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ABSTRACT
The recent decade witnessed a surge of increase in financial crimes
across the public and private sectors, with an average cost of scams
of $102m to financial institutions in 2022. Developing a mechanism
for battling financial crimes is an impending task that requires
in-depth collaboration from multiple institutions, and yet such
collaboration imposed significant technical challenges due to the
privacy and security requirements of distributed financial data. For
example, consider the modern payment network systems, which
can generate millions of transactions per day across a large number
of global institutions. Training a detection model of fraudulent
transactions requires not only secured transactions but also the
private account activities of those involved in each transaction
from corresponding bank systems. The distributed nature of both
samples and features prevents most existing learning systems from
being directly adopted to handle the data mining task. In this paper,
we collectively address these challenges by proposing a hybrid
federated learning system that offers secure and privacy-aware
learning and inference for financial crime detection. We conduct
extensive empirical studies to evaluate the proposed framework’s
feasibility and scalability. The codes will be released in the future.

ACM Reference Format:
Haobo Zhang, JunyuanHong, FanDong, Steve Drew, Liangjie Xue, and Jiayu
Zhou. 2023. A Privacy-Preserving Hybrid Federated Learning Framework
for Financial Crime Detection. In KDD FL4Data-Mining ’23, August 7, 2023,
Long Beach, CA, USA.. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Over the past decade, financial crime has been on the rise, causing
significant harm to industries and hindering innovation. Efforts
to combat these crimes have led to the establishment of infras-
tructures such as the U.S. Department of the Treasury’s Financial
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Figure 1: Financial crime detection needs collaborative ef-
forts from multiple financial institutions. A typical trans-
action moves funds between two accounts in two financial
institutions. To determine if a transaction is fraudulent or
not, we rely on a collective analysis of the information as-
sociated with the transaction and information of the source
and target accounts at different institutions. Building models
require learning and inference across private and distributed
databases in different institutions, which imposes significant
challenges and demands a novel learning paradigm.

Crime Enforcement Network (FinCen) [19]. However, criminals
have continuously evolved their techniques, making it harder to
detect financial crimes using conventional methods.

More recently, financial institutions have sought to use artifi-
cial intelligence and machine learning to analyze real-time data
to identify financial crimes. Although AI and ML have shown to
be very promising [20], the AI system needs to access a variety of
data, including samples and features, to fully leverage the powerful
modeling capability.

As such, data-driven detection models of financial crimes require
the collaboration of multiple financial institutions during both the
training and inference stages. For instance, in the case of detecting
fraudulent wire transactions in payment network systems, the anal-
ysis requires the joint examination of transaction information from
the server, account activities of the source account from the corre-
sponding bank, and activities of the target account from another
bank.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Both transactions and bank account activities are very sensitive
data owned by different financial institutions, and learning a model
requires privacy-aware collaborative learning. With the increasing
demand and law regulation (e.g., General Data Protection Regula-
tion) for learning from distributed data without directly sharing
them, the federated learning paradigm has been developed and
attracted great efforts from the data mining and machine learning
community. The most common type is horizontal federated learn-
ing, in each iteration of which a central server retrieves updated
models from participating clients using partial samples and then
sends the aggregated model to them for iterative updates. Vertical
federated learning, on the other hand, handles the setting where
clients have different parts or features of the same set of samples.
However, the distributed and private nature of both samples and fea-
tures prevents most existing learning systems from being directly
adopted to handle the financial crime prediction task. Besides the
learning stage, the inference stage of the model also needs private
information from distributed parties.

In this paper, we develop a novel and holistic privacy-preserving
approach for financial crime detection from distributed and private
financial information. To achieve this goal, the proposed solution
leverages a hybrid of vertical and horizontal federated learning of
the transaction client and account clients. From the vertical perspec-
tive, the transaction client (e.g., the server) will share extracted fea-
tures with account clients (e.g., banks) for collaborative prediction;
from the horizontal perspective, the bank units will collaboratively
train a unified encoder to extract features from private account
information. We combine them by fusing the features from the
two involved parties and leveraging new features to train a predic-
tive model in the transaction client. The proposed solution consid-
ers comprehensive privacy risks and associated attacks, including
model inversion [9], privacy attribute inference [15], membership
inference [21], and feature leakage. To protect against these risks,
the proposed system combines strategies including noise injection,
local feature extraction, and encryption technique.

