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Abstract
Large language models have garnered signifi-001
cant attention due to their demonstrated strong002
logical reasoning capabilities. However, there003
is still ample room for improvement in handling004
complex long-term reasoning problems. Direct005
fine-tuning LLM on domain-specific data is an006
effective approach, but it requires substantial007
financial costs. Another research line aims to008
efficiently enhance performance by leveraging009
the model’s inherent capabilities without tun-010
ing any parameters. They either utilize LLM’s011
fact evaluation ability for self-verification dur-012
ing logical reasoning or employ voting meth-013
ods to improve the consistency of the model’s014
decisions. However, due to inherent limita-015
tions in specific domains, the benefits of self-016
verification approaches are typically limited. In017
this paper, we propose a compromised method,018
which involves training a small verification019
model to evaluate the reasoning process of large020
models. To overcome the error propagation021
problem of traditional verification model, we022
further propose a contrast-enhanced verifica-023
tion model training framework. The experimen-024
tal results show that our proposed effective and025
efficient verifier (EEV) can achieve substantial026
performance gains on five datasets for multi-027
hop fact reasoning and long-term mathematical028
reasoning at a small cost.029

1 Introduction030

Large language models (LLM) have recently gar-031

nered significant attention due to their ability to032

address various tasks and exhibit strong reason-033

ing capabilities. However, even state-of-the-art034

LLMs fall short in complex long-term reasoning035

tasks, such as multi-hop fact reasoning and intri-036

cate mathematical problems. To tackle the com-037

plex tasks, it is often necessary for large models038

to possess the capability to invoke tools, which039

has led to the widespread adoption of ReAct mech-040

anism (Yao et al., 2022), inspired by the chain-041

of-thought (CoT) approach. This method dissects042

Figure 1: Three research directions to enhance the
LLM’s long-term reasoning ability: a) directly fine-
tuning LLM on the annotated data; b) verifying the
reasoning process by itself; c) Training an external veri-
fication model to guide the reasoning process.

complex problems into smaller components, itera- 043

tively obtaining the final solution through a three- 044

step process of thinking, tool usage, and observa- 045

tion feedback. In contrast to the CoT (Wei et al., 046

2022) method, ReAct (Yao et al., 2022) involves a 047

multi-step reasoning-feedback loop, with the rea- 048

soning context length noticeably increasing, posing 049

a substantial challenge to the LLM’s comprehen- 050

sion ability. Furthermore, as the reasoning process 051

continues, error propagation becomes increasingly 052

severe. These two critical factors restrict the per- 053

formance of LLMs in long-term reasoning. To 054

enhance the long-term reasoning capabilities of 055

LLMs, three primary research directions are be- 056

ing pursued: 1) Directly fine-tuning LLMs using 057

labeled data; 2) Improving the consistency of rea- 058

soning or optimizing the reasoning process through 059

self-verification using the inherent capabilities of 060

LLMs; 3) Utilizing small auxiliary models to eval- 061

uate the reasoning paths of LLMs and selecting the 062
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optimal reasoning process.063

