

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MoSA: MOSAIC SHARED ADAPTATION OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce MoSA, a new parameter-efficient fine-tuning (PEFT) method that replaces low-rank factorization with randomized, fine-grained sharing of weight updates. Each adapted weight matrix is constructed by broadcasting a small set of learned scalars over a fixed tessellation, a pre-defined group assignment of weight entries of the weight matrix, producing expressive changes under the same parameter budget as low-rank adaptation (LoRA). MoSA requires no architectural changes and can be merged into the base model for zero-overhead inference. Across diverse language understanding and generation tasks, MoSA matches or surpasses strong PEFT baselines under strictly matched budgets. Analyses and ablations indicate that non-local parameter sharing acts as an effective regularizer, and that grouping design and budget allocation govern the expressivity–efficiency trade-off. These results position MoSA as a simple, scalable alternative to LoRA.

1 INTRODUCTION

Large Language Models (LLMs), such as BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), and LLaMA (Touvron et al., 2023a), are built on Transformers (Vaswani et al., 2017) and pretrained on web-scale corpora. In practical use, these pretrained models are typically adapted to downstream tasks via task-specific fine-tuning, which has driven rapid progress across NLP and beyond. However, updating all parameters is often impractical: the computation and storage costs are substantial, optimizer states and checkpoints scale with the model size, and maintaining separate fully fine-tuned copies hinders multi-task and on-device deployment (Ding et al., 2023). This motivates parameter-efficient fine-tuning (PEFT), which seeks to retain the benefits of full adaptation while learning only a small set of additional parameters and keeping the base model frozen.

Among PEFT methods, low-rank adaptation (LoRA) (Hu et al., 2022) is widely adopted. It freezes pretrained weights and injects trainable low-rank matrices, reflecting the hypothesis that useful weight updates have low intrinsic ranks. This low-rank prior has become a de facto assumption in LoRA and its variants (Liu et al., 2024; Wang et al., 2024a;b; Hayou et al., 2024; Meng et al., 2024a). However, this assumption imposes a strict structural bottleneck: it confines the weight update to a small subspace, potentially limiting the model’s ability to learn complex, high-rank patterns required for difficult tasks. While recent approaches like HiRA (Huang et al., 2025) attempt to alleviate this limitation by using Hadamard products to achieve high-rank updates, they inherently rely on the priors of the original weights, effectively confining the update to a specific, weight-dependent subspace. This raises a natural question: can we achieve parameter efficiency without being bound by low-rank constraints or pre-existing weight structures?

To answer this question, we introduce Mosaic Shared Adaptation (MoSA). The intuition behind MoSA draws directly from the art of mosaics, where complex imagery is constructed from a limited palette of tesserae. Similarly, MoSA partitions the entries of the weight matrix into a fixed tessellation of disjoint groups, and controls each group with a single learnable scalar. We then broadcast these scalars to their assigned positions to construct the final update. Crucially, we set the tessellation to be randomized and spatially agnostic. This non-local grouping disrupts the short-range correlations found in weight matrices, acting as a regularizer that mitigates co-adaptation (Hinton et al., 2012). This allows MoSA to construct expressive, full-rank updates using a parameter budget strictly comparable to LoRA.

054
 055 Table 1: Qualitative comparison of PEFT methods (✓: yes, ✗: no). MoSA highlights: high-rank
 056 expressivity under the same budget, per-scalar budget granularity, lossless merge for zero-latency
 057 inference, no architectural changes, and non-local sharing as regularization.

Criterion	MoSA (Ours)	LoRA	DoRA	MoRA	HiRA	Prompt/Prefix	Adapters
High-rank expressivity at fixed budget	✓	✗	✗	✗	✓	—	—
Arbitrary budget granularity	✓	✗	✗	✗	✗	✗	✗
No change in the architecture	✓	✓	✓	✓	✓	✓	✗
Non-local parameter-sharing regularization	✓	✗	✗	✗	✗	—	✗

063
 064 Beyond the conceptual framework, we develop a first-order analysis showing that size-balanced
 065 grouping minimizes the expected deviation from the unconstrained update, thereby formalizing
 066 the optimality of our design. Furthermore, to realize MoSA efficiently, we implement a custom
 067 segmented-reduction backward kernel. This kernel aggregates per-group gradients in a single pass
 068 using stable permutation, eliminating the need for atomic operations and significantly accelerating
 069 the backward pass.

070 Comprehensive experiments on commonsense reasoning, open-domain dialogue, and mathematical
 071 reasoning benchmarks show that MoSA consistently outperforms strong PEFT baselines such as
 072 LoRA, DoRA (Liu et al., 2024), and HiRA (Huang et al., 2025) under matched parameter budgets.
 073 Notably, MoSA achieves competitive performance using a parameter budget smaller than a rank-1
 074 LoRA equivalent, matching baselines that require tens of times more parameters.

075 2 RELATED WORKS

076 Adapting large pretrained models has produced a broad family of PEFT techniques. A useful
 077 organizing view is to ask whether a method *adds* small task-specific parameters while freezing the
 078 backbone, or *reparameterizes* the weight update itself. We follow this taxonomy and position our
 079 method accordingly. A qualitative comparison appears in Table 1. Related work is detailed below.

080 **Additive PEFT Methods.** A major branch of PEFT involves inserting small, trainable modules into
 081 the frozen LLM. Adapter-based methods (Houlsby et al., 2019) pioneered this by adding compact
 082 neural networks between Transformer layers. More recent approaches focus on the input and activation
 083 space. Prompt Tuning (Lester et al., 2021) prepends continuous, trainable “soft prompt” vectors
 084 to the input, while Prefix Tuning (Li and Liang, 2021) inserts trainable prefixes into the hidden states
 085 of each layer, steering the model’s behavior without altering its core weights.

086 **Reparameterization via Low-Rank Updates.** An influential alternative is to reparameterize the
 087 weight update itself. LoRA (Hu et al., 2022) is the canonical example, modeling the update ΔW as
 088 two smaller, low-rank matrices ($\Delta W = BA$). This factorization dramatically reduces the number
 089 of trainable parameters. Its success has inspired numerous variants, including QLoRA (Dettmers
 090 et al., 2023) for memory efficiency, AdaLoRA (Zhang et al., 2023) for adaptive budget allocation
 091 and DoRA (Liu et al., 2024) for magnitude-direction decomposition.

092 **High-Rank Methods.** Recently, researchers have started exploring beyond the low-rank con-
 093 straint (Jiang et al., 2024; Huang et al., 2025). MoRA (Jiang et al., 2024) employs a square ma-
 094 trix to maximize the rank of the update within a fixed parameter budget, challenging the necessity
 095 of low-rank decomposition. HiRA (Huang et al., 2025), for instance, uses Hadamard products to
 096 achieve high-rank updates efficiently, suggesting greater expressive power is beneficial. Our work
 097 aligns with this direction but proposes a fundamentally different mechanism.

098 **Hashing Methods.** The core idea of parameter sharing in MoSA is conceptually related to tech-
 099 niques developed for model compression. The “hashing trick” or HashedNets (Chen et al., 2015;
 100 Nooralinejad et al., 2023) use a hash function to group network weights, forcing all weights in the
 101 same hash bucket to share a single parameter value. This significantly reduces storage for the entire
 102 model. However, these methods were designed to compress the entire pre-trained weight matrix
 103 W_0 . In contrast, MoSA applies this principle of randomized grouping specifically to the fine-tuning
 104 update ΔW , repurposing it as a PEFT strategy rather than a static compression tool. This distinction
 105 is crucial, as MoSA maintains the integrity of the base model while enabling efficient adaptation.

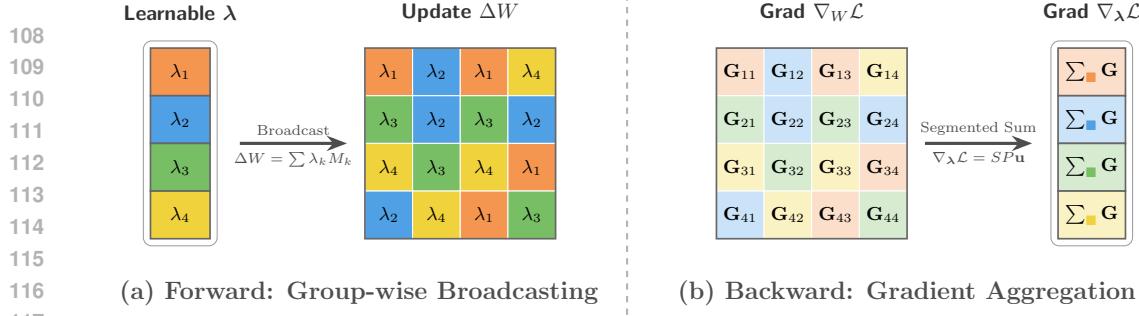


Figure 1: **MoSA Forward and Backward Mechanics.** **(a) Forward:** The learnable scalars λ are broadcast to their corresponding color-coded tesserae to form the update matrix ΔW . **(b) Backward:** The gradients $\nabla_W \mathcal{L}$ are aggregated via a segmented reduction. Values in identically colored cells are summed to produce the scalar gradient $\nabla_\lambda \mathcal{L}$, efficiently implemented as $\nabla_\lambda \mathcal{L} = SP\mathbf{u}$.

3 METHODOLOGY

In this section, we present **MoSA**. As illustrated in Figure 1, our method partitions the weight space into disjoint groups and assigns a single learnable scalar to each group. This design enables full-rank, element-wise modulation with a parameter budget comparable to or lower than that of low-rank adapters. We first detail the mathematical formulation, then provide a theoretical justification for our partitioning strategy, and finally describe the efficient gradient computation.

3.1 FORMULATION

Consider a pre-trained linear layer with weights $W_0 \in \mathbb{R}^{h \times d}$, where d is the input dimension and h is the output dimension. We aim to learn an additive update ΔW .

LoRA Parameterization. LoRA assumes ΔW has a low intrinsic rank $r \ll \min(h, d)$. It parameterizes the update as the product of two low-rank matrices $B \in \mathbb{R}^{h \times r}$ and $A \in \mathbb{R}^{r \times d}$:

$$\Delta W_{\text{LoRA}} = BA. \quad (1)$$

This enforces a strict structural bottleneck, limiting the update to a low-dimensional subspace.