Further results support the feasibility of our framework to col-
laboratively train a fraud-detection model while preserving data
privacy. As such, it provides a powerful financial crime detection
tool to securely and privately conduct collaborative data analysis
from multiple financial institutions. Also, the proposed collabora-
tive framework provides a powerful tool for law enforcement to
conduct financial crime detection while protecting the privacy of
participating financial institutions.
Real-world Impacts.As financial crimes cost hundreds of millions
per year, financial fraud detection is a real-world challenge whose
solution is urgently needed in financial companies. Further, fraud
detection needs data from different financial institutions, which is
sensitive and private. Thus, we highlight the scientific contribu-
tion of our work as a holistic framework for privacy-preserving
collaboratively training of hybrid federated learning, as well as an
applicable paradigm to solve financial fraud detection as a critical
real-world challenge.

2 BACKGROUND
Financial crime detection. Detecting financial crime has been an
ongoing challenge, where the goal is to identify abnormal trans-
actions, including fraud transactions, anomalous payments, and
money laundering [16, 17, 20]. As money transfer transactions
involve multiple parties, their sophisticated patterns of evolving
financial crimes demand joint data analysis from multiple financial
institutions. To develop a data-driven financial crime detection sys-
tem, a machine learning model has to combine the features from
the two systems in order to predict crime behaviors precisely. How-
ever, data records in the transaction client and banks are located
distributedly and cannot be shared due to their sensitive nature. As
such, it is challenging to combine the information sources.
Distributed federated learning and its challenges. To enable
distributed machine learning that conforms to data privacy, fed-
erated learning (FL) does not require data to be directly shared
but instead trains a model collaboratively from distributed clients
(data sources). The main idea of federated learning is to aggregate
knowledge without sharing raw data from multiple clients through
locally-trained models [28]. Depending on the status of feature
and data splitting, FL can be further categorized into two classes:
vertical and horizontal federated learning [27, 30]. Vertical feder-
ated learning learns a model that predicts targets based on features
concatenated from different clients with synchronized sample in-
dexes. On the other hand, horizontal federated learning maintains
the same feature space while collecting non-overlapped data from
clients.

Existing FL frameworks cannot be directly adopted in the collab-
orative learning task of financial crime detection due to their hybrid
nature: the vertical relation between the account clients and transac-
tion clients and the co-existing horizontal relation between different
banks. Account clients and transaction clients need to share fea-
tures for prediction, but the corresponding account client is joined
based on the account identification (e.g., an account number or
a public key address in blockchains) in transactions. Meanwhile,
account clients have to share knowledge such that a more powerful
model can be trained.
Privacy risks in federated crime detection and mitigation.
Like other FL frameworks, there are non-neglectable privacy risks
in hybrid FL on data sharing and model publishing. We consider
the following four types of privacy risks in this paper: Model inver-
sion: model inversion leaks information reversing the final trained
model [9]. By setting up an appropriate loss, optimization-based
methods can be used to estimate the original input. Attribute infer-
ence: the correlations between features can be leaked via attribute
inference with the support of some accessible features like some
public data [13, 15]. Membership inference: while one can infer
whether or not a given data point is present in the training set
using membership inference [14, 21]. Feature leakage: extracted
features can also be leaked from untrusted units to third parties,
i.e., the feature leakage risk.

There have been three main-stream strategies to defend against
privacy risks. Differential privacy (DP) adds Gaussian noise or Lapla-
cian noise to the gradients during the training process [1, 23] to
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defend various attacks. Then the differential privacy property guar-
antees that it is difficult to distinguish two adjacent datasets. Homo-
morphic encryption (HE) ensures that users can perform computa-
tion on encrypted data without first decrypting it [2, 8], with which
two nodes can operate the encrypted data without leaking the orig-
inal data to the third party. Adversarial privacy-disentanglement
(ADV) aims to adversarially remove the known privacy attribute
from the learned representations while preserving the utility at-
tributes [25, 26]. However, DP and ADV lead to the degradation of
model performance, while HE suffers from high computation costs
and limited computation operation.

3 PROPOSED METHOD
To address the challenges in the previous section, we hereby pro-
pose a novel Hybrid Federated Learning (HyFL) framework that
integrates the vertical and horizontal frameworks smoothly.

Figure 2: The federated setup and three key participants of
the proposed HyFL framework: 1) A server responsible for
information aggregation; 2) account clients: a set of finan-
cial institutions owning meta information of accounts; 3) A
transaction client that owns private transactions and their
labels (abnormal or not).

