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Abstract

Modern generative adversarial networks (GANs) have been enabling the realistic generation
of full 3D brain images by sampling from a latent space prior Z (i.e., random vectors) and
mapping it to realistic images in X (e.g., 3D MRIs). To address the ubiquitous mode col-
lapse issue, recent works have strongly imposed certain characteristics such as Gaussianness
to the prior by also explicitly mapping X to Z via encoder. These efforts, however, fail to
accurately map 3D brain images to the desirable prior, which the generator assumes to be
sampling the random vectors from. On the other hand, Variational Auto-Encoding GAN
(VAE-GAN) solves mode collapse by enforcing Gaussianness by two learned parameter,
yet causes blurriness in images. In this work, we show how our cycle consistent embedding
GAN (CCE-GAN) both accurately encodes 3D MRIs to the standard normal prior, and
maintains the quality of the generated images. We achieve this without a network-based
code discriminator via the Wasserstein measure. We quantitatively and qualitatively assess
the embeddings and the generated 3D MRIs using healthy T1-weighted MRIs from ADNI.

Keywords: Auto-Encoder, Latent Space, Generative Adversarial Network, Cycle Consis-
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1. Introduction

Beyond 2D brain images, generative adversarial networks (GANs) have been promisingly
generating the full-slice 3D structural MRI as well (Kwon et al., 2019) by capturing the map-
ping between the latent space (Z-space) and the original image space (X -space). Although
the mapping Z → X is of top priority towards realistic generation, the precise construction
of the latent space from the dataset (X → Z) also benefits the overall generation quality
(Larsen et al., 2016). Yet, we identified that recent works do not achieve this accurately
for 3D brain generation tasks. In particular, we observed that a recent work, 3D-α-WGAN
(Kwon et al., 2019) using the Code Discriminator (CD) network to promote “realistic”
embeddings of 3D brains exhibited such case. Contrarily, while VAE-GAN (Larsen et al.,
2016) constructs the Z-space similar to that of random vectors (e.g., multivariate standard
normal) sampled by the generator, the generated 3D brains suffer from blurriness.

In this work, we aim to improve the latent space mapping X → Z via two mechanisms:
(1) we use the Wasserstein distance instead of the CD similar to VAE-GAN but with
the improved generation quality (i.e., Wasserstein Auto-Encoding GAN), and (2) further
improve the mapping with a cycle consistency loss (Zhu et al., 2017) in the Z-space. Our
Cycle Consistent Embedding GAN (CCE-GAN) demonstrates improved embedding and
generation of 3D T1W MRIs of normal aging cohort from the ADNI study.
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Figure 1: CCE-GAN Architecture.

2. Methods

The goal of GAN is to learn a generator G mapping a random vector zr ∈ Z (often a mul-
tivariate standard normal) to an image Xr ∈ X and a discriminator D which differentiates
a generated image Xr from the real image. Due to the poor coverage of the Z-space, ran-
domly generated images often suffer from mode collapse. VAE-GAN (Larsen et al., 2016)
addresses this issue by learning an encoder E mapping from X to Z to derive the embed-
dings ze. This results in blurry images, so a recently developed 3D-α-WGAN (Kwon et al.,
2019) leverages the CD-based encoder loss from α-GAN (Rosca et al., 2017). Although the
mode collapse issue is alleviated in the X -space without blurriness, we identified that E
cannot accurately construct the Z-space from 3D brains (e.g., ze 6= standard normal prior).

