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ABSTRACT

Image generative models have accelerated the need for robust image watermarking
to track and verify AI-generated images. While watermark removal attacks have
been extensively studied, the threat of watermark forgery, where benign images
are maliciously modified to appear watermarked, remains underexplored, espe-
cially in the no-box setting. In this work, we introduce WForge, a no-box and
query-free forgery attack that reframes forgery as the inverse of removal. Our
key insight is that residual perturbations from removal attacks approximate water-
mark signals and can be repurposed to forge watermarks. Concretely, we train a
forger network to learn the pattern of residuals and apply it to unwatermarked im-
ages, making them falsely detected as watermarked. We evaluate WForge across
three datasets and four state-of-the-art watermarking methods, demonstrating that
it consistently outperforms existing forgery baselines. Our results further reveal
a critical vulnerability: the existence of a successful removal attack implies the
feasibility of forgery for the same watermarking method.

1 INTRODUCTION

Image generative models (Batifol et al., 2025; Google, 2025; Rombach et al., 2022) are now capable
of producing high-quality, realistic images. While these models greatly expand the diversity of
image content, they also raise ethical concerns and potential negative societal impacts, such as the
spread of disinformation and copyright infringement (Dhaliwal, 2023; Escalante-De Mattei, 2023).

To address these concerns, image watermarking has been proposed and widely adopted as a proac-
tive approach for tracking AI-generated images. For example, major companies such as OpenAI,
Google, and Meta have already deployed watermarking services for their generative models (Gowal
& Kohli, 2023; Mehdi, 2023). In addition, recent research (Jiang et al., 2024) has extended image
watermarking techniques to support attribution of AI-generated content, further broadening their ap-
plicability. However, the security of existing watermarking methods has not been comprehensively
analyzed—particularly against the challenge of watermark forgery attacks.

In the forgery attack, an adversary strategically modifies an image so that it is falsely recognized as
watermarked by the detector. Such forged images can be exploited to undermine copyright attribu-
tion or to damage the reputation of watermarking service providers. Prior works have investigated
the robustness of existing watermarking schemes against forgery. For instance, some studies (Yang
et al., 2024a; Müller et al., 2025) have shown that simple averaging or DDIM inversion (Mokady
et al., 2023) can effectively forge or remove watermarks, but these attacks are limited to specific
methods such as Tree-Ring (Wen et al., 2023) and Gaussian Shading (Yang et al., 2024b). Other ap-
proaches (Wang et al., 2021) require access to paired watermarked and unwatermarked clean images,
which is often impractical. In summary, existing forgery attacks are either not broadly applicable
across diverse watermarking methods or rely on unrealistic assumptions about available resources.

To bridge this gap, we propose WForge, a no-box, query-free image watermark forgery attack. The
key insight is to approximate watermark forgery as the inverse of watermark removal. Given a set
of watermarked images, we first apply removal attacks to obtain watermark-removed versions, then
compute the differences between the two, which we denote as residuals. We show that watermark
patterns can be inferred and learned from these residuals. Concretely, we train a forger network via
supervised learning: the network takes an image as input and predicts a residual that, when added to
the image, causes it to be detected as watermarked.
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We evaluate WForge across three datasets and multiple state-of-the-art image watermarking meth-
ods. Our results demonstrate that: (1) existing watermark forgery attacks are largely ineffective
against state-of-the-art image watermarking methods; (2) WForge consistently outperforms forgery
baselines across all three datasets, achieving high forgery success rates; and (3) the existence of a
successful removal attack for an image watermarking method implies that the watermark can also be
forged correspondingly. These findings reveal critical vulnerabilities in current image watermark-
ing approaches and highlight the urgent need for more robust watermarking systems. Our main
contributions are as follows:

• Residual-based perspective. We introduce a unified residual-based perspective that con-
ceptually links watermark forgery and removal, revealing their intrinsic relationship.

• Reversing removal for forgery. Building on this perspective, we develop WForge and
empirically demonstrate that reversing removal attacks into forgery provides a feasible and
effective attack pathway, with forgery strength closely correlated with removal capability.

• Comprehensive empirical evaluation. We evaluate WForge against multiple state-of-the-
art image watermarking methods across three datasets. WForge consistently outperforms
baselines and is powerful enough to forge even localized watermarks.

2 RELATED WORK

2.1 IMAGE WATERMARKING

Image watermarks have been widely deployed as a proactive solution for AI-generated image prove-
nance. Specifically, a watermarking method either embeds a post-hoc watermark into a given AI-
generated image or guides the generative model to produce an image with the watermark inherently
embedded. A watermark decoder (denoted as D) is then used to detect whether an image contains
a watermark. Depending on whether the embedded watermark patterns are agnostic to or depen-
dent on the image content, existing watermarking approaches can be categorized into two groups:
content-agnostic and content-dependent.

Content-agnostic methods: This group of watermarking methods introduce fixed, content-agnostic
patterns. For example, Tree-Ring (Wen et al., 2023) embeds bits into a ring-shaped Fourier region
of the initial noise, while PRC watermark (Gunn et al., 2025) selects initial latents via pseudoran-
dom error-correcting codes to achieve undetectability and stronger robustness. LaWa (Rezaei et al.,
2024) adds structured residual signals in latent space, and SleeperMark (Wang et al., 2025) encodes
messages as a trigger-based backdoor in the denoising process. However, these content-agnostic
patterns leads to statistical bias, making their watermarks vulnerable to forgery attacks through sta-
tistical analysis such as simple averaging (Yang et al., 2024a).