Fine-tuning large language models, as shown in064

Figure 1(a), is a method that involves tuning the065

parameters of the model on annotated data, thereby066

enabling them to adapt to complex reasoning do-067

mains. However, this approach has several draw-068

backs. Firstly, it requires significant computational069

resources. Secondly, it can lead to the models for-070

getting knowledge from other domains, making071

the method unsuitable for scaling. Additionally,072

directly fine-tuning lacks transferability, as param-073

eters trained on one LLM cannot be easily applied074

to another. Furthermore, for closed-source LLMs,075

direct access to the model parameters for training076

is often not achievable.077

Increasing the long-term reasoning ability of078

LLM by its inherent capabilities, as shown in Fig-079

ure 1(b), is also popular, which is convenient to use080

and just need designs some prompts. Two methods081

can be employed to achieve this: 1) Choosing the082

most voted option at each step, which aims to im-083

prove the self-consistency of LLM decisions and084

mitigate uncertainty errors. 2) Evaluating differ-085

ent reasoning trajectories internally to select the086

optimal one, which reinforces the model’s under-087

standing of the reasoning process through explicit088

verification. Reasoning and verification are two dis-089

tinct perspectives of the same LLM regarding the090

reasoning process, operating independently. Com-091

pared with fine-tuning method, it is more efficient092

as they do not tuning any parameters. However,093

their performance improvement is normally lim-094

ited due to the inherent constraints of LLMs in095

specific domains and their inability to discern bet-096

ter reasoning paths autonomously.097

In this paper, we propose a method to enhance098

the long-term reasoning ability of LLMs by train-099

ing a small auxiliary verification model to assist in100

evaluating each step of the reasoning process, as101

shown in Figure 1(c). The auxiliary verification102

model serves as a compromise between the two103

aforementioned methods. Compared to directly104

fine-tuning the LLM, we only need to fine-tune a105

smaller model with parameters comprising only106

6.21% of a medium-sized 7B LLM’s parameters,107

significantly reducing the computational cost re-108

quired for parameter updates. Compared to uti-109

lizing the self-verification of the LLM, the auxil-110

iary verifier can make full use of domain-annotated111

data to evaluate the quality of the reasoning pro-112

cess. It achieves a good balance between training113

efficiency and reasoning performance. However,114

collecting data for training the auxiliary verifica- 115

tion model presents the biggest challenge. Inspired 116

by the independent verification method proposed 117

by Wang et al. (2023), we adopt the Monte Carlo 118

Tree Search (MCTS) method to simulate the execu- 119

tion of multi-step reasoning processes, collecting 120

positive and negative sample data by comparing 121

them with real annotated results. The independent 122

verification method is a result-supervised verifier 123

that selects the highest-scoring reasoning trajec- 124

tory among multiple randomly sampled trajectories 125

generated by the LLM. However, the independent 126

verification method suffers from the problem of 127

error propagation due to the lack of timely interven- 128

tion in the LLM’s reasoning process. In this paper, 129

we propose an interactive Effective and Efficient 130

Verifier (EEV) trained in a contrast-enhanced man- 131

ner, which selects the current optimal reasoning 132

process at each step, effectively alleviating the prob- 133

lem of error propagation. 134

In summary, our main contributions are as fol- 135

lows: 136

• We propose an effective and efficient verifica- 137

tion model, which has excellent transferabil- 138

ity and scalability. The EEV model is trained 139

on the automatic process-supervised data con- 140

structed by MCTS, which can efficiently adapt 141

to different LLMs. 142

• Our proposed interactive verification model 143

trained with pairwise ranking loss can largely 144

alleviate the error propagation problem in the 145

traditional independent verification model. 146

• We evaluate our proposed EEV with adequate 147

strong baselines on five different long-term 148

reasoning tasks. The EEV model achieves 149

significant performance improvements on all 150

of these tasks. 151

2 Preliminaries 152

Task Definition A long-term reasoning trajec- 153

tory of length M can be formulated as T = 154

(Q, s1, s2, ..., sM ) where Q is a given question, 155

{si}Mi=1 is a series of steps with the last one sM 156

presenting the final outcome. 157

ReAct is a long-term reasoning method that 158

employs LLM-based agents as a generator to 159

generate both reasoning traces and task-specific 160

actions in an interleaved manner. Each step si of a 161

ReAct trajectory consists of a thought ti, an action 162
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Figure 2: The three key processes of training and applying independent verifier and interactive verifier: 1) Training
data construction: Traditional independent verification method constructs data through random-sampling simulation,
while interactive verification method constructs data through contrast-enhanced MCTS; 2) Training objective design:
Independent verification method updates the scoring model by making the scoring function approach the absolute
value of the scoring of the sampled reasoning process, while interactive verification method learns by ranking
different reasoning processes; 3) Reasoning verification mechanism: Independent verification method first lets the
LLM randomly sample multiple full solutions and select the optimal one, while interactive verification method
selects the current optimal reasoning process at each step.

