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Abstract

The mean field theory of multilayer neural networks centers around a particu-
lar infinite-width scaling, in which the learning dynamics is shown to be closely
tracked by the mean field limit. A random fluctuation around this infinite-width
limit is expected from a large-width expansion to the next order. This fluctuation
has been studied only in the case of shallow networks, where previous works em-
ploy heavily technical notions or additional formulation ideas amenable only to
that case. Treatment of the multilayer case has been missing, with the chief diffi-
culty in finding a formulation that must capture the stochastic dependency across
not only time but also depth.
In this work, we initiate the study of the fluctuation in the case of multilayer net-
works, at any network depth. Leveraging on the neuronal embedding framework
recently introduced by Nguyen and Pham [17], we systematically derive a system
of dynamical equations, called the second-order mean field limit, that captures the
limiting fluctuation distribution. We demonstrate through the framework the com-
plex interaction among neurons in this second-order mean field limit, the stochas-
ticity with cross-layer dependency and the nonlinear time evolution inherent in the
limiting fluctuation. A limit theorem is proven to relate quantitatively this limit to
the fluctuation realized by large-width networks.
We apply the result to show a stability property of gradient descent mean field
training: in the large-width regime, along the training trajectory, it progressively
biases towards a solution with “minimal fluctuation” (in fact, vanishing fluctua-
tion) in the learned output function, even after the network has been initialized at
or has converged (sufficiently fast) to a global optimum. This extends a similar
phenomenon previously shown only for shallow networks with a squared loss in
the empirical risk minimization setting, to multilayer networks with a loss func-
tion that is not necessarily convex in a more general setting.

1 Introduction

Recent literature has witnessed much interest and progresses in the mean field theory of neural
networks. In particular, it is shown that under a suitable scaling, as the widths tend to infinity, the
neural network’s learning dynamics converges to a nonlinear deterministic limit, known as the mean
field (MF) limit [14, 17]. This line of works starts with analyses of the shallow case under various
settings and has led to a number of nontrivial exciting results [18, 14, 5, 23, 25, 9, 22, 19, 29, 24,
30, 12, 1, 16]. The generalization to multilayer neural networks, already much more conceptually
and technically challenging, has also been met with serious efforts from different groups of authors,
with various novel ideas and insights [15, 17, 20, 2, 26, 6].

Since the MF limit is basically a first-order infinite-width approximation of the neural network, it is
natural to consider the next order term in the expansion for a more faithful finite-width description.

⇤The author ordering is randomized.
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This leads to the consideration of the fluctuation, up-scaled appropriately with the widths, around
the MF limit. On one hand, this fluctuation should display MF interactions among neurons. On
the other hand, it is random due to the inherent stochasticity in the finite-width network which, for
instance, is randomly initialized and hence induces randomness in the interactions among neurons.

For shallow networks, [27, 23, 3] has identified the limiting fluctuation in the form of a time-evolving
signed measure over weights, leading to a central limit theorem (CLT) in the space of measures. In
particular, [27] pinpoints the fluctuation via a compactness argument in an appropriate measure
space. Avoiding the heavy technicality, [3] realizes a neat trick, specific to shallow networks, where
quantities of interest are described via push-forward of the initialized values of the weights.

There has been no similar attempt for the multilayer case, which faces major obstacles in formu-
lating the limiting fluctuation. Firstly, existing formulations of the MF limit already move away
from working with measures over weights [15, 17, 26, 6], unless restricted conditions are assumed
[2]. This is due to the complexity of MF interactions: the presence of middle layers brings about
simultaneous actions of multiple symmetry groups. We face the same complexity when formulating
the fluctuation. Secondly, unlike shallow networks, the fluctuation in multilayer networks displays
stochastic dependency not only through time but also across layers. Specifically the cross-layer
dependency is propagated by both forward and backward propagation signals, at any time instance.

Contributions. We tackle the challenge by leveraging on the neuronal embedding framework,
recently proposed by [17]. An important concept that is supported by the neuronal embedding is the
sampling of neurons. We use this concept to formulate the limiting fluctuation via a decomposition
into two components with different roles in Section 3. One component is a random process, which
encodes CLT-like stochasticity in the fluctuation of the sampled neurons around the MF ensemble.
The other component, named the second-order mean field limit, is a system of ordinary differential
equations (ODEs), which displays MF interactions in the deviation of the neural network under
gradient descent (GD) training from the sampled neurons.

This decomposition is an innovation of the work. Our formulation enjoys the generality brought
about by the neuronal embedding framework without restrictive assumptions (e.g. i.i.d. initialization
assumption made in [2, 26]) and faithfully describes the expected stochastic dependency across time
and depth. We prove a limit theorem that establishes the connection with the fluctuation in finite-
sized networks (Theorems 5 and 6). Unlike [27, 3], this result is quantitative.

