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Abstract001

In Retrieval-Augmented Generation applica-002
tions, the Information Retrieval part is central003
as it provides the contextual information that004
enables a Large Language Model to generate an005
appropriate and truthful response. High qual-006
ity parsing and chunking are critical as efficient007
data segmentation directly impacts downstream008
tasks, i.e. Information Retrieval and answer009
generation. In this paper, we introduce Chun-010
kNorris, a novel heuristic-based technique de-011
signed to optimise the parsing and chunking of012
PDF documents. Our approach does not rely013
on machine learning and employs a suite of014
simple yet effective heuristics to achieve high015
performance with minimal computational over-016
head. We demonstrate the efficiency of Chun-017
kNorris through a comprehensive benchmark018
against existing parsing and chunking methods,019
evaluating criteria such as execution time, en-020
ergy consumption, and retrieval accuracy. We021
propose an open-access dataset to produce our022
results. ChunkNorris outperforms baseline and023
more advanced techniques, offering a practi-024
cal and efficient alternative for Information025
Retrieval tasks. Therefore, this research high-026
lights the potential of heuristic-based methods027
for real-world, resource-constrained RAG use028
cases.029

1 Introduction030

Retrieval-Augmented Generation (RAG) is an ad-031

vanced paradigm in Natural Language Processing032

(NLP) that combines the strengths of Information033

Retrieval (IR) and generative models to address034

tasks requiring extensive knowledge and contex-035

tual understanding (Lewis et al., 2020). Unlike036

standalone generative models, RAG dynamically037

integrates external knowledge sources by retriev-038

ing relevant documents or data during inference1.039

This retrieval step ensures the generated responses040

1https://arxiv.org/pdf/2312.10997, accessed on
February 14, 2025.

are coherent as well as grounded in up-to-date and 041

accurate information, mitigating issues like hallu- 042

cination (Bouvard et al., 2024). Therefore, RAG 043

is particularly valuable for applications such as 044

question-answering, conversational agents, docu- 045

ment summarisation, and decision support (Fan 046

et al., 2024). 047

The retrieval step in an RAG system queries a 048

knowledge base, typically a large corpus of un- 049

structured or semi-structured documents, to iden- 050

tify and extract the most relevant content for a 051

given input (Bouvard et al., 2024). This process 052

often involves techniques from the field of IR, such 053

as lexical matching (e.g., TF-IDF (Sparck Jones, 054

1988), BM25 (Robertson and Jones, 1976)) or 055

dense vector retrieval using embeddings generated 056

by pre-trained language models (e.g., Sentence- 057

BERT (Reimers and Gurevych, 2019)). The re- 058

trieved results are ranked based on their relevance 059

to the query and passed to the generative model as 060

context (Tao et al., 2023). Advanced systems may 061

incorporate hybrid retrieval strategies, combining 062

heuristic-based approaches with Machine Learning 063

(ML) for improved performance. 064

To feed the retriever of a RAG system, a knowl- 065

edge base is constructed from documents that vary 066

greatly in terms of format and complexity (Zhang 067

et al., 2024). To ensure good retrieval performance, 068

documents must be parsed and chunked. Regard- 069

ing PDF documents, parsing involves extracting 070

structured and unstructured data from a format de- 071

signed for human readability rather than machine 072

processing, often requiring the handling of intri- 073

cate layouts, multi-column text, tables, figures, and 074

metadata2. The process typically begins with text 075

extraction using libraries or tools such as PyPDF23, 076

2 https://arxiv.org/abs/2410.09871v1, accessed on
February 14, 2025.

3 https://pypdf2.readthedocs.io/en/3.x/, ac-
cessed on February 14, 2025.
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PDFPlumber4, or PyMuPDF5, followed by addi-077

tional preprocessing to clean and structure the ex-078

tracted content. Key challenges include preserving079

semantic coherence, managing irregular format-080

ting, and accurately reconstructing the document’s081

logical flow2.082

Once the document structure and raw text are083

extracted from a document through parsing tech-084

niques, that content undergoes chunking which085

aims to segment the content into smaller, semanti-086

cally coherent units, or chunks, to facilitate efficient087

storage, indexing, and retrieval (Kshirsagar, 2024).088

This segmentation ensures that the retrieval sys-089

tem can identify and provide precise, contextually090

relevant information in response to a query rather091

than retrieving entire documents or unmanageable092

text blocks6. Effective chunking strategies balance093

granularity, ensuring chunks are neither too large094

to dilute relevance nor too small to lose context6.095

Techniques for chunking often leverage heuristic096

rules, such as splitting by paragraph, sentence, or097

headings, while more advanced methods may incor-098

porate semantic analysis to group related content099

meaningfully (Kshirsagar, 2024).100

Therefore, we aim to propose an efficient and101

low-energy solution for parsing and chunking PDF102

documents to improve IR performance: ChunkNor-103

ris. The code is available as open-souce: https:104

//anonymous.4open.science/r/chunknorri105

s-9859/ , with the related documentation: place-106

holder for anonymity. We benchmark ChunkNor-107

ris with existing parsing and chunking techniques108

on various criteria with an open-access dataset we109

build and propose to the community. The code for110

the benchmark is available in our GitHub reposi-111

tory: https://anonymous.4open.science/r/112

bench-chunknorris-acl2025-20E8/113

2 Related Work114

The PDF was invented to address the need to en-115

capsulate documents to ensure readability across116

various platforms. Since its inception, continu-117

ous research has been conducted on how to effec-118

tively parse PDF files, given their complex struc-119

ture. With the rise of Large Language Models120

(LLMs) and RAG applications, the need for effi-121

cient and accurate PDF parsing has become more122

4https://github.com/jsvine/pdfplumber, accessed
on February 14, 2025.

