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ABSTRACT

We introduce MoSA, a new parameter-efficient fine-tuning (PEFT) method that
replaces low-rank factorization with randomized, fine-grained sharing of weight
updates. Each adapted weight matrix is constructed by broadcasting a small set
of learned scalars over a fixed tessellation, a pre-defined group assignment of
weight entries of the weight matrix, producing expressive changes under the same
parameter budget as low-rank adaptation (LoRA). MoSA requires no architec-
tural changes and can be merged into the base model for zero-overhead inference.
Across diverse language understanding and generation tasks, MoSA matches or
surpasses strong PEFT baselines under strictly matched budgets. Analyses and
ablations indicate that non-local parameter sharing acts as an effective regularizer,
and that grouping design and budget allocation govern the expressivity–efficiency
trade-off. These results position MoSA as a simple, scalable alternative to LoRA.

1 INTRODUCTION

Large Language Models (LLMs), such as BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020),
and LLaMA (Touvron et al., 2023a), are built on Transformers (Vaswani et al., 2017) and pretrained
on web-scale corpora. In practical use, these pretrained models are typically adapted to downstream
tasks via task-specific fine-tuning, which has driven rapid progress across NLP and beyond. How-
ever, updating all parameters is often impractical: the computation and storage costs are substantial,
optimizer states and checkpoints scale with the model size, and maintaining separate fully fine-tuned
copies hinders multi-task and on-device deployment (Ding et al., 2023). This motivates parameter-
efficient fine-tuning (PEFT), which seeks to retain the benefits of full adaptation while learning only
a small set of additional parameters and keeping the base model frozen.

Among PEFT methods, low-rank adaptation (LoRA) (Hu et al., 2022) is widely adopted. It freezes
pretrained weights and injects trainable low-rank matrices, reflecting the hypothesis that useful
weight updates have low intrinsic ranks. This low-rank prior has become a de facto assumption
in LoRA and its variants (Liu et al., 2024; Wang et al., 2024a;b; Hayou et al., 2024; Meng et al.,
2024a). However, this assumption imposes a strict structural bottleneck: it confines the weight up-
date to a small subspace, potentially limiting the model’s ability to learn complex, high-rank patterns
required for difficult tasks. While recent approaches like HiRA (Huang et al., 2025) attempt to alle-
viate this limitation by using Hadamard products to achieve high-rank updates, they inherently rely
on the priors of the original weights, effectively confining the update to a specific, weight-dependent
subspace. This raises a natural question: can we achieve parameter efficiency without being bound
by low-rank constraints or pre-existing weight structures?

To answer this question, we introduce Mosaic Shared Adaptation (MoSA). The intuition behind
MoSA draws directly from the art of mosaics, where complex imagery is constructed from a limited
palette of tesserae. Similarly, MoSA partitions the entries of the weight matrix into a fixed tessel-
lation of disjoint groups, and controls each group with a single learnable scalar. We then broadcast
these scalars to their assigned positions to construct the final update. Crucially, we set the tessel-
lation to be randomized and spatially agnostic. This non-local grouping disrupts the short-range
correlations found in weight matrices, acting as a regularizer that mitigates co-adaptation (Hinton
et al., 2012). This allows MoSA to construct expressive, full-rank updates using a parameter budget
strictly comparable to LoRA.
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Table 1: Qualitative comparison of PEFT methods (✓: yes, ✗: no). MoSA highlights: high-rank
expressivity under the same budget, per-scalar budget granularity, lossless merge for zero-latency
inference, no architectural changes, and non-local sharing as regularization.

Criterion MoSA (Ours) LoRA DoRA MoRA HiRA Prompt/Prefix Adapters

High-rank expressivity at fixed budget ✓ ✗ ✗ ✗ ✓ – –
Arbitrary budget granularity ✓ ✗ ✗ ✗ ✗ ✗ ✗

No change in the architecture ✓ ✓ ✓ ✓ ✓ ✓ ✗

Non-local parameter-sharing regularization ✓ ✗ ✗ ✗ ✗ – ✗

Beyond the conceptual framework, we develop a first-order analysis showing that size-balanced
grouping minimizes the expected deviation from the unconstrained update, thereby formalizing
the optimality of our design. Furthermore, to realize MoSA efficiently, we implement a custom
segmented-reduction backward kernel. This kernel aggregates per-group gradients in a single pass
using stable permutation, eliminating the need for atomic operations and significantly accelerating
the backward pass.

Comprehensive experiments on commonsense reasoning, open-domain dialogue, and mathematical
reasoning benchmarks show that MoSA consistently outperforms strong PEFT baselines such as
LoRA, DoRA (Liu et al., 2024), and HiRA (Huang et al., 2025) under matched parameter budgets.
Notably, MoSA achieves competitive performance using a parameter budget smaller than a rank-1
LoRA equivalent, matching baselines that require tens of times more parameters.

2 RELATED WORKS

Adapting large pretrained models has produced a broad family of PEFT techniques. A useful or-
ganizing view is to ask whether a method adds small task–specific parameters while freezing the
backbone, or reparameterizes the weight update itself. We follow this taxonomy and position our
method accordingly. A qualitative comparison appears in Table 1. Related work is detailed below.

Additive PEFT Methods. A major branch of PEFT involves inserting small, trainable modules into
the frozen LLM. Adapter-based methods (Houlsby et al., 2019) pioneered this by adding compact
neural networks between Transformer layers. More recent approaches focus on the input and activa-
tion space. Prompt Tuning (Lester et al., 2021) prepends continuous, trainable “soft prompt” vectors
to the input, while Prefix Tuning (Li and Liang, 2021) inserts trainable prefixes into the hidden states
of each layer, steering the model’s behavior without altering its core weights.

Reparameterization via Low-Rank Updates. An influential alternative is to reparameterize the
weight update itself. LoRA (Hu et al., 2022) is the canonical example, modeling the update ∆W as
two smaller, low-rank matrices (∆W = BA). This factorization dramatically reduces the number
of trainable parameters. Its success has inspired numerous variants, including QLoRA (Dettmers
et al., 2023) for memory efficiency, AdaLoRA (Zhang et al., 2023) for adaptive budget allocation
and DoRA (Liu et al., 2024) for magnitude-direction decomposition.

High-Rank Methods. Recently, researchers have started exploring beyond the low-rank con-
straint (Jiang et al., 2024; Huang et al., 2025). MoRA (Jiang et al., 2024) employs a square ma-
trix to maximize the rank of the update within a fixed parameter budget, challenging the necessity
of low-rank decomposition. HiRA (Huang et al., 2025), for instance, uses Hadamard products to
achieve high-rank updates efficiently, suggesting greater expressive power is beneficial. Our work
aligns with this direction but proposes a fundamentally different mechanism.