Using this formulation, in Section 4, we show a trajectorial stability property in a large-width mul-
tilayer network, particularly a variance reduction effect: GD training traverses a solution trajectory
that reduces and eventually eliminates the (width-corrected) variance of the learned output function.
That is, a bias towards “minimal fluctuation”. This holds even if the network is initialized at, or
if it is trained to converge sufficiently fast to, a global optimum (Theorems 9 and 10). The same
phenomenon has been shown in the shallow case [3], which requires a squared loss in the empirical
risk minimization setup. As demonstrated by our result, it is not an isolated phenomenon and can
indeed hold for a neural architecture where MF interactions are more complex, a loss function that
is not necessarily convex and a training setup unrestricted to finitely many training data points.

Limitations and potential extensions. Let us finally mention a few limitations. Our work consid-
ers fully-connected multilayer networks trained with GD, a setup much less general than [17]. We
expect certain extensions in this direction are doable. We also do not treat stochastic GD and hence
disregard the stochasticity of data sampling, unlike [27]. Given the broader literature on this subject
(e.g. [11]), this extension is foreseeable. Here we focus instead on the stochasticity that is inherent
in the interactions among neurons, which is the more interesting aspect of neural networks.

Our result on the output variance is specific to unregularized training, unlike [3], and also requires a
sufficient global convergence rate. While there have been several proven global convergence guar-
antees for multilayer networks [17, 21, 20], understanding of the convergence rate is still lacking.
Even in the shallow case, global convergence has been studied only for a type of sparsity-inducing
regularization [5, 4]. Unless the convergence rate for multilayer networks is generally perilous (an
unlikely scenario in light of the experiments in [15]), our result is expected to be relevant.

Our development is specific to the MF scaling. This scaling allows for nonlinear feature learning,
unlike the NTK scaling [8]. While there are other scalings that also admit a certain sense of feature
learning [7, 31], the standard parameterization in practice – in the infinite-width limit – is known
to degenerate into NTK-like behaviors, which are not expected of practical finite-but-large-width
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neural networks [13, 31]. In other words, all infinite-width scalings that display feature learning are
only proxies of practical networks. This limitation motivates finite-width studies as we pursue here.

Notations. We use K to denote a generic constant that may change from line to line, and similarly
Ku for a finite constant that may depend on some constant u. For simplicity, for L the network depth,
we write K in place of KL. For E (resp. E) being the expectation, we use V and C (resp. V and C)
for the variance and covariance. We write EZ for the expectation w.r.t. data Z = (X,Y ) ⇠ P . We
write @if to denote the partial derivative w.r.t. the i-th variable of f .

2 Background on the MF limit for multilayer networks and assumptions

We describe the necessary backgrounds based on (and simplifying) the work [17]. This section also
introduces several important notations, as well as the assumptions for our study of the fluctuation.

Multilayer network. Following [17], we consider a L-layer fully-connected neural network with
widths {Ni}iL

(for NL = 1):

ŷ (t, x) = 'L (HL (t, 1, x)) , (1)
Hi (t, ji, x) = EJ [wi (t, Ji�1, ji)'i�1 (Hi�1 (t, Ji�1, x))] , ji 2 [Ni] , i = L, ..., 2,

H1 (t, j1, x) = hw1 (t, 1, j1) , xi , j1 2 [N1] ,

in which x 2 X = Rd is the input, the weights are w1 (t, 1, j1) 2 W1 = Rd and wi (t, ji�1, ji) 2
Wi = R, 'i : R ! R is the activation and t 2 T = R�0 the continuous time. Here we reserve
the notation Ji for the random variable Ji ⇠ Unif ([Ni]) and we write EJ to denote the expectation
w.r.t. these random variables. For convenience, we take j0 2 {1} and N0 = 1.

Given an initialization wi (0, ·, ·), we train the network with gradient descent (GD) w.r.t. the loss
L : R⇥ R ! R�0 and the data Z = (X,Y ) 2 X⇥ R drawn from a training distribution P:

@twi (t, ji�1, ji) = �EZ


@2L (Y, ŷ (t,X))

@ŷ (t,X)

@wi (ji�1, ji)

�
, i 2 [L] ,

in which we define

@ŷ (t, x)

@Hi (ji)
=

8
<

:

'0
L
(HL (t, 1, x)) , i = L,

EJ


@ŷ (t, x)

@Hi+1 (Ji+1)
wi+1 (t, ji, Ji+1)'0

i
(Hi (t, ji, x))

�
, i < L,

@ŷ (t, x)

@wi (ji�1, ji)
=

8
>><

>>:

@ŷ (t, x)

@Hi (ji)
'i�1 (Hi�1 (t, ji�1, x)) , i > 1,

@ŷ (t, x)

@H1 (j1)
x, i = 1.

One may recognize that these “derivative” quantities are defined in a perturbative fashion; for in-
stance, @ŷ(t,x)

@Hi(ji)
represents how ŷ (t, x) changes (rescaled by widths) as one perturbs Hi (t, ji, x).