For simplicity of discussion without the loss of generality, we
assume that one transaction client (Tx client) has all private trans-
action data, and the private account metainformation is stored in a
set of account clients (Ac clients) separately. During the training
phase, the label information (whether or not a transaction is marked
as fraud) is stored in the transaction client with an option to be
stored in the aggregation server as well. In that case, since the data
in account clients share the same dimensions of features, they can
be viewed as the clients in a horizontal FL setting. Compared to the
transaction client, account clients have different features even for
the same transaction. As a result, a vertical FL setting will apply
between the account clients and transaction clients. We illustrate
the federated setup and key components in Figure 2.
Notations.We now introduce the notations to be used in this paper.
Formally, consider a set of 𝑀 + 1 clients {1, 2, ..., 𝑀 + 1} with 𝑀

account clients and one transaction client. Define a dataset D =

{(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1. In the vertical FL setting, each client𝑚 has a subset of

the features from D, i.e., D𝑚 = {x𝑖,𝑚}𝑁
𝑖=1, where x𝑖,𝑚 contains the

features of x𝑖 stored in the client𝑚. The label set {𝑦𝑛}𝑁𝑖=1 can be
stored on either a client or the server. In the horizontal FL setting,
each client𝑚 has a partition of the dataset, i.e., D𝑚 = {(x𝑖 , 𝑦𝑖 )}𝑁𝑚

𝑖=1 ,
where 𝑁𝑚 is the size of data stored in client 𝑚. The label set is
stored with the data on each client in horizontal settings.

3.1 Framework Overview
In this section, we give an overview of our proposed framework.
First, we define three types of computation nodes, based on which
we propose our hybrid federated learning framework. Then we
introduce three phases in the training stage, where an auto-encoder
is trained on the account data and used to extract the feature em-
bedding. Then a classifier is trained in the transaction client to
detect potential financial crime.
Computation Nodes and Learning Framework. In the proposed
system, we coordinate two types of computation nodes and a server
for hybrid federated learning.
(1) The transaction client consists of a set of features describing

the transactions for the identification of anomalies in our data,
as well as the labels indicating whether a transaction involves
a crime or not. With the information, the transaction client is
able to train a classifier locally and independently and store the
classifier parameters locally.

(2) The account clients maintain account activities with their cor-
responding meta-information (e.g., account flags). The account
information provides complementary information for detecting
anomalies, as many criminal behaviors are related to historical
account activities. We use an autoencoder as a feature extractor
of flags in account clients.

(3) A computation server aggregates the feature extractors from
the account clients and sends the feature embedding from the
account clients to the transaction client.

Three Phases in the Training Stage. The proposed learning
framework has three phases in the training stage:
(1) (Feature learning) First, each account client trains a model to

extract the feature embedding of the stored accounts data. Since
there is no label stored in an account client, an auto-encoder
is trained in a self-supervised fashion. Define the encoder and
decoder as ℎ(·) and ℎ′ (·). With a global initialization of ℎ𝜙 , ℎ′𝜓 ,
each client will train the models locally by

𝜙𝑚, 𝜙 ′𝑚 = argmin𝜙,𝜙 ′
∑︁𝑁𝑚

𝑖=1

ℎ′𝜙 ′ (ℎ𝜙 (x𝑖 )) − x𝑖
2
2
. (1)

When the number of account clients is very large, federated
learning of the model has a large communication overhead.
To reduce the overhead, the parameters of auto-encoders are
aggregated in the server only once after the training in each
account client:

𝜙 =
1
𝑀

∑︁𝑀

𝑚=1
𝜙𝑚, 𝜙 ′ =

1
𝑀

∑︁𝑀

𝑚=1
𝜙 ′𝑚 . (2)

Then the aggregated auto-encoder will be broadcast back to all
the account clients.

(2) (Extract features) Second, the account clients use the trained
auto-encoder to extract the feature embedding of their local
account data as F𝑚 = {ℎ𝜙 (x𝑖 )}𝑁𝑚

𝑖=1 . Then, the transaction client
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will request the corresponding feature embeddings by querying
account numbers.

