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Abstract
Current Multimodal Large Language Model001
(MLLM) architectures face a critical tradeoff002
between performance and efficiency: decoder-003
only architectures achieve higher performance004
but lower efficiency, while cross-attention-005
based architectures offer greater efficiency but006
lower performance. The key distinction lies in007
how visual tokens are processed. Decoder-only008
architectures apply self-attention and FFN op-009
erations on visual tokens, while cross-attention010
architectures skip these computations. To inves-011
tigate whether redundancy exists in this com-012
putationally expensive process, we propose a013
training-free framework for analyzing trained014
MLLMs. It consists of Probe-Activated Dy-015
namic FFN and Hollow Attention, which en-016
able adjustable reductions in computations for017
visual tokens, as well as a Layer Ranking Al-018
gorithm that prioritizes layers for these reduc-019
tions. Extensive experiments demonstrate sub-020
stantial, structured, and clustered redundancy021
unique to decoder-only MLLMs, offering valu-022
able insights for future MLLM architecture de-023
sign. Furthermore, by leveraging our reduction024
framework as a training-free inference accelera-025
tion approach, we achieve performance compa-026
rable to or better than state-of-the-art methods027
while remaining compatible with them. Code028
will be publicly available.029

1 Introduction030

Large Language Models (LLMs) (Brown et al.,031

2020; Zhang et al., 2022; Touvron et al., 2023; Ope-032

nAI, 2024) have seen rapid advancement in recent033

years, attracting attention for their strong capabili-034

ties in language comprehension and reasoning. In035

computer vision, researchers extend LLMs with036

visual abilities aimed at developing Multimodal037

Large Language Models (MLLMs) (Li et al., 2023;038

Alayrac et al., 2022; Liu et al., 2023; Zhu et al.,039

2024). These models hold significant potential for040

multimodal task solving and have become a promi-041

nent focus of current research. A key challenge042
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Figure 1: Comparison between decoder-only and cross-
attention-based architectures from a unified perspective.
Self-attention and FFN operations for visual tokens dom-
inate the computation of decoder-only layers.

in this area is designing effective architectures to 043

integrate visual signals into LLMs. 044

Current MLLMs are commonly built using 045

either decoder-only (e.g., LLaVA (Liu et al., 046

2023)) or cross-attention-based architectures (e.g., 047

Flamingo (Alayrac et al., 2022)). In the early de- 048

velopment of MLLMs, the simplicity and effective- 049

ness of the decoder-only architecture leads to its 050

widespread adoption (Lu et al., 2024; Guo et al., 051

2025; Wei et al., 2025; Chen et al., 2024d). To 052

capture finer-grained visual details, decoder-only 053

MLLMs progressively increase input image resolu- 054

tions, resulting in significant performance gains (Li 055

et al., 2024b; Ye et al., 2023; Dong et al., 2024). 056

However, this also leads to longer visual token 057

sequences, significantly degrading the model’s ef- 058

ficiency. Consequently, cross-attention-based ar- 059

chitectures are attracting increasing interest due 060

to their greater efficiency in handling long visual 061

token sequences (Llama-Team, 2024; Chen et al., 062

2024a). Nonetheless, recent work (Dai et al., 2024) 063

demonstrates that, decoder-only MLLMs tend to 064

achieve significantly better overall performance. 065

Developing an MLLM architecture that achieves 066

both high performance and efficiency remains an 067

important area for further research. 068

To advance this research, this paper investi- 069

gates MLLM architectures by evaluating existing 070

designs and analyzing their redundancy patterns. 071

We begin by comparing these two common ar- 072
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chitectures from a unified perspective. As shown073