ai and an observation oi so that si = (ti, ai, oi).163

At i-th step, LLM generates a natural language164

thought ti and a task-specific action ai, and165

receives an observation oi from the environ-166

ment, based on the its history trajectory Ti−1 =167

(Q, (t1, a1, o1), (t2, a2, o2), ..., (ti−1, ai−1, oi−1))168

as input. Subsequently, (ti, ai, oi) will be ap-169

pended to the reasoning history, and the updated170

reasoning history Ti will serve as the input for171

LLM at the next step.172

Monte Carlo Tree Search (MCTS) is a heuristic173

search algorithm for decision processes, aimed to174

evaluate each possible action by simulating random175

action sequences and updating the estimation based176

on the simulation results. The core idea of MCTS177

involves performing four basic steps iteratively:178

selection, expansion, simulation, and backpropaga-179

tion. Starting from the root node, it selects child180

nodes based on a specific policy until reaching a181

leaf node. Then, it expands the tree by adding new 182

nodes. Next, it performs random simulations on 183

the expanded nodes to obtain evaluation values. Fi- 184

nally, it backpropagates the evaluation values to the 185

root node, updating the value estimates for each 186

action. 187

3 Methodology 188

In this section, we first propose our interactive ver- 189

ification mechanism. Subsequently, we present the 190

corresponding data construction pipeline contrast- 191

enhanced MCTS and training method based on the 192

pairwise ranking loss. We elaborate on the short- 193

comings of existing methods and demonstrate how 194

we have improved upon them. 195

3.1 Verification Mechanism 196

The external verification framework has a LLM- 197

based generator and a verifier . Multiple can- 198
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didate solutions (as well as reasoning trajectories)199