(3) (Classifier training) On receiving the embeddings, the trans-
action client will ensemble the account features with the trans-
action features as {([x𝑖,𝑚1 , x𝑖,𝑚2 , x𝑖,𝑀 ], 𝑦𝑖 )}, where x𝑖,𝑚1 , x𝑖,𝑚2
are the two account embeddings associated with the transac-
tions. To protect data privacy from model inversion and mem-
bership inference, Gaussian noise is added to the concatenated
features. A high-capacity model such as XGBoost [6] or neural
networks (denoted as 𝑓 (·)) is then trained for predicting 𝑦𝑖 , i.e.,
𝑓 ( [x𝑖,𝑚1 , x𝑖,𝑚2 , x𝑖,𝑀 ]).
Although our framework follows the client-server paradigm,

where a dedicated server communicates with all clients, our frame-
work can also work in a peer-to-peer (P2P) paradigm without a
server: feature embeddings can be directly sent from the account
clients to the transaction client.

3.2 Threat Model and Privacy Risk Sources
The successful design of privacy-awareness machine learning sys-
tems depends on a realistic threat model and analysis of possible
risk sources. Based on our proposed HyFL framework, we elabo-
rate on the threat models. We first introduce four types of possible
attacks. In the threat model, the privacy risk arises from the com-
munications between any two nodes which could be of either the
same or different types. We also discuss the privacy risks at the
inference stage in addition to the communication during training.
Privacy Risk Sources. The privacy risks of the proposed frame-
work are four-fold. First, gradient inversion targets recovering input
data from a trained model. Sensitive information, such as data
points, may be recovered from model parameters or gradients via
this attack. Another attack on the final trained model is the mem-
bership inference, which infers a specific data point in the training
set by evaluating the difference between the distribution of train-
ing data and test data. By stealing the latent correlations among
features, attribute inference can infer private information. There
are also risks from unreliable units in the framework, where the
feature leakage can happen to extracted features. We give more
formal definition of these privacy risk sources in appendix A.
Threat Model. A majority of FL systems focus on the honest but
curious nodes, i.e., one type of node will try to recover the data
from the other two types of nodes, but it will not modify the model
or features [12]. In this work, we consider a comprehensive threat
model by further assuming that the nodes of different types are
potentially honest but curious. Benefit from our framework, there
is no direct communication between the transaction client and the
server, so we can only investigate potential privacy risk sources
from communications between two combinations of nodes:
(1) During the communication between the aggregation server

and account clients, model updates from account clients are
sent to the server, which leads to direct gradient inversion
risk as well as the membership inference. Also, optimization-
based methods can be utilized to estimate private attributes
with the support of some possible public data, which is the risk
of attribute inference.

(2) During the communication between the account clients and
the transaction client, features from the account clients will

be sent to the server, which raises the problem of feature leak-
age. Since the transaction has no access to the account clients’
model, there is no risk of either model inference or attribute
inference. However, with the features from the account clients,
membership can be inferred by the transaction client.

(3) The final risk lies in the transaction client. In the inference stage,
attackers can utilize the predictive model in the transaction
client to complete membership inference or attribute inference.
We introduce the details of privacy risk in the inference stage
in appendix A.

Solutions. Targeting the four privacy risk sources, we propose to
adopt various defense mechanisms in our framework to protect pri-
vacy. (1) To defend the model inversion and membership inference
attack, we add Gaussian noise to the data in the transaction clients
before training the classifier, which confuses the inversion or in-
ference attackers from the real features. (2) To defend the attribute
inference attack, we keep the encoder model only to account clients
and away from the transaction client such that the transaction
client cannot recover the sensitive attribute. (3) We also leverage
encryption during the communication so that the server cannot
recover the original features from model parameters.

4 SYSTEM IMPLEMENTATION
In this section, we describe the technical details of our novel Hybrid
Federated Learning (HyFL) framework. We introduce the training
and inference stages, approaches to preserve privacy during the
two stages, and techniques to increase the scalability of our frame-
work and make it feasible. We first introduce a vanilla framework
as the backbone of our framework. Then we enhance the vanilla
framework with privacy-preserving approaches.

Algorithm 1 Vanilla HyFL Framework without Privacy Protection.
Input: Transaction features without account meta information in the trans-

action (Tx) client
Input: Accounts associated with account meta information in account (Ac)

clients
Ac clients locally train 𝜙𝑚, 𝜙 ′

𝑚 with Eq. (1)
Server aggregates 𝜙𝑚, 𝜙 ′

𝑚 with Eq. (2) and returns the extractors to Ac
clients
while Training or Inference do

Tx client sends accounts to account clients
Ac clients (1) query and extract features according to the accounts,
(2) send extracted features to transaction client
Tx client receives the extracted features and makes a prediction.