in Figure 1, the fundamental difference between074

them lies in the processing of visual tokens: in075

decoder-only architectures, visual tokens undergo076

self-attention and FFN operations, whereas cross-077

attention-based architectures omit these operations.078

Since visual tokens often outnumber text tokens079

significantly (Dong et al., 2024), the processing080

of visual tokens consumes the majority of compu-081

tational resources (roughly estimated as the ratio082

of visual tokens to total tokens, typically exceed-083

ing 90%). Investigating whether redundancy exists084

in this computationally expensive process is valu-085

able. Considering the computational cost can be086

expressed as the number of layers multiplied by the087

cost of performing self-attention and FFN opera-088

tions on visual tokens at each layer, the question089

arises: are full self-attention and FFN operations090

for visual tokens required at every layer?091

Given the significant training costs of state-of-092

the-art MLLMs, we propose a training-free frame-093

work to investigate this question by analyzing094

trained decoder-only MLLMs. Specifically, we095

apply computational reductions to visual token pro-096

cessing in a subset of layers and evaluate their im-097

pact on model performance. By gradually increas-098

ing the number of layers where these reductions099

are applied, from a single layer to all layers, we can100

obtain a performance variation curve that reflects101

the degree of redundancy in the self-attention and102

FFN operations across layers.103

To achieve this, the proposed framework con-104

sists of two components: (1) Probe-Activated Dy-105

namic FFN and Hollow Attention, which replace106

the original FFN and attention modules, enabling107

adjustable reductions in computations for visual to-108

kens. Specifically, Probe-Activated Dynamic FFN109

dynamically selects a subset of FFN parameters to110

process visual tokens. The Probe-Activated strat-111

egy is proposed to enable this selection in a training-112

free manner. Hollow Attention limits global atten-113

tion among visual tokens to local attention while114

preserving attention between visual and text tokens.115

(2) Layer Ranking Algorithm, which assigns a rank116

to each layer. When selecting a subset of layers for117

computational reductions during the traversal pro-118

cess, those with the highest ranks are prioritized.119

We conduct extensive experiments on state-of-120

the-art MLLMs, including InternVL2-8B (Chen121

et al., 2024c), Qwen2-VL-7B (Wang et al., 2024a),122

MiniCPM-V 2.6 (Yao et al., 2024), and LLaVA-123

OneVision (Li et al., 2024a). Our experiments are124

divided into two parts. 125

For the first part, the results show that applying 126

the proposed reductions to approximately half of 127

the layers preserves or even improves model perfor- 128

mance. Notably, further applying these reductions 129

to text tokens leads to a sharp decline in model 130

performance. These findings reveal that decoder- 131

only MLLMs exhibit substantial redundancy in the 132

processing of visual tokens within certain layers. 133

This structured and clustered redundancy can be 134

effectively leveraged, providing valuable insights 135

for future architecture design. 136

For the second part, leveraging our reduction 137

framework as a training-free inference accelera- 138

tion approach, we achieve performance compara- 139

ble to or better than current state-of-the-art meth- 140

ods (Chen et al., 2025; Lin et al., 2024). Further- 141

more, existing approaches accelerate models by 142

reducing the number of visual tokens, while our 143

approach reduces the computational cost per visual 144

token. Since these two methods are orthogonal, 145

they can be combined for further acceleration. 146

In conclusion, our contributions are three-fold: 147

• We propose a framework to investigate redun- 148

dancy in visual token processing through the 149

analysis of trained decoder-only MLLMs. 150

• We demonstrate substantial, structured, and 151

clustered redundancy unique to decoder-only 152

MLLMs, offering valuable insights for future 153

MLLM architecture design. 154

• We introduce a training-free MLLM acceler- 155

ation method that takes a distinct and orthog- 156

onal perspective from current state-of-the-art 157

methods, achieving comparable or better re- 158

sults while remaining compatible with them. 159

2 Related Work 160

2.1 MLLM Architectures 161

The decoder-only architecture is one of the most 162

widely adopted designs for MLLMs (Li et al., 2023; 163

Liu et al., 2023; Zhu et al., 2024), favored for its 164

simplicity and efficiency. In this architecture, im- 165

age tokens are concatenated with text token se- 166

quences and processed uniformly alongside text 167

tokens by the LLM. A projector module maps the 168

features extracted by the image encoder into the 169

input image tokens for the LLM, implemented 170

using either a multilayer perceptron (Liu et al., 171

2023; Wang et al., 2024b; Lu et al., 2024) or cross- 172

attention mechanisms (Li et al., 2023; Bai et al., 173

2023; Ye et al., 2024b). To improve fine-grained 174
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visual perception by capturing more detailed visual175

