information
regarding the duration of the run, and when it was started. Moreover, information regarding the
computing node, OS, and Python version is also available. Hyperparameters are also available for
each run, as shown in Figure 10. This, along with the git commit and hardware specifications, eases
reproducibility. Finally, W&B also automatically logs system metrics along the training process, as
shown in Figure 11.

D Benchmarking dataset

This section gives more details on our third contribution. It consists of a dataset of training results of
algorithms in MORL-Baselines applied on various environments available in MO-Gymnasium.

'"We also support generating weight vectors based on OLS and GPI-LS methods.
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Figure 8: Screenshot of the W&B dashboards providing metrics and training information in real-time
to the user.

Figure 9: Overview of a given run in the W&B user interface. Notice that command line, OS and
Python version, hardware specifications, and git commits are available for reproducibility.
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Figure 10: Hyperparameters of a given run.

Figure 11: System usage metrics reported through W&B.
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D.1 Experimental settings

The section provides a more detailed description of the hardware and software settings used to
produce our experimental results. For further details, the full specifications of each run can be found
in W&B dashboards, as shown in Figure 9 and 10.

Hardware specifications

The experiments conducted on the University of Luxembourg high-performance computer (Varrette
et al., 2014) were carried out on the iris cluster. The compute nodes equipped with GPU contain
NVidia Tesla v100 SXM2 (16 and 32 GB) and Intel Xeon Gold 6132 @ 2.6GHz CPUs. Each
training job has been allocated one GPU and 7 cores using SLURM (Yoo et al., 2003). The
experiments conducted on the Vlaams Supercomputer Centrum (VSC) cluster Hydra hosted by the
Vrije Universiteit Brussel (VUB) used nodes equipped with NVIDIA A100-PCIE-40GB GPUs.

Training all algorithms across all environments with multiple random seeds required approximately
three months of computational resources.

Hyperparameters and code

All experiments have been run on MO-Gymnasium v1.0.0 and MORL-Baselines v1.0.0. All al-
gorithms have been run with seeds from O to 9 on each supported environment. For most runs,
we kept the default hyperparameters which are based on the original papers. However, in certain
instances where we could not achieve satisfactory results, we made a minor attempt to fine-tune
the hyperparameters. As a result, these hyperparameters, such as the Envelope hyperparameters,
differ from those specified in the original paper. Finally, for the deterministic environments, we
chose to increase the learning rate and exploration as these are the most critical in such domains.
A GitHub issue (https://github.com/LucasAlegre/morl-baselines/issues/43) gives an
overview of the command line used to launch each run, along with the values of the hyperparameters.

D.2 Results

The following section presents the experimental results available in our dataset utilizing the command-
line interface of openrlbenchmark (Huang et al., 2023). The provided command lines explicitly
demonstrate how effortless it can be to generate plots to visualize the available evaluation metrics
using this tool. It is important to note that openrlbenchmark is still in the developmental phase,
and therefore its API is likely to undergo changes. Furthermore, we remind the reader that these
results should be interpreted as proof of concept and should not be considered empirical evidence of
performance differences among the implemented algorithms. In other words, we have not conducted
enough runs to make statistically valid claims and have not fine-tuned the hyperparameters for all
instances. Lastly, we would like to highlight that even though we have implemented single-policy
algorithms, we have not extensively tested them at this stage.

Continuous observation and continuous actions

Figure 12a and 12b show the training results for environments with continuous actions and two
objectives'?. Both graphs show that PGMORL (Xu et al., 2020) seems less efficient than GPI-based
algorithms (Alegre et al., 2023) or CAPQL (Lu et al., 2023) in terms of EU and Hypervolume. While
CAPQL seems less sample efficient than GPI-based algorithms, the time-based plots (Figure 12b)
look less categorical, especially for mo-halfcheetah. The sparsity metric is improved for CAPQL and
PGMORL, as discussed in the main paper.

