EEV: Enhancing Long-Term Reasoning of LLLM with Effective and
Efficient Verifier

Anonymous ACL submission

Abstract

Large language models have garnered signifi-
cant attention due to their demonstrated strong
logical reasoning capabilities. However, there
is still ample room for improvement in handling
complex long-term reasoning problems. Direct
fine-tuning LLLM on domain-specific data is an
effective approach, but it requires substantial
financial costs. Another research line aims to
efficiently enhance performance by leveraging
the model’s inherent capabilities without tun-
ing any parameters. They either utilize LLM’s
fact evaluation ability for self-verification dur-
ing logical reasoning or employ voting meth-
ods to improve the consistency of the model’s
decisions. However, due to inherent limita-
tions in specific domains, the benefits of self-
verification approaches are typically limited. In
this paper, we propose a compromised method,
which involves training a small verification
model to evaluate the reasoning process of large
models. To overcome the error propagation
problem of traditional verification model, we
further propose a contrast-enhanced verifica-
tion model training framework. The experimen-
tal results show that our proposed effective and
efficient verifier (EEV) can achieve substantial
performance gains on five datasets for multi-
hop fact reasoning and long-term mathematical
reasoning at a small cost.

1 Introduction

Large language models (LLM) have recently gar-
nered significant attention due to their ability to
address various tasks and exhibit strong reason-
ing capabilities. However, even state-of-the-art
LLMs fall short in complex long-term reasoning
tasks, such as multi-hop fact reasoning and intri-
cate mathematical problems. To tackle the com-
plex tasks, it is often necessary for large models
to possess the capability to invoke tools, which
has led to the widespread adoption of ReAct mech-
anism (Yao et al., 2022), inspired by the chain-
of-thought (CoT) approach. This method dissects

Parameter Tuning

i

|
G

Greedy Reasoning |
j—————

|
)) |
(a) Fine-tuning LLM on labeled data G

Internal

“ Roleasa Verlfler H Verification
(| —_—

(b) LLM as a verification model

External

' Small Auxiliary Verifier Verification T
(> — G

(c) Small auxiliary model as a verifier

Figure 1: Three research directions to enhance the
LLM’s long-term reasoning ability: a) directly fine-
tuning LLM on the annotated data; b) verifying the
reasoning process by itself; ¢) Training an external veri-
fication model to guide the reasoning process.

complex problems into smaller components, itera-
tively obtaining the final solution through a three-
step process of thinking, tool usage, and observa-
tion feedback. In contrast to the CoT (Wei et al.,
2022) method, ReAct (Yao et al., 2022) involves a
multi-step reasoning-feedback loop, with the rea-
soning context length noticeably increasing, posing
a substantial challenge to the LLM’s comprehen-
sion ability. Furthermore, as the reasoning process
continues, error propagation becomes increasingly
severe. These two critical factors restrict the per-
formance of LLMs in long-term reasoning. To
enhance the long-term reasoning capabilities of
LLMs, three primary research directions are be-
ing pursued: 1) Directly fine-tuning LL.Ms using
labeled data; 2) Improving the consistency of rea-
soning or optimizing the reasoning process through
self-verification using the inherent capabilities of
LLMs; 3) Utilizing small auxiliary models to eval-
uate the reasoning paths of LLMs and selecting the

optimal reasoning process.

Fine-tuning large language models, as shown in
Figure 1(a), is a method that involves tuning the
parameters of the model on annotated data, thereby
enabling them to adapt to complex reasoning do-
mains. However, this approach has several draw-
backs. Firstly, it requires significant computational
resources. Secondly, it can lead to the models for-
getting knowledge from other domains, making
the method unsuitable for scaling. Additionally,
directly fine-tuning lacks transferability, as param-
eters trained on one LLLM cannot be easily applied
to another. Furthermore, for closed-source LLMs,
direct access to the model parameters for training
is often not achievable.