Hashing Methods. The core idea of parameter sharing in MoSA is conceptually related to tech-
niques developed for model compression. The “hashing trick” or HashedNets (Chen et al., 2015;
Nooralinejad et al., 2023) use a hash function to group network weights, forcing all weights in the
same hash bucket to share a single parameter value. This significantly reduces storage for the entire
model. However, these methods were designed to compress the entire pre-trained weight matrix
W0. In contrast, MoSA applies this principle of randomized grouping specifically to the fine-tuning
update ∆W , repurposing it as a PEFT strategy rather than a static compression tool. This distinction
is crucial, as MoSA maintains the integrity of the base model while enabling efficient adaptation.
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(b) Backward: Gradient Aggregation

Figure 1: MoSA Forward and Backward Mechanics. (a) Forward: The learnable scalars λ are
broadcast to their corresponding color-coded tesserae to form the update matrix ∆W . (b) Back-
ward: The gradients∇WL are aggregated via a segmented reduction. Values in identically colored
cells are summed to produce the scalar gradient∇λL, efficiently implemented as∇λL = SPu.

3 METHODOLOGY

In this section, we present MoSA. As illustrated in Figure 1, our method partitions the weight space
into disjoint groups and assigns a single learnable scalar to each group. This design enables full-
rank, element-wise modulation with a parameter budget comparable to or lower than that of low-rank
adapters. We first detail the mathematical formulation, then provide a theoretical justification for our
partitioning strategy, and finally describe the efficient gradient computation.

3.1 FORMULATION

Consider a pre-trained linear layer with weights W0 ∈ Rh×d, where d is the input dimension and h
is the output dimension. We aim to learn an additive update ∆W .

LoRA Parameterization. LoRA assumes ∆W has a low intrinsic rank r ≪ min(h, d). It parame-
terizes the update as the product of two low-rank matrices B ∈ Rh×r and A ∈ Rr×d:

∆WLoRA = BA. (1)

This enforces a strict structural bottleneck, limiting the update to a low-dimensional subspace.

MoSA Parameterization. In contrast, MoSA constructs a full-rank update using a sparse set of
shared scalars λ ∈ RK , where K matches the parameter budget of LoRA baselines. We define a
fixed partitioning of the weight indices I = {(i, j) : 1 ≤ i ≤ h, 1 ≤ j ≤ d} into K disjoint sets
(tesserae) I1, . . . , IK . As shown in Figure 1(a), the update matrix is constructed via broadcasting:

∆WMoSA =

K∑
k=1

λkMk, where (Mk)ij =

{
1 if (i, j) ∈ Ik,
0 otherwise.

(2)

Here, Mk ∈ {0, 1}h×d serves as a binary mask for the k-th group. The forward pass for an input
x ∈ Rd is given by y = (W0 +∆W )x. Since the masks {Mk} are mutually orthogonal and cover
all indices, every weight element Wij is modulated by exactly one scalar λk. This allows MoSA to
affect every weight individually while tying their values to a small set of learnable parameters.

Gradient Derivation. Let L denote the loss function. By the chain rule, the gradient with respect
to the learnable scalar λk is the Frobenius inner product between the weight gradient ∇∆WL and
the mask Mk:

∂L
∂λk

= ⟨∇∆WL,Mk⟩F =
∑

(i,j)∈Ik

(
∂L

∂∆W

)
ij

. (3)

Implementation via Matrix Permutation. Although Eq. (3) provides the analytical form, we
implement the backward pass as a fast linear projection in the vectorized space. Let u =
vec(∇∆WL) ∈ RN be the flattened gradient vector, where N = hd. We define a fixed permu-
tation matrix P ∈ {0, 1}N×N that reorders u such that indices belonging to the same group Ik
become contiguous. As shown in Figure 1(b), the gradient aggregation is then expressed as:

∇λL = SPu, (4)

3
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where S ∈ {0, 1}K×N is a segmentation matrix comprising contiguous blocks of ones. Specifically,
S maps the sorted segments of Pu to their corresponding group scalars. In practice, the operation
SP is implemented as a custom fused segmented reduction kernel, which requires caching only the
permutation indices, significantly reducing memory footprint compared to storing full adaptation
matrices. Detailed explanation are shown in C.2.

Structure Sharing. To further minimize memory overhead, we enforce structure sharing across the
network. Since modern architectures contain multiple layers with identical dimensions h × d, we
assign the same random partition to all weights of the same shape. This strategy allows us to store
a single set of index mappings for each unique layer shape, decoupling the additional memory cost
from the network depth.

3.2 THEORETICAL MOTIVATION: OPTIMALITY OF BALANCE

A critical design choice in MoSA is the distribution of group sizes mk = |Ik|. To understand the
impact of group size, we examine the effective update dynamics. Let G = ∇WL ∈ Rh×d denote
the gradient of the loss with respect to the weights. MoSA updates scalar parameters λk using the
gradient ∇λk

L = ⟨G,Mk⟩F and a learning rate η. Mapping this scalar update back to the weight
space, the effective weight increment becomes:

δWmosa = −η
K∑

k=1

 ∑
(i,j)∈Ik

Gij


︸ ︷︷ ︸
Accumulated Gradient

Mk = −η
K∑

k=1

mk ḡk Mk, (5)

where ḡk is the mean gradient of the k-th group. Unlike standard projected gradient descent, which
projects onto the mean direction ḡk, Eq. (5) reveals that the MoSA update is explicitly scaled by the
group size mk. This introduces an implicit, group-dependent learning rate scaling: larger groups
receive aggressively larger updates. To ensure uniform optimization dynamics across all subspaces
and minimize deviation from the global gradient direction, the scaling factor mk must be constant.

We formalize this intuition by quantifying the approximation error:
Theorem 1 (Optimality of Balanced Partition). Assume the entries of the gradient G are i.i.d.
random variables with mean µ and variance σ2. The expected squared error between the MoSA
update and the unconstrained update is defined as:

E(m1, . . . ,mK) := E
[
∥−ηG− δWmosa∥2F

]
. (6)

For a fixed number of parameters N and groups K, E is a Schur-convex function of the group sizes
vector m = (m1, . . . ,mK). Consequently, E is minimized when the partition is balanced, i.e.,
mk ∈ {⌊N/K⌋, ⌈N/K⌉}.

Proof. The squared error decomposes over the orthogonal basis formed by the group partitions.
Since groups are disjoint, the total error is the sum of errors within each group:

∥ηG+ δWmosa∥2F = η2
K∑

k=1

∥GIk
−mkḡkMk∥2F , (7)

where GIk
denotes the restriction of G to indices in group k. Expanding the expected error term for

a single group k, and noting that the MoSA update assigns the scalar value
∑

(i,j)∈Ik
Gij = mkḡk

to every element in that group:

E

 ∑
(i,j)∈Ik

(Gij −mkḡk)
2

 = (mk − 1)σ2 +mk(mk − 1)2µ2 + (mk − 1)2σ2. (8)

Summing over all k = 1 . . .K, the total expected error is:

E(m) = η2

[
(N −K)σ2 + µ2

K∑
k=1

mk(mk − 1)2 + σ2
K∑

k=1

(mk − 1)2

]
. (9)
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The functions ϕ1(x) = x(x−1)2 and ϕ2(x) = (x−1)2 are convex for x ≥ 1. Since the sum of con-
vex functions applied to components of a vector is a Schur-convex function, E(m) is Schur-convex.
By Karamata’s inequality, a Schur-convex function is minimized when the components of its argu-
ment vector are as equal as possible. Thus, the error is minimized when mk ∈ {⌊N/K⌋, ⌈N/K⌉}
for all k.