At the beginning of our framework, the account clients train their
feature extractors locally. Then the server collects and aggregates
these trained extractors and sends the aggregated extractor back to
the account clients. Since a portion of the features and the labels
are stored in the transaction client, both the training and inference
stages start from the transaction client. We can either directly use
the original features or use a feature extractor to extract features,
depending on the size of the features used. If the feature size is
small, then we can work with the original feature space. Otherwise,
if high-dimensional data such as text and images are used, then
we recommend using a feature extractor for dimension reduction.
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Next, the original or extracted features will be sent to the server.
The transaction client will use account identifiers to query for
the corresponding features stored in the account clients. When an
account client receives a query from the transaction client for a
specific account, it searches for the corresponding account features
(e.g., flags) and uses a feature extraction model to generate the
intermediate features. Then the extracted features will be sent back
to the transaction client to predict the final label. Due to the lack
of labels in account clients, we propose to use an unsupervised
model as our feature extractor, and the autoencoder [3, 24] is an
ideal instantiation. Our final implementation uses XGBoost [6] as
the classifier in the transaction client for its strong performance in
classification tasks. This concludes the backbone of our framework,
which we call the vanilla HyFL framework. The framework of
training and inference stages is summarized in Algorithm 1 in the
appendix. Note that in the vanilla HyFL framework, the server
only has the model of feature extractors, but no features from the
account clients. On the other hand, the transaction client only has
the extracted features but not the encoders, so it cannot recover
the data from the features only.

Privacy Preserving Enhancement. To tackle the three privacy
risk sources, we enhance our framework through the lens of several
privacy-preserving methods, including differential privacy mech-
anisms, feature sharing, and homomorphic encryption. The risk
sources are first analyzed for each communication, then targeted
solutions are identified correspondingly.

(1) The first risk source is the model sharing from account clients
to the server, which induces the risk of inference attacks and
inversion attacks. To address this issue, we adopt encryption
to encrypt the model parameters before sending them to the
server. Without the private key, the server cannot decrypt the
data but can still aggregate the encrypted parameters.

(2) Another risk source is the feature sharing from the account
clients to the transaction client. To alleviate the risk of attribute
inference attacks and feature leakage, instead of directly send-
ing the original account meta information themselves, a feature
extractor is adopted by the account clients. Without access to
the model in the account clients, the transaction client can-
not recover the original account data with only the extracted
features.

(3) The final risk source is that in the inference stage, the predic-
tive model in the transaction client may be used to infer the
membership or private attribute. To mitigate this problem, we
add privacy-protecting Gaussian noise to the data in the trans-
action client before training the classifier. Note that our data
is in tabular form. In that case, unlike image data, some little
perturbation can lead to fidelity. Normalization to the standard
normal distribution is utilized as well before the noise injection,
which changes the distribution of original data, making it even
more difficult to recover the data for the attackers.

Strengthening our vanilla HyFL frameworkwith the above privacy-
preserving enhancement and feasible scalability improvement, we
illustrate the final HyFL framework in Algorithm 2. The key differ-
ence versus Algorithm 1 is the encryption and noise mechanism
for privacy protection.

Figure 3: Communication protocol and information flow
between the clients and the server in our proposed HyFL.
(1) The account clients train the feature extractors locally.
(2) The account clients send the extractors to the models
and receive the aggregated model from the server. (3) The
transaction client requests account meta information from
the account clients by sending account identifiers. (4) The
account clients send the features back to the transaction
client.

Algorithm 2 The proposed HyFL framework.
Input: Transaction features without account meta information in

the transaction (Tx) client
Input: Account meta information in account (Ac) clients
Ac clients (1) locally train 𝜙𝑚, 𝜙 ′𝑚 with Eq. 1 and send to the
server
Server aggregates𝜙𝑚, 𝜙 ′𝑚 with Eq. 2 and returns to the Ac clients
while Training do