Content-dependent methods: This group of methods embeds watermarks that depend on the im-
age content. Specifically, the difference between a watermarked image and its unwatermarked ver-
sion does not have statistical patterns. Representative approaches include RivaGAN (Zhang et al.,
2019), which employs an attention-based embedding mechanism; StegaStamp (Tancik et al., 2020)
employs an encoder–decoder framework jointly trained with differentiable perturbations, enabling
robust decoding under real-world distortions; Stable Signature (Fernandez et al., 2023) refines the
latent decoder of the image generator by conditioning it on a binary signature; and the more recent
Watermark Anything Model (WAM) (Sander et al., 2025), which enables localized watermarking by
imperceptibly modifying selected regions of an image and later extracting the watermark from those
regions. Because these methods depend on the content, their watermarks resist simple averaging or
statistical analysis. Our experiments further demonstrate that current forgery attacks are ineffective
against them. In this work, we propose WForge to address this group of image watermarks.

2.2 WATERMARK REMOVAL ATTACKS

This work is designed on the idea of reversing watermark removal and thus relies on watermark re-
moval attacks (Jiang et al., 2023; Zhao et al., 2024; Hu et al., 2025; Kassis & Hengartner, 2025; Liu
et al., 2025), which are used to remove the watermark from watermarked images without sacrificing
visual quality. For instance, Zhao et al. (2024) proposed regeneration methods that add noise to dis-
rupt watermarks and reconstruct images with generative models such as Variational Auto-Encoders
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(VAEs) (Kingma & Welling, 2013) or diffusion models (Ho et al., 2020). Later, Liu et al. (2025)
advanced this approach with a controllable diffusion method. Jiang et al. (2023) proposed adding
imperceptible perturbations to evade watermark detection, but WEvade requires white-box or black-
box access, and thus is not applicable in our no-box scenarios.

2.3 WATERMARK FORGERY ATTACKS

Watermark forgery attacks (Wang et al., 2021; Li et al., 2023; Yang et al., 2024a; Müller et al., 2025)
aim to forge a watermark for an unwatermarked image by adding a small, human-imperceptible
perturbation. For example, Watermark Faker (Wang et al., 2021) trains a U-Net to transform an
unwatermarked image into a watermarked one using paired watermarked and unwatermarked im-
ages. However, clean images may be inaccessible in practice. To address this, we adapt the method
by treating watermark-removed images as unwatermarked images. Watermark Steganalysis (Yang
et al., 2024a) demonstrates that simple averaging can successfully forge or remove the watermark for
content-agnostic methods like Tree-Ring and Gaussian Shading. However, our experiments show
that these methods are ineffective against content-dependent watermarking methods.

3 PROBLEM DEFINITION

Image watermark forgery: The forgery attack aims to forge the watermark for a non-watermarked
images via perturbing it, i.e., misleads the watermark detector to falsely detect the perturbed image
as watermarked. At the same time, the visual quality should be preserved as well as possible in the
perturbed image. Formally, we define the problem as follows:
Definition 1 (Image Watermark Forgery). Given a non-watermarked image Iu and the watermark
detector D, the forgery attack aims to find a perturbation δforge that satisfies:

D(Iu + δforge) = ¬D(Iu), ∥δforge∥ ≤ ϵ1, (1)
where D can be treated as a binary classifier, i.e., D(x) = I(Image x is detected as watermarked), I
is the indicator function, Iu+δforge is the perturbed image, ¬means reversing the classification result,
and ϵ1 is a threshold for the perturbation δforge to ensure the image’s visual quality is well-preserved.

Image watermark removal: The removal attack aims to perturb a watermarked image such that
the watermark detector falsely detect the perturbed image as non-watermarked, while preserving the
visual quality. Formally, we define it as follows:
Definition 2 (Image Watermark Removal). Given a watermarked image Iw and the watermark de-
tector D, the removal attack aims to find a perturbation δremove that satisfies:

D(Iw + δremove) = ¬D(Iw), ∥δremove∥ ≤ ϵ2, (2)
where Iw+δremove is the perturbed image and ϵ2 ensures the image’s visual quality is well-preserved.

3.1 THREAT MODEL

Attack’s goal: Given an unwatermarked image Iu, the attacker aims to construct a perturbed image
Iu+δforge such that (i) Iu+δforge is visually indistinguishable from Iu under human perception (e.g.,
∥δforge∥ ≤ ϵ1 and high perceptual similarity), and (ii) Iu + δforge is detected as watermarked by the
watermark detector. A successful attack therefore produces a forged watermark that can be misused
as false proof of ownership or authentication, undermining copyright attribution, content integrity
verification, and the credibility of the watermarking system.

Attack’s capability: We assume a no-box setting. In such a setting, the access to the watermark
detector D and even its API is prohibited, which means the attacker here cannot interact with the
watermarking system at all. Instead, the only available resource is a collection of N watermarked
images generated by the target watermarking method, without corresponding unwatermarked coun-
terparts. This captures practical scenarios where leaked or publicly available watermarked content
is accessible, but the watermarking system itself is not.