MoSA Parameterization. In contrast, MoSA constructs a full-rank update using a sparse set of shared scalars $\lambda \in \mathbb{R}^K$, where K matches the parameter budget of LoRA baselines. We define a fixed partitioning of the weight indices $\mathcal{I} = \{(i, j) : 1 \leq i \leq h, 1 \leq j \leq d\}$ into K disjoint sets (tesserae) $\mathcal{I}_1, \dots, \mathcal{I}_K$. As shown in Figure 1(a), the update matrix is constructed via broadcasting:

$$\Delta W_{\text{MoSA}} = \sum_{k=1}^K \lambda_k M_k, \quad \text{where } (M_k)_{ij} = \begin{cases} 1 & \text{if } (i, j) \in \mathcal{I}_k, \\ 0 & \text{otherwise.} \end{cases} \quad (2)$$

Here, $M_k \in \{0, 1\}^{h \times d}$ serves as a binary mask for the k -th group. The forward pass for an input $x \in \mathbb{R}^d$ is given by $y = (W_0 + \Delta W)x$. Since the masks $\{M_k\}$ are mutually orthogonal and cover all indices, every weight element W_{ij} is modulated by exactly one scalar λ_k . This allows MoSA to affect every weight individually while tying their values to a small set of learnable parameters.

Gradient Derivation. Let \mathcal{L} denote the loss function. By the chain rule, the gradient with respect to the learnable scalar λ_k is the Frobenius inner product between the weight gradient $\nabla_{\Delta W} \mathcal{L}$ and the mask M_k :

$$\frac{\partial \mathcal{L}}{\partial \lambda_k} = \langle \nabla_{\Delta W} \mathcal{L}, M_k \rangle_F = \sum_{(i,j) \in \mathcal{I}_k} \left(\frac{\partial \mathcal{L}}{\partial \Delta W} \right)_{ij}. \quad (3)$$

Implementation via Matrix Permutation. Although Eq. (3) provides the analytical form, we implement the backward pass as a fast linear projection in the vectorized space. Let $\mathbf{u} = \text{vec}(\nabla_{\Delta W} \mathcal{L}) \in \mathbb{R}^N$ be the flattened gradient vector, where $N = hd$. We define a fixed permutation matrix $P \in \{0, 1\}^{N \times N}$ that reorders \mathbf{u} such that indices belonging to the same group \mathcal{I}_k become contiguous. As shown in Figure 1(b), the gradient aggregation is then expressed as:

$$\nabla_\lambda \mathcal{L} = SP\mathbf{u}, \quad (4)$$

162 where $S \in \{0, 1\}^{K \times N}$ is a *segmentation matrix* comprising contiguous blocks of ones. Specifically,
 163 S maps the sorted segments of $P\mathbf{u}$ to their corresponding group scalars. In practice, the operation
 164 SP is implemented as a custom fused segmented reduction kernel, which requires caching only the
 165 permutation indices, significantly reducing memory footprint compared to storing full adaptation
 166 matrices. Detailed explanation are shown in C.2.

167 **Structure Sharing.** To further minimize memory overhead, we enforce *structure sharing* across the
 168 network. Since modern architectures contain multiple layers with identical dimensions $h \times d$, we
 169 assign the same random partition to all weights of the same shape. This strategy allows us to store
 170 a single set of index mappings for each unique layer shape, decoupling the additional memory cost
 171 from the network depth.

173 3.2 THEORETICAL MOTIVATION: OPTIMALITY OF BALANCE

175 A critical design choice in MoSA is the distribution of group sizes $m_k = |\mathcal{I}_k|$. To understand the
 176 impact of group size, we examine the effective update dynamics. Let $\mathbf{G} = \nabla_W \mathcal{L} \in \mathbb{R}^{h \times d}$ denote
 177 the gradient of the loss with respect to the weights. MoSA updates scalar parameters λ_k using the
 178 gradient $\nabla_{\lambda_k} \mathcal{L} = \langle \mathbf{G}, M_k \rangle_F$ and a learning rate η . Mapping this scalar update back to the weight
 179 space, the effective weight increment becomes:

$$180 \quad \delta W_{\text{mosa}} = -\eta \sum_{k=1}^K \underbrace{\left(\sum_{(i,j) \in \mathcal{I}_k} \mathbf{G}_{ij} \right)}_{\text{Accumulated Gradient}} M_k = -\eta \sum_{k=1}^K m_k \bar{g}_k M_k, \quad (5)$$

185 where \bar{g}_k is the mean gradient of the k -th group. Unlike standard projected gradient descent, which
 186 projects onto the mean direction \bar{g}_k , Eq. (5) reveals that the MoSA update is explicitly scaled by the
 187 group size m_k . This introduces an implicit, group-dependent learning rate scaling: larger groups
 188 receive aggressively larger updates. To ensure uniform optimization dynamics across all subspaces
 189 and minimize deviation from the global gradient direction, the scaling factor m_k must be constant.

190 We formalize this intuition by quantifying the approximation error:

191 **Theorem 1** (Optimality of Balanced Partition). *Assume the entries of the gradient \mathbf{G} are i.i.d.
 192 random variables with mean μ and variance σ^2 . The expected squared error between the MoSA
 193 update and the unconstrained update is defined as:*

$$194 \quad \mathcal{E}(m_1, \dots, m_K) := \mathbb{E} \left[\|\eta \mathbf{G} - \delta W_{\text{mosa}}\|_F^2 \right]. \quad (6)$$

196 For a fixed number of parameters N and groups K , \mathcal{E} is a Schur-convex function of the group sizes
 197 vector $\mathbf{m} = (m_1, \dots, m_K)$. Consequently, \mathcal{E} is minimized when the partition is balanced, i.e.,
 198 $m_k \in \{ \lfloor N/K \rfloor, \lceil N/K \rceil \}$.

200 *Proof.* The squared error decomposes over the orthogonal basis formed by the group partitions.
 201 Since groups are disjoint, the total error is the sum of errors within each group:

$$203 \quad \|\eta \mathbf{G} + \delta W_{\text{mosa}}\|_F^2 = \eta^2 \sum_{k=1}^K \|\mathbf{G}_{\mathcal{I}_k} - m_k \bar{g}_k M_k\|_F^2, \quad (7)$$

206 where $\mathbf{G}_{\mathcal{I}_k}$ denotes the restriction of \mathbf{G} to indices in group k . Expanding the expected error term for
 207 a single group k , and noting that the MoSA update assigns the scalar value $\sum_{(i,j) \in \mathcal{I}_k} \mathbf{G}_{ij} = m_k \bar{g}_k$
 208 to every element in that group:

$$209 \quad \mathbb{E} \left[\sum_{(i,j) \in \mathcal{I}_k} (\mathbf{G}_{ij} - m_k \bar{g}_k)^2 \right] = (m_k - 1)\sigma^2 + m_k(m_k - 1)^2\mu^2 + (m_k - 1)^2\sigma^2. \quad (8)$$

213 Summing over all $k = 1 \dots K$, the total expected error is:

$$214 \quad \mathcal{E}(\mathbf{m}) = \eta^2 \left[(N - K)\sigma^2 + \mu^2 \sum_{k=1}^K m_k(m_k - 1)^2 + \sigma^2 \sum_{k=1}^K (m_k - 1)^2 \right]. \quad (9)$$

216 The functions $\phi_1(x) = x(x-1)^2$ and $\phi_2(x) = (x-1)^2$ are convex for $x \geq 1$. Since the sum of convex
 217 functions applied to components of a vector is a Schur-convex function, $\mathcal{E}(\mathbf{m})$ is Schur-convex.
 218 By Karamata’s inequality, a Schur-convex function is minimized when the components of its argu-
 219 ment vector are as equal as possible. Thus, the error is minimized when $m_k \in \{\lfloor N/K \rfloor, \lceil N/K \rceil\}$
 220 for all k . \square

222 **Balanced Random Tessellation (BRT).** Theorem 1 implies that uniform group sizes maximize the
 223 fidelity of the update direction. Motivated by this, we implement *Balanced Random Tessellation*
 224 (BRT). We strictly enforce size constraints by randomly permuting the index set \mathcal{I} and splitting it
 225 into K contiguous blocks of equal size. By construction, BRT ensures that the gradient variance is
 226 spread evenly across all learnable scalars, maximizing training stability.

228 4 EXPERIMENTS

230 In this section, we evaluate MoSA across three distinct task families to demonstrate its effectiveness
 231 and generality: (i) multi-dataset commonsense reasoning, (ii) open-domain dialogue on ConvAI2
 232 (Dinan et al., 2019), and (iii) mathematical reasoning under a distribution shift that involves training
 233 on MetaMathQA (Yu et al., 2024b), evaluating on GSM8K (Cobbe et al., 2021). Throughout all ex-
 234 periments, we enforce strict *parameter-budget parity* with strong PEFT baselines. Our training and
 235 evaluation protocols are designed for transparency and reproducibility, closely following standard
 236 practices in recent literature (Huang et al., 2025) unless otherwise specified.

238 4.1 TASKS AND DATASETS

240 **Commonsense Reasoning.** We adopt a multi-task setting where models are trained once on the
 241 union of eight datasets and evaluated on each sub-task individually. The datasets include BoolQ
 242 (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
 243 2019), WinoGrande (Sakaguchi et al., 2020), ARC-c (Clark et al., 2018), ARC-e (Clark et al., 2018),
 244 and OBQA (Mihaylov et al., 2018). The training sets are combined, comprising approximately 170k
 245 examples, with a small held-out split reserved for model selection. Evaluation is performed on the
 246 official test set of each respective dataset.

247 **Open-domain Dialogue.** We use the ConvAI2 dataset (Dinan et al., 2019), which consists of
 248 persona-grounded, multi-turn dialogues (17,878 for training, 1,000 for testing). The task is framed
 249 under the *self-persona* setting, where only the speaker’s own persona is visible during generation.
 250 We report BLEU-4 (Papineni et al., 2002), BERTScore (P/R/F1) (Zhang et al., 2020), METEOR
 251 (Banerjee and Lavie, 2005), and ROUGE-L (Lin, 2004). We also present an Average score, calcu-
 252 lated as the unweighted mean of these six metrics.