Increasing the long-term reasoning ability of
LLM by its inherent capabilities, as shown in Fig-
ure 1(b), is also popular, which is convenient to use
and just need designs some prompts. Two methods
can be employed to achieve this: 1) Choosing the
most voted option at each step, which aims to im-
prove the self-consistency of LLM decisions and
mitigate uncertainty errors. 2) Evaluating differ-
ent reasoning trajectories internally to select the
optimal one, which reinforces the model’s under-
standing of the reasoning process through explicit
verification. Reasoning and verification are two dis-
tinct perspectives of the same LLM regarding the
reasoning process, operating independently. Com-
pared with fine-tuning method, it is more efficient
as they do not tuning any parameters. However,
their performance improvement is normally lim-
ited due to the inherent constraints of LLMs in
specific domains and their inability to discern bet-
ter reasoning paths autonomously.

In this paper, we propose a method to enhance
the long-term reasoning ability of LLMs by train-
ing a small auxiliary verification model to assist in
evaluating each step of the reasoning process, as
shown in Figure 1(c). The auxiliary verification
model serves as a compromise between the two
aforementioned methods. Compared to directly
fine-tuning the LLM, we only need to fine-tune a
smaller model with parameters comprising only
6.21% of a medium-sized 7B LLM’s parameters,
significantly reducing the computational cost re-
quired for parameter updates. Compared to uti-
lizing the self-verification of the LLLM, the auxil-
iary verifier can make full use of domain-annotated
data to evaluate the quality of the reasoning pro-
cess. It achieves a good balance between training
efficiency and reasoning performance. However,

collecting data for training the auxiliary verifica-
tion model presents the biggest challenge. Inspired
by the independent verification method proposed
by Wang et al. (2023), we adopt the Monte Carlo
Tree Search (MCTS) method to simulate the execu-
tion of multi-step reasoning processes, collecting
positive and negative sample data by comparing
them with real annotated results. The independent
verification method is a result-supervised verifier
that selects the highest-scoring reasoning trajec-
tory among multiple randomly sampled trajectories
generated by the LLM. However, the independent
verification method suffers from the problem of
error propagation due to the lack of timely interven-
tion in the LLM’s reasoning process. In this paper,
we propose an interactive Effective and Efficient
Verifier (EEV) trained in a contrast-enhanced man-
ner, which selects the current optimal reasoning
process at each step, effectively alleviating the prob-
lem of error propagation.

In summary, our main contributions are as fol-
lows:

* We propose an effective and efficient verifica-
tion model, which has excellent transferabil-
ity and scalability. The EEV model is trained
on the automatic process-supervised data con-
structed by MCTS, which can efficiently adapt
to different LLMs.

* Our proposed interactive verification model
trained with pairwise ranking loss can largely
alleviate the error propagation problem in the
traditional independent verification model.

* We evaluate our proposed EEV with adequate
strong baselines on five different long-term
reasoning tasks. The EEV model achieves
significant performance improvements on all
of these tasks.

2 Preliminaries

Task Definition A long-term reasoning trajec-
tory of length M can be formulated as T =
(Q, s1, 82, ...,sp) where @ is a given question,
{si}ﬁ\il is a series of steps with the last one s,
presenting the final outcome.

ReAct is a long-term reasoning method that
employs LLM-based agents as a generator to
generate both reasoning traces and task-specific
actions in an interleaved manner. Each step s; of a
ReAct trajectory consists of a thought ¢;, an action

& Data Construction
Random-sampled Simulation

Question

)

1,1 S12 S,

w

Wrong

Right

Question
S12

-)

@ Training Objective

Assign an absolute scalar 1 l

Generator l l 1

= N
Verifier i ;

!

CD G

Z

SHl | ceeeeeememmccmcmcccmeeeeeeaa
'_:' Contrast-enhanced MCTS

Q

-3

Rank reasoning candidates

@D Verification Mechanism

Independent Verification

Question

reasoning '“l

=

51,3

l

52,3

!

1
1 Iscoring
|)
SM3 - -
L

x Ground Truth

S1,1 S1.2

S2,1 52,2

@-'11

\
1
1
1
1
1
1
1
1
1
1
1

Interactive Verification

Question

reasoning |H|

P -

S1,1 S1,2
LS

S
= 1.3_)

< -

Ve

S
' S21

y | S22 52,3

Simulated quality

Contrast-enhanced
groups S22 523

) G G

Wrong

G0) &3

scoring

——

Sm,1 '\ Sm,2

X v

)