5https://pymupdf.readthedocs.io/en/latest/,
accessed on February 14, 2025.

6 https://arxiv.org/html/2402.05131v3

critical. Significant advancements have been made 123

in parsing techniques for PDF documents, driven 124

by the increasing need to extract structured data 125

from inherently unstructured or semi-structured 126

content. State-of-the-art methods often combine 127

traditional approaches with ML techniques to han- 128

dle the complexities of the PDF format. Tradi- 129

tional methods rely on libraries like PDFMiner7 130

or PyPDF23, which provide programmatic access 131

to text, images, and metadata. However, these 132

tools only provide simple text extraction and do 133

not provide information about document layout, hi- 134

erarchical information, or structured information 135

like tables. Heuristics-based methods were initially 136

developed to enhance basic text extraction. How- 137

ever, they tend to be replaced in favour of computer 138

vision approaches that leverage ML to improve 139

performance. 140

Models trained with annotated data integrate tex- 141

tual and layout information, enabling improved 142

tables, forms, and complex structures extraction. 143

This is the case for Python librairies sush as Un- 144

structured8 and Docling9. Furthermore, hybrid 145

techniques combine multiple approaches, such as 146

Open-Parse10, which uses mainly heuristics, and 147

ML as an option; Marker11, which uses ML, Op- 148

tical Character Recognition (OCR), and has LLM 149

support; and LLM Sherpa12, which uses heuristics 150

and LLM techniques. While such techniques pro- 151

vide high-quality results, their use in production 152

is limited due to high processing time, computa- 153

tional resources and annotation requirements that 154

often do not match the constraints of production 155

environments. 156

Regarding chunking, the literature suggests two 157

possible scenarios. The first is where the parsing 158

and chunking methods are separate. For example, 159

PyPDF2, Unstructured, Marker, LLM Sherpa and 160

NV-Ingest13 are parsing-only tools. Their output 161

can be processed using independent chunking tech- 162

7https://pdfminersix.readthedocs.io/en/latest
/, accessed on February 14, 2025.

8https://docs.unstructured.io/welcome, accessed
on February 14, 2025.

9https://ds4sd.github.io/docling/, accessed on
February 14, 2025.

10https://github.com/Filimoa/open-parse, accessed
on February 14, 2025.

11https://github.com/VikParuchuri/marker, ac-
cessed on February 14, 2025.

12https://github.com/nlmatics/llmsherpa, accessed
on February 14, 2025.

13https://github.com/NVIDIA/nv-ingest, accessed
on February 14, 2025.
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niques, such as the LangChain’s commonly used163

recursive character text splitter14. In the second164

case, the parsing and chunking methods are built165

together as a pipeline to combine these two steps166

effectively. This is the case, for example, for Open-167

Parse and Docling. Among the most common168

chunking methods is length-based splitting, which169

segments text based on specified size limits, such170

as tokens or characters. Token-based splitting is171

particularly useful when interfacing with language172

models, as it aligns with their input constraints,173

while character-based splitting ensures consistency174

across diverse text types (Kshirsagar, 2024). These175

methods are straightforward to implement, adapt-176

able , and produce uniform chunk sizes. A more177

advanced approach is hierarchical splitting, which178

leverages the natural structure of text, such as para-179

graphs, sentences, and words, to create coherent180

splits (Kshirsagar, 2024). Tools like LangChain’s181

recursive character text splitter15 exemplify this182

technique by prioritising larger units (e.g., para-183

graphs) and recursively splitting smaller units when184

necessary, preserving the semantic flow of the text.185

For documents with inherent structures, such as186

HTML, Markdown, or JSON, structure-based split-187

ting leverages these formats’ structural information,188

such as headers, tags, or object boundaries, to cre-189

ate contextually rich chunks (Kshirsagar, 2024).190

This approach maintains the document’s logical191

organisation and is particularly effective for pre-192

serving semantic relationships. Finally, semantic-193

based splitting goes a step further by analysing the194

content’s meaning to identify significant shifts in195

context (Kshirsagar, 2024). This last method often196

uses sliding window techniques and embeddings to197

detect breakpoints in the text, ensuring chunks re-198

main semantically coherent. While semantic-based199

splitting stands out for its ability to directly analyse200

and maintain contextual integrity, it requires much201

more execution time and computational resources202

that are not always available in practice.203

With ChunkNorris, we propose an efficient204

and unsupervised ML-free parsing and chunking205

method. We aim to ensure fast document ingestion206

with limited computational resources while getting207

the most out of the document structure. Our algo-208

rithm is robust and enables coherent chunking of209

various documents.210

14https://python.langchain.com/docs/how_to/rec
ursive_text_splitter/, accessed on February 14, 2025.

15https://python.langchain.com/docs/how_to/rec
ursive_text_splitter/, accessed on February 14, 2025.