Mean field limit. The MF limit is defined upon a given neuronal ensemble (⌦,F , P ) =Q
L

i=0 (⌦i,Fi, Pi) (in which ⌦0 = ⌦L = {1}), which is a product probability space. We reserve the
notation Ci for the random variable Ci ⇠ Pi and we write EC to denote the expectation w.r.t. these
random variables. The MF limit that is associated with the network (1) is described by the evolution
of {wi (t, ·, ·)}i2[L], given by the following MF ODEs:

@twi (t, ci�1, ci) = �EZ


@2L (Y, ŷ (t,X))

@ŷ (t,X)

@wi (ci�1, ci)

�
, i 2 [L] , ci 2 ⌦i, ci�1 2 ⌦i�1,

where wi : T⇥ ⌦i�1 ⇥ ⌦i ! Wi and t 2 T. Here we define the forward quantities:

ŷ (t, x) = 'L (HL (t, 1, x)) ,

Hi (t, ci, x) = EC [wi (t, Ci�1, ci)'i�1 (Hi�1 (t, Ci�1, x))] , i = L, ..., 2,

H1 (t, c1, x) = hw1 (t, c1) , xi ,
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and the backward quantities:

@ŷ (t, x)

@Hi (ci)
=

8
<

:

'0
L
(HL (t, 1, x)) , i = L,

EC


@ŷ (t, x)

@Hi+1 (Ci+1)
wi+1 (t, ci, Ci+1)'0

i
(Hi (t, ci, x))

�
, i < L,

@ŷ (t, x)

@wi (ci�1, ci)
=

8
>><

>>:

@ŷ (t, x)

@Hi (ci)
'i�1 (Hi�1 (t, ci�1, x)) , i > 1,

@ŷ (t, x)

@H1 (c1)
x, i = 1.

The evolution with time t of the MF limit is generally complex due to the nonlinear activations.

Sampling of neurons, neuronal embedding, and the neural net-MF limit connection. A pri-
ori there is no connection between the MF limit and the neural network (1); they are two separate
self-contained time-evolving systems, despite the similarity in their definitions. To formalize their
connection as in [17], we describe the neuron sampling procedure. In particular, we independently
sample {Ci (ji)}ji2[Ni]

⇠i.i.d. Pi for i = 1, ..., L. The samples Ci (ji) should be thought of as
“sampled neurons”. Let us use E to denote the expectation w.r.t. the sampling randomness. Al-
though [17] considers more general sampling rule, this suffices for our purposes.

Now suppose that we are given functions w0
i
: ⌦i�1 ⇥ ⌦i ! Wi and set the initializations for the

neural network and the MF limit:

wi (0, ji�1, ji) = w0
i
(Ci�1 (ji�1) , Ci (ji)) , wi (0, ·, ·) = w0

i
(·, ·) 8i 2 [L] .

Then one lets them evolve according to their own respective dynamics. The sampling of neurons
hence allows to couple them on the basis of the tuple

�
⌦,F , P,

�
w0

i

 
i2[L]

�
– known as the neuronal

embedding, the key idea in [17]. Note that this does not pose a major limitation on the type of
initializations for the neural network (1); indeed it allows both i.i.d. and non-i.i.d. initializations
since we have freedom to choose the neuronal embedding, as studied in [17, 20].

Once the coupling is done, [17] obtains the following result, which realizes the connection in math-
ematical terms. For any finite terminal time T 2 T, we have 2:

max
i2[L]

EJ

h
sup
tT

|wi (t, Ji�1, Ji)� wi (t, Ci�1 (Ji�1) , Ci (Ji))|
2
i1/2

= Õ(N�c⇤
min ) (2)

with high probability, where c⇤ > 0 is a universal constant, Nmin = mini2[L�1] Ni, Nmax =

maxi2[L] Ni and Õ hides the dependency on T , L and logNmax. This result is akin to the law of
large numbers (LLN). In words, it says that for large (ideally infinite) widths, the evolution of the
network (1) can be tracked closely by the MF limit. This result is fundamental and gives a useful
suggestion that is to study the neural network via analyzing the MF limit. For example, [17] uses it
to study the optimization efficiency of the neural network.

The sampling of neurons is inspired by the propagation of chaos argument [28], but is not a mere
proof device. Indeed, in this work, we again make a crucial use of this sampling in the formulation
of the limiting fluctuation (Section 3.3).

Set of assumptions. We consider the following assumptions for the rest of the paper:
Assumption 1. We make the following assumptions:
• (Regularity) 'i is K-bounded for i 2 [L� 1]; '0

i
and '00

i
are K-bounded and K-Lipschitz for

i 2 [L]; @2L and @2
2L are K-bounded and K-Lipschitz in the second variable; |X|  K almost

surely (a.s.).
• (Sub-Gaussian initialization) sup

m�1 m
�1/2EC

⇥��w0
i
(Ci�1, Ci)

��m⇤1/m  K for any i 2 [L].
• (Measurability) L2

(Pi) is separable for any i 2 [L].
• (Constant hidden widths) N1 = ... = NL�1 = N (with ideally N ! 1).

An example for the regularity assumption is 'L (u) = u the identity, 'i = tanh for i 2 [L� 1]

and L (u1, u2) is a smooth version of the Huber loss. It is noteworthy that L does not need to be
2While [17] treats stochastic GD in discrete time, this result is implicit in the proof.

4



convex. The initialization assumption is also mild; it allows most common i.i.d. initializations as
well as non-i.i.d. schemes in [17, 20]. These assumptions satisfy the conditions in these works.
Measurability assumption is a technical condition needed for well-defined-ness of the fluctuation; it
is not conceptually restrictive and can accommodate results in [17, 20].