Smz <- -

J Ground Truth

Figure 2: The three key processes of training and applying independent verifier and interactive verifier: 1) Training
data construction: Traditional independent verification method constructs data through random-sampling simulation,
while interactive verification method constructs data through contrast-enhanced MCTS; 2) Training objective design:
Independent verification method updates the scoring model by making the scoring function approach the absolute
value of the scoring of the sampled reasoning process, while interactive verification method learns by ranking
different reasoning processes; 3) Reasoning verification mechanism: Independent verification method first lets the
LLM randomly sample multiple full solutions and select the optimal one, while interactive verification method

selects the current optimal reasoning process at each step.

a; and an observation o; so that s; = (t;,a;,0;).
At i-th step, LLM generates a natural language
thought ¢; and a task-specific action a;, and
receives an observation o; from the environ-
ment, based on the its history trajectory T;_1 =
(@, (t1,a1,01), (t2,a2,02), ..., (ti—1, Gi—1,0,—1))

as input. Subsequently, (¢;,a;,0;) will be ap-
pended to the reasoning history, and the updated
reasoning history 7; will serve as the input for
LLM at the next step.

Monte Carlo Tree Search (MCTY) is a heuristic
search algorithm for decision processes, aimed to
evaluate each possible action by simulating random
action sequences and updating the estimation based
on the simulation results. The core idea of MCTS
involves performing four basic steps iteratively:
selection, expansion, simulation, and backpropaga-
tion. Starting from the root node, it selects child
nodes based on a specific policy until reaching a

leaf node. Then, it expands the tree by adding new
nodes. Next, it performs random simulations on
the expanded nodes to obtain evaluation values. Fi-
nally, it backpropagates the evaluation values to the
root node, updating the value estimates for each
action.

3 Methodology

In this section, we first propose our interactive ver-
ification mechanism. Subsequently, we present the
corresponding data construction pipeline contrast-
enhanced MCTS and training method based on the
pairwise ranking loss. We elaborate on the short-
comings of existing methods and demonstrate how
we have improved upon them.

3.1 Verification Mechanism

The external verification framework has a LLM-
based generator § and a verifier &. Multiple can-

didate solutions (as well as reasoning trajectories)
are first sampled from a generator, and then scored
by a verifier. The solution with the highest score is
selected as the final answer. The performance im-
provement achieved by verification hinges on the
accuracy of the verifier, and is also upper bounded
by the quality of the candidate solutions.

Independent verification (Wang et al., 2023)
takes place after the entire generation is completed.
The generator employs the full solution sampling
that generates N independent inference trajecto-
ries T = {1} = (Q, 51,5, 52,5, ...,sM,j)}j-V:l. The
trajectory selection strategy of the independent ver-
ification is to select an optimal reasoning trajectory
from all the generated candidates, which can be
formulated as:

INoV(T) = argmax A{S(si)LL),

J

where S(-) and A(-) represent scoring and aggrega-
tion function, respectively. The aggregation func-
tion can be average operation, which represents
selecting the trajectory with the largest average
score.

We propose an interactive verification mecha-
nism, where verification process is performed im-
mediately after each intermediate step is generated.
At the i-th step, the generator generates N candi-
date steps {s; ; };VZI based on the reasoning trajec-
tory up to now T;_1 = (@, s1, 82, ..., Si—1), and
then the verifier evaluates and selects the best step
s;« among them. The selected step s; . will be
appended to the reasoning trajectory and used for
the next generation. The production of the optimal
reasoning trajectory can be formulated as:

INTV(T) = (Q> S1,%5 52,45 ey SM,*);

si« = argmax S(s; ;)

; o
The advantages of our proposed interactive verifi-
cation mechanism are as follows:

Higher performance upper bound Even if
INDV is always capable of picking out the best,
the quality expectation of the best solution selected,
however, is relatively low due to the prevailing
error propagation in full solution sampling. By
integrating intermediate evaluation to generation
step by step, our proposed interactive verification
method effectively mitigates error propagation, re-
sulting in an enhanced quality expectation of the
best solution and thus a higher performance upper
bound.

Lower inference cost The ReAct method re-
quires waiting for external feedback before pro-
ceeding to the next step so that generator must
generate each step sequentially. In contrast to the
full solution sampling in independent verification,
the LLM-based generator in the interactive verifica-
tion mechanism generates intermediate candidate
steps based on the same reasoning history, thus re-
ducing the input tokens of generator to 1/N. The
number of tool calling is also 1//N since only the
verifier-selected action are executed at each step.