Attacker’s background knowledge: The attacker has no knowledge of the watermarking algo-
rithm, parameters, or design principles. The only assumptions are that (i) a watermark detector
exists, and (ii) the accessible images are indeed watermarked by this detector. The attacker may at-
tempt to infer useful clues from these watermarked images, but no further information is assumed.
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4 METHODOLOGY

Overview of our WForge: When the attacker has no knowledge of the watermarking algorithm,
the core challenge of a forgery attack is constructing an alternative embedding mechanism that
produces a perturbation closely matching the genuine watermark. In this work, we propose WForge,
a no-box, query-free forgery method for content-dependent image watermarks. WForge is built
on three key observations: (1) watermarks produced by content-dependent methods exhibit patterns
that strongly depend on the input image; (2) a successful watermark removal attack actually removes
these patterns by introducing a perturbation; and (3) the removal perturbation can be recovered and
repurposed, by reversing the removal attack, to forge the watermark. Concretely, WForge requires a
collection of watermarked images. We apply an effective watermark removal attack to these images
to obtain their watermark-removed versions and compute the differences (which we call residuals).
We then train a forger network in a supervised way to predict residuals: the network takes an image
as input and outputs a predicted residual. After learning from these residuals, the trained forger can
predict a residual for a previously unseen, non-watermarked image; when this predicted residual is
added to the image, the watermark detector extracts a watermark, enabling successful forgery.

4.1 RETHINKING WATERMARK FORGERY AND WATERMARK REMOVAL

A residual-based perspective: We can view the watermark embedding process from a residual-
based perspective. Let Iu denote an unwatermarked image, Iw its watermarked version, and E the
watermark embedding algorithm. The embedding process can then be formulated as:

Iw = E(Iu) = Iu + r(Iu), (3)

where r(Iu) denotes a small, image-dependent perturbation that encodes the watermark. Defini-
tions 1 and 2 can be interpreted as inverse formulations, in which the perturbation r(Iu) simulta-
neously satisfies both objectives: forging a watermark in Iu and removing the watermark from Iw.
Accordingly, watermark forgery and removal can be seen as finding perturbations δforge(Iu) ≈ r(Iu)
and δremove(Iw) ≈ −r(Iu), respectively. This observation suggests that successful forgery and re-
moval perturbations are approximately inverse, i.e.,

δforge(Iu) ≈ r(Iu) ≈ −δremove(Iw). (4)

In other words, watermark forgery and removal can be regarded as approximately inverse problems
governed by the same residual. We formally define this reversibility as follows:
Lemma 1 (Reversibility of Watermark Forgery and Removal). Assume there exists an ideal wa-
termark removal method R such that, for any watermarked image Iw, R perfectly removes the
watermark and exactly recovers the unwatermarked image Iu, i.e., R(Iw) = Iu. In this case, the
corresponding removal perturbation is δremove(Iw) = R(Iw)−Iw = −r(Iu). Further, assume thatR
can be ideally reversed into a forgery methodF , such thatF(Iu) = δforge(Iu) = −δremove(Iw). Then
the forgery method F is guaranteed to successfully forge the watermark for every unwatermarked
image Iu, that is, Iu + δforge(Iu) = Iw.

From ideal assumptions to practical solutions: Lemma 1 relies on two following assumptions.

1. Assumption for the ideal removal method R. In practice, no removal method can perfectly
remove the watermark by exactly recovering Iu. Our practical solution is to employ a strong re-
moval methodR′, which removes the watermark from Iw by introducing a perturbation δremove
that closely approximates −r(Iu), i.e.,

δremove(Iw) = R′(Iw)− Iw ≈ −r(Iu). (5)

We define this perturbation δremove(Iw) as the ground-truth residual, denoted by Rg .
2. Assumption for the exact inversion of the removal method R. In practice, the forgery task

is not simply about recovering the same residual from the same image. Instead, the attacker
requires a method that generalizes across unseen unwatermarked images. Our practical so-
lution is to approximate this inversion process in a data-driven manner: we collect a set of
image–residual pairs {(R′(Iw), Rg)} obtained from the watermark removal process, and train
a model Mθ in a supervised way to learn the mapping from the watermark-removed image
R′(Iw) to a predicted residual Rp. Formally,

Rp = Mθ(R′(Iw)) ≈ Rg. (6)

4
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Here, Mθ is not expected to exactly invert the removal method R for each individual pair, but
rather to generalize so that Rp can act as a surrogate watermark, enabling successful forgery of
arbitrary unwatermarked images Iu.

In what follows, Section 4.2 introduces how residuals are obtained via watermark removal methods
to provide supervision. Section 4.3 then describes how to learn residuals with the model Mθ such
that Iu + Mθ(Iu) is detected as watermarked. Finally, Section 4.4 presents empirical evidence
supporting our three key observations.

4.2 OBTAINING RESIDUALS

We consider an attacker who has access only to a collection of watermarked images {I(i)w }Ni=1.
From the residual perspective, the embedded watermark is modeled as a small, image-dependent
perturbation. To obtain supervision for training, we derive ground-truth residuals using the wa-
termark removal method R′. Specifically, given a watermarked image I

(i)
w , the method outputs a

watermark-removed version R′(I
(i)
w ). The corresponding ground-truth residual R(i)

g is then com-
puted as R′(I

(i)
w )− I

(i)
w . Finally, to preserve visual quality, we project the residual onto the admis-

sible norm ball via Πϵ2 :

R(i)
g ← Πϵ2

(
R(i)

g

)
, such that ∥Rg∥ ≤ ϵ2. (7)

Intuitively, R′ removes the watermark while maintaining the image’s visual quality. Consequently,
the residual R(i)

g serves as a surrogate for the watermark. The set {(R′(I
(i)
w ), R

(i)
g )}Ni=1 is collected

as the training dataset, providing supervision for learning a forger network Mθ that generalizes to
unseen unwatermarked images.