The constant width assumption aligns with our interest in the infinite-width regime. Our develop-
ment can be extended easily to the proportional scaling, where Ni = b⇢iNc for some constants
⇢1, ..., ⇢L�1 > 0 with N ! 1. These scalings are relevant to practical setups and also to yield
interesting results. Specifically once some widths are much larger than others, we expect the fluctu-
ation to be dominated by a subset of layers.

3 Limit system for the fluctuation around the MF limit

We describe our formulation for the fluctuation. As introduced, it is composed of two components: a
stochastic process that induces Gaussian CLT-like behavior, and another process – called the second-
order MF limit – that signifies the MF interactions at the fluctuation level. This is done on the basis
of the sampling of neurons, on top of the neuronal embedding, introduced in Section 2.

We introduce the first component in Section 3.1 and then the second-oder MF limit in 3.2. Together
the two components are connected with the fluctuation around the MF limit realized by a large-
width network in Section 3.3, to give firstly the analog of (2) and secondly a limit theorem on the
fluctuation distribution. We end with a discussion in Section 3.4. Proofs are deferred to the appendix.

3.1 Gaussian component G̃

Recall the sampling of neurons described in Section 2. Given the MF limit, we define the following
random quantities:

ỹ (t, x) = 'L(H̃L (t, 1, x)),

H̃i (t, ci, x) = EJ

h
wi (t, Ci�1 (Ji�1) , ci)'i�1(H̃i�1 (t, Ci�1 (Ji�1) , x))

i
, i = L, ..., 2,

H̃1 (t, c1, x) = hw1 (t, c1) , xi ,

@ỹ (t, x)

@H̃i (ci)
=

8
<

:

'0
L
(H̃L (t, 1, x)), i = L,

EJ


@ỹ (t, x)

@H̃i+1 (Ci+1 (Ji+1))
wi+1 (t, ci, Ci+1 (Ji+1))'0

i
(H̃i (t, ci, x))

�
, i < L,

@ỹ (t, x)

@wi (ci�1, ci)
=

8
>><

>>:

@ỹ (t, x)

@H̃i (ci)
'i�1(H̃i�1 (t, ci�1, x)), i > 1,

@ỹ (t, x)

@H̃1 (c1)
x, i = 1.

These quantities are analogues of the forward and backward MF quantities, but with ECi being
replaced by an empirical average over {Ci (ji)}ji2[Ni]

.

Now we define
G̃y

(t, x) =
p

N (ỹ (t, x)� ŷ (t, x)) ,

G̃w

i
(t, ci�1, ci, x) =

p

N

✓
@ỹ (t, x)

@wi (ci�1, ci)
�

@ŷ (t, x)

@wi (ci�1, ci)

◆
, i = 1, ..., L,

and let G̃ denote the collection of these functions. Notice that the randomness of G̃ is induced by
the samples Ci(ji); thus we write the expectation w.r.t. G̃ via E. Intuitively G̃ is the fluctuation of
the sampled neurons around the MF limit and thus should converge to a Gaussian process. We show
that this is indeed the case in the following mode of convergence.
Definition 1. Given joint distributions over a sequence (in N ) of functions G̃i,N : T⇥⌦i�1⇥⌦i⇥

X ! Wi for i 2 [L], we say that G̃N = {G̃i,N}i2[L] converges G-polynomially in moment (as
N ! 1) to G if for any finite collection in ` of square-integrable f` : T⇥ ⌦i(`)�1 ⇥ ⌦i(`) ⇥ X !

Wi(`) that is continuous in time and integers ↵`,�` � 1,

sup

t(`)T 8`

���E
hY

`

hf`, G̃
↵`

i(`),N i
�`

t(`)

i
� E

hY
`

hf`, G
↵`

i(`)i
�`

t(`)

i��� = OD,T

�
sup
tT

max
`

kf`k
D

t

�
N�1/8,
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for D =
P

`
↵`�` and a constant terminal time T . Here we define:

hf, hi
t
= EZ,C [f (t, Ci�1, Ci, X)h (t, Ci�1, Ci, X)]

for any two such functions f and h, and kfk2
t
= hf, fi

t
. As a convenient convention, if f :

T ⇥ ⌦0 ⇥ ⌦1 ⇥ X ! W1 is tested against G̃1,N , we define hf, G̃1,N it and kfk
t

using Euclidean
inner product and the Euclidean norm.

Note that this mode of convergence gives a quantitative rate in N .

Theorem 2 (Gaussian component G̃). For any terminal time T � 0, G̃ converges G-polynomially
in moment to G = {Gy, Gw

i
, i 2 [L]}, which is a collection of centered Gaussian processes.