3.2 Data Construction

To train an interactive verifier, we need process-
supervised data with accurate step-wise annota-
tions. However, most datasets lack step-wise anno-
tations, and it is costly to resort to human annota-
tors. Wang et al. (2023) defines the quality of each
reasoning step as its probability of deducing the
correct answer and employs a MCTS-simulation-
based approach to annotate each step with comple-
tion success rate. Given a step s; generated by a
generator, a simulator is used to generate N follow-
up completions {(S;j41,j, .., SMj,j)}é‘V:p and the
percentage of simulated completions that eventu-
ally present the ground truth answer s* (i.e. the
completion success rate) is annotated as the simu-

. Z]V:]1(5]\/[.":8*)
lation score Smv(s;) = =I=—F~*——. Common

pipeline for immediate-interactive data construc-
tion, which we refer to as post annotation, is similar
to post verification where step-by-step solutions are
first sampled by generators and then presented to
human annotators or automatic simulators.

We adopted the simulation method from the inde-
pendent verification mechanism (Wang et al., 2023).
To fully leverage the contrastive information within
the natural branching structure of search trees, we
propose a Contrast-enhanced MCTS pipeline. The
pipeline follows a step-by-step generation and sim-
ulation mechanism. For each question () in the
original outcome-supervised-only dataset serving
as the root node, contrast-enhanced MCTS per-
forms the following three steps iteratively:
Expension Starting from the root (), choose an ex-
plorable node s;. The path from @ to s; is the rea-
soning trajectory up to now 1; = (Q, s1, 2, ..., Si),
based on which a generator generates /V; candidate
steps {Si+1, }jV:ll for the next stage.

Simulation For each candidate s;41 ;, if it is a
intermediate step (i.e. internal node), a simulator
generates No completions {(s;12j, ..., SL;])}é\zl

and annotates it with the completion success rate.
If s;41,; already presents the final answer (i.e. leaf
node), annotate it directly with 0-1 label according
to the correctness of the answer. The simulated
annotations are denoted as {SIM(SiJ’_]_’j)}j»V:ll
Selection The highest-annotating one among all an-
notated candidate steps {(s;+1,j, SIM(8j41,]))}j\gl
will be chosen as the next node to explore, while
the rest will be pruned and not further explored.
As a result, the width of the search tree remains
constant and quantities, where the constructed data
contained positive samples and negative samples
are balanced at each stage. If the chosen step hap-
pens to be a leaf node presenting the final answer,
the iteration terminates.

In this case, a group of process-
supervised data with shared reasoning history
{(T3, sit1,5, SIM(S¢+1J))}§V:11 can be gained at
each level of each search tree. Each group contains
abundant contrastive information, which we refer
to as Constrast-enhanced Group.

3.3 Training Objective

Traditional independent verification model are
trained with a binary cross-entropy loss (Wang
et al., 2023; Cobbe et al., 2021; Li et al., 2023)
aiming to generate an absolute score between 0 and
1:

Lpcg = —(yslogrs + (1 — ys) log(1 —75))

where s is a reasoning step, rs is the score assigned
by verification model and y; is the ground truth
label.

To effectively leverage contrast-enhanced
groups, we propose a pairwise ranking loss with
contrast-based weight and margin. During the
training, a pair of positive and negative samples
that differ in simulated scores ((sp,Yp)), (Sn,Yn))
(positive for a higher score) are selected from each
contrast-enhanced group. The loss function works
as follows:

d:yp_ynv

LRank = =W (d)xlog(a(rp — rn — M(d))),

where W (-) and M (-) represent a weight function
and a margin function, respectively. The loss func-
tion we designed is mainly focused on the follow-
ing aspects:

Less biased within-group comparison Simu-
lated annotations exhibit different degrees of bias.
The simulated score for each reasoning step not

only depends on its quality, but is also biased by
the difficulty of the problem to solve and the capa-
bility of the simulator. For example, for an easy
problem, the overall success rate of simulator’s
completions is high, resulting in both correct and
incorrect steps receiving relatively high scores. In
contrast, the simulated scores for both correct and
incorrect steps are much lower for a challenging
problem. Sometimes a correct step could receive
a lower score than an incorrect step, thus leading
to a inconsistency between the quality of the rea-
soning step and the corresponding annotation. As
a consequence, using BCE loss to train the veri-
fier to output an absolute score could confuse the
verifier. However, data within a contrast-enhanced
group shares the same reasoning history, thus their
simulated annotation share the same degree of bias.
While the absolute value of within-group annota-
tions are biased, their relative ranking are precise.
Therefore, We perform a within-group compari-
son as a circumvention, where the verifier learns
to pick out the best of a contrast-enhanced group
rather than to assign an absolute scalar.