4.3 LEARNING RESIDUALS

Following Section 4.2, we construct a training dataset T = {(R′(I
(i)
w ), R

(i)
g )}Ni=1, where R′(I

(i)
w )

denotes the watermark-removed version of I(i)w and R
(i)
g is the corresponding ground-truth residual.

We train a forger network Mθ to predict a residual given an image I . Formally,

If = I +Πϵ1

(
Mθ(I)

)
, (8)

where If denotes the watermark-forged version of image I , which is likely to be detected as water-
marked by the detector D since the predicted residual Rp = Mθ(I) serves as a surrogate watermark.
To preserve visual quality, we apply the projection Πϵ1 . To capture the hidden watermark pattern
from residuals, we formulate the following optimization problem and solve it via gradient descent:

min
θ

N∑
i=1

∥∥Πϵ1

(
Mθ(R′(I(i)w ))

)
−R(i)

g

∥∥
1
, (9)

where ∥ · ∥1 denotes the ℓ1 norm.

4.4 VALIDATING OUR OBSERVATIONS

We empirically validate three key observations underpinning our approach: (i) watermark residuals
are image-dependent—they carry structure correlated with the input image; (ii) a successful water-
mark removal attack could remove watermark patterns, so that removal perturbations Iw −R′(Iw)
closely match the ground-truth watermark residuals r(Iu) = Iw− Iu; and (iii) these removal pertur-
bations can be recovered and repurposed, by reversing the removal attack, to forge the watermark.
Accordingly, the predicted residual for Iu produced by our forgery method Rp = Mθ(R′(Iu))
should closely resemble the removal perturbation, and consequently also align with the ground-truth
watermark residuals r(Iu).

Obs. 1: Watermarks are dependent on images: The first two columns of Figure 1 demonstrate
that watermarks concentrate along edges and textures, reflecting their dependence on image content.

Obs. 2: Residuals approximate the watermarks: Figure 1 shows that Column 3 (Rg) resem-
bles Column 2 (r(Iu)), indicating that the residuals introduced by the remover R′ serve as good
surrogates for the watermarks.

5
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Figure 1: Visualization of original images and three types of residuals (scaled by ×10) in the Sta-
ble Signature watermark. Column 1: unwatermarked images Iu; Column 2: watermark residuals
r(Iu) = Iw − Iu; Column 3: residuals Rg = R′(Iw)− Iw obtained via a VAE-based remover R′;
Column 4: our predicted residuals Rp = Mθ(Iu). Additional visual results are provided in Figure 7
of the Appendix.

Obs. 3: Predicted residuals approximate ground-truth residuals: As shown in Columns 3 and 4
of Figure 1, the predicted residuals Rp both visually and statistically resemble the ground-truth
residuals Rg introduced by the removerR′, and thus align closely with r(Iu).

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets: Our training dataset consists of 5,000 watermarked images generated from the MS-
COCO (Lin et al., 2014) training set. For evaluation, we use three testing datasets: the MS-COCO
testing set, ImageNet (Deng et al., 2009), and DiffusionDB (Wang et al., 2022). From each testing
dataset, we randomly sample 1,000 unwatermarked images. All images are resized to 512× 512 to
ensure comparability.

Image watermarking methods: We evaluate four state-of-the-art image watermarking methods:
RivaGAN (Zhang et al., 2019), StegaStamp (Tancik et al., 2020), Stable Signature (Fernandez et al.,
2023), and Watermark Anything Model (WAM) (Sander et al., 2025). RivaGAN, StegaStamp, and
WAM belong to the category of post-hoc watermarking methods, which embed a watermark into an
image after it has been generated. For these methods, we generate watermarked images by applying
the method to original unwatermarked images randomly sampled from MS-COCO. In contrast, Sta-
ble Signature represents model-integrated watermarking methods, where the watermarking process
is incorporated directly into the image generative model so that all generated images are inherently
watermarked. Unlike the other three methods, the training dataset of Stable Signature consists of
watermarked images generated from 5,000 captions randomly sampled from MS-COCO.

Baseline methods: We evaluate two forgery baselines: Watermark Steganalysis (Yang et al., 2024a)
and Watermark Faker (Wang et al., 2021). All forgery attacks are considered under a no-box setting,
where the attacker has access only to watermarked images and the corresponding original unwater-
marked images are unavailable.

Evaluation metrics: We evaluate each forgery method along two dimensions: Effectiveness and
Utility. A forged image is considered successful if the average bitwise accuracy between the water-
mark extracted by the watermarking method and the ground-truth watermark exceeds a threshold τ .
For Effectiveness, we report two metrics: AvgBitAcc, the average bitwise accuracy across all testing
images; and Success Rate, the proportion of forged images whose bitwise accuracy is above the
fixed threshold τ = 0.8. For Utility, we assess the visual quality of forged images relative to their
non-watermarked counterparts using PSNR and FID (Heusel et al., 2017).