3 ChunkNorris 211

This work introduces ChunkNorris, a novel pars- 212

ing and chunking algorithm designed to efficiently 213

process documents without requiring GPU accel- 214

eration. While chunking based on document ti- 215

tles has demonstrated high effectiveness, it has not 216

been widely applied to PDFs, primarily because 217

detecting headers and their hierarchy from docu- 218

ment layout is challenging. We developed Chun- 219

kNorris, which leverages title-based segmentation 220

to produce high-quality chunks while remaining 221

lightweight and efficient. 222

3.1 Parser 223

A parser is a computational tool or algorithm that 224

analyses and processes structured or unstructured 225

data, converting it into a machine-readable format. 226

Parsers are essential components of text processing 227

systems that clean and format input documents. 228

ChunkNorris parser’s primary role is to take a file 229

or a string as input and produce a clean, markdown- 230

formatted output suitable for further processing 231

by a chunker. Currently, ChunkNorris supports 232

three parsers: MarkdownParser, HTMLParser, and 233

PdfParser. Regardless of the input type, all parsers 234

generate a unified MarkdownDoc object, which 235

serves as input for a chunker. This work focuses 236

on the PdfParser, which is designed to extract and 237

structure content from PDF files. 238

ChunkNorris implementation relies on the 239

PyMuPDF library. This tool provides fast imple- 240

mentations of a great variety of utility functions 241

for document processing. The parsing process be- 242

gins by opening the PDF using PyMuPDF. Text is 243

retrieved in the form of spans, which are defined 244

as sets of consecutive characters sharing the same 245

formatting properties. Based on their attributes and 246

location, spans undergo a series of processing steps 247

to ensure accurate structuring of the document. 248

Headers and footers: If a span’s bounding box 249

appears in the same position on more than 33% of 250

the document’s pages, it is flagged as a header or 251

footer and subsequently removed. 252

Links: In PDF documents, hyperlinks exist as in- 253

visible clickable boxes layered over spans. The 254

PdfParser retrieves links and binds them to their 255

corresponding spans to avoid loosing that informa- 256

tion. To our knowledge, none of the other existing 257

PDF parsing tools extract hyperlinks. 258

Tables: Tables in PDFs vary widely in layout, mak- 259

ing them challenging to parse. They fall into three 260
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categories: those with visible cell boundaries, those261

inferred from content alignment, and those embed262

as images. In the first case, the table structure is rep-263

resented by line vectors, which can be recombined264

for parsing. ChunkNorris employs a vectorised line265

recombination method for efficient table structure266

extraction. It also handles the parsing of tables with267

merged cells.268

Lines/Blocks: Following text extraction, spans are269

grouped to form coherent text units. Consecutive270

spans on the same vertical position are merged271

into lines. Lines are further grouped into blocks,272

which may represent a paragraph or a section title.273

Building of blocks is based on the line spacing of274

the document’s body content, which refers to the275

vertical distance between bounding boxes of con-276

secutive lines.277

Main title: The parser also attempts to infer the278

document’s main title by analysing blocks on the279

first page. Blocks with font sizes larger than the280

body text are considered potential title candidates.281

Section headers: The PdfParser detects section282

headers and their hierarchy. It first checks the doc-283

ument metadata for a Table of Contents (ToC). If284

found, it is used directly. Otherwise, the parser285

searches for a structured ToC within the document286

using regular expressions. Header levels are in-287

ferred from indentation (deeper levels are further288

right) or numbering patterns (e.g., 1., 1.1, 1.1.a). If289

no ToC is available, font sizes determine hierarchy,290

with smaller fonts indicating deeper levels.291

Other: Various document attributes are also ex-292

tracted to characterise the content, such as docu-293

ment orientation, font size of the body, etc.294

Finally, after completing the extraction and structur-295

ing process, the PdfParser generates a markdown-296

formatted document, ensuring a clean and struc-297

tured representation of the original PDF content298

ready to be processed by a chunker or other text-299

processing modules.300

3.2 Chunker301

Chunkers process parser outputs by segmenting302

them into coherent units. In ChunkNorris, all303

parsers produce Markdown-formatted Markdown-304

Doc objects, ensuring compatibility with the Mark-305

downChunker. Markdown is the chosen standard306

for its readability by both humans and LLMs while307

offering sufficient structure for chunking. As a re-308

sult, the MarkdownChunker is currently the only309

implemented chunker, though others may be devel-310

oped if new parser output formats emerge.311

The chunking strategy employed by the Mark- 312

downChunker is based on several guiding prin- 313

ciples. First, each chunk must contain homoge- 314

neous information. Therefore, the chunking pro- 315

cess relies on document section headers to define 316

chunk boundaries. Second, each chunk must retain 317

contextual information, as sections of a document 318

can lose meaning when read in isolation. To pre- 319

serve context, the headers of all parent sections 320

are prepended to each chunk. Third, chunk sizes 321

should be as uniform as possible. Embedding mod- 322

els used in IR are sensitive to chunk length, result- 323

ing in higher embedding similarity for chunks of 324

similar length to the query. If a chunk is signif- 325

icantly longer than the query, its similarity score 326

may decrease despite relevance. Chunkers aim to 327

maintain a consistent chunk size whenever possible 328

to mitigate this issue. 329

The chunking process begins by constructing 330

a ToC tree from document headers. Chunks are 331

then recursively generated based on the ToC struc- 332

ture, with each chunk containing the titles of upper 333

sections and the content of the current section. A 334

chunk is subdivided using available subsections 335

if it exceeds the soft word limit. Otherwise, it 336

remains intact. After chunking, refinements are 337

applied: sections below a minimum word count are 338

discarded to ensure only meaningful chunks are re- 339

tained. Chunks exceeding a hard limit are split into 340

subchunks at newline characters, which ensure ta- 341

bles and code blocks remain within a single chunk. 342

Titles from the original chunks are preserved at the 343

beginning of each subchunk to maintain context. 344

The final output of the MarkdownChunker is a 345

list of Chunk objects, each containing its processed 346

text, the associated parent headers, the starting 347

line of the chunk within the original markdown- 348

formatted document and, when relevant, the start 349

and end page numbers of the paginated source file. 350

This structured output ensures very fast and ef- 351

ficient document segmentation while preserving 352

readability and contextual integrity. ChunkNor- 353

ris parsers and chunkers can be wrapped up into 354

pre-built pipelines. They allow processing of docu- 355

ments with minimum code while ensuring constant 356

output quality. 357

4 Benchmark of parsing and chunking 358

techniques 359

To evaluate ChunkNorris, we propose comparing 360

its performance to other popular tools. This section 361
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presents the methodology we apply to compare362