Balanced Random Tessellation (BRT). Theorem 1 implies that uniform group sizes maximize the
fidelity of the update direction. Motivated by this, we implement Balanced Random Tessellation
(BRT). We strictly enforce size constraints by randomly permuting the index set I and splitting it
into K contiguous blocks of equal size. By construction, BRT ensures that the gradient variance is
spread evenly across all learnable scalars, maximizing training stability.

4 EXPERIMENTS

In this section, we evaluate MoSA across three distinct task families to demonstrate its effectiveness
and generality: (i) multi-dataset commonsense reasoning, (ii) open-domain dialogue on ConvAI2
(Dinan et al., 2019), and (iii) mathematical reasoning under a distribution shift that involves training
on MetaMathQA (Yu et al., 2024b), evaluating on GSM8K (Cobbe et al., 2021). Throughout all ex-
periments, we enforce strict parameter-budget parity with strong PEFT baselines. Our training and
evaluation protocols are designed for transparency and reproducibility, closely following standard
practices in recent literature (Huang et al., 2025) unless otherwise specified.

4.1 TASKS AND DATASETS

Commonsense Reasoning. We adopt a multi-task setting where models are trained once on the
union of eight datasets and evaluated on each sub-task individually. The datasets include BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2020), ARC-c (Clark et al., 2018), ARC-e (Clark et al., 2018),
and OBQA (Mihaylov et al., 2018). The training sets are combined, comprising approximately 170k
examples, with a small held-out split reserved for model selection. Evaluation is performed on the
official test set of each respective dataset.

Open-domain Dialogue. We use the ConvAI2 dataset (Dinan et al., 2019), which consists of
persona-grounded, multi-turn dialogues (17,878 for training, 1,000 for testing). The task is framed
under the self-persona setting, where only the speaker’s own persona is visible during generation.
We report BLEU-4 (Papineni et al., 2002), BERTScore (P/R/F1) (Zhang et al., 2020), METEOR
(Banerjee and Lavie, 2005), and ROUGE-L (Lin, 2004). We also present an Average score, calcu-
lated as the unweighted mean of these six metrics.

Mathematical Reasoning. For this task, we assess the model’s out-of-distribution generalization
by training on MetaMathQA (Yu et al., 2024b) and evaluating on the GSM8K benchmark (Cobbe
et al., 2021). We report exact match accuracy on the final numeric answer.

4.2 MODELS AND BASELINES

Base Models. We conduct experiments on two widely used open-weight models: Llama-2-7B
(Touvron et al., 2023b) and Llama-3-8B (Grattafiori et al., 2024).

Baselines. We compare MoSA against a suite of strong PEFT methods, including Prompt Tuning
(Lester et al., 2021), P-Tuning Liu et al. (2022), LoRA (Hu et al., 2022), DoRA (Liu et al., 2024),
MoRA (Jiang et al., 2024), and the high-rank adaptation method, HiRA (Huang et al., 2025). All
baselines are configured to adapt the same target modules as MoSA under matched training budgets.

4.3 PARAMETER BUDGET AND IMPLEMENTATION

Targeted Modules. Unless stated otherwise, adapters are applied to the self-attention projections
WQ,WK ,WV and the FFN projections Wup and Wdown of each Transformer block. All other
parameters in the base model are kept frozen.

5
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Parameter-Budget Parity. To ensure a fair comparison, we enforce strict parameter parity between
MoSA and LoRA at rank r = 32. For a target linear layer with dimensions h× d, LoRA introduces
r(d + h) trainable parameters. Accordingly, we set the number of MoSA groups K such that
K = r(d + h), guaranteeing an identical parameter budget for every target module. The column
“Params (%)” in our tables reports this count as a percentage of the base model’s total parameters.

Optimization and Schedules. We use the AdamW (Loshchilov and Hutter, 2019) optimizer with
a learning rate of 1 × 10−5 and 0.1 warm-up ratio. To ensure a fair comparison, we maintain
consistency across all methods in maximum sequence length, tokenization, batch size, and mixed-
precision settings. Models are trained for 3 epochs on the commonsense reasoning suite, 1 epoch
on ConvAI2, and 2 epochs on the mathematical reasoning task. Model selection is performed on a
held-out validation split. For all tasks, we employ deterministic decoding (temperature = 0).

4.4 RESULTS: COMMONSENSE REASONING

As summarized in Table 2, MoSA demonstrates superior performance across the board on the multi-
dataset commonsense reasoning benchmark. It consistently outperforms all strong PEFT baselines
on both Llama-2-7B and Llama-3-8B, establishing itself as the most effective method for this task
under strict parameter-budget parity.

On the more capable Llama-3-8B model, MoSA (with a budget equivalent to LoRA r = 32) achieves
a remarkable average accuracy of 87.63%. This represents a substantial improvement of +0.91%
over the strongest competing baseline, HiRA, which scored 86.72%. A closer look at the per-task
results reveals MoSA’s comprehensive dominance: it secures the top score on every single one of the
eight datasets. The gains are particularly notable on challenging datasets like HellaSwag (+1.21%
over the best baseline) and WinoGrande (+1.08%).

The same trend holds for Llama-2-7B. MoSA again leads the pack with an average accuracy of
83.83%, widening its lead over the second-best method, HiRA (81.42%), to a significant +2.41%.
This confirms that MoSA’s advantages are not specific to a single base model but are robust and
transferable. On this model, it achieves the best performance on seven of the eight sub-tasks, further
cementing its position as the state-of-the-art PEFT method for this reasoning suite.

Table 2: Accuracy (%) on eight commonsense benchmarks using Llama-2-7B and Llama-3-8B.
MoSA uses a parameter budget equivalent to LoRA rank r. Best is bold, second best is underlined.

Method Params (%) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaSwag WinoGrande Average

Llama-2-7B

Prompt Tuning 0.0012 55.93 12.35 30.50 6.06 8.63 9.40 6.91 40.57 21.29
P-Tuning 0.7428 58.75 36.02 0.20 0.17 1.98 0.80 0.01 0.00 12.24
LoRA (r=32) 0.8256 69.80 79.90 79.50 64.70 79.80 81.00 83.60 82.60 77.61
DoRA (r=32) 0.8256 71.80 83.70 76.00 68.20 83.70 82.40 89.10 82.60 79.69
MoRA (r=32) 0.8241 72.17 80.79 79.53 71.42 85.31 81.20 29.09 80.19 72.46
HiRA (r=32) 0.8256 71.22 83.35 79.53 73.81 86.74 84.60 88.12 83.98 81.42
MoSA (r=32 equiv.) 0.8256 73.96 86.03 81.48 76.62 88.34 83.93 94.35 85.93 83.83