253 **Mathematical Reasoning.** For this task, we assess the model’s out-of-distribution generalization
 254 by training on MetaMathQA (Yu et al., 2024b) and evaluating on the GSM8K benchmark (Cobbe
 255 et al., 2021). We report exact match accuracy on the final numeric answer.

257 4.2 MODELS AND BASELINES

259 **Base Models.** We conduct experiments on two widely used open-weight models: Llama-2-7B
 260 (Touvron et al., 2023b) and Llama-3-8B (Grattafiori et al., 2024).

261 **Baselines.** We compare MoSA against a suite of strong PEFT methods, including Prompt Tuning
 262 (Lester et al., 2021), P-Tuning Liu et al. (2022), LoRA (Hu et al., 2022), DoRA (Liu et al., 2024),
 263 MoRA (Jiang et al., 2024), and the high-rank adaptation method, HiRA (Huang et al., 2025). All
 264 baselines are configured to adapt the same target modules as MoSA under matched training budgets.

266 4.3 PARAMETER BUDGET AND IMPLEMENTATION

268 **Targeted Modules.** Unless stated otherwise, adapters are applied to the self-attention projections
 269 \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V and the FFN projections \mathbf{W}_{up} and \mathbf{W}_{down} of each Transformer block. All other
 parameters in the base model are kept frozen.

270 **Parameter-Budget Parity.** To ensure a fair comparison, we enforce strict parameter parity between
 271 MoSA and LoRA at rank $r = 32$. For a target linear layer with dimensions $h \times d$, LoRA introduces
 272 $r(d + h)$ trainable parameters. Accordingly, we set the number of MoSA groups K such that
 273 $K = r(d + h)$, guaranteeing an identical parameter budget for every target module. The column
 274 “Params (%)” in our tables reports this count as a percentage of the base model’s total parameters.

275 **Optimization and Schedules.** We use the AdamW (Loshchilov and Hutter, 2019) optimizer with
 276 a learning rate of 1×10^{-5} and 0.1 warm-up ratio. To ensure a fair comparison, we maintain
 277 consistency across all methods in maximum sequence length, tokenization, batch size, and mixed-
 278 precision settings. Models are trained for 3 epochs on the commonsense reasoning suite, 1 epoch
 279 on ConvAI2, and 2 epochs on the mathematical reasoning task. Model selection is performed on a
 280 held-out validation split. For all tasks, we employ deterministic decoding (temperature = 0).

281
 282 **4.4 RESULTS: COMMONSENSE REASONING**
 283

284 As summarized in Table 2, MoSA demonstrates superior performance across the board on the multi-
 285 dataset commonsense reasoning benchmark. It consistently outperforms all strong PEFT baselines
 286 on both Llama-2-7B and Llama-3-8B, establishing itself as the most effective method for this task
 287 under strict parameter-budget parity.

288 On the more capable Llama-3-8B model, MoSA (with a budget equivalent to LoRA $r = 32$) achieves
 289 a remarkable average accuracy of 87.63%. This represents a substantial improvement of +0.91%
 290 over the strongest competing baseline, HiRA, which scored 86.72%. A closer look at the per-task
 291 results reveals MoSA’s comprehensive dominance: it secures the top score on *every single one* of the
 292 eight datasets. The gains are particularly notable on challenging datasets like HellaSwag (+1.21%
 293 over the best baseline) and WinoGrande (+1.08%).

294 The same trend holds for Llama-2-7B. MoSA again leads the pack with an average accuracy of
 295 83.83%, widening its lead over the second-best method, HiRA (81.42%), to a significant +2.41%.
 296 This confirms that MoSA’s advantages are not specific to a single base model but are robust and
 297 transferable. On this model, it achieves the best performance on seven of the eight sub-tasks, further
 298 cementing its position as the state-of-the-art PEFT method for this reasoning suite.

300 Table 2: Accuracy (%) on eight commonsense benchmarks using *Llama-2-7B* and *Llama-3-8B*.
 301 MoSA uses a parameter budget equivalent to LoRA rank r . Best is **bold**, second best is underlined.

Method	Params (%)	BoolQ	PIQA	SIQA	ARC-c	ARC-e	OBQA	HellaSwag	WinoGrande	Average
<i>Llama-2-7B</i>										
Prompt Tuning	0.0012	55.93	12.35	30.50	6.06	8.63	9.40	6.91	40.57	21.29
P-Tuning	0.7428	58.75	36.02	0.20	0.17	1.98	0.80	0.01	0.00	12.24
LoRA (r=32)	0.8256	69.80	79.90	79.50	64.70	79.80	81.00	83.60	82.60	77.61
DoRA (r=32)	0.8256	71.80	<u>83.70</u>	76.00	68.20	83.70	82.40	<u>89.10</u>	82.60	79.69
MoRA (r=32)	0.8241	<u>72.17</u>	80.79	<u>79.53</u>	71.42	85.31	81.20	29.09	80.19	72.46
HiRA (r=32)	0.8256	71.22	83.35	<u>79.53</u>	<u>73.81</u>	86.74	84.60	88.12	<u>83.98</u>	81.42
MoSA (r=32 equiv.)	0.8256	73.96	86.03	81.48	76.62	88.34	83.93	94.35	85.93	83.83
<i>Llama-3-8B</i>										
Prompt Tuning	0.0010	56.85	45.05	36.13	31.57	32.74	29.20	14.01	50.12	36.96
P-Tuning	0.6240	59.97	11.64	8.19	7.42	8.63	9.60	1.77	37.65	18.11
LoRA (r=32)	0.7002	70.80	85.20	79.90	71.20	84.20	79.00	91.70	84.30	80.79
DoRA (r=32)	0.7002	74.60	89.30	79.90	80.40	90.50	85.80	<u>95.50</u>	85.60	85.20
MoRA (r=32)	0.6997	74.28	87.43	80.71	79.61	91.16	85.60	43.53	86.74	78.63
HiRA (r=32)	0.7002	<u>75.40</u>	<u>89.70</u>	<u>81.15</u>	<u>82.90</u>	93.27	<u>88.32</u>	95.36	<u>87.70</u>	86.72
MoSA (r=32 equiv.)	0.7002	75.64	90.65	82.70	82.91	93.27	89.48	96.57	89.78	87.63

317
 318 **4.5 RESULTS: OPEN-DOMAIN DIALOGUE (CONVAI2)**
 319

320 In the persona-grounded, open-domain dialogue task on ConvAI2, MoSA’s superiority is even more
 321 pronounced. As shown in Table 3, for Llama-3-8B, MoSA achieves an impressive result, surpassing
 322 the strongest baseline, HiRA (47.80%), by a large margin of +2.34%. This overall improvement is
 323 supported by consistent wins in all individual metrics, which measure different aspects of generation
 quality. For instance, its BLEU-4 score of 4.13% indicates significantly better n-gram overlap with
 reference responses, while its leading BERTScore (F1 of 86.83%) to superior semantic similarity

324
 325 Table 3: ConvAI2 results with Llama-2-7B and Llama-3-8B backbones. BERT-F1/R/P are from
 326 BERTScore. Best is **bold**, second best is underlined.
 327

Method	Params (%)	BLEU-4	BERT-F1	BERT-R	BERT-P	METEOR	ROUGE-L	Average
<i>Llama-2-7B</i>								
Prompt Tuning	0.0012	0.04	72.44	77.38	68.23	0.80	0.80	36.62
P-Tuning	0.7428	0.60	83.29	83.33	83.28	<u>15.11</u>	12.36	46.33
MoRA (r=32)	0.8241	1.09	84.09	84.65	83.59	10.97	9.57	45.66
LoRA (r=32)	0.8256	1.82	84.41	84.71	84.16	11.38	10.55	46.17
DoRA (r=32)	0.8256	1.73	84.18	84.61	83.81	11.25	10.41	46.00
HiRA (r=32)	0.8256	<u>2.70</u>	84.86	<u>84.98</u>	<u>84.77</u>	13.56	<u>12.80</u>	47.28
MoSA (r=32 equiv.)	0.8256	3.93	86.53	86.28	86.80	17.57	18.44	49.92
<i>Llama-3-8B</i>								
Prompt Tuning	0.0010	1.45	82.99	82.99	83.05	14.72	13.13	46.39
P-Tuning	0.6240	1.50	81.52	81.07	82.01	<u>15.49</u>	13.55	45.86
MoRA (r=32)	0.6997	1.60	82.24	84.06	84.43	<u>12.37</u>	11.19	46.31
LoRA (r=32)	0.7002	2.26	84.32	84.00	84.67	12.51	11.77	46.59
DoRA (r=32)	0.7002	2.29	84.32	84.06	84.62	12.63	11.78	46.62
HiRA (r=32)	0.7002	<u>3.41</u>	84.81	84.40	<u>85.25</u>	14.87	<u>14.05</u>	47.80
MoSA (r=32 equiv.)	0.7002	4.13	86.83	86.50	87.18	17.59	18.64	50.14

341
 342 and relevance. These results highlight MoSA’s ability to produce responses that are more fluent and
 343 coherent (METEOR, ROUGE-L), while also being contextually and semantically more appropriate.
 344

345 The results on Llama-2-7B further validate these findings. MoSA again claims the top spot on all
 346 seven metrics, culminating in an Average score of 49.92%. This represents an even larger improve-
 347 ment of +2.64% over the next-best method. The consistent and decisive lead across diverse auto-
 348 matic metrics underscores MoSA’s enhanced ability to handle the nuances of multi-turn, persona-
 349 grounded conversations.
 350

4.6 RESULTS: MATHEMATICAL REASONING

351 We evaluate the models on their out-of-distribution
 352 (OOD) generalization capabilities by training on
 353 MetaMathQA and testing on the unseen GSM8K
 354 benchmark. This challenging setup tests a model’s
 355 ability to learn abstract reasoning principles rather
 356 than merely memorizing problem templates. As de-
 357 tailed in Table 4, MoSA demonstrates a profound
 358 and significant advantage in this area.
 359