Implementation details: Comprehensive details, including hyperparameters, training settings, and
baseline implementations, are provided in Appendix A.5.

6
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Figure 2: Success Rate@τ results of two baselines and WForge against different watermarking
methods on MS-COCO. From left to right: RivaGAN, StegaStamp, Stable Signature, and WAM.

Figure 3: Visual comparison of forged images and their corresponding predicted residuals (magni-
fied ×10) across three forgery methods against Stable Signature.

5.2 MAIN RESULTS

Table 1: Forgery results on MS-COCO, ImageNet, and DiffusionDB.

Dataset Method Watermark Steganalysis Watermark Faker WForge

AvgBitAcc↑ Success Rate↑ PSNR↑ FID↓ AvgBitAcc↑ Success Rate↑ PSNR↑ FID↓ AvgBitAcc↑ Success Rate↑ PSNR↑ FID↓

MS-COCO

RivaGAN 0.527 0.000 34.88 1.596 0.501 0.000 20.25 55.43 0.968 0.967 34.39 8.760
StegaStamp 1.000 1.000 32.27 6.483 0.490 0.000 19.78 60.45 0.874 0.968 32.71 11.31
Stable Signature 0.464 0.000 30.65 2.812 0.539 0.000 19.86 58.24 0.955 0.975 32.15 11.41
WAM 0.464 0.000 35.01 2.495 0.477 0.000 20.18 62.16 0.952 0.994 31.38 13.13

ImageNet

RivaGAN 0.526 0.000 34.88 1.187 0.492 0.000 20.46 44.93 0.951 0.924 35.44 6.126
StegaStamp 1.000 1.000 32.28 4.467 0.492 0.000 19.90 47.38 0.875 0.963 33.08 7.996
Stable Signature 0.463 0.000 30.69 2.060 0.531 0.000 19.96 47.67 0.935 0.955 32.70 8.198
WAM 0.466 0.000 35.02 1.651 0.473 0.000 20.29 50.16 0.920 0.863 32.54 9.900

DiffusionDB

RivaGAN 0.512 0.000 34.90 1.636 0.481 0.000 20.39 55.63 0.891 0.793 32.57 12.13
StegaStamp 1.000 1.000 32.30 7.354 0.491 0.000 19.55 63.10 0.873 0.926 30.84 17.23
Stable Signature 0.473 0.000 30.69 2.915 0.533 0.000 19.91 61.68 0.931 0.957 31.73 13.60
WAM 0.469 0.000 35.03 2.488 0.478 0.000 20.16 61.24 0.876 0.764 29.76 19.59

Table 1 shows that WForge consistently achieves high average bitwise accuracy in forgery attacks
across four watermarking methods and three datasets—typically above 90%, with the lowest at 87%.
The Watermark Steganalysis baseline, although preserving satisfactory image quality, is completely
ineffective against RivaGAN, Stable Signature, and WAM. The Watermark Faker baseline also fails
to forge watermarks and further introduces substantial quality degradation. In contrast, WForge
substantially outperforms both baselines, attaining consistently high success rates across different
watermarking methods and datasets while maintaining visual quality. Figure 2 further reports suc-
cess rates under varying detection thresholds τ , where Success Rate@τ denotes the success rate
when the threshold is set to τ . Results indicate that increasing τ gradually decreases success rates;
nevertheless, WForge maintains strong performance even at τ = 0.9.

To further illustrate the underlying differences, Figure 3 visualizes the perturbations produced by
three forgery methods and added to the image during forgery. The perturbation from Watermark
Steganalysis does not capture individual image characteristics, as it is obtained by simple averaging
across a group of images. Watermark Faker generates a perturbation that depends on image content
but contains obvious artifacts. In contrast, WForge introduces a much smaller, human-imperceptible
perturbation. These results demonstrate that WForge is more effective and preserves visual quality
better than the two baselines.

5.3 ABLATION STUDY

To evaluate the impact of parameter choices, we performed a series of ablation studies. Unless
otherwise specified, all configurations follow the default settings, with only the parameter under
investigation varied. Experiments are conducted using WAM on the MS-COCO dataset.
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Figure 4: Comparisons with different removal methods. The first subfigure reports AvgBitAcc
(on watermark-removed images) and FID results. The second subfigure analyzes the relationship
between removal and forgery in terms of AvgBitAcc. The third subfigure reports AvgBitAcc (on
watermark-forged images) and FID results.

WForge using different removal methods: We conduct experiments with three watermark removal
methods: VAE regeneration (VAE) (Zhao et al., 2024), Diffusion regeneration (Diffusion) (Zhao
et al., 2024), and CtrlRegen (Ctrl) (Liu et al., 2025). There are three strength levels (Low, Medium,
and High), corresponding to the magnitude of the introduced perturbations. We use notations such
as VAE-M to denote VAE regeneration at medium strength and Ctrl-L to denote CtrlRegen at low
strength. A complete comparison across all methods is provided in Table 6 in the Appendix.