Llama-3-8B

Prompt Tuning 0.0010 56.85 45.05 36.13 31.57 32.74 29.20 14.01 50.12 36.96
P-Tuning 0.6240 59.97 11.64 8.19 7.42 8.63 9.60 1.77 37.65 18.11
LoRA (r=32) 0.7002 70.80 85.20 79.90 71.20 84.20 79.00 91.70 84.30 80.79
DoRA (r=32) 0.7002 74.60 89.30 79.90 80.40 90.50 85.80 95.50 85.60 85.20
MoRA (r=32) 0.6997 74.28 87.43 80.71 79.61 91.16 85.60 43.53 86.74 78.63
HiRA (r=32) 0.7002 75.40 89.70 81.15 82.90 93.27 88.32 95.36 87.70 86.72
MoSA (r=32 equiv.) 0.7002 75.64 90.65 82.70 82.91 93.27 89.48 96.57 89.78 87.63

4.5 RESULTS: OPEN-DOMAIN DIALOGUE (CONVAI2)

In the persona-grounded, open-domain dialogue task on ConvAI2, MoSA’s superiority is even more
pronounced. As shown in Table 3, for Llama-3-8B, MoSA achieves an impressive result , surpassing
the strongest baseline, HiRA (47.80%), by a large margin of +2.34%. This overall improvement is
supported by consistent wins in all individual metrics, which measure different aspects of generation
quality. For instance, its BLEU-4 score of 4.13% indicates significantly better n-gram overlap with
reference responses, while its leading BERTScore (F1 of 86.83%) to superior semantic similarity

6
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Table 3: ConvAI2 results with Llama-2-7B and Llama-3-8B backbones. BERT-F1/R/P are from
BERTScore. Best is bold, second best is underlined.

Method Params (%) BLEU-4 BERT-F1 BERT-R BERT-P METEOR ROUGE-L Average

Llama-2-7B

Prompt Tuning 0.0012 0.04 72.44 77.38 68.23 0.80 0.80 36.62
P-Tuning 0.7428 0.60 83.29 83.33 83.28 15.11 12.36 46.33
MoRA (r=32) 0.8241 1.09 84.09 84.65 83.59 10.97 9.57 45.66
LoRA (r=32) 0.8256 1.82 84.41 84.71 84.16 11.38 10.55 46.17
DoRA (r=32) 0.8256 1.73 84.18 84.61 83.81 11.25 10.41 46.00
HiRA (r=32) 0.8256 2.70 84.86 84.98 84.77 13.56 12.80 47.28
MoSA (r=32 equiv.) 0.8256 3.93 86.53 86.28 86.80 17.57 18.44 49.92

Llama-3-8B

Prompt Tuning 0.0010 1.45 82.99 82.99 83.05 14.72 13.13 46.39
P-Tuning 0.6240 1.50 81.52 81.07 82.01 15.49 13.55 45.86
MoRA (r=32) 0.6997 1.60 82.24 84.06 84.43 12.37 11.19 46.31
LoRA (r=32) 0.7002 2.26 84.32 84.00 84.67 12.51 11.77 46.59
DoRA (r=32) 0.7002 2.29 84.32 84.06 84.62 12.63 11.78 46.62
HiRA (r=32) 0.7002 3.41 84.81 84.40 85.25 14.87 14.05 47.80
MoSA (r=32 equiv.) 0.7002 4.13 86.83 86.50 87.18 17.59 18.64 50.14

and relevance. These results highlight MoSA’s ability to produce responses that are more fluent and
coherent (METEOR, ROUGE-L), while also being contextually and semantically more appropriate.

The results on Llama-2-7B further validate these findings. MoSA again claims the top spot on all
seven metrics, culminating in an Average score of 49.92%. This represents an even larger improve-
ment of +2.64% over the next-best method. The consistent and decisive lead across diverse auto-
matic metrics underscores MoSA’s enhanced ability to handle the nuances of multi-turn, persona-
grounded conversations.

4.6 RESULTS: MATHEMATICAL REASONING

Table 4: GSM8K accuracy (%) after training
on MetaMathQA. Best is bold, second best is
underlined.

Method Params (%) GSM8K

Llama-3-8B

Prompt Tuning 0.0010 15.62
P-Tuning 0.6240 2.65
LoRA (r = 32) 0.7002 65.89
DoRA (r = 32) 0.7002 66.12
MoRA (r = 32) 0.6997 67.98
HiRA (r = 32) 0.7002 70.81
MoSA (r = 32 equiv.) 0.7002 78.00

We evaluate the models on their out-of-distribution
(OOD) generalization capabilities by training on
MetaMathQA and testing on the unseen GSM8K
benchmark. This challenging setup tests a model’s
ability to learn abstract reasoning principles rather
than merely memorizing problem templates. As de-
tailed in Table 4, MoSA demonstrates a profound
and significant advantage in this area.

Using Llama-3-8B as the base model, MoSA
achieves an exact match accuracy of 78.00% on
GSM8K. This result is outperforming the strongest
baseline, HiRA (r = 32), by a massive +7.19%.
Such a large performance gap on an OOD task high-
lights MoSA’s superior ability to capture and trans-
fer the underlying logic of mathematical problem-
solving. While other PEFT methods show re-
spectable performance, MoSA’s ability to generalize far more effectively sets it apart, indicating
it learns more robust and portable reasoning structures.

5 ANALYSIS

5.1 BACKWARD SPEED ANALYSIS

Since MoSA relies on aggregating gradients per group, the efficiency of the backward pass is
paramount for scalability. Figure 2 illustrates the backward runtime (log–log scale) versus the num-
ber of groups K for a weight matrix with dimensions h = d = 4096. We compare our custom
segmented reduction kernel against PyTorch (Paszke et al., 2019) autograd under both balanced and
skewed assignment strategies.
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Table 5: Performance of the Llama-3 8B model with different Component. FFN denotes the
position-wise feed-forward sublayer with projections Wup and Wdown

Component BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaSwag WinoG Average

K 66.96 91.20 76.84 79.68 93.36 79.96 93.36 82.63 82.12
Q 70.45 92.13 79.08 80.53 94.43 84.72 94.43 85.06 84.33
V 74.85 92.72 82.24 81.63 95.64 87.50 95.64 86.48 86.29
QK 71.36 92.05 79.49 80.61 94.79 86.90 94.79 86.40 84.99
QV 74.85 93.48 82.60 82.82 96.17 87.90 96.17 87.50 86.81
QKV 75.46 92.97 82.91 82.74 96.06 89.29 96.06 87.81 87.16
FFN 76.13 90.98 81.94 83.5 93.18 86.71 96.46 89.86 87.35
FFN+QKV 75.64 90.65 82.70 82.91 93.27 89.48 96.57 89.78 87.63

Across the entire range of K, our segmented reduction is consistently superior to autograd. Specif-
ically, it achieves a ≈ 9,500× speedup at K = 1 (0.25ms vs. 2.41 s), a 125× speedup at K = 32
(0.67ms vs. 84.50ms), and maintains an 8–9× advantage for K between 4,096 and 16,384. Al-
though skewness introduces a slight overhead (geometric-mean slowdown of 1.62×), the kernel
remains highly efficient; even in the most extreme skew tested at K = 65,536, it is at least 4.8×
faster than autograd (1.46ms vs. 7.00ms). These results demonstrate that while balanced assign-
ments (BRT) are optimal, they are not strictly required for performance: the segmented kernel is
bandwidth-bound and robust to skew, supporting large K without significant performance degrada-
tion. Additional experimental details are provided in Appendix B.