As a side note, we remind the reader that PGMORL is based on PPO (Schulman et al., 2017b)
while the other algorithms are based on more modern single-objective RL algorithms. We be-
lieve that this plays a huge role in the final performances of the algorithms, e.g. if we were to
reimplement PGMORL based on SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018b)
we would probably obtain better performance. To make it easier to understand, we chose to keep

"20ur implementation of PGMORL only supports environments with two objectives. This is because the
implementation by the original authors relies on different methods for two and three objectives. Hence, PGMORL
is only displayed in these two environments.
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Figure 12: Evaluation metrics in environments with continuous actions spaces.

faithful to the original papers instead. The following command was used to generate the plots:

python -m openrlbenchmark.rlops_multi_metrics \

--filters ’7we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=

eval/hypervolume&metrics=eval/sparsity&metrics=eval/eum’ \
’PGMORL7c1=PGMORL’> \

CAPQL?c1=CAPQL’> \
’GPI-LS Continuous Action?cl=GPI-LS’ \
'GPI-PD Continuous Action?cl=GPI-PD’> \

--env-ids mo-halfcheetah-v4 mo-hopper-2d-v4 \

--pc
--pc
--pc
--pc
--pc

--output-filename morl/morl_continuous \

.ncols 2 \

.ncols-legend 4 \
.xlabel ’Training steps’ \

.ylabel *’ \

.max_steps 1000000 \

--scan-history
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Figure 13: Results on environments with more than two objectives and continuous observation and
actions spaces.

The plots in Figure 13a and 13b give the training results for continuous environments with
more than 2 objectives. In these environments, there are no clear-cut performance differ-
ences between the three algorithms. The plots were generated using the following command:

python -m openrlbenchmark.rlops_multi_metrics \
--filters ’7we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=
eval/hypervolume&metrics=eval/sparsity&metrics=eval/eum’ \
’CAPQL?7c1=CAPQL’> \
’GPI-LS Continuous Action?cl=GPI-LS’> \
’GPI-PD Continuous Action?cl=GPI-PD’ \
--env-ids mo-hopper-v4 mo-lunar-lander-continuous-v2 \
--pc.ncols 2 \
--pc.ncols-legend 3 \
--pc.xlabel ’Training steps’ \
--pc.ylabel ’’ \
--output-filename morl/morl_continuous_more \
--scan-history

Continuous observations and discrete actions

Figure 14 and 15 give the training results of MORL algorithms compatible with continuous observa-
tions and discrete actions. We can see that GPI-based methods outperform Envelope (Yang et al.,
2019) and PCN (Reymond et al., 2022) for EU and Hypervolume. Yet, there is no performance
difference between the model-based algorithm (GPI-PD) and the model-free one (GPI-LS) in this
environment. It is worth noting that the performances of Envelope could be enhanced by tuning
hyperparameters or using modern deep RL tricks such as dropout layers and normalization, as done
in Alegre et al. (2023). Indeed, we believe that this algorithm suffers from pathologies that it inherits
from DQN (Mnih et al., 2015a), such as overestimation bias. Finally, remember that PCN is designed
for deterministic environments and thus is not really fit for the tested domains. Still, it performs
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Figure 14: Evaluation metrics on environments with discrete actions and continuous observations
w.r.t training samples.
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Figure 16: Results on minecart-v0; discrete actions, continuous observations and known Pareto front.

surprisingly well on mo-lunar-lander. The plots were generated using the following command:

python -m openrlbenchmark.rlops_multi_metrics \

--filters ’?we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=
eval/hypervolume&metrics=eval/sparsity&metrics=eval/eum’ \

’Envelope?cl=Envelope’ \

’PCN?7c1=PCN’> \

’GPI-LS?7c1=GPI-LS’ \

’GPI-PD?cl=GPI-PD’ \

--env-ids mo-lunar-lander-v2 mo-highway-fast-v0 mo-reacher-v4 \

--pc.ncols 3 \

--pc.ncols-legend 4 \

--pc.xlabel ’Training steps’ \

--pc.ylabel ’’ \

--pc.max_steps 400000 \

--output-filename morl/morl_discrete \

--scan-history

The performance of the algorithms on the minecart-v0O environment, which has a known Pareto
front enabling the computation of IGD and MUL, is depicted in Figure 16a and Figure 16b. Similar