are first sampled from a generator, and then scored200

by a verifier. The solution with the highest score is201

selected as the final answer. The performance im-202

provement achieved by verification hinges on the203

accuracy of the verifier, and is also upper bounded204

by the quality of the candidate solutions.205

Independent verification (Wang et al., 2023)206

takes place after the entire generation is completed.207

The generator employs the full solution sampling208

that generates N independent inference trajecto-209

ries T = {Tj = (Q, s1,j , s2,j , ..., sM,j)}Nj=1. The210

trajectory selection strategy of the independent ver-211

ification is to select an optimal reasoning trajectory212

from all the generated candidates, which can be213

formulated as:214

INDV(T ) = argmax
Tj

A({S(si,j)}Mi=1),215

where S(·) and A(·) represent scoring and aggrega-216

tion function, respectively. The aggregation func-217

tion can be average operation, which represents218

selecting the trajectory with the largest average219

score.220

We propose an interactive verification mecha-221

nism, where verification process is performed im-222

mediately after each intermediate step is generated.223

At the i-th step, the generator generates N candi-224

date steps {si,j}Nj=1 based on the reasoning trajec-225

tory up to now Ti−1 = (Q, s1, s2, ..., si−1), and226

then the verifier evaluates and selects the best step227

si,∗ among them. The selected step si,∗ will be228

appended to the reasoning trajectory and used for229

the next generation. The production of the optimal230

reasoning trajectory can be formulated as:231

INTV(T ) = (Q, s1,∗, s2,∗, ..., sM,∗),232

si,∗ = argmax
si,j

S(si,j)233

The advantages of our proposed interactive verifi-234

cation mechanism are as follows:235

Higher performance upper bound Even if236

INDV is always capable of picking out the best,237

the quality expectation of the best solution selected,238

however, is relatively low due to the prevailing239

error propagation in full solution sampling. By240

integrating intermediate evaluation to generation241

step by step, our proposed interactive verification242

method effectively mitigates error propagation, re-243

sulting in an enhanced quality expectation of the244

best solution and thus a higher performance upper245

bound.246

Lower inference cost The ReAct method re- 247

quires waiting for external feedback before pro- 248

ceeding to the next step so that generator must 249

generate each step sequentially. In contrast to the 250

full solution sampling in independent verification, 251

the LLM-based generator in the interactive verifica- 252

tion mechanism generates intermediate candidate 253

steps based on the same reasoning history, thus re- 254

ducing the input tokens of generator to 1/N . The 255

number of tool calling is also 1/N since only the 256

verifier-selected action are executed at each step. 257

3.2 Data Construction 258

To train an interactive verifier, we need process- 259

supervised data with accurate step-wise annota- 260

tions. However, most datasets lack step-wise anno- 261

tations, and it is costly to resort to human annota- 262

tors. Wang et al. (2023) defines the quality of each 263

reasoning step as its probability of deducing the 264

correct answer and employs a MCTS-simulation- 265

based approach to annotate each step with comple- 266

tion success rate. Given a step si generated by a 267

generator, a simulator is used to generate N follow- 268

up completions {(si+1,j , ..., sMj ,j)}Nj=1, and the 269

percentage of simulated completions that eventu- 270

ally present the ground truth answer s* (i.e. the 271

completion success rate) is annotated as the simu- 272

lation score SIM(si) =

∑N
j=1 1(sMj,j

=s∗)
N . Common 273

pipeline for immediate-interactive data construc- 274

tion, which we refer to as post annotation, is similar 275

to post verification where step-by-step solutions are 276

first sampled by generators and then presented to 277

human annotators or automatic simulators. 278

We adopted the simulation method from the inde- 279

pendent verification mechanism (Wang et al., 2023). 280

To fully leverage the contrastive information within 281

the natural branching structure of search trees, we 282

propose a Contrast-enhanced MCTS pipeline. The 283

pipeline follows a step-by-step generation and sim- 284

ulation mechanism. For each question Q in the 285

original outcome-supervised-only dataset serving 286

as the root node, contrast-enhanced MCTS per- 287

forms the following three steps iteratively: 288

Expension Starting from the root Q, choose an ex- 289

plorable node si. The path from Q to si is the rea- 290

soning trajectory up to now Ti = (Q, s1, s2, ..., si), 291

based on which a generator generates N1 candidate 292

steps {si+1,j}N1
j=1 for the next stage. 293

Simulation For each candidate si+1,j , if it is a 294

intermediate step (i.e. internal node), a simulator 295

generates N2 completions {(si+2,j , ..., sLj ,j)}
N2
j=1 296
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and annotates it with the completion success rate.297