ChunkNorris and the dataset constructed for the363

evaluation. The dataset is available as open-source364

on Hugging Face: placeholder for anonymity.365

4.1 Dataset366

We evaluate parsing and chunking in the context367

of RAG. Therefore, we construct the PDF dataset368

for Information Retrieval Evaluation (PIRE)369

designed explicitly for the IR use case to assess370

the parsing and chunking methods. This dataset371

comprises 100 PDFs, combining 50 documents372

from the existing DocLayNet dataset (Pfitzmann373

et al., 2022) and 50 newly collected PDFs whose374

diversity reflects real-world use cases. The newly375

collected set includes 5 arXiv papers, 2 financial376

reports, 4 infographics, 4 legal documents, 3 IT377

documentations, 4 news articles, 3 PowerPoint-like378

documents, 13 PubMed papers, 3 organisation379

reports, 5 user manuals, and 5 Wikipedia articles.380

The documents were selected with consideration381

of their licenses. A list of all the PDFs and382

their references can be found in the Appendix A.383

This diverse selection ensures a broad range of384

document structures and content types, making it385

well-suited for evaluating the robustness of our386

approach.387

388

Single-chunk dataset389

We first annotate three questions per PDF, resulting390

in 300 question-document pairs. Three annotators391

followed a structured methodology to identify the392

minimal passage within each document that con-393

tained the answer. A retrieval step was carried out394

to ensure only one passage contained the answer to395

each question. In this step, documents were parsed396

using the ChunkNorris parser and segmented into397

fixed-size chunks of 250 words. We then embed all398

the chunks using Alibaba-NLP/gte-large-en-v1.516,399

a high-performing embedding model from the400

MTEB leaderboard (Muennighoff et al., 2023)401

that remains computationally efficient with fewer402

than 500M parameters. We compute the cosine403

similarity between the annotated question and404

all chunks, retrieving the top 10 highest-scoring405

chunks. The annotators validate the question if no406

additional relevant chunks are found among these407

top results. Otherwise, they refine or rewrite the408

question to better isolate a single relevant passage.409

16https://huggingface.co/Alibaba-NLP/gte-large
-en-v1.5, accessed on February 14, 2025.

We refer to this subset as single-chunk dataset. 410

411

Multi-chunk dataset 412

Additionally, we extend the dataset with another 413

32 questions, which require several pieces of infor- 414

mation spread over multiple pages to be answered. 415

This time, each question is matched with the perti- 416

nent passages of the corpus along with their source 417

document and page. This part of the dataset is de- 418

liberately more complex than the first. We refer to 419

it as multi-chunk dataset. 420

This dataset provides a high-quality benchmark 421

for evaluating parsing and chunking strategies in an 422

IR context. Incorporating diverse document types, 423

structured annotations, and a robust validation pro- 424

cess allows for a comprehensive assessment of our 425

approach’s in real-world retrieval scenarios. 426

4.2 Evaluation methodology 427

To evaluate ChunkNorris, we compare its perfor- 428

mance with other tools in the literature. We choose 429

methods for parsing and/or chunking PDF docu- 430

ments to carry out our benchmark. After a wide- 431

range screening of existing methods, we select 432

those that show remarkable performance and have 433

aroused great interest in the community. For the 434

parsing step, we compare Marker, Open-Parse and 435

Docling. PyPDF is used as a baseline, as it can only 436

perform text extraction without properly parsing 437

the document. All parsers are run with their default 438

configuration. OCR is deactivated to avoid influ- 439

encing the results, as it is not needed for the studied 440

documents. We associate all these tools with two 441

different chunking strategies: by page and with the 442

recursive text splitter set to a size limit of 4000 443

characters per chunk and an overlap of 200 charac- 444

ters between chunks. Custom chunking strategies 445

are available for Open-Parse and Docling, so we 446

add them to the comparison. Additionally, Open- 447

Parse proposes two parsing backends: one using 448

PyMuPDF’s built-in functions and another leverag- 449

ing Unitable (Peng et al., 2024), an ML framework 450

for table extraction. The first one runs on CPU 451

only while the latter demands a GPU. In the rest of 452

this paper, they will be referred to as Open-Parse- 453

P and Open-Parse-U, respectively. Appendix B 454

summarises the features of the compared parsers. 455

We evaluate the pipelines based on various cri- 456

teria, including execution time and environmental 457

impact measured through energy consumption. For 458
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Provider Model name #Params
Snowflake arctic-embed-xs 23M

arctic-embed-m-v1.5 109M
arctic-embed-m-v2.0 305M

BAAI bge-small-en-v1.5 33M
bge-base-en-v1.5 109M
bge-large-en-v1.5 335M

Table 1: Embedding models used to assess retrieval
performance. All models are available on HuggingFace.