28



Pareto Q-Learning  —— MultiPolicy MO Q-Learning MultiPolicy MO Q-Learning (OLS) ~ —— MultiPolicy MO Q-Learning (GPI-LS)
deep-sea-treasure-v0 deep-sea-treasure-concave-v0 fruit-tree-v0

10000
3000

20000
2000 Il

*®

Hypervolume (1)
k=3

o
0 0.2M 0.4M 0 0.2M 0.4M o 0.2M 0.4M
75
2,5 30 5
g 2%
g
0 \_; o\ 0
0| 0.2M 0.4M 0 0.2M 0.4M o 0.2M 0.4M

300 10000 v 00

=

g 5000 i

g 50

&100 k
0

ol 0.2M 0.4M ol 0.2M 0.4M ol 0.2M 0.4M

Expected Utility (1)
= o
—_—
=

g 5

IS =

2 10
0 02M 0.4M 0 02M 0.4M 0 02M 0.4M
=
= ” 75
210 |
k] .
> 10 5.0
55 i 20 25 \»_—-._____
R — |
%
=0 |\ — 0 0.0
0 02M 0.4M 0 02M 0.4M 0 02M 0.4M

Training steps

Figure 17: Evaluation metrics on deterministic environments with discrete actions and observations
w.r.t. training samples.

to the previous plot, we can draw the same conclusion: GPI-based methods (especially GPI-PD)
appear to be more sample efficient than Envelope and PCN. However, PCN demonstrates an advan-
tage with its efficient implementation, making it indistinguishable from GPI-based methods when
evaluating w.r.t. training time (Figure 16b). The following command line generated these plots:

python -m openrlbenchmark.rlops_multi_metrics \

--filters ’7we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=
eval/hypervolume&metrics=eval/sparsity&metrics=eval/eum&metrics=eval/igd&
metrics=eval/mul’ \

’Envelope?cl=Envelope’ \

’PCN7c1=PCN’> \

’GPI-LS?c1=GPI-LS’ \

’GPI-PD?cl=GPI-PD’ \

--env-ids minecart-v0 \

--pc.ncols 1 \

--pc.ncols-legend 4 \

--pc.xlabel ’Training steps’ \

--pc.ylabel ’’ \

--pc.max_steps 400000 \

--output-filename morl/morl_discrete_known_pf \

--scan-history

Discrete action and discrete observations

Figure 17 and 18 illustrate the performance of tabular algorithms trained on environments with
discrete actions and observations. Notice that these runs also include more metrics as they involve
environments with known Pareto front. In all environments, Pareto Q-Learning (Van Moffaert and
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Figure 18: Evaluation metrics on deterministic environments with discrete actions and observations
Ww.I.t. training time.

Nowé, 2014) finds optimal Pareto front, as shown by the IGD and MUL metrics reaching 0. Yet, our
implementation of this algorithm is limited to deterministic environments; this could be enhanced
by using the work of (Roijers et al., 2021). The MO Q-Learning (Van Moffaert et al., 2013a)
variants, described in Section 5, seem to plateau in deep-sea-treasure-concave as they rely on linear
scalarization and cannot find the points in the concave part of the front. Finally, the GPI-LS variant
of MO Q-Learning shows strong performance in all environments compared to the other variants.

The plots were generated using the following command:

python -m openrlbenchmark.rlops_multi_metrics \

--filters ’7we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=
eval/hypervolume&metrics=eval/igd&metrics=eval/sparsity&metrics=eval/eum&
metrics=eval/mul’ \

’Pareto Q-Learning?cl=Pareto Q-Learning’ \

’MultiPolicy MO Q-Learning?cl=MultiPolicy MO Q-Learning’ \

’MultiPolicy MO Q-Learning (OLS)?cl=MultiPolicy MO Q-Learning (OLS)’ \

’MultiPolicy MO Q-Learning (GPI-LS)7cl=MultiPolicy MO Q-Learning (GPI-LS)’ \

--env-ids deep-sea-treasure-v0 deep-sea-treasure-concave-v0 fruit-tree-vO \

--pc.ncols 3 \

--pc.ncols-legend 4 \

--pc.xlabel ’Training steps’ \

--pc.ylabel ’’ \

--pc.max_steps 400000 \

--output-filename morl/morl_deterministic_envs \

--scan-history
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