The covariance structure of G in Theorem 2 is explicit but lengthy; we refer to the appendix for full
details. Here let us examine the variance of Gy , given recursively by:

v2 (t, c2, x) = VC [w2 (t, C1, c2)'1 (H1 (t, C1, x))] ,

vi (t, ci, x) = EC

⇥ ��wi (t, Ci�1, ci)'
0
i�1 (Hi�1 (t, Ci�1, x))

��2 vi�1 (t, Ci�1, x)
⇤

+ VC [wi (t, Ci�1, ci)'i�1 (Hi�1 (t, Ci�1, x))] , i = 3, ..., L,

E
⇥
|Gy

(t, x)|2
⇤
= |'0

L
(HL (t, 1, x))|

2
vL (t, 1, x) .

The recursive structure shows that Gy compounds the stochasticity propagated forwardly through
the depth of the multilayer network. From the appendix, a similar observation can be made in the
backward propagation direction.

3.2 Second-order MF limit

We introduce a system of ODE’s for a dynamics that represents MF interactions at the fluctuation
level. As we shall see later, this system gives a limiting description of the the deviation of the neural
network from the sampled neurons under GD training.

Let us denote by G a collection of functions Gy
: T⇥X ! R, Gw

i
: T⇥⌦i�1 ⇥⌦i ⇥X ! Wi for

i 2 [L]. For p � 1, let

G = {G : kGk
T
< 1 8T � 0} , kGk

2p
T,2p = sup

tT

EZ,C

h
|Gy

(t,X) |
2p
+

XL

i=1
|Gw

i
(t, Ci�1, Ci, X)|

2p
i
,

with kGk
T
⌘ kGk

T,2. We define processes Ri : G ⇥ T⇥ ⌦i�1 ⇥ ⌦i ! Wi for i 2 [L] as follows.
The processes Ri are initialized at Ri (·, 0, ·, ·) = 0 for all i, and for each fixed G 2 G, solve the
differential equations:

@tRi (G, t, ci�1, ci) =

� EZ


@ŷ (t,X)

@wi (ci�1, ci)
@2
2L (Y, ŷ (t,X))

✓
Gy

(t,X) +

LX

r=1

EC


Rr (G, t, Cr�1, Cr)

@ŷ (t,X)

@wr (Cr�1, Cr)

�◆�

� EZ


@2L (Y, ŷ (t,X))EC

 LX

r=1


Rr (G, t, a, b)

@2ŷ (t,X)

@wr (a, b) @wi (ci�1, ci)

�

a:=Cr�1, b:=Cr

��

� EZ


@2L (Y, ŷ (t,X))Gw

i
(t, ci�1, ci, X)

�
. (3)

Here @
2
ŷ(t,X)

@wr(a,b)@wi(ci�1,ci)
is defined in a perturbative fashion similar to those in Section 2 and is hence

self-explanatory; we give the full explicit definitions in the appendix. We shall write Ri (G, t) =

Ri (G, t, ·, ·) for brevity. Let R denote the collection {Ri}i2[L].

Theorem 3. Under Assumption 1, for any ✏ > 0 and G 2 G with kGkT,2+✏ < 1, there exists a
unique solution t 7! Ri (G, t, ·, ·) 2 L2

(Pi�1 ⇥ Pi) which is continuous in time. Furthermore, for
each t, R (G, t) is a continuous linear functional in G.

The process R is called the second-order MF limit for a reason we shall see in Section 3.4.
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Remark 4. Care should be taken in the derivation of the “second derivative” quantity in Eq. (3). To
illustrate, consider a simplified problem of taking a perturbation w.r.t. wr (a, b) of the quantity

g (wi (ci�1, ci) ,EC [f1 (wi (Ci�1, ci))] ,EC [f2 (wi (ci�1, Ci))] ,EC [f3 (wi (Ci�1, Ci))]) ⌘ g (ci�1, ci) .

For instance, when r = i, we have:

Ri (G, t, a, b)

@g (ci�1, ci)

@wr (a, b)

�

a:=Ci�1, b:=Ci

= Ri (G, t, ci�1, ci) @1g (ci�1, ci) +Ri (G, t, Ci�1, ci) @2g (ci�1, ci) @f1 (wi (Ci�1, ci))

+Ri (G, t, ci�1, Ci) @3g (ci�1, ci) @f2 (wi (ci�1, Ci)) +Ri (G, t, Ci�1, Ci) @4g (ci�1, ci) @f3 (wi (Ci�1, Ci)) .

3.3 Fluctuation around the MF limit via sampling of neurons

We are interested in a characterization of the following quantity, which represents the deviation of
the weights of the neural network under GD training from the sampled neurons:

Ri (t, ji�1, ji) =
p

N (wi (t, ji�1, ji)� wi (t, Ci�1 (ji�1) , Ci (ji))) .

Let R denote the collection {Ri}i2[L]. We now state our first main result of the section.

Theorem 5 (Second-order MF). Under Assumption 1, we have, for any t  T ,

EEJ

h ���Ri (t, Ji�1, Ji)�Ri(G̃, t, Ci�1 (Ji�1) , Ci (Ji))
���
2 i

 KT /N.