5.2 ABLATION STUDY ON COMPONENT

21 24 27 210 213 216 219 222 225

K (Number of Groups)

103

104
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106

Ti
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e 
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s)

Backward Speed Comparison

Segmented Reduction  balanced
Segmented Reduction  skewed
Autograd  balanced
Autograd  skewed

Figure 2: Backward time vs. group count
K. Segmented reduction is faster for all K ;
skew induces a 1.62× geometric-mean slow-
down for segmented but does not alter the
qualitative scaling.

From the Average column in Table 5, FFN+QKV
achieves the best overall accuracy (87.63), with FFN
alone a close second (87.35) and marginally sur-
passing QKV (87.16).Here, FFN denotes the Trans-
former block’s position-wise feed-forward network
(Wup and Wdown), whereas QKV denotes the multi-
head attention’s query, key, and value projection sub-
layers/matrices (WQ,WK ,WV ). This indicates
that most of the attainable gains under a fixed param-
eter budget come from adapting the feed-forward
pathway, a finding consistent with evidence that
FFN blocks function as key–value–like memories
and host causally editable factual associations (Geva
et al., 2021; Dai et al., 2022; Meng et al., 2022;
2023). Within attention-only variants, the ordering
V > Q > K and QV > QK suggests that modi-
fying the value stream—i.e., what content is writ-
ten into the residual—is more impactful than adjust-
ing query/key routing, aligning with mechanistic ac-
counts where QK chiefly sets selection weights and V injects information (Elhage et al., 2021;
Olsson et al., 2022). In practice, allocating most adaptation capacity to FNN and adding attention
updates (especially V) for incremental gains is a robust default when budgets allow.

5.3 IMPACT OF GROUPING STRATEGY

We evaluate whether fine-grained, non-local sharing provides stronger regularization than low-rank
constraints by comparing our proposed BRT to three deterministic strategies defined below:

• Balanced Random Tessellation (BRT): Set group sizes as balanced as possible, i.e., mk ∈
{⌊N/K⌋, ⌈N/K⌉} such that

∑K
k=1 mk = N . We generate a label sequence respecting these

8
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counts, uniformly permute the indices I, and assign them to groups I1, . . . , IK . This yields
near-exact balance while breaking local spatial correlations.

• Row-Stripe: Flatten the weight matrix in row-major order and split the N indices into K con-
tiguous segments. Indices in the k-th segment form the group Ik. The result corresponds to K
horizontal stripes with sizes differing by at most one.

• Col-Stripe: Flatten in column-major order and split into K contiguous segments. The result
corresponds to K vertical stripes with near-balanced sizes.

• Skewed: Set non-increasing group quotas m1 ≥ · · · ≥ mK using a geometric schedule con-
trolled by ρ ∈ (0, 1), where mk ∝ ρk−1. Uniformly permute the N indices and assign the first
m1 to I1, the next m2 to I2, and so forth. This preserves the intended skew while breaking local
spatial correlations.

Table 6: Ablation of grouping strategies on Llama-3-8B under the same parameter budget.
Strategy BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaSwag WinoG Average
BRT 75.64 90.65 82.70 89.48 93.27 89.78 96.57 89.78 87.63
Row-Stripe 75.73 90.38 81.63 83.59 92.55 87.70 96.21 88.60 87.05
Col-Stripe 75.37 89.95 80.61 82.65 92.97 86.90 96.42 88.29 86.65
Skewed 61.22 81.52 70 71.68 85.19 69.64 86.49 69.18 74.36

From the Average column of Table 6, BRT performs best. Non-local randomization scatters shar-
ing patterns and disrupts short-range correlations. Row-Stripe generally exceeds Col-Stripe because
column-aligned sharing ties all outgoing connections of the same input feature, suppressing cross-
row diversity and pushing outputs toward collinearity , whereas row-aligned sharing preserves more
per-output specialization; more broadly, weight tying reduces degrees of freedom. Across layouts,
skewed variants lag balanced ones: uneven group sizes concentrate capacity and increase collision
variance, while balanced weight-sharing is empirically beneficial in hashing-style schemes. Imple-
mentation details appear in Appendix B.8.

5.4 IMPACT OF PARAMETER BUDGET

1/16 1/8 1/4 1/2 1 2 4 8 16 32
LoRA rank equivalent
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LoRA (r=32) baseline: 80.79
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WinoG
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ARC-c
BoolQ

Figure 3: Budget–performance trade-off on Llama-
3-8B. Per-task accuracy (thin solid) and Average (thick
dashed) vs. trainable budget k (log-scale, bottom axis).
Top axis shows LoRA-rank equivalents; the vertical
dotted line marks the LoRA r=32 baseline (80.79).

We investigate how performance scales
with the number of trainable tesserae k.
A key advantage of MoSA is that k
can take any integer value, enabling fine-
grained budget control unconstrained by
matrix shapes, unlike LoRA. For refer-
ence, LoRA with rank r=32 on Llama-3-
8B trains 0.7002% of parameters (80.79 ac-
curacy), which we use as a baseline.

As shown in Figure 3, accuracy rises
steeply from extremely small budgets (∼
0.0014%). This corresponds to only about
one sixteenth of the parameter count re-
quired by the smallest possible LoRA set-
ting (r=1, ∼ 0.022%), even though LoRA
itself cannot operate below rank 1. From
there, performance continues to improve up
to modest budgets (∼ 0.175%, LoRA r=4
equivalent), after which the curve flattens. Notably, with an effective LoRA r=1 budget (0.022%
parameters), MoSA already reaches 86.81, surpassing the LoRA r=32 baseline while using only
1
32 parameter numbers. Most gains are realized by the LoRA r≈4 equivalent, with larger alloca-
tions bringing only marginal, task-specific improvements. Unlike LoRA, however, MoSA admits
arbitrary k, allowing precise budget tuning between conventional ranks. Overall, these results sug-
gest that small to moderate budgets (up to LoRA r≤4 equivalents) already suffice for near-optimal
accuracy, while larger budgets are only justified when additional task-specific gains are desired.
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6 CONCLUSION

We introduced MoSA, a parameter-efficient fine-tuning method that replaces low-rank adapters with
randomized, near-balanced tessellations of the weight matrix controlled by a small set of learned
scalars. Theoretically, with uniform learning rates and balanced groups, the task-driven update is
directionally equivalent to projecting the full gradient onto the MoSA subspace. System-wise, a
segmented-reduction backward kernel aggregates per-group gradients in one pass, scales robustly
with the number of groups, and delivers substantial speedups over autograd. Empirically, across
commonsense reasoning, open-domain dialogue, and out-of-distribution math reasoning, MoSA
consistently matches or surpasses strong baselines at the same parameter budget, indicating that
simple non-local sharing is a competitive alternative to the low-rank assumption. Overall, MoSA
offers a simple, controllable, and efficient route to parameter-efficient adaptation.