360 Using Llama-3-8B as the base model, MoSA
 361 achieves an exact match accuracy of 78.00% on
 362 GSM8K. This result is outperforming the strongest
 363 baseline, HiRA ($r = 32$), by a massive +7.19%.
 364 Such a large performance gap on an OOD task high-
 365 lights MoSA’s superior ability to capture and trans-
 366 fer the underlying logic of mathematical problem-
 367 solving. While other PEFT methods show re-
 368 spectable performance, MoSA’s ability to generalize far more effectively sets it apart, indicating
 369 it learns more robust and portable reasoning structures.
 370

5 ANALYSIS

5.1 BACKWARD SPEED ANALYSIS

372 Since MoSA relies on aggregating gradients per group, the efficiency of the backward pass is
 373 paramount for scalability. Figure 2 illustrates the backward runtime (log–log scale) versus the num-
 374 ber of groups K for a weight matrix with dimensions $h = d = 4096$. We compare our custom
 375 *segmented reduction* kernel against PyTorch (Paszke et al., 2019) autograd under both *balanced* and
 376 *skewed* assignment strategies.
 377

378 Table 4: GSM8K accuracy (%) after training
 379 on MetaMathQA. Best is **bold**, second best is
 380 underlined.
 381

Method	Params (%)	GSM8K
<i>Llama-3-8B</i>		
Prompt Tuning	0.0010	15.62
P-Tuning	0.6240	2.65
LoRA ($r = 32$)	0.7002	65.89
DoRA ($r = 32$)	0.7002	66.12
MoRA ($r = 32$)	0.6997	67.98
HiRA ($r = 32$)	0.7002	<u>70.81</u>
MoSA ($r = 32$ equiv.)	0.7002	78.00

378
 379 Table 5: Performance of the Llama-3 8B model with different Component. FFN denotes the
 380 position-wise feed-forward sublayer with projections W_{up} and W_{down}

Component	BoolQ	PIQA	SIQA	ARC-c	ARC-e	OBQA	HellaSwag	WinoG	Average
K	66.96	91.20	76.84	79.68	93.36	79.96	93.36	82.63	82.12
Q	70.45	92.13	79.08	80.53	94.43	84.72	94.43	85.06	84.33
V	74.85	92.72	82.24	81.63	95.64	87.50	95.64	86.48	86.29
QK	71.36	92.05	79.49	80.61	94.79	86.90	94.79	86.40	84.99
QV	74.85	93.48	82.60	82.82	96.17	87.90	96.17	87.50	86.81
QKV	75.46	<u>92.97</u>	82.91	82.74	<u>96.06</u>	<u>89.29</u>	96.06	87.81	87.16
FFN	76.13	90.98	81.94	83.5	93.18	86.71	<u>96.46</u>	89.86	<u>87.35</u>
FFN+QKV	<u>75.64</u>	90.65	<u>82.70</u>	<u>82.91</u>	93.27	89.48	96.57	<u>89.78</u>	87.63

392
 393 Across the entire range of K , our segmented reduction is consistently superior to autograd. Specif-
 394 ically, it achieves a $\approx 9,500\times$ speedup at $K = 1$ (0.25 ms vs. 2.41 s), a $125\times$ speedup at $K = 32$
 395 (0.67 ms vs. 84.50 ms), and maintains an 8–9 \times advantage for K between 4,096 and 16,384. Al-
 396 though skewness introduces a slight overhead (geometric-mean slowdown of 1.62 \times), the kernel
 397 remains highly efficient; even in the most extreme skew tested at $K = 65,536$, it is at least 4.8 \times
 398 faster than autograd (1.46 ms vs. 7.00 ms). These results demonstrate that while balanced assign-
 399 ments (BRT) are optimal, they are not strictly required for performance: the segmented kernel is
 400 bandwidth-bound and robust to skew, supporting large K without significant performance degra-
 401 dation. Additional experimental details are provided in Appendix B.

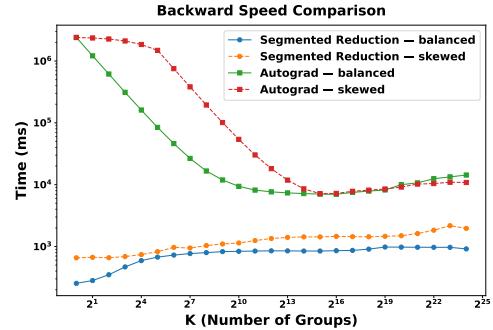
5.2 ABLATION STUDY ON COMPONENT

402
 403 From the *Average* column in Table 5, FFN+QKV
 404 achieves the best overall accuracy (**87.63**), with FFN
 405 alone a close second (87.35) and marginally sur-
 406 passing QKV (87.16). Here, FFN denotes the Trans-
 407 former block’s position-wise feed-forward network
 408 (W_{up} and W_{down}), whereas QKV denotes the multi-
 409 head attention’s query, key, and value projection sub-
 410 layers/matrices (W_Q , W_K , W_V). This indicates
 411 that most of the attainable gains under a fixed param-
 412 eter budget come from adapting the feed-forward
 413 pathway, a finding consistent with evidence that
 414 FFN blocks function as key–value–like memories
 415 and host causally editable factual associations (Geva
 416 et al., 2021; Dai et al., 2022; Meng et al., 2022;
 417 2023). Within attention-only variants, the ordering
 418 $V > Q > K$ and $QV > QK$ suggests that modi-
 419 fying the value stream—i.e., what content is writ-
 420 ten into the residual—is more impactful than adjust-
 421 ing query/key routing, aligning with mechanistic ac-
 422 counts where QK chiefly sets selection weights and V injects information (Elhage et al., 2021;
 423 Olsson et al., 2022). In practice, allocating most adaptation capacity to FNN and adding attention
 424 updates (especially V) for incremental gains is a robust default when budgets allow.

5.3 IMPACT OF GROUPING STRATEGY

425
 426 We evaluate whether *fine-grained, non-local* sharing provides stronger regularization than low-rank
 427 constraints by comparing our proposed BRT to three deterministic strategies defined below:

428
 429 • **Balanced Random Tessellation (BRT):** Set group sizes as balanced as possible, i.e., $m_k \in$
 430 $\{\lfloor N/K \rfloor, \lceil N/K \rceil\}$ such that $\sum_{k=1}^K m_k = N$. We generate a label sequence respecting these



431
 432 Figure 2: **Backward time vs. group count**
 433 K . Segmented reduction is faster for all K ;
 434 skew induces a 1.62 \times geometric-mean slow-
 435 down for segmented but does not alter the
 436 qualitative scaling.

432 counts, uniformly permute the indices \mathcal{I} , and assign them to groups $\mathcal{I}_1, \dots, \mathcal{I}_K$. This yields
 433 near-exact balance while breaking local spatial correlations.
 434

- 435 • **Row-Stripe:** Flatten the weight matrix in row-major order and split the N indices into K con-
 436 tiguous segments. Indices in the k -th segment form the group \mathcal{I}_k . The result corresponds to K
 437 horizontal stripes with sizes differing by at most one.
- 438 • **Col-Stripe:** Flatten in column-major order and split into K contiguous segments. The result
 439 corresponds to K vertical stripes with near-balanced sizes.
- 440 • **Skewed:** Set non-increasing group quotas $m_1 \geq \dots \geq m_K$ using a geometric schedule con-
 441 trolled by $\rho \in (0, 1)$, where $m_k \propto \rho^{k-1}$. Uniformly permute the N indices and assign the first
 442 m_1 to \mathcal{I}_1 , the next m_2 to \mathcal{I}_2 , and so forth. This preserves the intended skew while breaking local
 443 spatial correlations.

445
 446 Table 6: Ablation of grouping strategies on Llama-3-8B under the same parameter budget.

Strategy	BoolQ	PIQA	SIQA	ARC-c	ARC-e	OBQA	HellaSwag	WinoG	Average
BRT	75.64	90.65	82.70	89.48	93.27	89.78	96.57	89.78	87.63
Row-Stripe	75.73	90.38	81.63	83.59	92.55	87.70	96.21	88.60	87.05
Col-Stripe	75.37	89.95	80.61	82.65	92.97	86.90	96.42	88.29	86.65
Skewed	61.22	81.52	70	71.68	85.19	69.64	86.49	69.18	74.36

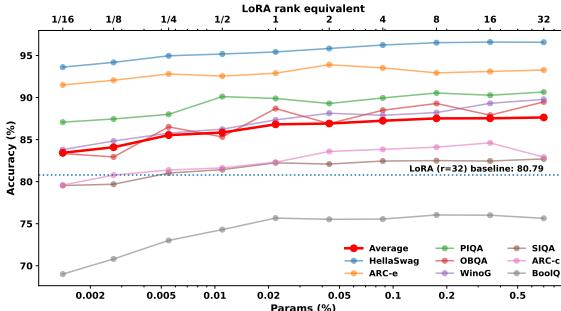
452 From the Average column of Table 6, BRT performs best. Non-local randomization scatters shar-
 453 ing patterns and disrupts short-range correlations. Row-Stripe generally exceeds Col-Stripe because
 454 column-aligned sharing ties all outgoing connections of the same input feature, suppressing cross-
 455 row diversity and pushing outputs toward collinearity, whereas row-aligned sharing preserves more
 456 per-output specialization; more broadly, weight tying reduces degrees of freedom. Across layouts,
 457 skewed variants lag balanced ones: uneven group sizes concentrate capacity and increase collision
 458 variance, while balanced weight-sharing is empirically beneficial in hashing-style schemes. Imple-
 459 mentation details appear in Appendix B.8.

460 461 462 5.4 IMPACT OF PARAMETER BUDGET

463 We investigate how performance scales
 464 with the number of trainable tesseractae k .
 465 A key advantage of MoSA is that k
 466 can take any integer value, enabling fine-
 467 grained budget control unconstrained by
 468 matrix shapes, unlike LoRA. For refer-
 469 ence, LoRA with rank $r=32$ on Llama-3-
 470 8B trains 0.7002% of parameters (80.79 ac-
 471 curacy), which we use as a baseline.