We leverage these findings to achieve improved embeddings of 3D brains, which also
results in better image quality without mode collapse issue. Our solution builds on 3D-α-
GAN. First, instead of using the CD from 3D-α-GAN or KL loss from VAE-GAN, we use the
Wasserstein loss explicitly in the Z-space between the random vectors and the embeddings.
We refer to this as the Wasserstein Auto-Encoder GAN (WAE-GAN) which provides a
more flexible mapping compared to the variational approach while more strictly enforcing
the Gaussianness than the CD. Second, we further improve the Z-space by deriving two
additional cycle consistent embeddings: zee = E(G(ze)) and zre = E(G(zr)). Thus, our
final model, Cycle Consistent Embedding GAN (CCE-GAN), solves the following:

argmin
D

Eze [D(Xe)] + Ezr [D(Xr))]− 2Exreal [D(xreal)] + λ1Lgp(D)

argmin
G,E

− Eze [D(Xe)]− Ezr [D(Xr)] + λ2||Xr −Xe||1 + λ3||zr − zre||2 + λ3||ze − zee||2 +Wl(zr, ze)

where Wl(zr, ze) is the Wasserstein loss between zr and ze, and λ1, λ2, λ3 = 10. Lgp(D) is
the Wasserstein gradient penalty loss for D (Gulrajani et al., 2017). Note that we solely
focus on improving E which also improves the image generation quality as shown next.

3. Experiments and Conclusion

Dataset. From the Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.loni.usc.edu),
we use 3D T1-weighted MRI of 991 CN subjects which we further processed with FreeSurfer
6.0 recon-all pipeline (surfer.nmr.mgh.harvard.edu). We further crop each scan, resize them
to be of size 64× 64× 64, and rescale the intensities to [-1,1].

Models and Training. We compare the following models: (1) 3D-α-WGAN (Kwon et al.,
2019), (2) VAE-GAN (Larsen et al., 2016), (3) WAE-GAN, (4) CCE-GAN. For all models,
using RTX 2080 Ti 11GB, the training involves ADAM (β1 = 0.9, β2 = 0.999, lr = 0.0002)
with the mini-batch size of 4 for 100K iterations (≈40 epochs). See our code for details.

Evaluation. We compute the Maximum Mean Discrepancy (MMD) measure (linear and
RBF kernels) between the real images and the generated images for the X -space, and
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Figure 2: PCA Plots. (a,b) Z-space (N = 150), (c,d) X -space (N = 500)
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Figure 3: Examples of Real (Left), VAE-GAN generated (Middle), and CCE-GAN generated (Right) brains.

between the random vectors zr and their corresponding embeddings ze for the Z-space. We
take the average of 100 MMDs. The Structural Similarity (SSIM) measures the distribution
diversity where the real data SSIM is 0.839. For each model, we generate 1000 image pairs
and compute the average SSIM which aims to be similar to the real data SSIM.

X -space Z-space
Model Linear RBF SSIM Linear RBF
3D-α-GAN 762.4 0.77 0.841 619579.4 3.06
VAE-GAN 354.1 1.13 0.971 249.4 0.42
WAE-GAN 765.4 0.78 0.851 602.1 1.04
CCE-GAN 675.4 0.73 0.848 192.1 0.59

Table 1: Linear and RBF MMD, and SSIM.

Results: Z-space. We first check the en-
coder outputs of the real images to evaluate
the embeddings compared to the random
standard normal Z-space (1000-D). Fig. 2a
and b show the PCA embeddings of 150 random examples. Fig. 2a shows that 3D-α-WGAN
produces sparse embeddings, while Fig. 2b shows that VAE-GAN and CCE-GAN produce
embeddings highly similar to the random Z-space also shown quantitatively in Table 1.

Results: X -space. Table 1 shows the advantage of CCE-GAN, and Fig. 2d shows the
PCA embeddings of the images being closer to the real dataset than Fig. 2c. In Fig. 3, we
see VAE-GAN, despite reasonable MMD measures in Z and X , results in blurry images.

Conclusion. We enable accurate mapping of 3D brains in X -space to their embeddings
in the Z-space in a cycle consistent manner using CCE-GAN. We show that if a better
embedding is achieved, it also leads to better image generation for 3D MRI generation task
as well. For future work, we will consider other 3D brain datasets.
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