Tx client sends account identifiers to the Ac clients
Ac clients query and encrypt features according to the ac-
counts and send them to the Tx client
Tx client (1) receives and decrypts the features, (2) adds Gauss-
ian noise into the aggregated features, (3) trains a classifier 𝑓
with aggregated features

while Inference do
Tx client sends account identifiers to Ac clients
Ac clients query and encrypt features according to the ac-
counts identifiers and send to the Tx client
Tx client (1) receives and decrypts the features; (2) predicts
the label 𝑦 with 𝑓 .
Tx client Outputs the prediction label 𝑦
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5 EXPERIMENTAL RESULTS
5.1 Experiment Setup
We use the synthetic dataset provided by SWIFT. Specifically, the
size of the training set is approximately three million, with the
proportion of positive and negative samples being 1 : 100. The size
of the test set is one-quarter of the training set. The data we use is
in the form of tables with a limited number of features but of large
size, which is suitable for the model training and queries across
different nodes in our framework. Since we have billions of samples
but a limited number of features, it yields a high risk of overfitting
if we use a neural network as the classifier, which is backed up
by our conducted experiments. Yet this kind of dataset provides a
unique opportunity for the model such as XGBoost.

5.2 Comparison with Baselines
In this section, we compare our framework with the baselines, to
evaluate its effectiveness. We set 0.01 as a reasonable noise variance
according to the Fig. 6. Since we have both vertical and horizontal
settings in our framework, current frameworks cannot be utilized to
evaluate our proposal. Thus, we consider the following two settings
as our baselines: (1) Centralized setting where all the account data
and transaction data are stored in a single node.(2) Vanilla HyFL as
in Alg 1 where the setting is the same as our proposed framework
but without privacy enhancement.

To conduct a comprehensive evaluation, we compare our frame-
work with four typical models for binary classification tasks: XG-
Boost present for tree models, Support Vector Machine (SVM) [5]
present for linear models, Logistic Regression (LR) [18] present for
simple non-linear models, and multi-layer perceptron (MLP) [10]
present for deep non-linear models.

The results for three settings are shown in Table 1. The perfor-
mance of SVM is the worst across the three settings, which implies
that the linear classification model is not suitable for such a task
with tabular data, because such data is not linearly separable. Simi-
larly, although LR has some non-linear properties from the sigmoid
function, it still cannot achieve satisfactory performance due to the
linear combination of features before the sigmoid function. On the
other hand, MLP shows great improvement with the support of
strong power to extract useful features from raw data. Surprisingly,
XGBoost achieves the best performance across all three settings.
One possible reason is that as the number of estimators in XG-
Boost increases, the complex relationship between features can
be extracted. In that case, XGBoost can also construct a strong
non-linear map from features to the predicted label just like MLP.

From the perspective of different frameworks, we can observe
that the vanilla setting has a similar performance to the centralized
setting as shown in Table 1. Also, we find HyFL with privacy en-
hancement does not harm the performance too much and it still
has a reliable utility with a high AUCPR.

5.3 Sensitivity Study
5.3.1 Impact of Account Client Number. In this section, we present
the impact of the number of account clients on the model perfor-
mance. We only change the account client number and maintain the
other settings in this section. Based on the account client number,

XGBoost SVM LR MLP
Centralized setting

Precision 0.97 0.50 0.97 0.99
Recall 0.79 0.46 0.61 0.67
F1 0.86 0.39 0.68 0.76
AUCPR 0.7037 0.0011 0.2976 0.5608

Vanilla HyFL
Precision 0.98 0.50 0.97 0.98
Recall 0.79 0.37 0.61 0.71
F1 0.86 0.13 0.68 0.79
AUCPR 0.7075 0.0009 0.2977 0.5392

HyFL
Precision 0.98 0.50 0.97 0.95
Recall 0.76 0.37 0.61 0.70
F1 0.83 0.13 0.68 0.78
AUCPR 0.6839 0.0009 0.2975 0.5438

Table 1: Performance of different classifiers under three dif-
ferent settings.

1 10 50 100 200
Precision 0.97 0.97 0.97 0.97 0.97
Recall 0.79 0.79 0.71 0.71 0.71
F1 0.86 0.86 0.79 0.79 0.79
AUCPR 0.7037 0.7037 0.5344 0.5344 0.5344

Table 2: Impact of account client number on the performance.

0.5 0.1 0.01 0.002
Precision 0.97 0.94 0.97 0.59
Recall 0.79 0.75 0.71 0.51
F1 0.86 0.82 0.79 0.51
AUCPR 0.7037 0.6068 0.5344 0.0534

Table 3: Impact on the model performance of the data size.

the account data is split randomly and used to train an auto-encoder
locally in each account client. Then the server aggregates all the
auto-encoders from the account clients as the global auto-encoder.
The results are summarized in Table 2. As the number of account
clients increases, the model performance tends to be stable, which
implies that our framework is robust even with a large number of
account clients. Yet the model can achieve a better performance
when the account client number is small, we can still obtain utility
as the account client number is large.