472 As shown in Figure 3, accuracy rises
 473 steeply from extremely small budgets (\sim
 474 0.0014%). This corresponds to only about
 475 one sixteenth of the parameter count re-
 476 quired by the smallest possible LoRA set-
 477 ting ($r=1$, $\sim 0.022\%$), even though LoRA
 478 itself cannot operate below rank 1. From
 479 there, performance continues to improve up
 480 to modest budgets ($\sim 0.175\%$, LoRA $r=4$

481 equivalent), after which the curve flattens. Notably, with an effective LoRA $r=1$ budget (0.022%
 482 parameters), MoSA already reaches **86.81**, surpassing the LoRA $r=32$ baseline while using only
 $\frac{1}{32}$ parameter numbers. Most gains are realized by the LoRA $r \approx 4$ equivalent, with larger allo-
 483 cations bringing only marginal, task-specific improvements. Unlike LoRA, however, MoSA admits
 484 arbitrary k , allowing precise budget tuning between conventional ranks. Overall, these results sug-
 485 gest that small to moderate budgets (up to LoRA $r \leq 4$ equivalents) already suffice for near-optimal
 accuracy, while larger budgets are only justified when additional task-specific gains are desired.



486 Figure 3: **Budget–performance trade-off on Llama-
 487 3-8B.** Per-task accuracy (thin solid) and Average (thick
 488 dashed) vs. trainable budget k (log-scale, bottom axis).
 489 Top axis shows LoRA-rank equivalents; the vertical
 490 dotted line marks the LoRA $r=32$ baseline (80.79).

486

6 CONCLUSION

488 We introduced MoSA, a parameter-efficient fine-tuning method that replaces low-rank adapters with
 489 randomized, near-balanced tessellations of the weight matrix controlled by a small set of learned
 490 scalars. Theoretically, with uniform learning rates and balanced groups, the task-driven update is
 491 directionally equivalent to projecting the full gradient onto the MoSA subspace. System-wise, a
 492 segmented-reduction backward kernel aggregates per-group gradients in one pass, scales robustly
 493 with the number of groups, and delivers substantial speedups over autograd. Empirically, across
 494 commonsense reasoning, open-domain dialogue, and out-of-distribution math reasoning, MoSA
 495 consistently matches or surpasses strong baselines at the same parameter budget, indicating that
 496 simple non-local sharing is a competitive alternative to the low-rank assumption. Overall, MoSA
 497 offers a simple, controllable, and efficient route to parameter-efficient adaptation.

498

ETHICS STATEMENT

500 This work fine-tunes open-weight LLMs on public, widely-used benchmarks. We use the official
 501 splits and standard evaluation protocols; we do not collect new data, annotate human subjects, or
 502 process personally identifiable information. All datasets are used under their original licenses and
 503 terms. Public NLP datasets and the underlying pretrained models may contain harmful content or
 504 societal biases. Our method is a parameter-efficient adapter that modifies only a small set of scalars
 505 on top of frozen backbones, but it can still inherit and potentially amplify biases present in the data
 506 or base models. We therefore: (i) report task-standard metrics without promoting sensitive-attribute
 507 targeting; (ii) follow the base-model usage policies; and (iii) recommend downstream users apply
 508 appropriate safety filters, domain constraints, and bias audits when deploying adapted models in
 509 user-facing scenarios.

511

REPRODUCIBILITY STATEMENT

513 We aim to make results reproducible. To that end, we will release our code in an anonymous code
 514 website <https://anonymous.4open.science/r/MoSA-iclr>. Detailed hyperparameter setting are shown
 515 in Appendix B.

517

REFERENCES

519 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for MT evaluation with improved
 520 correlation with human judgments. In *Proceedings of the ACL Workshop on Intrinsic and Ex-*
 521 *trinsic Evaluation Measures for Machine Translation and/or Summarization*, pages 65–72, 2005.
 522 URL <https://aclanthology.org/W05-0909/>.

524 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about physical
 525 commonsense. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34,
 526 pages 7432–7439, 2020. doi: 10.1609/aaai.v34i05.6239. URL <https://ojs.aaai.org/index.php/AAAI/article/view/6239>.

528 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 529 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 530 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 531 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
 532 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 533 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
 534 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neu-*
 535 *ral Information Processing Systems*, volume 33, pages 1877–1901. Curran Associates, Inc.,
 536 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

538 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 539 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,

540 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 541 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 542 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebbgen Guss, Alex Nichol, Alex
 543 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 544 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 545 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
 546 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 547 language models trained on code. 2021.

548 Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. Compressing
 549 neural networks with the hashing trick. In *International conference on machine learning*, pages
 550 2285–2294. PMLR, 2015.

551 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 552 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
 553 Burstein, Christy Doran, and Thamar Solorio, editors, *Proceedings of the 2019 Conference of
 554 the North American Chapter of the Association for Computational Linguistics: Human Lan-
 555 guage Technologies, Volume 1 (Long and Short Papers)*, pages 2924–2936, Minneapolis, Min-
 556 nnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
 557 <https://aclanthology.org/N19-1300/>.

558 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 559 Øyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
 560 lenge. *arXiv preprint arXiv:1803.05457*, 2018. URL <https://arxiv.org/abs/1803.05457>.

561 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 562 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 563 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

564 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
 565 pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,
 566 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
 567 1: Long Papers)*, pages 8493–8502, Dublin, Ireland, May 2022. Association for Computational
 568 Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL [https://aclanthology.org/2022.acl-long.581/](https://aclanthology.org/2022.acl-long.581).

569 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 570 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

571 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 572 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 573 Thamar Solorio, editors, *Proceedings of the 2019 Conference of the North American Chapter of
 574 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 575 and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
 576 putational Linguistics. doi: 10.18653/v1/N19-1423. URL [https://aclanthology.org/N19-1423/](https://aclanthology.org/N19-1423).

577 Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek,
 578 Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W Black,
 579 Alexander Rudnicky, Jason Williams, Joelle Pineau, Mikhail Burtsev, and Jason Weston. The
 580 second conversational intelligence challenge (convai2), 2019. URL <https://arxiv.org/abs/1902.00098>.

581 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
 582 Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu, Hai-Tao
 583 Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong Sun. Parameter-efficient fine-
 584 tuning of large-scale pre-trained language models. *Nature Machine Intelligence*, 5(3):220–235,
 585 March 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00626-4. URL <https://doi.org/10.1038/s42256-023-00626-4>.

594 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 595 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain,
 596 Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane
 597 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam Mc-
 598 Candlish, and Chris Olah. A mathematical framework for transformer circuits. <https://transformer-circuits.pub/2021/framework/index.html>, 2021. Transformer
 600 Circuits Thread.

601 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 602 key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
 603 tau Yih, editors, *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
 604 guage Processing*, pages 5484–5495, Online and Punta Cana, Dominican Republic, November
 605 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
 606 <https://aclanthology.org/2021.emnlp-main.446/>.

607 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 608 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 609 models. *arXiv preprint arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

610 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large models.
 611 In *International Conference on Machine Learning*, pages 17783–17806, 2024.

612 Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov.
 613 Improving neural networks by preventing co-adaptation of feature detectors. *arXiv preprint
 614 arXiv:1207.0580*, 2012.

615 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 616 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 617 NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th In-
 618 ternational Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning
 619 Research*, pages 2790–2799. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/houlsby19a.html>.

620 Edward J. Hu et al. LoRA: Low-rank adaptation of large language models. In *International Confer-
 621 ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYF9>.

622 Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. HiRA: Parameter-efficient
 623 hadamard high-rank adaptation for large language models. In *The Thirteenth International Con-
 624 ference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=TwJrTz9cRS>.

625 Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
 626 Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating
 627 for parameter-efficient fine-tuning, 2024. URL <https://arxiv.org/abs/2405.12130>.

628 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
 629 prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
 630 tau Yih, editors, *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
 631 guage Processing*, pages 3045–3059, Online and Punta Cana, Dominican Republic, November
 632 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
 633 <https://aclanthology.org/2021.emnlp-main.243/>.

634 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
 635 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, *Proceedings of the 59th
 636 Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
 637 Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 4582–4597, Online,
 638 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
 639 URL <https://aclanthology.org/2021.acl-long.353/>.

648 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text Summa-
649 rization Branches Out (WS)*, pages 74–81, 2004. URL <https://aclanthology.org/W04-1013/>.
650

651 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
652 Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Ruslan
653 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
654 Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learn-
655 ing*, volume 235 of *Proceedings of Machine Learning Research*, pages 32100–32121. PMLR,
656 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/liu24bn.html>.
657

658 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning
659 v2: Prompt tuning can be comparable to fine-tuning across scales and tasks. In *Annual Meeting
660 of the Association for Computational Linguistics*, pages 61–68, 2022.

661 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
662 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
663

664 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular
665 vectors adaptation of large language models. *arXiv preprint arXiv:2404.02948*, 2024a.
666

667 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: principal singular values and singular vec-
668 tors adaptation of large language models. In *Proceedings of the 38th International Conference
669 on Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2024b. Curran As-
670 sociates Inc. ISBN 9798331314385.

671 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing fac-
672 tual associations in GPT. In *Advances in Neural Information Processing Systems*, vol-
673 umne 35, 2022. URL https://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.
674

675 Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
676 memory in a transformer. In *The Eleventh International Conference on Learning Representations*,
677 2023. URL <https://openreview.net/forum?id=MkbcAHIYgyS>. ICLR 2023.
678

679 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
680 electricity? a new dataset for open book question answering. In *Proceedings of the 2018 Con-
681 ference on Empirical Methods in Natural Language Processing*, pages 2381–2391, Brussels,
682 Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
683 <https://aclanthology.org/D18-1260/>.
684

685 Takashi Mori, Liu Ziyin, Kangqiao Liu, and Masahito Ueda. Power-law escape rate of SGD. In
686 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
687 editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
688 *Proceedings of Machine Learning Research*, pages 15959–15975. PMLR, 17–23 Jul 2022. URL
689 <https://proceedings.mlr.press/v162/mori22a.html>.
690

691 Parsa Nooralinejad, Ali Abbasi, Soroush Abbasi Koohpayegani, Kossar Pourahmadi Meibodi, Rana
692 Muhammad Shahroz Khan, Soheil Kolouri, and Hamed Pirsiavash. Pranc: Pseudo random net-
693 works for compacting deep models. In *Proceedings of the IEEE/CVF International Conference
694 on Computer Vision*, pages 17021–17031, 2023.
695

696 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
697 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
698 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
699 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
700 and Chris Olah. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.
701 doi: 10.48550/arXiv.2209.11895. URL <https://arxiv.org/abs/2209.11895>.
702

703 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
704 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association
705 for Computational Linguistics (ACL)*, pages 311–318, 2002. doi: 10.3115/1073083.1073135.
706 URL <https://aclanthology.org/P02-1040/>.
707

702 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 703 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
 704 ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 705 Lu Fang, Junjie Bai, and Soumith Chintala. *PyTorch: an imperative style, high-performance deep*
 706 *learning library*. Curran Associates Inc., Red Hook, NY, USA, 2019.