ETHICS STATEMENT

This work fine-tunes open-weight LLMs on public, widely-used benchmarks. We use the official
splits and standard evaluation protocols; we do not collect new data, annotate human subjects, or
process personally identifiable information. All datasets are used under their original licenses and
terms. Public NLP datasets and the underlying pretrained models may contain harmful content or
societal biases. Our method is a parameter-efficient adapter that modifies only a small set of scalars
on top of frozen backbones, but it can still inherit and potentially amplify biases present in the data
or base models. We therefore: (i) report task-standard metrics without promoting sensitive-attribute
targeting; (ii) follow the base-model usage policies; and (iii) recommend downstream users apply
appropriate safety filters, domain constraints, and bias audits when deploying adapted models in
user-facing scenarios.

REPRODUCIBILITY STATEMENT

We aim to make results reproducible. To that end, we will release our code in an anonymous code
website https://anonymous.4open.science/r/MoSA-iclr. Detailed hyperparameter setting are shown
in Appendix B.
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A STATEMENT ON THE USE OF LLM

During the preparation of this manuscript, we utilized LLM solely for the purpose of grammar
checking and language refinement. All core ideas, research content, data analysis, and conclusions
are the original work of the authors. We take full responsibility for the final content of this paper.

B EXPERIMENTAL SETUP

B.1 TASKS AND DATASETS

We evaluate on three task families to assess both in-domain performance and out-of-distribution
generalization: (i) Commonsense reasoning on the union of BoolQ, PIQA, SIQA, ARC-c/e, OBQA,
HellaSwag, and WinoGrande (≈ 170k training examples in total); (ii) Open-domain dialogue on
ConvAI2 under the self-persona setting; (iii) Mathematical reasoning (OOD) by training on Meta-
MathQA and evaluating on GSM8K. Unless stated, we follow standard dataset splits and report
results on the official test sets with a small held-out validation split for model selection.

B.2 BASE MODELS AND BASELINES

We consider open-weight LLMs Llama-2-7B and Llama-3-8B. Baselines include strong PEFT meth-
ods under matched conditions: Prompt Tuning, P-Tuning, LoRA, DoRA, MoRA, HiRA. The results
for these methods are directly copied from HiRA paper with same experiment condition. All meth-
ods adapt the same target modules and use identical tokenization, maximum sequence length, batch
size, and mixed-precision settings to ensure fair comparison.

B.3 ADAPTER TARGETS AND PARAMETER-BUDGET PARITY

Adapters are applied to the self-attention projections WQ,WK ,WV and feed-forward projections
Wup,Wdown in each Transformer block, while other weights remain frozen. To enforce strict budget
parity with a LoRA configuration of rank (r = 32) we choose the number of MoSA tesserae K such
that the total trainable scalars match r(din + dout) for the same set of target matrices.We report
Params (%) as the ratio of trainable parameters to the base model’s total parameter count. Unless
specified, group sizes are balanced (difference at most one) and the assignment is fixed throughout
training.

B.4 OPTIMIZATION AND TRAINING SCHEDULES

We use AdamW with learning rate 1×10−5 and 0.1 warm-up ratio, cosine decay thereafter. Epochs
per task: 3 for commonsense, 1 for ConvAI2, and 2 for MetaMathQA→GSM8K. We train with
global batch size 8, gradient accumulation 2, max sequence length 512. Model selection is per-
formed on the held-out validation split. Decoding uses deterministic settings (temperature = 0).

B.5 EVALUATION PROTOCOL AND METRICS

For commonsense tasks, we report accuracy per dataset and the unweighted average. For dialogue,
we report BLEU-4, BERTScore (P/R/F1), METEOR, and ROUGE-L, along with an unweighted
average across metrics. For GSM8K, we report exact-match accuracy on the final numeric answer.

B.6 HARDWARE AND REPRODUCIBILITY

Experiments are conducted on A100-80G PCIE. We fix random seeds, log all hyperparameters, and
release scripts to reproduce results (data preprocessing, training, and evaluation).

B.7 IMPLEMENTATION NOTES

MoSA parameterizes updates as groupwise-constant scalars over a fixed tessellation. Gradients
are aggregated by a single segmented-reduction over a stable permutation that makes equal keys
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contiguous. Balanced tessellation improves directional alignment of one-step updates and keeps
segments near-uniform, aiding kernel utilization. Unless specified, the assignment is shared across
layers of identical shape.

B.8 ETAILS OF GROUPING STRATEGIES

In this section, we formalize the construction of the group-index map Γ ∈ {1, . . . ,K}h×d, which
assigns each weight position (i, j) to a group index Γij ∈ {1, . . . ,K}. This map determines the
group partition {Ik}Kk=1 and the corresponding mask matrices {Mk}Kk=1 used in the main method,
where

Ik := {(i, j) : Γij = k}.
Let h and d denote the output and input dimensions, respectively, and N = hd be the total number
of weights. We partition the index set into K groups.

Balanced Random Tessellation (BRT). We aim to partition the N weights into K groups of
nearly equal size. Let r = N mod K. We define the target group sizes as:

mk =

{⌈N/K⌉ for 1 ≤ k ≤ r,

⌊N/K⌋ for r < k ≤ K,
(10)

which ensures
∑K

k=1 mk = N and maxk |mk −N/K| ≤ 1.

We first generate a random permutation σ of the linear indices {1, . . . , N} using a fixed seed. Let
γ ∈ {1, . . . ,K}N denote the group-index assignment in linear form. The groups are formed by
slicing this permuted sequence according to the sizes {mk}: the k-th group Ik contains the indices
{σ(t)} for t in the interval (Ck−1, Ck], where Ck =

∑k
j=1 mj is the cumulative count. Finally, γ is

reshaped back to (h, d) to form the map Γ.

Algorithm 1 Construction of BRT Assignment
Input: Dimensions h, d, groups K, seed S

1: N ← h · d
2: Compute sizes {mk}Kk=1 such that mk ≈ N/K ▷ Balanced partition
3: σ ← RANDOMPERMUTATION({1, . . . , N};S)
4: Initialize γ ∈ {1, . . . ,K}N
5: t← 1
6: for k = 1 to K do
7: for j = 1 to mk do
8: Assign linear index σ(t) to group k: γσ(t) ← k
9: t← t+ 1

10: end for
11: end for
12: Γ← reshape(γ, h, d)
13: return Γ

Skewed Assignment. To analyze the impact of load imbalance, we generate groups with non-
uniform sizes following a geometric decay controlled by a ratio ρ ∈ (0, 1). We define unnormalized
weights wk = ρk−1 for k = 1, . . . ,K. The target integer sizes mk are computed using the Largest
Remainder Method to ensure they sum exactly to N :

1. Calculate ideal quotas qk = N · (wk/
∑

j wj).

2. Assign initial integer sizes mk = ⌊qk⌋.
3. Distribute the remaining count R = N−∑

k mk to the R groups with the largest fractional
parts qk − ⌊qk⌋.

The assignment is then performed similarly to BRT but using these skewed sizes on the random
permutation. For our experiments, we set ρ = 0.85.
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Structured Striping Strategies. Unlike the random assignment in BRT, stripe strategies preserve
spatial locality. We define the cumulative boundaries C0 = 0 and Ck =

∑k
j=1 mj based on balanced

sizes {mk} as in BRT.