5.3.2 Impact of Data Size. In this section, we study the impact
of the size of the training set. We randomly sample the training
data from the original training set, based on the sampling ratio,
where we maintain the relative proportion between positive and
negative samples. From Table 3 we can see the model performance
is destroyed by the decreasing data size. Note the number of positive
samples is quite limited in our case. Hence, as we decrease the data
size, the number of positive samples is getting smaller, which makes
it even more difficult to learn from the positive samples.

6 CONCLUSION
In this paper, we tackled the challenges of the collaboration of
multiple financial institutions for financial crime detection. We
showed that existing FL paradigms could not be directly applied to
solve this detection problem because of the way private data and
features are distributed. To address the challenges, we proposed
a hybrid FL framework that allows sharing features and training
the model in a privacy-preserving way. Empirical results showed
the robustness and effectiveness of the framework under different
scenarios. We believe the proposed solution can greatly transform
the landscape of the financial system by better safeguarding them
with a powerful financial crime detection tool.
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A PRIVACY RISK SOURCES
Privacy Risk Sources.We give a formal definition to each of these
four attacks as follows:
• Gradient inversion is defined as the data reconstruction on the
server-end with the support of the model parameters and gradi-
ents from the clients [11, 31]. Formally, given a model parameter-
ized by 𝜃 , the attacker makes use of the ground-truth gradients
𝑔∗ of mini-batch from a client to recover the original data in the
client by matching the gradient on parameterized data 𝑥 in terms
of the cosine similarity:

max
𝑥

∇𝑇L𝜃 (𝑥∗;𝜃 ) · ∇L𝜃 (𝑥 ;𝜃 )
∥∇L𝜃 (𝑥∗;𝜃 )∥ · ∥∇L𝜃 (𝑥 ;𝜃 )∥

,

where 𝑥∗ is the ground-truth data batch andL is the loss function.
The cosine similarity between the ground truth and estimated
gradients is the objective of model inversion. Since this objec-
tive function is differentiable, the Adam optimizer, which is a
strong and commonly-used optimizer in deep learning, is typi-
cally utilized to maximize the recovered data until convergence.
In federated learning, the gradients are typically replaced by the
model update.

• Membership inference is first proposed in [21], which uses a binary
classifier to predict whether a given data point is in the training
set of the target model. Specifically, the attacker has its own
dataset, which may not contain labels. The attacker will first
collect the predicted labels or logits of part of our own dataset
using the targetmodel from theAPI and then train our ownmodel
with the labeled dataset. Note that in FL, model parameters are
usually released to the public and are considered to be a white-
box setting. Then we have a model to mimic the target model,
a labeled dataset to train the model, and an unlabeled dataset
not adopted for training. The attacker can then use these two
datasets to train a binary classifier that predicts the attendance
of the data point in the original training set.

• Attribute inference is the attack where the attacker uses a model
to infer missing information of a data point from its incomplete
information [29]. For instance, with tabular financial data, the
adversary may have only part of the elements of each item. The
attribute inference is to optimize the missing part towards the
minimum loss.

• Feature leakage is another potential privacy risk in FL that some
unreliable modes may leak the features of data to other third
parties. Despite the fact that feature leakage does not lead to di-
rect data leakage, malicious third parties can use such features to
adopt and support other kinds of privacy attacks like membership
inference and attribute inference.

Privacy Risks in Both Stages. In horizontal federated learning,
each client can make predictions locally once trained well in the
training stage [7, 22] so the privacy risk decreases during the infer-
ence stage. In our setting, however, the account meta-information,
such as historical account activities and flags stored in the account
clients, needs to be accessed in both training and inference stages,
which means the transaction client cannot access such information
directly. Moreover, this indicates that even in the inference stage,
all the nodes are involved in the prediction, which is different from
the horizontal framework. Even worse, we consider that attackers

RandomUnder RandomOver SMOTE Reweight
Precision 0.55 0.51 0.51 0.51
Recall 0.80 0.83 0.81 0.88
F1 0.58 0.49 0.51 0.52
AUCPR 0.4712 0.4717 0.4572 0.67

Table 4: Evaluation of imbalance-target methods.

can steal data in the inference stage by utilizing the model inference
or membership inference attack on the trained classifier. As such,
the challenge arises that we need to protect privacy in both stages.
We show that the privacy risks of each communication discussed
above are similar for both stages so that we can ensure privacy in
both stages by targeting the three privacy risk sources.