707

708 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 709 sarial winograd schema challenge at scale. In *Proceedings of the AAAI Conference on Artificial*
 710 *Intelligence*, 2020.

711

712 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
 713 monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 714 Xiaojun Wan, editors, *Proceedings of the 2019 Conference on Empirical Methods in Natural*
 715 *Language Processing and the 9th International Joint Conference on Natural Language Process-*
 716 *ing (EMNLP-IJCNLP)*, pages 4463–4473, Hong Kong, China, November 2019. Association for
 717 Computational Linguistics. doi: 10.18653/v1/D19-1454. URL <https://aclanthology.org/D19-1454/>.

718

719 Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric
 720 lora architecture for efficient fine-tuning. In *Advances in Neural Information Processing Systems*
 721 (*NeurIPS*), 2024.

722

723 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 724 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 725 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

726

727 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 728 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
 729 dation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b. URL <https://arxiv.org/abs/2307.09288>.

730

731 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 732 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 733 *mation Processing Systems*, 2017.

734

735 Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradi-
 736 ent approximation. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
 737 J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Sys-*
 738 *tems*, volume 37, pages 54905–54931. Curran Associates, Inc., 2024a. doi: 10.52202/
 739 079017-1741. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/62c4718cc334f6a0a62fb81c4a2095a1-Paper-Conference.pdf.

740

741 Yiding Wang, Fanxu Meng, Xuefeng Zhang, Fan Jiang, Pingzhi Tang, and Muhan Zhang. HD-
 742 PiSSA: High-rank distributed orthogonal adaptation. In Christos Christodoulopoulos, Tan-
 743 moy Chakraborty, Carolyn Rose, and Violet Peng, editors, *Proceedings of the 2025 Con-*
 744 *ference on Empirical Methods in Natural Language Processing*, pages 6526–6539, Suzhou,
 745 China, November 2025a. Association for Computational Linguistics. ISBN 979-8-89176-332-
 746 6. doi: 10.18653/v1/2025.emnlp-main.330. URL <https://aclanthology.org/2025.emnlp-main.330/>.

747

748 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. LoRA-Pro: Are low-rank adapters
 749 properly optimized? *arXiv preprint arXiv:2407.18242*, 2024b.

750

751 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. LoRA-Pro: Are low-rank adapters
 752 properly optimized? In *The Thirteenth International Conference on Learning Representations*,
 753 Singapore, April 2025b. OpenReview.net. URL <https://arxiv.org/abs/2407.18242>.

754

755 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
 Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap your own mathematical questions for
 large language models. In *International Conference on Learning Representations*, 2024a.

756 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
757 Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
758 questions for large language models. In *International Conference on Learning Representations*
759 (*ICLR*), 2024b. URL <https://openreview.net/forum?id=N8N0hgNDRT>. Spotlight.

760 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
761 machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez,
762 editors, *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
763 pages 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
764 10.18653/v1/P19-1472. URL <https://aclanthology.org/P19-1472/>.

765 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
766 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *International Con-
767 ference on Learning Representations*, 2023.

768 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. BERTScore: Eval-
769 uating text generation with BERT. In *International Conference on Learning Representations*,
770 2020.

771 Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhui Chen,
772 and Xiang Yue. OpenCodeInterpreter: Integrating code generation with execution and refine-
773 ment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Findings of the Associa-
774 tion for Computational Linguistics: ACL 2024*, pages 12834–12859, Bangkok, Thailand, August
775 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.762. URL
776 <https://aclanthology.org/2024.findings-acl.762/>.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A STATEMENT ON THE USE OF LLM
811812 During the preparation of this manuscript, we utilized LLM solely for the purpose of grammar
813 checking and language refinement. All core ideas, research content, data analysis, and conclusions
814 are the original work of the authors. We take full responsibility for the final content of this paper.
815816 B EXPERIMENTAL SETUP
817818 B.1 TASKS AND DATASETS
819820 We evaluate on three task families to assess both in-domain performance and out-of-distribution
821 generalization: (i) **Commonsense reasoning** on the union of *BoolQ*, *PIQA*, *SIQA*, *ARC-c/e*, *OBQA*,
822 *HellaSwag*, and *WinoGrande* ($\approx 170k$ training examples in total); (ii) **Open-domain dialogue** on
823 *ConvAI2* under the self-persona setting; (iii) **Mathematical reasoning (OOD)** by training on *Meta*-
824 *MathQA* and evaluating on *GSM8K*. Unless stated, we follow standard dataset splits and report
825 results on the official test sets with a small held-out validation split for model selection.
826827 B.2 BASE MODELS AND BASELINES
828829 We consider open-weight LLMs Llama-2-7B and Llama-3-8B. Baselines include strong PEFT meth-
830 ods under matched conditions: Prompt Tuning, P-Tuning, LoRA, DoRA, MoRA, HiRA. The results
831 for these methods are directly copied from HiRA paper with same experiment condition. All meth-
832 ods adapt the same target modules and use identical tokenization, maximum sequence length, batch
833 size, and mixed-precision settings to ensure fair comparison.
834835 B.3 ADAPTER TARGETS AND PARAMETER-BUDGET PARITY
836837 Adapters are applied to the self-attention projections \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V and feed-forward projections
838 \mathbf{W}_{up} , \mathbf{W}_{down} in each Transformer block, while other weights remain frozen. To enforce strict budget
839 parity with a LoRA configuration of rank ($r = 32$) we choose the number of MoSA tesserae K such
840 that the total trainable scalars match $r(d_{\text{in}} + d_{\text{out}})$ for the same set of target matrices. We report
841 *Params (%)* as the ratio of trainable parameters to the base model’s total parameter count. Unless
842 specified, group sizes are balanced (difference at most one) and the assignment is fixed throughout
843 training.
844845 B.4 OPTIMIZATION AND TRAINING SCHEDULES
846847 We use AdamW with learning rate 1×10^{-5} and 0.1 warm-up ratio, cosine decay thereafter. Epochs
848 per task: 3 for commonsense, 1 for ConvAI2, and 2 for MetaMathQA→GSM8K. We train with
849 global batch size 8, gradient accumulation 2, max sequence length 512. Model selection is per-
850 formed on the held-out validation split. Decoding uses deterministic settings (temperature = 0).
851852 B.5 EVALUATION PROTOCOL AND METRICS
853854 For commonsense tasks, we report accuracy per dataset and the unweighted average. For dialogue,
855 we report BLEU-4, BERTScore (P/R/F1), METEOR, and ROUGE-L, along with an unweighted
856 average across metrics. For GSM8K, we report exact-match accuracy on the final numeric answer.
857858 B.6 HARDWARE AND REPRODUCIBILITY
859860 Experiments are conducted on A100-80G PCIE. We fix random seeds, log all hyperparameters, and
861 release scripts to reproduce results (data preprocessing, training, and evaluation).
862863 B.7 IMPLEMENTATION NOTES
864865 MoSA parameterizes updates as groupwise-constant scalars over a fixed tessellation. Gradients
866 are aggregated by a single segmented-reduction over a stable permutation that makes equal keys
867

864 contiguous. Balanced tessellation improves directional alignment of one-step updates and keeps
 865 segments near-uniform, aiding kernel utilization. Unless specified, the assignment is shared across
 866 layers of identical shape.
 867

868 **B.8 DETAILS OF GROUPING STRATEGIES**
 869

870 In this section, we formalize the construction of the group-index map $\Gamma \in \{1, \dots, K\}^{h \times d}$, which
 871 assigns each weight position (i, j) to a group index $\Gamma_{ij} \in \{1, \dots, K\}$. This map determines the
 872 group partition $\{\mathcal{I}_k\}_{k=1}^K$ and the corresponding mask matrices $\{M_k\}_{k=1}^K$ used in the main method,
 873 where

$$874 \quad \mathcal{I}_k := \{(i, j) : \Gamma_{ij} = k\}.$$

875 Let h and d denote the output and input dimensions, respectively, and $N = hd$ be the total number
 876 of weights. We partition the index set into K groups.
 877

878 **Balanced Random Tessellation (BRT).** We aim to partition the N weights into K groups of
 879 nearly equal size. Let $r = N \bmod K$. We define the target group sizes as:
 880

$$881 \quad m_k = \begin{cases} \lceil N/K \rceil & \text{for } 1 \leq k \leq r, \\ \lfloor N/K \rfloor & \text{for } r < k \leq K, \end{cases} \quad (10)$$

884 which ensures $\sum_{k=1}^K m_k = N$ and $\max_k |m_k - N/K| \leq 1$.
 885

886 We first generate a random permutation σ of the linear indices $\{1, \dots, N\}$ using a fixed seed. Let
 887 $\gamma \in \{1, \dots, K\}^N$ denote the group-index assignment in linear form. The groups are formed by
 888 slicing this permuted sequence according to the sizes $\{m_k\}$: the k -th group \mathcal{I}_k contains the indices
 889 $\{\sigma(t)\}$ for t in the interval $(C_{k-1}, C_k]$, where $C_k = \sum_{j=1}^k m_j$ is the cumulative count. Finally, γ is
 890 reshaped back to (h, d) to form the map Γ .