Figure 4c shows that forgery performance varies across removal methods, even when their water-
mark removal performance is comparable. For example, as illustrated in Figure 4b, VAE-M, Ctrl-L,
and Diffusion all achieve similar post-removal AvgBitAcc (measured on watermark-removed im-
ages) of about 0.6. However, VAE-M produces the strongest forgery, Ctrl-L performs moderately,
and Diffusion performs the worst. This indicates that different removal methods eliminate water-
marks in distinct ways. As a result, the forger network learns different watermark patterns, some
effective and others not, leading to the observed disparities in forgery performance. To further high-
light these differences, Figure 9 in the Appendix visualizes the distinct residual distributions when
different removal methods are used.

Results reveal a conditional positive correlation between watermark removal and forgery: when
the removal method preserves visual quality, stronger removal performance leads to more success-
ful forgery. In Figure 4b, a direct comparison between VAE-L and VAE-M shows that the model
with stronger removal achieves higher forgery performance. However, once removal substantially
degrades image quality, this relationship no longer holds. For example, VAE-H (FID = 38.99) in
Figure 4a injects excessive perturbations, rendering the residuals unusable for learning and thereby
degrading forgery performance, as shown in Figure 4c.

WForge using different forger networks: We evaluate different backbone architectures for the
forger network in residual learning, including UNet (Ronneberger et al., 2015), UNetpp (Zhou et al.,
2018), FPN (Lin et al., 2017), and VAE (Rombach et al., 2022). Unless otherwise mentioned, we use
pretrained versions of these models, freeze the encoder parameters, and fine-tune only the decoder.
Based on the results in Table 2, we observe that different backbone architectures yield varying
levels of forgery performance. For the WAM method, the UNet family achieves the highest forgery
success rate while maintaining high image quality. In contrast, FPN performs the worst and entirely
fails at the forgery task. For VAE-based models, fine-tuning the decoder achieves a higher success
rate compared to fine-tuning the encoder, but this improvement comes at the cost of significantly
degraded image quality.

Table 2: Forgery results using different forger networks

AvgBitAcc↑ Success Rate↑ PSNR↑ FID↓

UNet 0.968 0.964 42.76 3.645
UNetpp 0.964 0.960 40.53 6.599
FPN 0.505 0.000 49.38 0.922
VAE FT-Encoder 0.898 0.833 44.01 2.070
VAE FT-Decoder 0.952 0.947 31.38 13.13
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Figure 5: The left subfigure shows the comparison of our method with other baselines on LaWa
under the default setting (VAE+VAE-M). The middle subfigure presents the forgery performance on
LaWa with different combinations. The right subfigure illustrates the results obtained by selecting
better-performing configurations for LaWa.

Figure 6: Attack against the localized watermark property. In the first row, we present the forged
images where localized forgery residuals are embedded by randomly selecting 20% of the area in the
cover images as a mask. The blue boxes indicate the regions where the localized forgery residuals
were added. The second row presents the predicted mask locations obtained by the WAM decoder.

Different combinations on forgery effects: The optimal forgery configuration for a given water-
marking method is not fixed. This variability arises because different removal methods remove
watermarks in distinct ways, while different network architectures learn residuals with varying ef-
fectiveness. Consequently, combining removal methods with network architectures produces diverse
forgery performance. In Figure 5, we evaluate the LaWa watermarking method (Rezaei et al., 2024)
under its default setting and identify its optimal forgery configuration by varying both components.
We observe that the combination of UNetpp and Ctrl-L significantly outperforms the default config-
uration.

WForge against localized watermarks: WAM is a watermarking method in which the watermark
is sparsely embedded within localized regions rather than across the entire image. Despite this
design, WForge successfully learns a residual pattern that extends over the full image, achieving
high forgery accuracy and effectively deceiving the watermark detector. Moreover, We show that
our forged residuals undermine WAM’s core property of resisting localized tampering, as shown in
Figure 6. Additional visualizations and evaluations are provided in Appendix A.6.

Other: We also analyze the impact of training sample size on forgery performance. Detailed results
are provided in Appendix A.7.2.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce WForge, a no-box, query-free forgery attack against image watermarks.
By framing watermark forgery and removal as approximately inverse problems, we demonstrated
that residuals derived from removal can be effectively repurposed for forgery, achieving high success
rates while preserving visual quality across diverse datasets and watermarking methods. A key
insight from our study is that the existence of a successful removal attack for a watermarking method
inherently implies the possibility of forging that watermark, exposing fundamental vulnerabilities in
current state-of-the-art watermarking approaches. Future work includes extending WForge and the
residual-based perspective to other modalities such as video and audio, and designing watermarking
defenses that explicitly mitigate the reversibility between removal and forgery.
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7 ETHICS STATEMENT

Our study reveals that WForge, a no-box, query-free, and highly effective forgery attack on image
watermarks, poses potential risks of misuse, including the undermining of copyright claims, content
provenance, and trust in watermarking systems. By reversing removal attacks, the method can be ex-
ploited to produce forged ownership evidence with practical feasibility, since it requires only access
to a collection of watermarked images and no knowledge of the underlying watermarking algorithm.
We emphasize that this work is conducted solely for research purposes, and that responsible devel-
opment and deployment are essential. Ultimately, by uncovering these vulnerabilities, our findings
aim to support the community in designing more robust and trustworthy watermarking methods.