the latter, we use CodeCarbon17 to measure di-459

rectly electricity used by the GPU and psutil18 to460

get the load percentage of CPU. CPU energy con-461

sumption is then calculated as :462

E = CPU load× time× P (1)463

where E is the energy consumed (Wh), computed464

by multiplying the CPU load percentage with the465

execution time (h) for parsing the dataset, and P466

(W) the CPU power provided by the manufacturer.467

We use a retrieval task to evaluate the different468

parsing and chunking pipelines. We compare var-469

ious embedding models listed in Table 1 to avoid470

bias toward a specific chunking strategy. After pars-471

ing and chunking, we embed the chunks with all472

models. We are interested in the trade-off between473

the complexity of the parsing techniques and the474

size of the embedding models required to maximise475

IR task performance while minimising ecological476

impact. We use annotated questions of the dataset477

described in Section 4.1 to perform chunk retrieval478

using the cosine similarity between the question479

embedding and the chunk embeddings. We com-480

pute the recall and the Normalized Discounted Cu-481

mulative Gain (NDCG) for the 10 high-ranking482

chunks (@10).483

5 Results484

Which parser is best suited to a production485

environment?486

We first evaluate the average parsing time of a PDF487

page for each parsers in Table 2. Additionally, we488

compare CPU and GPU energy needed to run each489

parser on the entire dataset (100 PDFs and 5286490

pages) in Table 3. We do not measure the execu-491

tion time and energy consumed in the chunking492

17https://codecarbon.io/, accessed on February 14,
2025.

18https://psutil.readthedocs.io/en/latest/, ac-
cessed on February 14, 2025

Parsers Parsing time
ChunkNorris 105 ms ± 296
Docling 533 ms ± 1284
Marker 717 ms ± 594
Open-Parse-P 459 ms ± 485
Open-Parse-U 2538 ms ± 2659
PyPDF 91 ms ± 169

Table 2: Average of the page parsing time for each
parser. Hardware: CPU Intel(R) Xeon(R) Gold; GPU
Tesla V100S; RAM 40 GiB.

Parsers CPU
energy

GPU
energy

ChunkNorris 0.47 Wh 0.0 Wh
Docling 5.11 Wh 23.24 Wh
Marker 1.92 Wh 58.09 Wh
Open-Parse-P 1.87 Wh 0.0 Wh
Open-Parse-U 34.32 Wh 777.93 Wh
PyPDF 0.28 Wh 0.0 Wh

Table 3: Energy consumption required to parse the 100
PDFs (5286 pages). Hardware: CPU Intel(R) Xeon(R)
Gold; GPU Tesla V100S; RAM 40 GiB.

stage, as it is negligible compared with the pars- 493

ing stage. The experiment has been reproduced 494

on another hardware, and results are displayed in 495

Appendix 8 to confirm the ranking. As expected, 496

the baseline PyPDF is the fastest parser (91 ms per 497

page) and consumes the least resources, with only 498

0.28 Wh to parse the entire dataset. ChunkNorris is 499

second for both criteria. With a parsing time close 500

to 100 ms per page, it is an interesting asset for 501

production environments, which are often subject 502

to high ingestion workloads. Regarding parsing 503

time, Open-Parse-P, Docling and Marker respec- 504

tively rank next, with values around 500 ms per 505

page. However, they display significant differences 506

in energy consumption. Open-Parse-P remains 507

within the low range of energy consumption with 508

1.92 Wh. In contrast, Docling and Marker show 509

much higher values of around 28 Wh and 60 Wh, 510

respectively, due to their requirement for GPU ac- 511

celeration. Finally, Open-Parse-U performs sig- 512

nificantly worse, showing much higher execution 513

time and energy consumption than the other GPU- 514

accelerated parsers. This technique is hardly suit- 515

able for production environments, as it takes an 516

average of more than 2.5 s to parse a PDF page. 517
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Figure 1: Average recall@10 over all embeddings models for parsing and chunking pipelines. PC stands for Page
Chunker, and RCC for Recursive Character Chunker.

C
hunkN

orris

PC R
C
C

D
ocling

PC R
C
C

O
pen-Parse

PC R
C
C

O
pen-Parse

PC R
C
C

PC R
C
C

PC R
C
C

ChunkNorris Docling Open-Parse
PyMuPDF

Open-Parse
Unitable

PyPDF Marker

0

0.2

0.4

0.6

0.8

1

N
D
C
G
@
10

0.52

0.49

0.45

0.43

0.47

0.47

0.47

0.46

0.45

0.45

0.47

0.47

0.45

0.46

0.45

0.45

(a) Single-chunk dataset

C
hunkN

orris

PC R
C
C

D
ocling

PC R
C
C

O
penarse

PC R
C
C

O
penarse

PC R
C
C

PC R
C
C

PC R
C
C

ChunkNorris Docling Open-Parse-P Open-Parse-U PyPDF Marker

0

0.2

0.4

0.6

0.8

1

N
D
C
G
@
10

0.46

0.38

0.28

0.28

0.36

0.39

0.35

0.35

0.42

0.41

0.36

0.38

0.28

0.35

0.41

0.38

(b) Multi-chunk dataset

Figure 2: Average NDCG@10 over all embeddings models for parsing and chunking pipelines. PC stands for Page
Chunker, and RCC for Recursive Character Chunker.