Row-major stripes. Weights are indexed in row-major order: t(i, j) = (i − 1)d + j. Indices
falling in the interval (Ck−1, Ck] are assigned to group k. Mathematically, Γij = k if and only if
Ck−1 < (i− 1)d+ j ≤ Ck. This tends to group entire rows or contiguous row segments together.

Column-major stripes. Weights are indexed in column-major order: t(i, j) = (j − 1)h + i.
Similarly, Γij = k if and only if Ck−1 < (j − 1)h+ i ≤ Ck. This tends to group entire columns or
contiguous column segments.

Algorithm 2 Construction of Structured Stripes (Row/Column)
Input: Dimensions h, d, groups K, mode ∈ {ROW, COL}

1: N ← h · d
2: Compute balanced cumulative boundaries {Ck}Kk=0
3: for i = 1 to h do
4: for j = 1 to d do
5: if mode is ROW then
6: t← (i− 1)d+ j
7: else ▷ mode is COL
8: t← (j − 1)h+ i
9: end if

10: Find k such that Ck−1 < t ≤ Ck ▷ Binary search or linear scan
11: Γij ← k
12: end for
13: end for
14: return Γ

B.9 SENSITIVITY TO RANDOM SEED

To evaluate the sensitivity of MoSA to the specific random tessellation generated by the seed, we
conducted 5 independent runs using Llama-3-8B with the MoSA configuration. We used the same
hyperparameters as the main experiments but varied the random seed used to generate the group
assignments. As shown in Table 7, the performance is highly stable across different random initial-
izations. The average accuracy across the five seeds is 87.45% with a standard deviation of only
0.14%.

Table 7: Sensitivity analysis of MoSA (Llama-3-8B, r = 32 equivalent) across 5 different random
seeds for tessellation assignment. The method shows high stability with minimal variance.

Seed BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

1 74.7 91.06 81.85 83.63 93.46 90.23 96.5 88.98 87.55
2 74.79 90.79 81.80 84.62 93.50 89.45 96.67 89 87.58
3 75.30 90.79 81.50 83.47 92.93 88.48 96.88 88.75 87.26
4 75 89.82 81.85 84.05 93.26 88.87 96.8 89.14 87.35
5 75.27 90.25 81.96 83.39 93.05 90.43 96.71 88.83 87.48

Mean 75.01 90.54 81.79 83.83 93.24 89.49 96.71 88.94 87.45
Std Dev 0.27 0.5 0.17 0.51 0.25 0.84 0.15 0.15 0.14

B.10 COMPARISON TO MORE PEFT METHODS

We compare MoSA with PiSSA, HD-PiSAA, LoRA-GA and LoRA-Pro for two experiments. We
utilized the Llama-2-7B (Touvron et al., 2023b) model as the backbone.

Regarding the datasets, we fine-tuned the model on a 100k subset of the MetaMathQA (Yu et al.,
2024a) dataset for the mathematical reasoning task and evaluated it on GSM8K (Cobbe et al., 2021).
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For the code generation task, we fine-tuned on a 100k subset of the CodeFeedback (Zheng et al.,
2024) dataset and reported the Pass@1 metric on HumanEval (Chen et al., 2021). The the results
for PiSSA (Meng et al., 2024b), HD-PiSAA (Wang et al., 2025a), LoRA-GA (Wang et al., 2024a)
and LoRA-Pro (Wang et al., 2025b) were directly copied from their respective original papers.

Table 8: Fine-tuning results of Llama-2-7B model. Bold and underline indicate the highest and
second-highest scores, respectively.

Method GSM8K HumanEval

LoRA 42.08 14.76
PiSSA 53.22 21.92
HD-PISSA 52.92 21.3
LoRA-GA 53.60 19.81
LoRA-Pro 57.57 22.97
MoSA 59.8 24.39

Comparison with Multi-Task LoRA Methods. Although our primary experimental setting treats
the aggregation of commonsense datasets as a single-task learning objective, the benchmark inher-
ently consists of 8 distinct reasoning tasks. To validate MoSA’s capability in this context, we com-
pared it with HydraLoRA (Tian et al., 2024), a state-of-the-art method specifically designed for
multi-task PEFT.

For the HydraLoRA configuration, we set the number of adapters k = 8 to align with the eight
tasks and maintained the rank at r = 32. It is crucial to note that due to its multi-branch architec-
ture, the actual trainable parameter count of HydraLoRA is approximately 4.5× that of MoSA (or
standard LoRA). The results are presented in Table 9. HydraLoRA achieves an average accuracy of
87.60% across the eight datasets. Despite the significantly larger parameter budget, its performance
is highly comparable to MoSA which achieves an average of 87.66%. This demonstrates that MoSA
effectively captures complex multi-task knowledge distributions through its sparse activation mech-
anism, without requiring the explicit routing structures or the massive parameter overhead typical of
specialized multi-task methods.

Table 9: Performance comparison between MoSA and HydraLoRA (k = 8, r = 32) on common-
sense reasoning tasks.

Method Params (%) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaSwag Wino Avg.

MoSA 0.70 75.64 90.65 82.70 82.91 93.27 89.48 96.57 89.78 87.63
HydraLoRA 3.60 75.03 91.11 82.46 84.21 93.71 88.28 96.90 89.06 87.60

B.11 SENSITIVITY ANALYSIS OF LEARNING RATE

To evaluate the robustness of MoSA with respect to hyperparameter settings, we conducted a sen-
sitivity analysis on the learning rate. We utilized the Llama-3-8B model with a rank of r = 32
and evaluated performance across eight standard commonsense reasoning benchmarks. We varied
the learning rate within the range of {5 × 10−6, 1 × 10−5, 2 × 10−5, 5 × 10−5}, keeping all other
hyperparameters constant.

The results are summarized in Table 10. We observe that MoSA exhibits stable performance across
a broad range of learning rates. Specifically, the performance peaks at a learning rate of 1 × 10−5,
achieving the highest average accuracy of 87.63% and leading in 5 out of 8 individual tasks. Fur-
thermore, even when the learning rate deviates to 5 × 10−6 or 2 × 10−5, the fluctuation in average
accuracy remains within 0.55%, demonstrating that our method is not overly sensitive to learning
rate variations.
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Table 10: Ablation study on learning rate sensitivity using Llama-3-8B (r = 32). Bold indicates the
best result.

Learning Rate BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaSwag WinoGrande Average

5e-6 75.09 89.98 82.66 84.13 93.38 88.28 96.18 88.91 87.33
1e-5 75.64 90.65 82.70 82.91 93.27 89.48 96.57 89.78 87.63
2e-5 75.06 89.76 80.70 83.80 93.13 88.09 96.58 89.84 87.12
5e-5 74.52 89.28 80.85 82.65 91.69 87.89 95.52 87.27 86.21
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Figure 4: Rank of Weight Updates. We compare the effective rank of ∆W learned by LoRA and
MoSA on LLaMA-3-8B. LoRA is strictly bounded by its low-rank bottleneck . In contrast, MoSA
yields a full-rank update, utilizing significantly more dimensions in the weight space to capture
complex features.