If si+1,j already presents the final answer (i.e. leaf298

node), annotate it directly with 0-1 label according299

to the correctness of the answer. The simulated300

annotations are denoted as {SIM(si+1,j)}N1
j=1301

Selection The highest-annotating one among all an-302

notated candidate steps {(si+1,j ,SIM(si+1,j))}N1
j=1303

will be chosen as the next node to explore, while304

the rest will be pruned and not further explored.305

As a result, the width of the search tree remains306

constant and quantities, where the constructed data307

contained positive samples and negative samples308

are balanced at each stage. If the chosen step hap-309

pens to be a leaf node presenting the final answer,310

the iteration terminates.311

In this case, a group of process-312

supervised data with shared reasoning history313

{(Ti, si+1,j ,SIM(si+1,j))}N1
j=1 can be gained at314

each level of each search tree. Each group contains315

abundant contrastive information, which we refer316

to as Constrast-enhanced Group.317

3.3 Training Objective318

Traditional independent verification model are319

trained with a binary cross-entropy loss (Wang320

et al., 2023; Cobbe et al., 2021; Li et al., 2023)321

aiming to generate an absolute score between 0 and322

1:323

LBCE = −(ys log rs + (1− ys) log(1− rs))324

where s is a reasoning step, rs is the score assigned325

by verification model and ys is the ground truth326

label.327

To effectively leverage contrast-enhanced328

groups, we propose a pairwise ranking loss with329

contrast-based weight and margin. During the330

training, a pair of positive and negative samples331

that differ in simulated scores ((sp, yp)), (sn, yn))332

(positive for a higher score) are selected from each333

contrast-enhanced group. The loss function works334

as follows:335

d = yp − yn,336

LRank = −W (d)∗ log(σ(rp − rn −M(d))),337

where W (·) and M(·) represent a weight function338

and a margin function, respectively. The loss func-339

tion we designed is mainly focused on the follow-340

ing aspects:341

Less biased within-group comparison Simu-342

lated annotations exhibit different degrees of bias.343

The simulated score for each reasoning step not344

only depends on its quality, but is also biased by 345

the difficulty of the problem to solve and the capa- 346

bility of the simulator. For example, for an easy 347

problem, the overall success rate of simulator’s 348

completions is high, resulting in both correct and 349

incorrect steps receiving relatively high scores. In 350

contrast, the simulated scores for both correct and 351

incorrect steps are much lower for a challenging 352

problem. Sometimes a correct step could receive 353

a lower score than an incorrect step, thus leading 354

to a inconsistency between the quality of the rea- 355

soning step and the corresponding annotation. As 356

a consequence, using BCE loss to train the veri- 357

fier to output an absolute score could confuse the 358

verifier. However, data within a contrast-enhanced 359

group shares the same reasoning history, thus their 360

simulated annotation share the same degree of bias. 361

While the absolute value of within-group annota- 362

tions are biased, their relative ranking are precise. 363

Therefore, We perform a within-group compari- 364

son as a circumvention, where the verifier learns 365

to pick out the best of a contrast-enhanced group 366

rather than to assign an absolute scalar. 367

More accurate contrastive information Fol- 368

lowing Touvron et al. (2023), a function M(·) is 369

introduced to set the margin based on the anno- 370

tation difference (yp − yn). Our verifier can be 371

guided to assign more differential scores to rea- 372

soning steps with more differences, thus providing 373

more accurate scoring. 374

Mitigating simulation errors Simulation errors 375

exist since a limited number of samplings are em- 376

ployed to simulate the real completion success rate. 377

So smaller annotation differences are more likely 378

to be noised by simulation errors. Therefore, we 379

introduce an annotation difference-based weight 380

function W (·) to assign more confidence to a more 381

differential pair. 382

4 Experiments 383

4.1 Experimental Setup 384

Datasets Our experiments on two major types 385

of long-term reasoning datasets. 1) Knowledge- 386

intensive reasoning: two multi-hop question an- 387

swering datasets HotpotQA, TriviaQA and a fact 388

verification dataset FEVER; 2) Mathematical rea- 389

soning: two math word problem datasets GSM8K, 390

MathQA. For datasets with private test sets, we 391

perform testing on the validation sets. 392

Baselines 1) Vanilla ReAct with greedy rea- 393

soning: LLM-based generator generates a single 394
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Models Method HotpotQA TriviaQA FEVER GSM8K MathQA

EM F1 EM EM EM EM

LLaMA2-7B-Chat

ReAct 22.2 30.2 40.6 40.8 5.0 5.2
Self-Verification 21.0 28.1 39.8 41.0 4.0 4.8
Self-Consistency 24.8 33.4 42.8 41.8 10.6 8.2
INDV 24.8 33.5 46.6 51.8 13.2 6.2
EEV 26.4 ▲1.6 35.7 ▲2.2 50.8 ▲4.2 58.4 ▲6.6 16.2 ▲3.0 7.2 ▼1.0

EEV (+SC) 29.0 ▲4.2 39.7 ▲6.2 52.4 ▲5.8 52.2 ▲0.4 18.8 ▲5.6 8.8 ▲0.6

Mistral-7B-Instruct-v0.2

ReAct 25.4 34.7 42.6 52.6 36.0 14.0
Self-Verification 24.4 33.0 43.2 52.2 33.8 13.0
Self-Consistency 30.4 40.6 53.8 54.2 42.8 19.4
INDV 27.6 39.7 55.2 60.0 34.6 17.8
EEV 27.4 ▼3.0 38.0 ▼2.6 59.4 ▲5.6 64.6 ▲4.6 43.6 ▲0.8 18.2 ▼1.2