Which pipeline performs best for the IR task?518

Next, we evaluate each combination of parser519

and chunker on the IR task. Figure 1 presents520

the average recall@10 across all embedding mod-521

els. The ChunkNorris pipeline performs best on522

single-chunk and multi-chunk datasets, highlight-523

ing its overall effectiveness. However, apart from524

ChunkNorris, the methods’ ranking differs between525

the two datasets. Docling is the second-best per-526

former for the single-chunk dataset, followed by527

PyPDF and Marker. In contrast, for the multi-528

chunk dataset, Open-Parse ranks second, followed529

by Marker and Docling. These results suggest that530

PyPDF is well-suited for handling simple retrieval531

but struggles with more complex ones where in-532

formation is scattered across multiple pages. In 533

the meantime, Open-Parse with page chunking is 534

more effective when dealing with multi-chunk doc- 535

ument retrieval. Notably, ChunkNorris maintains 536

strong and consistent performance across both sce- 537

narios, demonstrating its robustness regardless of 538

retrieval difficulty. In Figure 2, we present the 539

results for NDCG@10, which evaluates the rank- 540

ing quality of the retrieved chunks. These results 541

correlate with the recall and further confirm the 542

strong performance of the ChunkNorris pipeline, 543

which achieves the highest scores for both single- 544

chunk and multi-chunk datasets. The differences 545

between pipelines are relatively small for the single- 546

chunk dataset, indicating that most methods rank 547

retrieved chunks similarly when dealing with sim- 548

7



pler document structures. However, the contrast549

between results is more pronounced in the multi-550

chunk dataset. Open-Parse seems to stand out from551

other tools with page and recursive character chun-552

kers, making it more suitable for complex multi-553

chunk retrieval.554

We evaluate the performance variation across555

various parser and chunker combinations to anal-556

yse the impact of parsing and chunking separately557

based on the recall in Figure 1. We observe that the558

performance of a single parser varies more signif-559

icantly depending on the chunker used than the560

performance of different parsers with the same561

chunker. It suggests that the interaction between562

parser and chunker plays a crucial role rather than563

one component being universally more important564

than the other. A clear example is the ChunkNor-565

ris parser, which no longer stands out from other566

pipelines when used without its dedicated chunker.567

This highlights that its strong performance stems568

from the synergy between its parser and chunker569

rather than in document parsing alone. The excep-570

tion to this trend is observed in the Open-Parse571

pipeline on the multi-chunk dataset, where it per-572

forms significantly worse than other chunkers.573

Which pipeline is the most robust to different574

embedding models?575

We now consider the results for each embedding576

model detailed in Appendix C. We compare Arc-577

tic19 and BGE (Xiao et al., 2024) models across578

three model sizes. We first focus on the single-579

chunk dataset, and the results are presented in580

Table 6. The ChunkNorris pipeline consistently581

achieves the best recall across all model sizes for582

the Snowflake models, while NDCG remains close583

between ChunkNorris and Open-Parse. As ex-584

pected, the largest model yields the best retrieval585

results. An unexpected trend emerges: the middle-586

sized model performs worse than the small model,587

suggesting insufficient training or adaptation for the588

retrieval task. For the BGE models, ChunkNorris589

performs best for the small and large models, while590

the middle-sized model favours Docling. This indi-591

cates that while ChunkNorris remains robust across592

different embedding model sizes, some variations593

in performance emerge based on specific model594

architectures. We then focus on the multi-chunk595

dataset with results presented in Table 7. Chun-596

19https://huggingface.co/collections/Snowflake
/arctic-embed-661fd57d50fab5fc314e4c18, accessed on
February 14, 2025.

kNorris dominates across all BGE models. Marker 597

performs particularly well in recall, while Open- 598

Parse shows strong results in NDCG, indicating 599

that the resulting chunks allow for effective ranking. 600

The performance consistency across all BGE model 601

sizes is remarkable, making the smallest model an 602

attractive choice for future use due to its efficiency 603

in resource consumption without compromising 604

performance. ChunkNorris achieves the best recall 605

with the smaller Snowflake model, excels in both 606

recall and NDCG with the middle model, and leads 607

in NDCG with the large model. When not leading, 608

it closely competes with Open-Parse. However, 609

the middle Snowflake model again underperforms, 610

mirroring its results on the single-chunk dataset. 611

This anomaly suggests that model size alone does 612

not dictate performance, and specific training dy- 613

namics may influence retrieval effectiveness. 614

6 Conclusion 615

We propose ChunkNorris, a fast and reliable pars- 616

ing and chunking tool for PDF documents. We 617

demonstrate ChunkNorris’ interest over other pop- 618

ular tools across production constraints such as 619

execution time, resource consumption, and IR per- 620

formance. We ensure a robust and comprehen- 621

sive comparison by testing on a diverse set of 622

documents and embedding models. ChunkNor- 623

ris demonstrates outstanding performance, consis- 624

tently surpassing other methods in recall and rank- 625

ing quality while maintaining lower parsing time 626

and energy consumption. Remarkably, it achieves 627

this efficiency without significant trade-offs, stay- 628

ing close to the computational requirements of sim- 629

ple plain text extraction. These results highlight 630

ChunkNorris efficiency, making it particularly well- 631

suited for ingestion pipelines handling heavy work- 632

loads. Ongoing work focuses on enhancing the 633

parsing of specific PDF components, such as ad- 634

vanced table layouts or mixed-up reading orders, 635

while maintaining speed and reliability. By releas- 636

ing ChunkNorris as an open-source Python pack- 637

age, we aim to simplify PDF parsing and chunking 638

while reducing its ecological impact. The bench- 639

mark proposed is a first attempt to compare parsing 640

and chunking tools. The code is designed for easy 641

extensibility, allowing to include additional meth- 642

ods such as Unstructured20 and NV-Ingest21. 643

20https://github.com/Unstructured-IO/unstructur
ed, accessed on February 14, 2025.