891 **Algorithm 1** Construction of BRT Assignment

892 **Input:** Dimensions h, d , groups K , seed S

893 1: $N \leftarrow h \cdot d$

894 2: Compute sizes $\{m_k\}_{k=1}^K$ such that $m_k \approx N/K$ ▷ Balanced partition

895 3: $\sigma \leftarrow \text{RANDOMPERMUTATION}(\{1, \dots, N\}; S)$

896 4: Initialize $\gamma \in \{1, \dots, K\}^N$

897 5: $t \leftarrow 1$

898 6: **for** $k = 1$ **to** K **do**

899 7: **for** $j = 1$ **to** m_k **do**

900 8: Assign linear index $\sigma(t)$ to group k : $\gamma_{\sigma(t)} \leftarrow k$

901 9: $t \leftarrow t + 1$

902 10: **end for**

903 11: **end for**

904 12: $\Gamma \leftarrow \text{reshape}(\gamma, h, d)$

905 13: **return** Γ

906 **Skewed Assignment.** To analyze the impact of load imbalance, we generate groups with non-
 907 uniform sizes following a geometric decay controlled by a ratio $\rho \in (0, 1)$. We define unnormalized
 908 weights $w_k = \rho^{k-1}$ for $k = 1, \dots, K$. The target integer sizes m_k are computed using the *Largest
 909 Remainder Method* to ensure they sum exactly to N :
 910

- 911 1. Calculate ideal quotas $q_k = N \cdot (w_k / \sum_j w_j)$.
- 912 2. Assign initial integer sizes $m_k = \lfloor q_k \rfloor$.
- 913 3. Distribute the remaining count $R = N - \sum_k m_k$ to the R groups with the largest fractional
 914 parts $q_k - \lfloor q_k \rfloor$.

916 The assignment is then performed similarly to BRT but using these skewed sizes on the random
 917 permutation. For our experiments, we set $\rho = 0.85$.

918 **Structured Striping Strategies.** Unlike the random assignment in BRT, stripe strategies preserve
 919 spatial locality. We define the cumulative boundaries $C_0 = 0$ and $C_k = \sum_{j=1}^k m_j$ based on balanced
 920 sizes $\{m_k\}$ as in BRT.
 921

922 **Row-major stripes.** Weights are indexed in row-major order: $t(i, j) = (i - 1)d + j$. Indices
 923 falling in the interval $(C_{k-1}, C_k]$ are assigned to group k . Mathematically, $\Gamma_{ij} = k$ if and only if
 924 $C_{k-1} < (i - 1)d + j \leq C_k$. This tends to group entire rows or contiguous row segments together.
 925

926 **Column-major stripes.** Weights are indexed in column-major order: $t(i, j) = (j - 1)h + i$.
 927 Similarly, $\Gamma_{ij} = k$ if and only if $C_{k-1} < (j - 1)h + i \leq C_k$. This tends to group entire columns or
 928 contiguous column segments.
 929

Algorithm 2 Construction of Structured Stripes (Row/Column)

930 **Input:** Dimensions h, d , groups K , mode $\in \{\text{ROW, COL}\}$
 931 1: $N \leftarrow h \cdot d$
 932 2: Compute balanced cumulative boundaries $\{C_k\}_{k=0}^K$
 933 3: **for** $i = 1$ **to** h **do**
 934 4: **for** $j = 1$ **to** d **do**
 935 5: **if** mode is **ROW** **then**
 936 6: $t \leftarrow (i - 1)d + j$
 937 7: **else** ▷ mode is **COL**
 938 8: $t \leftarrow (j - 1)h + i$
 939 9: **end if** ▷ Binary search or linear scan
 940 10: Find k such that $C_{k-1} < t \leq C_k$
 941 11: $\Gamma_{ij} \leftarrow k$
 942 12: **end for**
 943 13: **end for**
 944 14: **return** Γ
 945

B.9 SENSITIVITY TO RANDOM SEED

946 To evaluate the sensitivity of MoSA to the specific random tessellation generated by the seed, we
 947 conducted 5 independent runs using Llama-3-8B with the MoSA configuration. We used the same
 948 hyperparameters as the main experiments but varied the random seed used to generate the group
 949 assignments. As shown in Table 7, the performance is highly stable across different random initial-
 950 izations. The average accuracy across the five seeds is 87.45% with a standard deviation of only
 951 0.14%.
 952

953 Table 7: Sensitivity analysis of MoSA (Llama-3-8B, $r = 32$ equivalent) across 5 different random
 954 seeds for tessellation assignment. The method shows high stability with minimal variance.

955 Seed	956 BoolQ	957 PIQA	958 SIQA	959 ARC-c	960 ARC-e	961 OBQA	962 HellaS	963 WinoG	964 Average
957 1	958 74.7	959 91.06	960 81.85	961 83.63	962 93.46	963 90.23	964 96.5	965 88.98	966 87.55
958 2	959 74.79	960 90.79	961 81.80	962 84.62	963 93.50	964 89.45	965 96.67	966 89	967 87.58
959 3	960 75.30	961 90.79	962 81.50	963 83.47	964 92.93	965 88.48	966 96.88	967 88.75	968 87.26
960 4	961 75	962 89.82	963 81.85	964 84.05	965 93.26	966 88.87	967 96.8	968 89.14	969 87.35
961 5	962 75.27	963 90.25	964 81.96	965 83.39	966 93.05	967 90.43	968 96.71	969 88.83	970 87.48
962 Mean	963 75.01	964 90.54	965 81.79	966 83.83	967 93.24	968 89.49	969 96.71	970 88.94	971 87.45
963 Std Dev	964 0.27	965 0.5	966 0.17	967 0.51	968 0.25	969 0.84	970 0.15	971 0.15	972 0.14

B.10 COMPARISON TO MORE PEFT METHODS

968 We compare MoSA with PiSSA, HD-PiSAA, LoRA-GA and LoRA-Pro for two experiments. We
 969 utilized the Llama-2-7B (Touvron et al., 2023b) model as the backbone.
 970

971 Regarding the datasets, we fine-tuned the model on a 100k subset of the MetaMathQA (Yu et al.,
 972 2024a) dataset for the mathematical reasoning task and evaluated it on GSM8K (Cobbe et al., 2021).

972 For the code generation task, we fine-tuned on a 100k subset of the CodeFeedback (Zheng et al.,
 973 2024) dataset and reported the Pass@1 metric on HumanEval (Chen et al., 2021). The the results
 974 for PiSSA (Meng et al., 2024b), HD-PiSSA (Wang et al., 2025a), LoRA-GA (Wang et al., 2024a)
 975 and LoRA-Pro (Wang et al., 2025b) were directly copied from their respective original papers.
 976

977 Table 8: Fine-tuning results of Llama-2-7B model. **Bold** and underline indicate the highest and
 978 second-highest scores, respectively.

Method	GSM8K	HumanEval
LoRA	42.08	14.76
PiSSA	53.22	21.92
HD-PiSSA	52.92	21.3
LoRA-GA	53.60	19.81
LoRA-Pro	<u>57.57</u>	<u>22.97</u>
MoSA	59.8	24.39

990
 991 **Comparison with Multi-Task LoRA Methods.** Although our primary experimental setting treats
 992 the aggregation of commonsense datasets as a single-task learning objective, the benchmark inher-
 993 ently consists of 8 distinct reasoning tasks. To validate MoSA’s capability in this context, we com-
 994 pared it with HydraLoRA (Tian et al., 2024), a state-of-the-art method specifically designed for
 995 multi-task PEFT.

996 For the HydraLoRA configuration, we set the number of adapters $k = 8$ to align with the eight
 997 tasks and maintained the rank at $r = 32$. It is crucial to note that due to its multi-branch architec-
 998 ture, the actual trainable parameter count of HydraLoRA is approximately **4.5** \times that of MoSA (or
 999 standard LoRA). The results are presented in Table 9. HydraLoRA achieves an average accuracy of
 1000 **87.60%** across the eight datasets. Despite the significantly larger parameter budget, its performance
 1001 is highly comparable to MoSA which achieves an average of 87.66%. This demonstrates that MoSA
 1002 effectively captures complex multi-task knowledge distributions through its sparse activation mech-
 1003 anism, without requiring the explicit routing structures or the massive parameter overhead typical of
 1004 specialized multi-task methods.

1005 Table 9: Performance comparison between MoSA and HydraLoRA ($k = 8, r = 32$) on common-
 1006 sense reasoning tasks.

Method	Params (%)	BoolQ	PIQA	SIQA	ARC-c	ARC-e	OBQA	HellaSwag	Wino	Avg.
MoSA	0.70	75.64	90.65	82.70	82.91	93.27	89.48	96.57	89.78	87.63
HydraLoRA	3.60	75.03	91.11	82.46	84.21	93.71	88.28	96.90	89.06	87.60

1014 B.11 SENSITIVITY ANALYSIS OF LEARNING RATE

1015 To evaluate the robustness of MoSA with respect to hyperparameter settings, we conducted a sen-
 1016 sitivity analysis on the learning rate. We utilized the Llama-3-8B model with a rank of $r = 32$
 1017 and evaluated performance across eight standard commonsense reasoning benchmarks. We varied
 1018 the learning rate within the range of $\{5 \times 10^{-6}, 1 \times 10^{-5}, 2 \times 10^{-5}, 5 \times 10^{-5}\}$, keeping all other
 1019 hyperparameters constant.

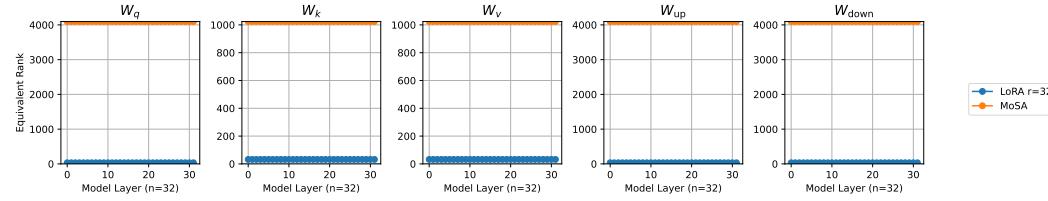
1020 The results are summarized in Table 10. We observe that MoSA exhibits stable performance across
 1021 a broad range of learning rates. Specifically, the performance peaks at a learning rate of 1×10^{-5} ,
 1022 achieving the highest average accuracy of **87.63%** and leading in 5 out of 8 individual tasks. Fur-
 1023 thermore, even when the learning rate deviates to 5×10^{-6} or 2×10^{-5} , the fluctuation in average
 1024 accuracy remains within 0.55%, demonstrating that our method is not overly sensitive to learning
 1025 rate variations.

1026

1027 Table 10: Ablation study on learning rate sensitivity using Llama-3-8B ($r = 32$). **Bold** indicates the
1028 best result.