EEV (+SC) 34.2 ▲3.8 44.3 ▲3.7 58.6 ▲4.8 60.2 ▲0.2 52.0 ▲9.8 21.8 ▲2.4

Table 1: Evaluation long-term reasoning ability of LLMs on five tasks. There are two LLMs as the generator:
LLaMA2-7B-Chat and Mistral-7B-Instruct-v0.2. EEV and EEV (+SC) are our proposed method. Self-Verification
and Self-Consistency leverage the inherent ability to enhance the long-term reasoning performance, which do not
need tuning any parameters. INDV is independent verification model, which is trained with BCE loss.

reasoning trajectory by greedy decoding; 2) Self-395

Verification: LLM as a verifier selects its preferred396

reasoning steps; 3) Self-Consistency (SC): majority397

voting based on multiple reasoning trajectories that398

LLM-based generator randomly sampled; 4) INDV:399

a process-supervised verifier with the same archi-400

tecture as EEV, trained by binary cross-entropy401

loss on data constructed by random-sampled sim-402

ulation, performs independent verification. Not-403

ing that due to computational resource limitations,404

we did not implement a direct fine-tuning experi-405

ment of the large language model. The proposed406

method is a LLM-parameter-agnostic approach, so407

we compared it directly with all other methods of408

the same type that do not require LLM’s parameter409

fine-tuning.410

Implementations All generator perform reasoning411

with tool calling in a ReAct manner. For retrieval412

augmented knowledge-intensive reasoning, genera-413

tors are equipped with a Wikipedia API following414

Yao et al. (2022), by which they are able to re-415

trieve related information to help answer questions.416

For program aided mathematical reasoning, python417

compiler-based calculator and equation solver are418

introduced to help numerical and algebraic opera-419

tions. For knowledge-extensive reasoning, we em-420

ploy Llama2-7b-chat as the generator and simulator421

for data construction. For mathematical reasoning,422

we employ Mistral-7b-instruct as the generator and423

simulator for data construction. Random-sampled424

simulation in the INDV baseline are using the same425

LLMs. Our EEV model and INDV verifier uses426

Longformer-large (Beltagy et al., 2020) as its back- 427

bone. We test our proposed verifier with Llama2-7- 428

chat, Mistral-7b-instruct and GPT-3.5-turbo API. 429

4.2 Main Results 430

In this subsection, we compare our proposed EEV 431

method based on interactive verification with four 432

other strong baselines that do not require fine- 433

tuning the LLM parameters on five tasks. The 434

five different types of tasks include two knowledge- 435

intensive multi-hop fact reasoning tasks and three 436

complex mathematical reasoning tasks. Except for 437

the HotpotQA task, which used F1 as the metric, 438

all the other tasks only used EM (exact match accu- 439

racy) as the metric, where only the final inference 440

result of the LLM matches the annotated result to 441

be considered correct. 442

To verify the stability of our proposed method, 443

we select two 7B-scale instruction-tuned LLMs as 444

generators in the experiment: LLaMA2-7B and 445

Mistral-7B-V2. The EEV method selects the best 446

inference process at each step during the inference 447

process of LLM-based generators, combined with 448

the influence of self-consistency. It first selects the 449

actions of calling tools according to different in- 450

ference processes for voting, and then scores the 451

inference processes corresponding to different vot- 452

ing actions, thus proposing the EEV (+SC) method. 453

Compared with the vanilla ReAct method, the 454

self-verification method uses the large language 455

model itself as the scorer to select the inference 456

process it prefers from multiple inference processes. 457

The experimental results in Figure 1 show that the 458
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Model Method HotpotQA GSM8K

EM F1 EM

GPT-3.5-turbo

ReAct 21.8 28.0 63.4
Self-Consistency 22.6 29.0 67.4
EEV 31.0 39.8 68.8
EEV (+SC) 28.0 36.7 74.4

Table 2: Evaluate that closed-source model (GPT3.5-
turbo) as generator and EEV as verifier on one multi-hop
fact reasoning task (HotpotQA) and one mathematical
reasoning task (GSM8K).