More accurate contrastive information Fol-
lowing Touvron et al. (2023), a function M (-) is
introduced to set the margin based on the anno-
tation difference (y, — yn). Our verifier can be
guided to assign more differential scores to rea-
soning steps with more differences, thus providing
more accurate scoring.

Mitigating simulation errors Simulation errors
exist since a limited number of samplings are em-
ployed to simulate the real completion success rate.
So smaller annotation differences are more likely
to be noised by simulation errors. Therefore, we
introduce an annotation difference-based weight
function WV (-) to assign more confidence to a more
differential pair.

4 Experiments

4.1 Experimental Setup

Datasets Our experiments on two major types
of long-term reasoning datasets. 1) Knowledge-
intensive reasoning: two multi-hop question an-
swering datasets HotpotQA, TriviaQA and a fact
verification dataset FEVER; 2) Mathematical rea-
soning: two math word problem datasets GSMS8K,
MathQA. For datasets with private test sets, we
perform testing on the validation sets.

Baselines 1) Vanilla ReAct with greedy rea-
soning: LL.M-based generator generates a single

Models Method HotpotQA TriviaQA FEVER GSMSK MathQA
EM F1 EM EM EM EM
ReAct 2.2 30.2 40.6 40.8 5.0 52
Self-Verification ~ 21.0 28.1 39.8 41.0 4.0 4.8
Self-Consistency ~ 24.8 33.4 42.8 41.8 10.6 82
LLaMA2-7B-Chat 0y, 24.8 335 46.6 518 13.2 6.2
EEV 264 416 357422 508442 584 a6 162 a30 72 vio
EEV (+SC) 29.0 a42 39.7 a62 52.4 A58 52.2 a04 18.8 a5.6 8.8 406
ReAct 25.4 347 42.6 52.6 36.0 14.0
Self-Verification ~ 24.4 33.0 432 522 33.8 13.0
. Self-Consistency 30.4 40.6 53.8 54.2 42.8 19.4
Mistral-7B-Instruct-v0.2 ¢y, 27.6 39.7 55 60.0 34.6 17.8
EEV 274 v30 38.0v26 59.4 456 64.6 A4.6 43.6 A0.8 182 vi2
EEV (+5C) 342438 443437 586448 602402 520498 21.8 a24

Table 1: Evaluation long-term reasoning ability of LLMs on five tasks. There are two LLMs as the generator:
LLaMAZ2-7B-Chat and Mistral-7B-Instruct-v0.2. EEV and EEV (+SC) are our proposed method. Self-Verification
and Self-Consistency leverage the inherent ability to enhance the long-term reasoning performance, which do not
need tuning any parameters. INDV is independent verification model, which is trained with BCE loss.

reasoning trajectory by greedy decoding; 2) Self-
Verification: LLM as a verifier selects its preferred
reasoning steps; 3) Self-Consistency (SC): majority
voting based on multiple reasoning trajectories that
LLM-based generator randomly sampled; 4) INDV:
a process-supervised verifier with the same archi-
tecture as EEV, trained by binary cross-entropy
loss on data constructed by random-sampled sim-
ulation, performs independent verification. Not-
ing that due to computational resource limitations,
we did not implement a direct fine-tuning experi-
ment of the large language model. The proposed
method is a LLM-parameter-agnostic approach, so
we compared it directly with all other methods of
the same type that do not require LLM’s parameter
fine-tuning.