Upon the correct choice G̃, one deduces from the theorem the second-order expansion:

wi (t, ji�1, ji) ⇡ wi (t, Ci�1 (ji�1) , Ci (ji)) +N�1/2Ri(G̃, t, Ci�1 (ji�1) , Ci (ji)),

where the first-order term is directly from Eq. (2). Importantly this relation is on the basis of the
sampled neurons {Ci (ji) : ji 2 [Ni] , i 2 [L]}. The dynamics of Ri at the i-th layer is depen-
dent on all {Rk}k2[L] and Gy , exemplifying the cross-layer interaction of fluctuations in multilayer
networks.

Although Theorem 5 involves G̃, as shown in the derivation of Section 3.4, we actually do not utilize
the specific structure of G̃. Incidentally we study the limiting structure of G̃ separately in Theorem
2. In other words, our decomposition of the fluctuation via G̃ and R allows relatively independent
treatments of the two components (which have different natures, to be discussed in Section 3.4).

Combining the two theorems, we obtain the following CLT for the limiting output fluctuation.

Theorem 6 (CLT for output function). Under Assumption 1, the fluctuation
p
N(ŷ(t, x)� ŷ(t, x))

converges weakly to the Gaussian process Ĝ indexed by T⇥ X:

Ĝ (t, x) =
LX

i=1

EC


Ri(G, t, Ci�1, Ci)

@ŷ(t, x)

@wi(Ci�1, Ci)

�
+Gy

(t, x),

where G is the Gaussian process described in Theorem 2. Specifically, for any integer m � 1,
t  T , and 1-bounded h : X ! R,
���EEZ

h
h(X)

�p
N(ŷ(t,X)� ŷ(t,X))

�mi
�EEZ

h
h(X)

�
Ĝ (t,X)

�mi���  KT,mN�1/8+o(1).

We note in passing the technicality we devise to prove Theorem 6. As noted, Theorems 5 and 2
separate treatments of R and G̃, but recall we are interested in R(G̃, t). This necessitates a way to
describe them jointly. We do so via the following notion of convergence, extending Definition 1.

Definition 7. Suppose we are given a sequence (in N ) of functions G̃i,N : T⇥⌦i�1⇥⌦i⇥X ! Wi

for i 2 [L] such that G̃N = {G̃i,N}i2[L] converges G-polynomially in moment to G. Given further
R̃i,N : T ⇥ ⌦i�1 ⇥ ⌦i ⇥ X ! Wi defined jointly with G̃i,N and R̃N = {R̃i,N}i2[L], we say that
(R̃N , G̃N ) converges G-polynomially in moment and R-linearly in moment (as N ! 1) to (R,G)
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if for any f`, h` that are T ⇥ ⌦i(`)�1 ⇥ ⌦i(`) ⇥ X ! Wi(`) mappings and continuous in time and
any integers ↵`,�` � 1,

sup

t(`)T 8`

���E
hY

`

hf`, G̃
↵`

i(`),N i
�`

t(`)

Y
`

hh`, R̃i(`),ni
�`

t(`)

i
� E

hY
`

hf`, G
↵`

i(`)i
�`

t(`)

Y
`

hh`, Ri(`)i
�`

t(`)

i���

= OD

�
sup
tT

max
`

kf`k
D

t
, sup

tT

max
`

kh`k
D

t

�
N�1/8+o(1),

for D =
P

`
�`↵` +

P
`
�`.

Proposition 8. Assume that G̃ converges G-polynomially in moment to G = {Gy, Gw

i
, i 2 [L]}.

Then (R(G̃, ·), G̃) converges G-polynomially in moment and R-linearly in moment to (R(G, ·), G).

3.4 A heuristic derivation and discussion

A heuristic argument. We wish to give a heuristic to derive the relation between Ri and Ri(G̃, t),
i.e. Theorem 5. Suppose we look at the i-th layer:
@tRi (t, ji�1, ji)

=

p

N@twi (t, ji�1, ji)�
p

N@twi (t, Ci�1 (ji�1) , Ci (ji))

=

p

NEZ


@2L (Y, ŷ (t,X))

@ŷ (t,X)

@wi (Ci�1 (ji�1) , Ci (ji))

�
�

p

NEZ


@2L (Y, ŷ (t,X))

@ŷ (t,X)

@wi (ji�1, ji)

�

= EZ


p

N
⇣
@2L (Y, ŷ (t,X))� @2L (Y, ŷ (t,X))

⌘

| {z }
A1

·
@ŷ (t,X)

@wi (Ci�1 (ji�1) , Ci (ji))

�

+ EZ


@2L (Y, ŷ (t,X)) ·

p

N

✓
@ŷ (t,X)

@wi (Ci�1 (ji�1) , Ci (ji))
�

@ŷ (t,X)

@wi (ji�1, ji)

◆�
. (4)

Let us zoom into A1, with some care not to eliminate the fluctuation of interest:

A1 ⇡

p

N@2
2L (Y, ŷ (t,X)) (ŷ (t,X)� ŷ (t,X))

= @2
2L (Y, ŷ (t,X))

⇣
�G̃y

(t,X) +

p

N (ỹ (t,X)� ŷ (t,X))

⌘
.