21https://github.com/NVIDIA/nv-ingest, accessed
on February 14, 2025.
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Limitations644

Our study has some limitations that should be con-645

sidered to expend this work. First, we use default646

settings for all pipelines because we leave it up to647

each tool to define the most relevant configurations.648

In actual use cases, users of these tools rarely try649

to optimise the various parameters. However, fur-650

ther optimisation could improve performance for651

some methods. Then, the dataset we propose is lim-652

ited by its size, especially the subset of questions653

requiring multiple chunks for retrieval. A more654

extensive and diverse dataset would strengthen the655

impact and generalisability of our findings. An-656

other limitation concerns our evaluation, which657

focuses solely on the RAG use case. Exploring658

other use cases to evaluate parsing and chunking659

techniques would be interesting. More specifically,660

assessing the quality of parsing, for example, with661

structured data extraction or document layout anal-662

ysis, would be interesting. Finally, ChunkNorris663

follows a right-to-left, top-to-bottom reading order,664

which may limit its effectiveness for multilingual665

applications, particularly for languages with differ-666

ent text orientations or complex layouts. Future667

work should explore methods to adapt or extend668

ChunkNorris for broader language support.669
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9/Word%20QS.pdf

10/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C10681710/pdf/niad025.pdf

09/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C11562755/pdf/jop-165-2863.pdf

09/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C11693606/pdf/41586_2024_Article_8275.pdf

09/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C11537970/pdf/41593_2024_Article_1741.pdf

09/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C6102917/pdf/12913_2018_Article_3470.pdf

09/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C11638540/pdf/main.pdf

13/01/25

PubMed paper https://www.mdpi.com/1099-4300/27/1/62 13/01/25
PubMed paper https://jamanetwork.com/journals/jamanet

workopen/fullarticle/2827327
13/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C9568596/pdf/41598_2022_Article_22228.pdf

13/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C7037716/pdf/ijerph-17-01062.pdf

13/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C5897824/pdf/rsta20160452.pdf

13/01/25

PubMed paper https://journals.physiology.org/doi/epdf
/10.1152/japplphysiol.00342.2024

21/01/25

PubMed paper https://pmc.ncbi.nlm.nih.gov/articles/PM
C10986173/pdf/fresc-05-1303094.pdf

21/01/25

Report https://creativecommons.org/wp-content/u
ploads/2024/04/2023-Creative-Commons-Ann
ual-Report-2-1.pdf

10/01/25

Report https://creativecommons.org/wp-content/u
ploads/2024/04/240404Towards_a_Books_Dat
a_Commons_for_AI_Training.pdf

10/01/25

Report https://www.lem.sssup.it/WPLem/odos/odos
_report_2.pdf

10/01/25

User manual https://manuals.plus/vwar/dt3-mate-sport
s-smart-watch-manual

10/01/25
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User manual https://cms5.revize.com/revize/cityofsed
rowoolley/Departments/Solid%20Waste/Comp
ostGuide.pdf

09/01/25

User manual https://data.europa.eu/sites/default/fil
es/edp_s1_man_portal-version_4.3-user-man
ual_v1.0.pdf

09/01/25

User manual https://unfccc.int/files/national_report
s/non-annex_i_national_communications/non
-annex_i_inventory_software/application/
pdf/naiis-user-manual.pdf

09/01/25

User manual https://www.researchgate.net/publication
/351037551_A_Practical_Guide_to_Building
_OWL_Ontologies_Using_Protege_55_and_Plu
gins

10/01/25

Wikipedia https://en.wikipedia.org/wiki/Logic 09/01/25
Wikipedia https://en.wikipedia.org/wiki/Hard_probl

em_of_consciousness
09/01/25

Wikipedia https://en.wikipedia.org/wiki/Artificial
_intelligence

09/01/25

Wikipedia https://en.wikipedia.org/wiki/Lyon 09/01/25
Wikipedia https://en.wikipedia.org/wiki/Louis_XIV 09/01/25

Table 4: Description of the 50 newly collected PDFs for dataset creation.

B Parsers’ features749

Feature ChunkNorris
1.0.5

Docling
2.15.1

Marker
1.2.7

Open-Parse
0.7.0

PyPDF
5.1.0

Text extraction x x x x x
- keeps font styling x x x x
- recombine paragraphs x x x
Tables parsing
- if as line vectors x x x x
- if suggested structure x x x
- if as images x x x
Handles links x
Section headers detection x x x
- with hierarchy x x
Handles equations x x
Removes page headers/footer x x x
Built-in chunking method x x x

Table 5: Features of the various parsers used in this work.
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C Pipeline results 750

Parser Chunker Snowflake 23M Snowflake 109M Snowflake 305M

R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10

ChunkNorris Page 0.45 0.28 0.26 0.18 0.83 0.62
ChunkNorris RC 0.45 0.30 0.28 0.19 0.80 0.61
ChunkNorris ChunkNorris 0.57 0.35 0.38 0.21 0.86 0.66
Docling Page 0.45 0.30 0.24 0.16 0.81 0.62
Docling RC 0.36 0.25 0.22 0.14 0.76 0.57
Docling Docling 0.44 0.29 0.26 0.18 0.81 0.61
Marker Page 0.43 0.28 0.25 0.17 0.79 0.59
Marker RC 0.43 0.29 0.26 0.17 0.78 0.59
Open-Parse-P Page 0.45 0.30 0.29 0.20 0.77 0.59
Open-Parse-P RC 0.48 0.31 0.29 0.20 0.73 0.57
Open-Parse-P Open-Parse 0.38 0.26 0.21 0.14 0.73 0.58
Open-Parse-U Page 0.45 0.31 0.29 0.19 0.78 0.60
Open-Parse-U RC 0.44 0.31 0.27 0.19 0.74 0.57
Open-Parse-U Open-Parse 0.35 0.25 0.19 0.13 0.70 0.55
PyPDF Page 0.40 0.27 0.21 0.15 0.83 0.63
PyPDF RC 0.43 0.29 0.24 0.16 0.81 0.61