Implementations All generator perform reasoning
with tool calling in a ReAct manner. For retrieval
augmented knowledge-intensive reasoning, genera-
tors are equipped with a Wikipedia API following
Yao et al. (2022), by which they are able to re-
trieve related information to help answer questions.
For program aided mathematical reasoning, python
compiler-based calculator and equation solver are
introduced to help numerical and algebraic opera-
tions. For knowledge-extensive reasoning, we em-
ploy Llama2-7b-chat as the generator and simulator
for data construction. For mathematical reasoning,
we employ Mistral-7b-instruct as the generator and
simulator for data construction. Random-sampled
simulation in the INDV baseline are using the same
LLMs. Our EEV model and INDV verifier uses

Longformer-large (Beltagy et al., 2020) as its back-
bone. We test our proposed verifier with Llama2-7-
chat, Mistral-7b-instruct and GPT-3.5-turbo APL

4.2 Main Results

In this subsection, we compare our proposed EEV
method based on interactive verification with four
other strong baselines that do not require fine-
tuning the LLM parameters on five tasks. The
five different types of tasks include two knowledge-
intensive multi-hop fact reasoning tasks and three
complex mathematical reasoning tasks. Except for
the HotpotQA task, which used F1 as the metric,
all the other tasks only used EM (exact match accu-
racy) as the metric, where only the final inference
result of the LLM matches the annotated result to
be considered correct.

To verify the stability of our proposed method,
we select two 7B-scale instruction-tuned LLMs as
generators in the experiment: LLaMA2-7B and
Mistral-7B-V2. The EEV method selects the best
inference process at each step during the inference
process of LLM-based generators, combined with
the influence of self-consistency. It first selects the
actions of calling tools according to different in-
ference processes for voting, and then scores the
inference processes corresponding to different vot-
ing actions, thus proposing the EEV (+SC) method.

Compared with the vanilla ReAct method, the
self-verification method uses the large language
model itself as the scorer to select the inference
process it prefers from multiple inference processes.
The experimental results in Figure 1 show that the

Model Method HotpotQA GSM8K
EM F1 EM
ReAct 21.8 28.0 63.4
Self-Consistency 22.6 29.0 67.4
GPT-3.5-rbo gy 30 398 688
EEV (+SC) 28.0 36.7 74.4

Table 2: Evaluate that closed-source model (GPT3.5-
turbo) as generator and EEV as verifier on one multi-hop
fact reasoning task (HotpotQA) and one mathematical
reasoning task (GSMS8K).

self-verification method cannot improve the long-
term reasoning performance of the large language
model itself.

The self-consistency method is another method
that utilizes the capabilities of LLM to improve
the reasoning effect. It selects the inference pro-
cess with the most votes among multiple sampling
reasoning processes according to the selected in-
ference action. The experimental results in Fig-
ure 1 show that compared with the vanilla ReAct
method, the self-consistency method can consis-
tently improve the performance of the long-term
reasoning process. The main reason for this is that
it references different inference processes and main-
tains the stability of the LLM’s inference process
through voting.

Independent verification is the method closest
to our proposed interactive verification. Indepen-
dent verification trains the scoring model through
directly learning the score values, while our pro-
posed interactive verification trains through sort-
ing different inference processes, and the training
data is collected through our improved contrast-
enhanced MCTS process. The experimental results
in Figure 1 show that our model can perform better
on these long-term reasoning tasks. The scoring
model trained through contrastive learning enables
our proposed method to effectively distinguish be-
tween inference processes with subtle differences.

Compared to the EEV method, the EEV (+SC)
approach demonstrated substantial performance
gains in four out of five tasks utilizing LLaMA
as the generator, with a notable decrease in per-
formance observed on the FEVER dataset. When
Mistral was employed as the generator, three tasks
exhibited significant improvements, while slight
decreases were observed on TriviaQA and FEVER.
Our findings indicate that the EEV (+SC) method
consistently enhanced performance for complex
mathematical reasoning tasks. Notably, compared

. IndV

8

HotPotQA (EM%)
N
o

10 4

#Length of Reasoning

60

50 4
N EEV(+SC)

GSM8K (EM%)
8

204

10 4

3 4
#Length of Reasoning

Figure 3: Three research directions to enhance the
LLM’s long-term reasoning ability: a) directly fine-
tuning LLM on the annotated data; b) verifying the
reasoning process by itself; ¢) Training an external veri-
fication model to guide the reasoning process.

to knowledge-intensive reasoning tasks, mathemat-
ical reasoning demands a higher level of detail in
the reasoning process, suggesting that EEV (+SC)
performs better in scenarios with stringent require-
ments for reasoning details.