Now observe that ỹ (t,X) � ŷ (t,X) is a difference between the sampled neurons and the neural
network, and hence one should be able to express it in terms of R:
p

N (ỹ (t,X)� ŷ (t,X))

⇡

LX

r=1

EJ


@ỹ (t,X)

@wr (Cr�1 (Jr�1) , Cr (Jr))
·

p

N (wr (t, Cr�1 (Jr�1) , Cr (Jr))�wr (t, Jr�1, Jr))

�

= �

LX

r=1

EJ


@ỹ (t,X)

@wr (Cr�1 (Jr�1) , Cr (Jr))
·Rr (t, Jr�1, Jr)

�
.

Furthermore in the limit N ! 1, we expect from the LLN, for a test function f ,
EJ [f (Cr�1 (Jr�1) , Cr (Jr))] ⇡ EC [f (Cr�1, Cr)] . (5)

As such, one can identify the term that involves A1 in Eq. (4) for @tRi (t, ji�1, ji) with the first term
in Eq. (3) for @tRi (G, t, ci�1, ci). One can derive similarly for the rest of the terms. With these,
one arrives at @tRi (t, ji�1, ji) ⇡ @tRi(G̃, t, Ci�1 (ji�1) , Ci (ji)). Recalling that Ri (0, ·, ·) =

0 = Ri(·, 0, ·, ·), one arrives at the conclusion of Theorem 5.

We make two comments. Firstly, the sampling of neurons makes transparent the derivation of R as
the limit of R: it allows to compare one-to-one a “neuron” of the former to a neuron of the latter.
This demonstrates an advantage of the neuronal embedding framework, which easily accommodates
the sampling of neurons in the multilayer setup. We also see that the only involvement of G̃ in this
derivation is via its definition.

Secondly, R arises (by replacing R) at steps that invoke (5). This LLN-type nature signifies MF
interactions among neurons at the fluctuation level, and hence the name second-order MF limit. In
contrast, the component G̃ displays a Gaussian CLT-type nature, evident from its definition.
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Technical difficulties. So far we have seen R captures the difference between the neural network
and the sampled neurons. Recall the other component in the fluctuation is the process G̃, which cap-
tures the

p
N -scaled difference between the sampled neurons and the MF limit. Taking into account

the whole system of fluctuation, we note a major technical subtlety: the aforementioned two differ-
ences captured by R and G̃ share the same source of randomness {Ci (ji) : ji 2 [Ni] , i 2 [L]}.

We mention two particular complications that arise from this subtlety. The first complication is how
one should define the process R in relation with G̃, given that R is meant to be the infinite-width
limit of R while R and G̃ are stochastically coupled. Our solution is to let t 7! R(G, t) defined for
any G 2 G, not restricted to only G̃. This streamlines the definition of the second-order MF limit
and allows to separate our treatments of R and G̃, as evident from Theorems 5 and 2.

The second complication lies with Eq. (5). In fact, to arrive at the desired conclusion, we require the
function f to depend on G̃. This is because the main object of interest is R(G̃, t), even though we
have treated R and G̃ separately. In a nutshell, f shares randomness with Cr (jr) and Cr�1 (jr�1),
jr 2 [Nr], jr�1 2 [Nr�1]. The random variable on the left-hand side of Eq. (5) is therefore complex,
and it is highly questionable whether this equation should hold. The analysis becomes delicate;
without taking into account this shared randomness, the derivation would be a mere heuristic. As
we present in the proof, we verify this equation for a relevant set of functions f .

4 Asymptotic variance of the output function

We study the following width-scaled asymptotic variance quantity:

V ⇤
(t) = lim

N!1
EEZ

⇥��pN(ŷ(t,X)� ŷ(t,X))
��2⇤ = lim

N!1
EEZ

⇥��pN(ŷ(t,X)�E[ŷ(t,X)])
��2⇤.

The second equality holds and the limits in N exist by Theorems 5 and 6. We would like to under-
stand V ⇤

(t) in the long-time horizon, and specifically in a situation of considerable interest where
the MF limit converges to a global optimum as t ! 1. To that end, we assume the following.
Assumption 2. We assume EZ

⇥
@2
2L (Y, f (X))

��X
⇤
= K a positive constant a.s. for any f in which

EZ [@2L (Y, f (X))|X] = 0 a.s.

Note that convexity of the loss is not required. For example, the assumption holds for L (y, y0) =

` (y � y0) for any quasi-convex smooth function ` when Y = y(X) is a deterministic function of
X . It is driven by our interest in what happens at global convergence: [17, 20] show convergence to
a global optimum is attainable (with suitable initialization strategies) if either (case 1) L is convex
in the second variable, or (case 2) @2L (y, y0) = 0 implies L (y, y0) = 0 (recalling L � 0) and
Y = y (X). In both cases, one can find reasonable loss functions that satisfy Assumption 2. We
also note in both cases, any f with EZ [@2L (Y, f (X))|X] = 0 a.s. is a global optimizer.

Our first result indicates that even if one initializes the network at a global optimum and hence
there is no evolution with time at the MF limit level, GD training still helps by reducing the output
variance V ⇤

(t) with time at the fluctuation level, in the large-width regime.
Theorem 9. Suppose at initialization EZ [@2L (Y, ŷ (0, X))|X] = 0 a.s. Under Assumptions 1 and
2, V ⇤

(t) is non-increasing and V ⇤
(t) ! 0 as t ! 1.