Parser Chunker BGE 33M BGE 109M BGE 335M

R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10

ChunkNorris Page 0.75 0.57 0.73 0.56 0.79 0.60
ChunkNorris RC 0.75 0.57 0.73 0.56 0.77 0.60
ChunkNorris ChunkNorris 0.84 0.65 0.81 0.61 0.86 0.68
Docling Page 0.76 0.57 0.75 0.57 0.77 0.59
Docling RC 0.75 0.56 0.73 0.56 0.76 0.60
Docling Docling 0.80 0.61 0.83 0.63 0.82 0.65
Marker Page 0.77 0.58 0.76 0.56 0.77 0.59
Marker RC 0.77 0.58 0.76 0.56 0.77 0.60
Open-Parse-P Page 0.73 0.55 0.71 0.53 0.73 0.55
Open-Parse-P RC 0.72 0.55 0.71 0.52 0.72 0.55
Open-Parse-P Open-Parse 0.73 0.57 0.71 0.56 0.73 0.61
Open-Parse-U Page 0.71 0.53 0.69 0.52 0.73 0.55
Open-Parse-U RC 0.71 0.54 0.69 0.52 0.73 0.56
Open-Parse-U Open-Parse 0.69 0.53 0.68 0.53 0.71 0.58
PyPDF Page 0.78 0.59 0.77 0.59 0.79 0.61
PyPDF RC 0.79 0.60 0.74 0.57 0.79 0.62

Table 6: Comparison of parsers’ and chunkers’ performance on the IR task depending on various embedding models
with the single-chunk dataset. RC stands for Recursive Character chunker and R for Recall.
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Parser Chunker Snowflake 23M Snowflake 109M Snowflake 305M

R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10

ChunkNorris Page 0.42 0.27 0.32 0.22 0.72 0.50
ChunkNorris RC 0.39 0.25 0.33 0.21 0.70 0.49
ChunkNorris ChunkNorris 0.63 0.30 0.40 0.22 0.74 0.56
Docling Page 0.34 0.20 0.20 0.13 0.71 0.49
Docling RC 0.18 0.11 0.17 0.10 0.51 0.34
Docling Docling 0.35 0.20 0.15 0.12 0.59 0.44
Marker Page 0.31 0.20 0.22 0.14 0.62 0.43
Marker RC 0.32 0.21 0.25 0.15 0.61 0.44
Open-Parse-P Page 0.39 0.36 0.31 0.23 0.72 0.54
Open-Parse-P RC 0.39 0.33 0.30 0.21 0.71 0.52
Open-Parse-P Open-Parse 0.28 0.20 0.18 0.12 0.39 0.31
Open-Parse-U Page 0.40 0.30 0.30 0.21 0.75 0.54
Open-Parse-U RC 0.36 0.28 0.28 0.18 0.71 0.50
Open-Parse-U Open-Parse 0.25 0.17 0.17 0.10 0.42 0.32
PyPDF Page 0.24 0.18 0.15 0.13 0.70 0.51
PyPDF RC 0.24 0.18 0.17 0.13 0.72 0.51

Parser Chunker BGE 33M BGE 109M BGE 335M

R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10

ChunkNorris Page 0.58 0.44 0.60 0.42 0.69 0.50
ChunkNorris RC 0.52 0.41 0.52 0.40 0.65 0.50
ChunkNorris ChunkNorris 0.78 0.56 0.79 0.52 0.81 0.59
Docling Page 0.56 0.41 0.54 0.40 0.68 0.48
Docling RC 0.48 0.35 0.56 0.39 0.57 0.42
Docling Docling 0.66 0.48 0.60 0.49 0.67 0.53
Marker Page 0.60 0.42 0.64 0.41 0.72 0.48
Marker RC 0.62 0.44 0.58 0.40 0.70 0.49
Open-Parse-P Page 0.63 0.46 0.58 0.42 0.68 0.50
Open-Parse-P RC 0.62 0.46 0.55 0.43 0.71 0.51
Open-Parse-P Open-Parse 0.44 0.34 0.43 0.34 0.41 0.34
Open-Parse-U Page 0.62 0.44 0.58 0.43 0.68 0.50
Open-Parse-U RC 0.60 0.42 0.53 0.42 0.70 0.50
Open-Parse-U Open-Parse 0.43 0.33 0.48 0.36 0.47 0.37
PyPDF Page 0.61 0.44 0.61 0.43 0.65 0.45
PyPDF RC 0.56 0.43 0.59 0.42 0.66 0.46

Table 7: Comparison of parsers’ and chunkers’ performance on the IR task depending on various embedding models
with the multi-chunk dataset. RC stands for Recursive Character chunker and R for Recall.
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D Energy consumption on another751

hardware752

Parsers CPU
energy

GPU
energy

ChunkNorris 0.24Wh 0.0Wh
Docling 2.46Wh 8.61Wh
Marker 10.76Wh 30.10Wh
Open-Parse-P 1.94Wh 0.0Wh
Open-Parse-U 44.34Wh 391.89Wh
PyPDF 0.17Wh 0.0Wh

Table 8: Energy consumption required to parse the
100 PDFs (5286 pages). Hardware: CPU 13th Gen
Intel(R) Core(TM) i7-13620H; GPU NVIDIA GeForce
RTX 4060 Laptop; RAM 16 GiB.

Parsers Parsing time
ChunkNorris 57ms ± 165
Docling 333ms ± 519
Marker 784ms ± 637
Open-Parse-P 320ms ± 1080
Open-Parse-U 3508ms ± 5225
PyPDF 46ms ± 93

Table 9: Average of the page parsing time for each
parser. Hardware: CPU 13th Gen Intel(R) Core(TM)
i7-13620H; GPU NVIDIA GeForce RTX 4060 Laptop;
RAM 16 GiB.
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