B.12 RANK ANALYSIS

We caculate the rank update of MoSA and LoRA which trained in LLaMA-3-8B on commonsense.
dataset. We compute the rank by SVD decomposition for singular values of exceeding a threshold
of 0.01.

As shown in Figure 4, LoRA is mathematically constrained to a low-rank subspace, limiting the
number of active dimensions to its pre-defined rank r. Conversely, MoSA achieves a full-rank
update.

C SPEED AND GPU MEMORY USAGE

C.1 SPEED

We benchmark the step time and throughput of MoSA against three strong parameter-efficient base-
lines: LoRA, DoRA, and HiRA. All methods are implemented in the same codebase and run on the
same hardware with sequence length 512, batch size 8, and adapter rank r = 32. We use Adam as
the optimizer and report the average wall-clock time per training step and tokens-per-second over
50 iterations, after discarding warm-up steps.

Table 11 summarizes the results on Qwen3-4B-Base and Llama3-8B. On both models, LoRA attains
the highest throughput, while our optimized MoSA implementation remains within the same order
of magnitude as LoRA/DoRA/HiRA and is consistently much faster than the naive MoSA-Autograd
variant which uses default pytorch backward implementation. The latter serves as an ablation that
highlights the benefit of our segmented-reduction implementation.

C.2 MEMORY

For 3.1, Although we formulate the gradient aggregation in Eq. 4 as a matrix-vector product∇λL =
SPu , explicitly storing the matrices S and P is computationally inefficient. Our implementation
utilizes the BRT structure to represent these operators implicitly, reducing memory complexity from
quadratic to linear.

Implicit Permutation (P ). Instead of storing a permutation matrix P ∈ {0, 1}N×N , we store a
single index vector π ∈ NN containing the sort order of the group assignments. The matrix-vector
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Table 11: Training speed comparison sequence length 512, batch size 8, rank r = 32, Adam
optimizer. We report average step time and throughput over 50 iterations.

Model Method Step time ↓ (ms) Tokens/s ↑

Qwen3-4B

LoRA 360.07 11,375
HiRA 386.12 10,608
DoRA 440.63 9,296
MoSA(Ours) 420.79 9,734
MoSA-Autograd 1215.56 3,370

Llama3-8B

LoRA 416.81 9,827
HiRA 505.64 8,101
DoRA 532.81 7,688
MoSA(Ours) 596.54 6,866
MoSA-Autograd 2098.53 1,952

product Pu is implemented as a direct memory gather operation, where the i-th element of the
permuted vector is simply uπi

. This reduces the storage requirement to O(N).

Implicit Segmentation (S). The segmentation matrix S ∈ {0, 1}K×N normally encodes which
elements belong to which group. Under BRT, we enforce that all groups have a uniform size mk ≈
N/K. This regularity eliminates the need to store S. Since the permutation P makes group elements
contiguous, the aggregation S(Pu) is mathematically equivalent to reshaping the permuted vector
into a K ×mk matrix and computing the sum along the second dimension. This operation requires
no additional metadata storage.

For index matrix, we save Γ shown in B.8. Therefore, the only additional cost is a small meta-
data buffer that stores the tessera index Γ and sort order π for each weight element to support the
segmented-reduction kernel. This addtional memory is a fixed constant once the partition is chosen.
It depends only on the weight shapes and grouping, not on batch size, sequence length, optimizer,
or rank r. On Qwen3-4B-Base and Llama3-8B, the buffer is about 470 MiB and 1088 MiB, respec-
tively. This small overhead is largely due to the structure sharing strategy in Sec. 3.1, where layers
with identical shapes reuse the same partition so that we store a single index buffer per unique shape
instead of per layer.

D ANALYSIS OF GENERALIZATION TO ADAPTIVE OPTIMIZERS

In this section, we extend our analysis from first-order SGD updates to adaptive optimization meth-
ods, specifically Adam, using the same notation as in Sec. 3.2. We show that balanced tessellations
remain critical for maintaining uniform update magnitudes across different subspaces.

D.1 GRADIENT STATISTICS UNDER AGGREGATION

Recall that MoSA updates a scalar parameter λk that aggregates gradients from a group Ik of size
mk = |Ik|. Let G = ∇WL ∈ Rh×d denote the gradient, and write its entries as Gij . We assume
the entries are i.i.d. with mean µ and variance σ2:

E[Gij ] = µ, Var(Gij) = σ2. (11)

The gradient with respect to the scalar λk is the Frobenius inner product between G and the mask
Mk:

gk := ∇λk
L = ⟨G,Mk⟩F =

∑
(i,j)∈Ik

Gij . (12)
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Thus the first and second moments of gk scale with the group size mk:

E[gk] = mkµ, (13)

E
[
(gk)

2
]
= Var(gk) +

(
E[gk]

)2
= mkσ

2 +m2
kµ

2. (14)

D.2 EFFECTIVE UPDATE MAGNITUDE WITH ADAM

Adam updates parameters using the ratio of the first-moment estimate (denoted m̂k) to the square
root of the second-moment estimate (denoted v̂k). For the scalar λk, at a steady state where the
exponential moving averages approximate the corresponding expectations, the update ∆λk is ap-
proximately

∆λk ≈ −η
E[gk]√

E
[
(gk)2

]
+ ϵ

= −η mkµ√
mkσ2 +m2

kµ
2 + ϵ

. (15)

Mapping this scalar update back to the weight space, the effective increment for any weight in group
k satisfies

δWij = ∆λk, ∀(i, j) ∈ Ik. (16)
We now analyze how the magnitude of this update scales with mk in two regimes.

Regime 1: Variance-dominated. In deep networks, gradient variance often dominates the mean
(σ2 ≫ µ2) (Mori et al., 2022), especially in early training or for certain layers. When the variance
term dominates the second moment, i.e., σ2 ≫ mkµ

2, we have

δWij ≈ −η
mkµ√
mkσ2

= −ηµ
σ

√
mk. (17)

Observation. Even with Adam’s normalization, the effective step size still scales as
√
mk. If group

sizes are unbalanced (e.g., one group is 4× larger than another), the larger group will receive updates
with approximately 2× the magnitude.

Regime 2: Signal-dominated. If the mean gradient is strong, i.e., µ2 ≫ σ2/mk, then the second-
moment term is dominated by the squared mean:

δWij ≈ −η
mkµ√
m2

kµ
2
= −η sgn(µ). (18)

In this idealized regime, Adam successfully normalizes the update scale, and the dependence on
mk vanishes. However, practical training typically oscillates between the variance-dominated and
signal-dominated regimes.

As shown in Eq. (17), under the common variance-dominated condition the effective learning rate
for group k is proportional to

√
mk. An imbalanced partition therefore implies that different parts

of the weight matrix are optimized with effectively different learning rates. To ensure consistent
optimization dynamics and stable moment estimation across all parameters, the group sizes mk must
be kept approximately constant. This theoretically justifies the necessity of balanced tessellations
even when using adaptive optimizers such as Adam.
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