This variance reduction effect continues to hold in the long-time horizon if, instead of initializing at
a global optimum, we assume to have global convergence at a sufficiently fast rate.

Theorem 10. Assume
R1
0 t2+�EX

h
|EZ [@2L(Y, ŷ(t,X))|X]|

2
i1/2

dt < 1 for some � > 0. Under
Assumptions 1 and 2, V ⇤

(t) ! 0 as t ! 1.

These results suggest that the variance reduction effect of GD in MF training is a phenomenon more
general than the case of shallow networks with a squared loss and finitely many training points in
[3]. Specifically it is shown for multilayer networks with a loss that is not necessarily convex with
arbitrary training data distribution P . Though we discuss in the context of a global optimum as our
main interest, the theorems apply to any stationary point where Assumption 2 holds.

Let us briefly discuss the proof. For simplicity, consider the context of Theorem 9. Recall from
Theorem 6 the Gaussian process Ĝ that the output fluctuation converges to as N ! 1; we thus
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(a) (b) (c) (d) (e)

Figure 1: MNIST classification of digits 0 and 4 versus 5 and 9, with full-batch GD training on
100 images. The network has 3 layers, tanh activations and a Huber loss. We vary the width
N 2 {50, 100, 200, 400}. See Appendix G for details. (a): The evolution of the training loss, at a
random initialization. (b): Histogram of

p
N(ŷ(t, x) � ŷ(t, x)) at iteration 10

3 for a test image x.
(c): Output variance EEZ

⇥��pN(ŷ(t,X) � ŷ(t,X))
��2⇤. (d): Monte-Carlo (MC) output variance,

a.k.a. EEZ [|G̃y
(t,X) |

2
]. (e): Similar to (c), but the network is initialized at a global optimum.

would like to show EEZ

⇥��Ĝ (t,X)
��2⇤ ! 0 as t ! 1. In this case, one can show that for A :

L2
(P) ! L2

(P) a linear operator defined by

(Af)(x) = �c
X

i

EZ,C


@ŷ(0, x)

@wi(Ci�1, Ci)

@ŷ(0, X)

@wi(Ci�1, Ci)
f(X)

�
,

with a constant c > 0, we have @tĜ (t, ·) = AĜ (t, ·). In particular, A is self-adjoint and has
non-positive eigenvalues and as such, if at initialization Ĝ (0, ·) lies in the range of A, we reach the
desired conclusion. This is simple in the shallow case. Indeed note that Ĝ (0, ·) = Gy

(0, ·) by the
assumption on initialization of Theorem 9. Assuming 'L (u) = u for simplicity, in the shallow
case where ŷ (0, x) = EC1 [w2 (0, C1, 1)'1 (hw1 (0, 1, C1) , xi)], we have Gy

(0, ·) is zero-mean
Gaussian with the covariance E[Gy

(0, x)Gy
(0, x0

)] equal to

CC1 [w2 (0, C1, 1)'1 (hw1 (0, 1, C1) , xi) ; w2 (0, C1, 1)'1 (hw1 (0, 1, C1) , x
0
i)] .

Immediately from this simple covariance structure, we see that x 7! Gy
(0, x) lies in the span

of {x 7! '1 (hw1 (0, 1, c1) , xi) : c1 2 supp (P1)}, i.e. the desired conclusion since @ŷ(0,x)
@w2(C1,1)

=

'1 (hw1 (0, 1, C1) , xi). In the multilayer case, this is no longer obvious due to the complex covari-
ance structure as pointed out in Section 3, and yet interestingly we show that it still indeed holds.

The proof of Theorem 10 leverages on Theorem 9. In particular, implicit in this proof is the fact that
the variance reduction effect takes place mostly after a global optimum is reached. Here the technical
bulk lies in uniform control on weight movements, which is delicate in the multilayer case.

5 Numerical illustration

We give several illustrations in Fig. 1 via a simple experimental setup with MNIST [10] (see the cap-
tion and also Appendix G for more details). Fig. 1(a) shows that the network converges to a global
optimum around iteration 10

4 and displays a nonlinear dynamics (which takes the shape of a super-
position of two sigmoids). The agreement of the different histogram plots of the output fluctuation
for varying widths N in Fig 1(b) verifies the existence of a limiting Gaussian-like behavior, predicted
by Theorems 5 and 6. Fig 1(c) shows that the output variance EEZ

⇥��pN(ŷ(t,X) � ŷ(t,X))
��2⇤

decreases with time quickly after iteration 10
4, which is predicted by Theorem 10. Fig 1(d) plots

the Gaussian component G̃y in the output variance. Note that after iteration 10
4, this component

no longer moves since a global optimum is reached. Contrasting this plot with Fig 1(c), we see the
central role of GD training (in particular, the second-order MF limit component R) in reducing the
variance. As shown in Fig 1(e), congruent with Theorem 9, when the network is instead initialized at
a global optimum, the output variance is decreasing on the entire period. These plots also highlight
an interesting fact (previously mentioned in Section 4): the variance reduction effect takes place
mostly after a global optimum is reached.
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