8 REPRODUCIBILITY STATEMENT

Our main contributions are as follows: (i) we introduce a unified residual-based perspective that
conceptually links watermark forgery and removal; (ii) building on this perspective, we develop
WForge and show that reversing removal into forgery provides a feasible and effective attack path-
way; and (iii) we evaluate WForge against multiple state-of-the-art image watermarking methods.
The hypothesis, reasoning and observation underlying the unified residual-based perspective are
elaborated in Section 4. We provide a clear description of the experimental setup in Section 5.1,
while comprehensive details are presented in Appendix A.5 including hyperparameters, training
settings, watermarking methods, baseline implementations, and the configuration of WForge to en-
sure reproducibility. Our results can be reproduced using publicly available GitHub repositories,
and the pretrained weights are available on Hugging Face.
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A APPENDIX

A.1 USE OF LLMS

We use large language models to aid or polish writing at the sentence level, such as fixing grammar
and re-wording sentences. LLMs were not involved in designing methods, conducting experiments,
or drawing conclusions. No sensitive or proprietary data were shared with LLMs.

A.2 CONTENT-AGNOSTIC AND CONTENT-DEPENDENT

Table 3: No-box forgery attacks of popular image watermarking schemes. For each scheme, we
report its residual pattern category (content-agnostic vs content-dependent) and whether a no-box
forgery attack has been formally published.

Watermark scheme Venue Residual Pattern No-box Attack Exists
Tree-Ring CVPR 2023 Content-agnostic ✓
LaWa ECCV 2024 Content-agnostic ✓†

SleeperMark CVPR 2025 Content-agnostic ✓†

PRC watermark ICLR 2025 Content-agnostic ✗
RivaGAN ArXiv 2019 Content-dependent ✗
StegaStamp CVPR 2020 Content-dependent ✓†

Stable Signature ICCV 2023 Content-dependent ✗
WAM ICLR 2025 Content-dependent ✗

Notes. ✓: published attack exists; ✓†: attack method existed but first applied here; ✗: unknown attack.

A.3 ATTACKER CAPABILITIES

Table 4: Comparison of attacker capabilities under different threat models.

Setting Access to system internals Query ability Auxiliary data

White-box ✓ ✓ Optional
Black-box ✗ ✓ Optional
No-box (ours) ✗ ✗ N watermarked images only

A.4 OBSERVATIONS

A.5 IMPLEMENTATION DETAILS

A.5.1 WATERMARKING METHODS

Table 5: Watermarking settings used in our experiments.

Watermark scheme Bit Length
Tree-Ring \
LaWa 48
SleeperMark 48
PRC watermark 64
RivaGAN 32
StegaStamp 100
Stable Signature 48
WAM 32

For watermarking methods used in our experiments, we adopt the official implementations whenever
possible. The embedding bit lengths for each method are summarized in Table 5. For WAM, the
watermarking region is randomly restricted to 50% of the image by default.
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Figure 7: Visualization of original images and three types of residuals (scaled by ×10) in the Sta-
ble Signature watermark. Column 1: unwatermarked images Iu; Column 2: watermark residuals
r(Iu) = Iw − Iu; Column 3: residuals Rg = R′(Iw)− Iw obtained via a VAE-based remover R′;
Column 4: our predicted residuals Rp = Mθ(Iu).

A.5.2 BASELINES

Müller et al. (2025) investigates watermarks embedded in the initial latent noise of diffusion models
and their forgery process depends on DDIM inversion totally, which is not suitable for our compar-
ison. Finally, we select the following two methods as our baselines.

For Watermark Steganalysis (Yang et al., 2024a), we collect 5,000 watermarked images and 5,000
out-of-distribution clean images from the Open Images dataset (Kuznetsova et al., 2020) to estimate
and extract the average watermark residual, which is then used to generate forged images.

For Watermark Faker (Wang et al., 2021), whose original implementation requires paired original
and watermarked images for training, For fairness, we replace the original images with watermark-
removed images obtained using the same removal method as our approach. We conduct our exper-
iments entirely based on the official code, with only minor modifications: the input image size is
increased from 256 to 512, the number of training epochs is set to 40, and the batch size to 16.
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A.5.3 WFORGE

By default, WForge adopts the VAE (Ballé et al., 2018) from the CompressAI library (Bégaint et al.,
2020) as the watermark remover, using the official hyperparameter settings from the removal method
proposed by Zhao et al. (2024). For the residual learning network, we employ the pre-trained VAE
from Stability AI (AI, 2022), freeze the encoder, and fine-tune the decoder.

We note that while our default settings allow successful forgery across the aforementioned water-
marking schemes, they are not necessarily tuned to achieve the best performance for each specific
method. Our goal is to demonstrate the feasibility of forging image watermarks by reversing water-
mark removal attacks, and in Section 5.3 we further show that different parameter combinations can
yield varying effectiveness across different watermarking schemes.

A.6 CASE STUDY: SUPPLEMENTARY EVALUATION OF WAM

Figure 8: Visual comparison of the forged image and ground-truth watermark image in WAM. Left:
watermarked image, its watermark residual (scaled by ×10), and WAM-predicted mask. Right:
forged image with globally embedded residual, its residual (scaled by ×10), and WAM-predicted
mask.

In post-hoc watermarking, Watermark Anything (WAM) is particularly challenging because it re-
sists localized tampering. Unlike conventional schemes embedding watermarks across the whole
image, WAM inserts them only in selected regions, predicting the location before extraction. Thus,
watermark signals appear sparsely, leaving large blank areas that complicate forgery attacks.