self-verification method cannot improve the long-459

term reasoning performance of the large language460

model itself.461

The self-consistency method is another method462

that utilizes the capabilities of LLM to improve463

the reasoning effect. It selects the inference pro-464

cess with the most votes among multiple sampling465

reasoning processes according to the selected in-466

ference action. The experimental results in Fig-467

ure 1 show that compared with the vanilla ReAct468

method, the self-consistency method can consis-469

tently improve the performance of the long-term470

reasoning process. The main reason for this is that471

it references different inference processes and main-472

tains the stability of the LLM’s inference process473

through voting.474

Independent verification is the method closest475

to our proposed interactive verification. Indepen-476

dent verification trains the scoring model through477

directly learning the score values, while our pro-478

posed interactive verification trains through sort-479

ing different inference processes, and the training480

data is collected through our improved contrast-481

enhanced MCTS process. The experimental results482

in Figure 1 show that our model can perform better483

on these long-term reasoning tasks. The scoring484

model trained through contrastive learning enables485

our proposed method to effectively distinguish be-486

tween inference processes with subtle differences.487

Compared to the EEV method, the EEV (+SC)488

approach demonstrated substantial performance489

gains in four out of five tasks utilizing LLaMA490

as the generator, with a notable decrease in per-491

formance observed on the FEVER dataset. When492

Mistral was employed as the generator, three tasks493

exhibited significant improvements, while slight494

decreases were observed on TriviaQA and FEVER.495

Our findings indicate that the EEV (+SC) method496

consistently enhanced performance for complex497

mathematical reasoning tasks. Notably, compared498

Figure 3: Three research directions to enhance the
LLM’s long-term reasoning ability: a) directly fine-
tuning LLM on the annotated data; b) verifying the
reasoning process by itself; c) Training an external veri-
fication model to guide the reasoning process.

to knowledge-intensive reasoning tasks, mathemat- 499

ical reasoning demands a higher level of detail in 500

the reasoning process, suggesting that EEV (+SC) 501

performs better in scenarios with stringent require- 502

ments for reasoning details. 503

4.3 Analysis 504

In this subsection, we first analyze the performance 505

of our proposed EEV model as verifier when used 506

with a closed-source model as a long-term reason- 507

ing generator. Then, we examine the performance 508

of different methods at various reasoning lengths. 509

4.3.1 Closed-source Model as Generator 510

We employ the closed-source model GPT3.5-turbo 511

as the generator for the inference process. To min- 512

imize computational expenses, we conduct tests 513

on a knowledge-intensive fact reasoning task and 514

a mathematical reasoning task, respectively. Ad- 515

ditionally, we did not evaluate the independent 516

verification method that closely aligns with our 517

proposed approach, as it requires substantial com- 518

putational resources due to the absence of shared 519

inference history. We compare the vanilla ReAct 520
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method and the Self-Consistency method with our521