4.3 Analysis

In this subsection, we first analyze the performance
of our proposed EEV model as verifier when used
with a closed-source model as a long-term reason-
ing generator. Then, we examine the performance
of different methods at various reasoning lengths.

4.3.1 Closed-source Model as Generator

We employ the closed-source model GPT3.5-turbo
as the generator for the inference process. To min-
imize computational expenses, we conduct tests
on a knowledge-intensive fact reasoning task and
a mathematical reasoning task, respectively. Ad-
ditionally, we did not evaluate the independent
verification method that closely aligns with our
proposed approach, as it requires substantial com-
putational resources due to the absence of shared
inference history. We compare the vanilla ReAct

method and the Self-Consistency method with our
proposed methods. The experimental results in Fig-
ure 2 demonstrate that our proposed EEV models
seamlessly integrates into the long-path inference
process of the closed-source model, yielding sig-
nificant performance improvements in both tasks.

4.3.2 Effect of Reasoning Length

In this subsection, we compare the variations in
inference accuracy of different methods across dif-
ferent lengths of reasoning. We conducte statistical
analysis on the HotpotQA and the GSM8K to exam-
ine the results. The findings as shown in Figure 3
demonstrate a clear performance advantage of our
proposed EEV model as the length of reasoning
increases, particularly in mathematical reasoning
tasks. This indicates that our method effectively ad-
dresses the performance degradation issue caused
by the error propagation, providing a promising
solution.

5 Related Works

Long-Term Reasoning Long-term reasoning
entails multi-step reasoning until reaching a final
outcome. The notorious issues of hallucination and
error propagation make long-term reasoning hard
even for the state-of-the-art LLMs. Knowledge-
intensive reasoning such as HotpotQA (Yang et al.,
2018), TriviaQA (Joshi et al., 2017), FEVER
(Thorne et al., 2018), CommmonsenseQA (Talmor
et al., 2018), StrategyQA (Geva et al., 2021), and
mathematical reasoning such as GSM8K (Cobbe
et al.,, 2021), MATH (Hendrycks et al., 2021),
MathQA (Amini et al., 2019), SVAMP (Patel et al.,
2021), AsDiv (Miao et al., 2021), are two main-
stream long-term reasoning tasks. Among various
reasoning methods, Chain-of-Thought (CoT) (Wei
et al., 2022) has demonstrated LLMs’ capability to
solve problems in a step-by-step manner, and much
of the follow-up methods can be seen as its modi-
fications and variants. Zhou et al. (2022), Kojima
et al. (2022) and Diao et al. (2023) explore vari-
ous design and selection methods of CoT prompts.
Yao et al. (2023) and Besta et al. (2023) refine the
structure of CoT to adapt to specific scenarios. In
view of the hallucination during reasoning, it is
practical to introduce external tools (Schick et al.,
2023), eg. a simulation engine (Liu et al., 2022),
a database (Yu et al., 2022), Wikipedia (Yao et al.,
2022), a code interpreter (Gao et al., 2023; Chen
et al., 2022), a calculator and a answer engine (Xu
et al., 2023). Among the array of approaches for in-

tegrating LLLM reasoning and tool invocation (Yao
etal.,2022; Xuetal., 2023; Ruan et al., 2023; Kong
et al., 2023), ReAct stands out by interleaving rea-
soning and tool calling, and incorporating external
feedback into the reasoning process. This charac-
teristic renders it a simple and effective multi-step
reasoning technique, notable for its interpretability
and applicability across various domains.
Verification The Verification mechanism aims to
enhance model performances by selecting the opti-
mal response among multiple generated candidates.
This mechanism can be categorized based on the
verifier: 1) Internal Verification: The model veri-
fies its own generated responses. Wang et al. (2022)
employs a majority voting mechanism. Zhao et al.
(2023) allows models to choose from CoT and
Program-Aided Language Models (PAL) results.
Weng et al. (2023) integrates forward reasoning
and backward verification to verify each reasoning
step. 2) External Verification: An independent ver-
ifier is trained to evaluate model responses (Cobbe
et al., 2021; Shen et al., 2021; Nichols et al., 2020;
Wang et al., 2023; Liu et al., 2023; Li et al., 2023).
Furthermore, Verification can also be divided into
two groups based on its granularity: 1) Outcome
supervision: Only verifying the final result. 2)
Process supervision: Verifying each step of the pro-
cess. While Uesato et al. (2022) illustrates similar
performance between ORM and PRM on GSMSK,
Lightman et al. (2023) advocates for the superior
performance of PRM on MATH.