B COMMUNICATION FLOW
Summary of Communication Flows. Considering the aforemen-
tioned improvements and privacy protection, we built an imple-
mentation of the proposed HyFL based on the Flower [4] project.
We summarize the complete communication flows of our imple-
mentation in the training and inference stages in Fig. 4 and Fig. 5,
respectively. An encryption key exchange is involved during the
initialization of the training stage, which will also be used in the
testing stage.

C MORE EXPERIMENTS RESULTS
C.1 Ablation Study
C.1.1 Impact of Sampling. In this section, we analyze the impact
of different sampling methods used to solve data imbalance. The
proportion of the negative and positive data in our training set
is about 1 : 783.73. The typical method to solve such data imbal-
ance is to resample the training set so that the number of positive
and negative samples is balanced. Another typical method is to
reweight the losses of positive and negative samples. We evaluate
four methods to evaluate the impact of imbalance-target methods:
(1) RandomUnder, which randomly under-sample the negative sam-
ples. (2) RandomOver, which randomly over-sample the positive
samples (3) SMOTE, which uses KNN to generate synthetic data
to augment positive samples. (4) Reweight, which assigns a higher
weight to the loss of the positive samples. Surprisingly, we find the
model performance is hampered by all the resampling methods.
Due to the great data imbalance, such resampling methods will drop
a large number of negative samples, which leads to a catastrophe
in model performance. Instead, reweighting only suffers from a
small loss of model performance since it does not drop any negative
samples but forces the model to focus more on the positive samples.

C.1.2 Impact of Communication Interval. In this section, we ana-
lyze the impact of the number of communication rounds between
the bank clients and the server, as well as that of the communica-
tion interval. We set the total number of epochs as 50, where is the
multiplication of the communication interval (𝐼 ) and the commu-
nication round number (𝑅). Specifically, we consider four settings
with different combinations of 𝐼 and 𝑅. We find if the number of the
account clients is small, 𝐼 and 𝑅 only have little influence on the
performance of the final model. Hence, in this section, we use 100
account clients to evaluate the impact of 𝐼 and 𝑅, presented in Ta-
ble 5. It is shown that more frequent communication leads to better
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Figure 4: Overview of the communication flow of the proposed HyFL framework in the training stage.

Figure 5: Overview of the communication flow of the proposed HyFL framework in the inference stage.
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I1-R50 I5-R10 I10-R5 I50-R1
Precision 0.97 0.97 0.97 0.97
Recall 0.79 0.79 0.71 0.71
F1 0.86 0.86 0.79 0.79
AUCPR 0.7037 0.7037 0.5344 0.5344

Table 5: Performance evaluation of the number of communi-
cation rounds.

model performance. However, due to the overhead of frequent com-
munication, a trade-off is necessary between the communication
cost and the model performance.

C.1.3 Impact of Noise. We give an analysis of the model perfor-
mance w.r.t. different noise variances, shown in Fig. 6. We utilize
Gaussian noise with the mean as zero and analyze the model per-
formance with different variances. To study the impact of noise

variance, we consider three factors: AUCPR, average norm, and
average cosine similarity between original data and noise-injected
data. From Fig 6a, we can see that noise with a small variance until
10−3 can enhance the model generalization, and hence the AUCPR
can be improved. The norm and cosine similarity are close to zero
and one, respectively, which indicates that there is little influence
on original data with such small noise. However, as the variance
increases beyond 10−2, both the cosine similarity and AUCPR de-
crease significantly, and the norm increases greatly. Thus, the re-
sults present a trade-off between the privacy budget and the model
utility. It is shown that with the variance as 10−3, the AUCPR on
test data peaks, which means a good generalization performance
in the inference stage. In this case, we can have a better trade-off
between privacy and performance.
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Figure 6: The impact of noise variance added into the training data on three factors: AUCPR, Norm, and CosSim. AUCPR is to
evaluate model performance on classification. The Norm is calculated as the average norm of noise added to each data point.
The CosSim is the average cosine similarity of noisy samples and original samples.
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