proposed methods. The experimental results in Fig-522

ure 2 demonstrate that our proposed EEV models523

seamlessly integrates into the long-path inference524

process of the closed-source model, yielding sig-525

nificant performance improvements in both tasks.526

4.3.2 Effect of Reasoning Length527

In this subsection, we compare the variations in528

inference accuracy of different methods across dif-529

ferent lengths of reasoning. We conducte statistical530

analysis on the HotpotQA and the GSM8K to exam-531

ine the results. The findings as shown in Figure 3532

demonstrate a clear performance advantage of our533

proposed EEV model as the length of reasoning534

increases, particularly in mathematical reasoning535

tasks. This indicates that our method effectively ad-536

dresses the performance degradation issue caused537

by the error propagation, providing a promising538

solution.539

5 Related Works540

Long-Term Reasoning Long-term reasoning541

entails multi-step reasoning until reaching a final542

outcome. The notorious issues of hallucination and543

error propagation make long-term reasoning hard544

even for the state-of-the-art LLMs. Knowledge-545

intensive reasoning such as HotpotQA (Yang et al.,546

2018), TriviaQA (Joshi et al., 2017), FEVER547

(Thorne et al., 2018), CommmonsenseQA (Talmor548

et al., 2018), StrategyQA (Geva et al., 2021), and549

mathematical reasoning such as GSM8K (Cobbe550

et al., 2021), MATH (Hendrycks et al., 2021),551

MathQA (Amini et al., 2019), SVAMP (Patel et al.,552

2021), AsDiv (Miao et al., 2021), are two main-553

stream long-term reasoning tasks. Among various554

reasoning methods, Chain-of-Thought (CoT) (Wei555

et al., 2022) has demonstrated LLMs’ capability to556

solve problems in a step-by-step manner, and much557

of the follow-up methods can be seen as its modi-558

fications and variants. Zhou et al. (2022), Kojima559

et al. (2022) and Diao et al. (2023) explore vari-560

ous design and selection methods of CoT prompts.561

Yao et al. (2023) and Besta et al. (2023) refine the562

structure of CoT to adapt to specific scenarios. In563

view of the hallucination during reasoning, it is564

practical to introduce external tools (Schick et al.,565

2023), eg. a simulation engine (Liu et al., 2022),566

a database (Yu et al., 2022), Wikipedia (Yao et al.,567

2022), a code interpreter (Gao et al., 2023; Chen568

et al., 2022), a calculator and a answer engine (Xu569

et al., 2023). Among the array of approaches for in-570

tegrating LLM reasoning and tool invocation (Yao 571

et al., 2022; Xu et al., 2023; Ruan et al., 2023; Kong 572

et al., 2023), ReAct stands out by interleaving rea- 573

soning and tool calling, and incorporating external 574

feedback into the reasoning process. This charac- 575

teristic renders it a simple and effective multi-step 576

reasoning technique, notable for its interpretability 577

and applicability across various domains. 578

Verification The Verification mechanism aims to 579

enhance model performances by selecting the opti- 580

mal response among multiple generated candidates. 581

This mechanism can be categorized based on the 582

verifier: 1) Internal Verification: The model veri- 583

fies its own generated responses. Wang et al. (2022) 584

employs a majority voting mechanism. Zhao et al. 585

(2023) allows models to choose from CoT and 586

Program-Aided Language Models (PAL) results. 587

Weng et al. (2023) integrates forward reasoning 588

and backward verification to verify each reasoning 589

step. 2) External Verification: An independent ver- 590

ifier is trained to evaluate model responses (Cobbe 591

et al., 2021; Shen et al., 2021; Nichols et al., 2020; 592

Wang et al., 2023; Liu et al., 2023; Li et al., 2023). 593

Furthermore, Verification can also be divided into 594

two groups based on its granularity: 1) Outcome 595

supervision: Only verifying the final result. 2) 596

Process supervision: Verifying each step of the pro- 597

cess. While Uesato et al. (2022) illustrates similar 598

performance between ORM and PRM on GSM8K, 599

Lightman et al. (2023) advocates for the superior 600

performance of PRM on MATH. 601

6 Conclusion 602

In this paper, we propose an efficient and effective 603

verification (EEV) model to enhance the long-term 604

reasoning ability of large language models. This 605

method can significantly improve the long-term rea- 606

soning performance of large language models with- 607

out any parameter tuning. To address the serious 608

error propagation problem in traditional indepen- 609

dent verification methods, we propose an interac- 610

tive verification mechanism. In the data collection 611

stage, we obtain a large amount of contrastive data 612

based on the MCTS method, and then train the 613

verification model using pairwise ranking method, 614

which shows significant advantages compared to 615

directly learning the score scalars in independent 616

verification methods. Finally, we achieve consis- 617

tent performance improvements on five long-term 618

reasoning tasks, including multi-hop fact reasoning 619

tasks and complex data reasoning tasks. 620
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Limitations621

We proposed an efficient and effective verifier,622

which largely enhances the LLM performance on623

the long-term reasoning tasks. Due to the limita-624

tion of budget and computation resource, the exper-625

iments lack the performance on larger open-source626

large language models and more powerful closed-627

source models.628

Ethical Considerations629

As our EEV methods are validated on the existing630

datasets, we follow the original copyright state-631

ments of all the datasets. All claims in this paper632

are based on the experimental results. No demo-633

graphic or identity characteristics information is634

used in this paper.635
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