6 Conclusion

In this paper, we propose an efficient and effective
verification (EEV) model to enhance the long-term
reasoning ability of large language models. This
method can significantly improve the long-term rea-
soning performance of large language models with-
out any parameter tuning. To address the serious
error propagation problem in traditional indepen-
dent verification methods, we propose an interac-
tive verification mechanism. In the data collection
stage, we obtain a large amount of contrastive data
based on the MCTS method, and then train the
verification model using pairwise ranking method,
which shows significant advantages compared to
directly learning the score scalars in independent
verification methods. Finally, we achieve consis-
tent performance improvements on five long-term
reasoning tasks, including multi-hop fact reasoning
tasks and complex data reasoning tasks.

Limitations

We proposed an efficient and effective verifier,
which largely enhances the LLM performance on
the long-term reasoning tasks. Due to the limita-
tion of budget and computation resource, the exper-
iments lack the performance on larger open-source
large language models and more powerful closed-
source models.

Ethical Considerations

As our EEV methods are validated on the existing
datasets, we follow the original copyright state-
ments of all the datasets. All claims in this paper
are based on the experimental results. No demo-
graphic or identity characteristics information is
used in this paper.

References

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong
Zhang. 2023. Active prompting with chain-of-
thought for large language models. arXiv preprint
arXiv:2302.12246.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764-10799. PMLR.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the

Association for Computational Linguistics, 9:346—
361.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Yilun Kong, Jingging Ruan, Yihong Chen, Bin Zhang,
Tianpeng Bao, Shiwei Shi, Guoqing Du, Xiaoru Hu,
Hangyu Mao, Ziyue Li, et al. 2023. Tptu-v2: Boost-
ing task planning and tool usage of large language
model-based agents in real-world systems. arXiv
preprint arXiv:2311.11315.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315-5333.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janard-
han Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel Ward,
and Yi Zhang. 2023. Tinygsm: achieving> 80% on
gsm8k with small language models. arXiv preprint
arXiv:2312.09241.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu,
Soroush Vosoughi, Claire Cui, Denny Zhou, and An-
drew M Dai. 2022. Mind’s eye: Grounded language
model reasoning through simulation. arXiv preprint
arXiv:2210.05359.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2021. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint
arXiv:2106.15772.

Eric Nichols, Leo Gao, and Randy Gomez. 2020. Col-
laborative storytelling with large-scale neural lan-
guage models. In Proceedings of the 13th ACM
SIGGRAPH Conference on Motion, Interaction and
Games, pages 1-10.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Xingyu Zeng, and Rui Zhao. 2023. Tptu: Task
planning and tool usage of large language model-
based ai agents. arXiv preprint arXiv:2308.03427.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. arXiv preprint arXiv:2109.03034.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai,
Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 2023.
Math-shepherd: A label-free step-by-step verifier
for llms in mathematical reasoning. arXiv preprint
arXiv:2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners

10

with self-verification. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
2550-2575.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao.

2022. ReAct: Synergizing Reasoning and Act-
ing in Language Models. arXiv e-prints, page
arXiv:2210.03629.

Wenhao Yu, Chenguang Zhu, Zhihan Zhang, Shuohang
Wang, Zhuosheng Zhang, Yuwei Fang, and Meng
Jiang. 2022. Retrieval augmentation for common-

sense reasoning: A unified approach. arXiv preprint
arXiv:2210.12887.

Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and
Qizhe Xie. 2023. Automatic model selection with
large language models for reasoning. arXiv preprint
arXiv:2305.14333.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629

	Introduction
	Preliminaries
	Methodology
	Verification Mechanism
	Data Construction
	Training Objective

	Experiments
	Experimental Setup
	Main Results
	Analysis
	Closed-source Model as Generator
	Effect of Reasoning Length

	Related Works
	Conclusion