Even with partially watermarked training samples, our method effectively learns residual patterns
that achieve high bitwise forgery accuracy and deceive the detector. As shown in Figure 8, when
applied to the entire cover image, our forged residuals lead to distorted masks that still mislead
the decoder. These results confirm that our method generalizes from partial to full-image cases,
underscoring its robustness.

To further validate, we embedded forged residuals into part of a cover image. As shown in Figure 6,
predicted watermark locations largely overlap with forged regions, confirming that our method un-
dermines WAM’s resistance to localized tampering. This result demonstrates that our method is
capable of undermining the core property of WAM, namely its resistance to localized tampering.

A.7 SUPPLEMENTARY OF ABLATION STUDY

A.7.1 REMOVER

In our experiments, we systematically compared five methods (VAE-L/M/H, Ctrl-L/M, and Diffu-
sion). However, Ctrl-H was excluded from the evaluation because the reconstruction-based removal
in Ctrl-M had already introduced substantial degradation to the original image, rendering tuning
to forgery ineffective. Consequently, extending the evaluation to Ctrl-H was neither feasible nor
meaningful.

A.7.2 TRAINING SIZE

We studied the effect of varying the number of training samples on the forgery performance. By
gradually increasing the training set size, we observed how data scale influences the forgery perfor-
mance.
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Table 6: Forgery results on different remove methods. After Removal presents the performance of
each method in terms of watermark removal, evaluated by effectiveness and utility. Tuning Removal
to Forgery shows the forgery performance after adapting the corresponding methods with WForge.

After Removal Tuning Removal to Forgery

AvgBitAcc↓ PSNR↑ FID↓ AvgBitAcc↑ PSNR↑ FID↓

VAE-L 0.958 32.48 9.027 0.831 39.18 3.350
VAE-M 0.589 29.51 19.31 0.952 31.38 13.13
VAE-H 0.502 26.95 38.99 0.931 27.08 28.77
Ctrl-L 0.548 23.11 6.003 0.762 29.97 11.01
Ctrl-M 0.500 20.96 7.476 0.500 20.96 7.476
Diffusion 0.646 22.74 7.439 0.735 28.34 17.76

Figure 9: Residuals obtained under different watermark removal methods. The first column shows
the watermarked images, while columns 2–7 correspond to the VAE-L, VAE-M, VAE-H, Ctrl-L,
Ctrl-M, and Diffusion removal methods, respectively.

According to Table 7, the forgery performance consistently improves as the size of the training
dataset increases. When the training set is small (100 samples), the generated images still exhibit
high visual quality; however, the forgery effectiveness remains limited, with an average bitwise
accuracy of only 0.705 and a success rate of 0.210. This suggests that with insufficient data, the
model fails to capture adequate residual information to produce convincing forgeries. As the training
set expands (1000–5000 samples), forgery performance improves substantially. Although image
quality shows a slight decline compared with the 100-sample setting, it remains largely stable within
the range of 1000 to 5000 samples, with no significant further degradation observed.

We further visualize the impact of training sample size on the distribution of forgery bitwise accuracy
in Figure 10 . Even with only 100 training samples, most forged samples achieve a bitwise accuracy
above 0.6. However, as the evaluation threshold increases, the influence of training size becomes
more evident. For instance, at a threshold of 0.60, the proportion of samples exceeding this value is
100% with 5000 training samples and 80% with 100 training samples, indicating only a modest gap.
In contrast, at a stricter threshold of 0.95, 70% of samples surpass the threshold with 5000 training
samples, whereas only 1% do so with 100 samples, revealing a pronounced disparity.
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Table 7: Performance comparison across different training numbers.

AvgBitAcc↑ Success Rate↑ PSNR↑ FID↓

100 0.705 0.210 39.36 5.980
1000 0.894 0.819 31.71 10.76
3000 0.941 0.931 31.93 11.31
5000 0.952 0.947 31.38 13.13
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Figure 10: Impact of training sample size on forgery performance.

A.8 LIMITATION AND DISCUSSION

Our forgery method is built on the premise that the residuals between watermarked and original
images resemble the residuals between watermarked and reconstructed images, this assumption
holds well for many post-hoc watermarking schemes that employ image-specific watermark pat-
terns. However, it is less applicable to schemes with fixed watermark patterns. To verify this, we
also conducted experiments on such methods, with the results reported in Appendix A.8.

Table 8: Forgery results of other watermark methods on MS-COCO.

Watermark Steganalysis Watermark Faker WForge

Success Rate↑ PSNR↑ FID↓ Success Rate↑ PSNR↑ FID↓ Success Rate ↑ PSNR↑ FID↓

Tree-Ring 1.000 20.26 26.23 0.000 18.81 59.47 0.000 29.32 17.68
LaWa 1.000 27.23 15.45 0.000 19.97 59.85 0.502 31.64 11.05
SleeperMark 0.910 15.23 103.7 0.000 20.23 58.93 0.000 29.57 15.51
PRC watermark 0.000 31.68 2.384 0.000 19.57 60.01 0.000 29.10 17.66
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A.9 SAMPLE FROM OUR FORGERY RESULTS

Figure 11: Sample from our forged images of Stable Signature in MS-COCO.
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Figure 12: Sample from our forged images of WAM in DiffusionDB.
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