Learning Rate	BoolQ	PIQA	SIQA	ARC-c	ARC-e	OBQA	HellaSwag	WinoGrande	Average
5e-6	75.09	89.98	82.66	84.13	93.38	88.28	96.18	88.91	87.33
1e-5	75.64	90.65	82.70	82.91	93.27	89.48	96.57	89.78	87.63
2e-5	75.06	89.76	80.70	83.80	93.13	88.09	96.58	89.84	87.12
5e-5	74.52	89.28	80.85	82.65	91.69	87.89	95.52	87.27	86.21

1034



1042

1043 Figure 4: **Rank of Weight Updates.** We compare the effective rank of ΔW learned by LoRA and
1044 MoSA on LLaMA-3-8B. LoRA is strictly bounded by its low-rank bottleneck . In contrast, MoSA
1045 yields a full-rank update, utilizing significantly more dimensions in the weight space to capture
1046 complex features.

1047

1048

1049

B.12 RANK ANALYSIS

1050

1051

1052

1053 We calculate the rank update of MoSA and LoRA which trained in LLaMA-3-8B on commonsense.
1054 dataset. We compute the rank by SVD decomposition for singular values of exceeding a threshold
1055 of 0.01.

1056

1057

1058

1059 As shown in Figure 4, LoRA is mathematically constrained to a low-rank subspace, limiting the
1060 number of active dimensions to its pre-defined rank r . Conversely, MoSA achieves a full-rank
1061 update.

1062

1063

1064

C SPEED AND GPU MEMORY USAGE

1065

1066

C.1 SPEED

1067

1068

1069

1070

1071

1072

1073

1074 We benchmark the step time and throughput of MoSA against three strong parameter-efficient base-
1075 lines: LoRA, DoRA, and HiRA. All methods are implemented in the same codebase and run on the
1076 same hardware with sequence length 512, batch size 8, and adapter rank $r = 32$. We use Adam as
1077 the optimizer and report the average wall-clock time per training step and tokens-per-second over
50 iterations, after discarding warm-up steps.

1078

1079

1080 Table 11 summarizes the results on Qwen3-4B-Base and Llama3-8B. On both models, LoRA attains
1081 the highest throughput, while our optimized MoSA implementation remains within the same order
1082 of magnitude as LoRA/DoRA/HiRA and is consistently much faster than the naive MoSA-Autograd
1083 variant which uses default pytorch backward implementation. The latter serves as an ablation that
1084 highlights the benefit of our segmented-reduction implementation.

1085

1086

1087

C.2 MEMORY

1088

1089

1090

1091

1092

1093

1094 For 3.1, Although we formulate the gradient aggregation in Eq. 4 as a matrix-vector product $\nabla_{\lambda}\mathcal{L} =$
1095 SPu , explicitly storing the matrices S and P is computationally inefficient. Our implementation
1096 utilizes the BRT structure to represent these operators implicitly, reducing memory complexity from
1097 quadratic to linear.

1098

1099

1100 **Implicit Permutation (P).** Instead of storing a permutation matrix $P \in \{0, 1\}^{N \times N}$, we store a
1101 single index vector $\pi \in \mathbb{N}^N$ containing the sort order of the group assignments. The matrix-vector

1080
 1081 Table 11: **Training speed comparison** sequence length 512, batch size 8, rank $r = 32$, Adam
 1082 optimizer. We report average step time and throughput over 50 iterations.

Model	Method	Step time ↓ (ms)	Tokens/s ↑
Qwen3-4B	LoRA	360.07	11,375
	HiRA	386.12	10,608
	DoRA	440.63	9,296
	MoSA(Ours)	420.79	9,734
	MoSA-Autograd	1215.56	3,370
Llama3-8B	LoRA	416.81	9,827
	HiRA	505.64	8,101
	DoRA	532.81	7,688
	MoSA(Ours)	596.54	6,866
	MoSA-Autograd	2098.53	1,952

1096
 1097
 1098 product Pu is implemented as a direct memory gather operation, where the i -th element of the
 1099 permuted vector is simply u_{π_i} . This reduces the storage requirement to $O(N)$.
 1100

1101 **Implicit Segmentation (S).** The segmentation matrix $S \in \{0, 1\}^{K \times N}$ normally encodes which
 1102 elements belong to which group. Under BRT, we enforce that all groups have a uniform size $m_k \approx$
 1103 N/K . This regularity eliminates the need to store S . Since the permutation P makes group elements
 1104 contiguous, the aggregation $S(Pu)$ is mathematically equivalent to reshaping the permuted vector
 1105 into a $K \times m_k$ matrix and computing the sum along the second dimension. This operation requires
 1106 no additional metadata storage.

1107 For index matrix, we save Γ shown in B.8. Therefore, the only additional cost is a small meta-
 1108 data buffer that stores the tessera index Γ and sort order π for each weight element to support the
 1109 segmented-reduction kernel. This additional memory is a fixed constant once the partition is chosen.
 1110 It depends only on the weight shapes and grouping, not on batch size, sequence length, optimizer,
 1111 or rank r . On Qwen3-4B-Base and Llama3-8B, the buffer is about 470 MiB and 1088 MiB, respec-
 1112 tively. This small overhead is largely due to the *structure sharing* strategy in Sec. 3.1, where layers
 1113 with identical shapes reuse the same partition so that we store a single index buffer per unique shape
 1114 instead of per layer.

1116 D ANALYSIS OF GENERALIZATION TO ADAPTIVE OPTIMIZERS

1117
 1118 In this section, we extend our analysis from first-order SGD updates to adaptive optimization meth-
 1119 ods, specifically Adam, using the same notation as in Sec. 3.2. We show that balanced tessellations
 1120 remain critical for maintaining uniform update magnitudes across different subspaces.
 1121

1123 D.1 GRADIENT STATISTICS UNDER AGGREGATION

1124
 1125 Recall that MoSA updates a scalar parameter λ_k that aggregates gradients from a group \mathcal{I}_k of size
 1126 $m_k = |\mathcal{I}_k|$. Let $\mathbf{G} = \nabla_W \mathcal{L} \in \mathbb{R}^{h \times d}$ denote the gradient, and write its entries as \mathbf{G}_{ij} . We assume
 1127 the entries are i.i.d. with mean μ and variance σ^2 :

$$1128 \quad \mathbb{E}[\mathbf{G}_{ij}] = \mu, \quad \text{Var}(\mathbf{G}_{ij}) = \sigma^2. \quad (11)$$

1129
 1130 The gradient with respect to the scalar λ_k is the Frobenius inner product between \mathbf{G} and the mask
 1131 M_k :

$$1132 \quad g_k := \nabla_{\lambda_k} \mathcal{L} = \langle \mathbf{G}, M_k \rangle_F = \sum_{(i,j) \in \mathcal{I}_k} \mathbf{G}_{ij}. \quad (12)$$

1134 Thus the first and second moments of g_k scale with the group size m_k :
 1135

$$1136 \mathbb{E}[g_k] = m_k \mu, \quad (13)$$

$$1137 \mathbb{E}[(g_k)^2] = \text{Var}(g_k) + (\mathbb{E}[g_k])^2 = m_k \sigma^2 + m_k^2 \mu^2. \quad (14)$$

1139 **D.2 EFFECTIVE UPDATE MAGNITUDE WITH ADAM**
 1140

1141 Adam updates parameters using the ratio of the first-moment estimate (denoted \hat{m}_k) to the square
 1142 root of the second-moment estimate (denoted \hat{v}_k). For the scalar λ_k , at a steady state where the
 1143 exponential moving averages approximate the corresponding expectations, the update $\Delta\lambda_k$ is ap-
 1144 proximately

$$1145 \Delta\lambda_k \approx -\eta \frac{\mathbb{E}[g_k]}{\sqrt{\mathbb{E}[(g_k)^2] + \epsilon}} = -\eta \frac{m_k \mu}{\sqrt{m_k \sigma^2 + m_k^2 \mu^2 + \epsilon}}. \quad (15)$$

1146 Mapping this scalar update back to the weight space, the effective increment for any weight in group
 1147 k satisfies

$$1148 \delta W_{ij} = \Delta\lambda_k, \quad \forall (i, j) \in \mathcal{I}_k. \quad (16)$$

1149 We now analyze how the magnitude of this update scales with m_k in two regimes.

1150 **Regime 1: Variance-dominated.** In deep networks, gradient variance often dominates the mean
 1151 ($\sigma^2 \gg \mu^2$) (Mori et al., 2022), especially in early training or for certain layers. When the variance
 1152 term dominates the second moment, i.e., $\sigma^2 \gg m_k \mu^2$, we have

$$1153 \delta W_{ij} \approx -\eta \frac{m_k \mu}{\sqrt{m_k \sigma^2}} = -\eta \frac{\mu}{\sigma} \sqrt{m_k}. \quad (17)$$

1154 **Observation.** Even with Adam’s normalization, the effective step size still scales as $\sqrt{m_k}$. If group
 1155 sizes are unbalanced (e.g., one group is $4 \times$ larger than another), the larger group will receive updates
 1156 with approximately $2 \times$ the magnitude.

1157 **Regime 2: Signal-dominated.** If the mean gradient is strong, i.e., $\mu^2 \gg \sigma^2/m_k$, then the second-
 1158 moment term is dominated by the squared mean:

$$1159 \delta W_{ij} \approx -\eta \frac{m_k \mu}{\sqrt{m_k^2 \mu^2}} = -\eta \text{sgn}(\mu). \quad (18)$$

1160 In this idealized regime, Adam successfully normalizes the update scale, and the dependence on
 1161 m_k vanishes. However, practical training typically oscillates between the variance-dominated and
 1162 signal-dominated regimes.

1163 As shown in Eq. (17), under the common variance-dominated condition the effective learning rate
 1164 for group k is proportional to $\sqrt{m_k}$. An imbalanced partition therefore implies that different parts
 1165 of the weight matrix are optimized with effectively different learning rates. To ensure consistent
 1166 optimization dynamics and stable moment estimation across all parameters, the group sizes m_k must
 1167 be kept approximately constant. This theoretically justifies the necessity of balanced tessellations
 1168 even when using adaptive optimizers such as Adam.

1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187