features, models like UReader (Ye et al., 2023) and176

Monkey (Li et al., 2024b) divide high-resolution177

images into multiple sub-images and concatenate178

their tokens for input into the LLM. Extending this179

idea, InternLM-XComposer2-4KHD (Dong et al.,180

2024) enhances the model’s resolution capabili-181

ties to 4K HD and beyond, demonstrating consis-182

tent performance improvements. These advances183

have significantly accelerated the development of184

MLLMs (Chen et al., 2024c; Yao et al., 2024; Hong185

et al., 2024; Wang et al., 2024a; Li et al., 2024a),186

allowing open-source models to match or even sur-187

pass commercial multimodal models. However,188

increasing image resolution and multi-image input189

scenarios lead to longer input sequences, which sig-190

nificantly increase inference times and limit practi-191

cal applications.192

The cross-attention-based architecture offers193

greater efficiency in handling long visual token194

sequences, gaining increasing attention as an alter-195

native to decoder-only architecture. These archi-196

tectures introduce additional cross-attention layers197

within the LLM to integrate visual information by198

applying cross-attention to visual tokens, thereby199

eliminating the need for the entire LLM to pro-200

cess them. Flamingo (Alayrac et al., 2022) is a201

prominent early work in this area, using a perceiver202

resampler to downsample the vision encoder’s fea-203

tures before feeding them into the LLM via gated204

cross-attention layers. Llama 3-V (Llama-Team,205

2024) adopts a similar structure but removes the206

perceiver module. EVLM (Chen et al., 2024a) uti-207

lizes hierarchical ViT features and a mixture of ex-208

perts to enhance performance. mPLUG-Owl3 (Ye209

et al., 2024a) incorporates cross-attention mecha-210

nisms in parallel with self-attention layers instead211

of adding additional cross-attention layers. EE-212

MLLM (Ma et al., 2024) modifies the original213

self-attention mechanism into a composite atten-214

tion mechanism. Meanwhile, NVLM (Dai et al.,215

2024) introduces a hybrid architecture that uses the216

LLM’s self-attention layers to process thumbnail217

image tokens while employing cross-attention to218

capture finer image details.219

To provide a fair comparison of the two architec-220

tures, recent work (Dai et al., 2024) trained both221

a decoder-only MLLM (NVLM-D) and a cross-222

attention-based MLLM (NVLM-X) under the same223

conditions. The results show that NVLM-X pro-224

vides superior computational efficiency for high-225

resolution images, whereas NVLM-D delivers bet-226

ter overall performance. This comparison provides 227

valuable insights for future research; however, fur- 228

ther investigation at a more granular level would 229

be beneficial. 230

2.2 Visual Token Compression in MLLMs 231

Compressing visual sequence length is an effective 232

and common method for accelerating MLLMs (Liu 233

et al., 2024a; Zhang et al., 2024; Xing et al., 2024; 234

Huang et al., 2024; He et al., 2024). Common tech- 235

niques include using a group of learnable query to- 236

kens to extract information via cross-attention (Dai 237

et al., 2023; Li et al., 2023; Alayrac et al., 2022), 238

directly concatenating adjacent tokens (Chen et al., 239

2023; Yu et al., 2024), or downsampling through 240

convolutional neural networks (Cha et al., 2024; 241

Hu et al., 2024). Some recent approaches dy- 242

namically discard nonessential tokens during in- 243

ference (Shang et al., 2024; Chen et al., 2025; Lin 244

et al., 2024). For instance, FastV (Chen et al., 2025) 245

reduces computational costs dramatically by prun- 246

ing visual tokens based on their average attention 247

scores at a selected layer in the MLLM, without 248

sacrificing performance. 249

Token compression methods accelerate MLLMs 250

by reducing the number of visual tokens, but the 251

remaining tokens still require substantial compu- 252

tation in the LLM module, similar to text tokens. 253

In contrast, our method achieves acceleration by 254

reducing computation per visual token. This means 255

our method is orthogonal to these methods and can 256

be combined with them for further acceleration. 257

3 Methodology 258

The proposed framework consists of two compo- 259

nents: (1) Probe-Activated Dynamic FFN and Hol- 260

low Attention, which replace the original FFN and 261

attention modules, enabling adjustable reductions 262

in computations for visual tokens. (2) Layer Rank- 263

ing Algorithm, which assigns a rank to each layer. 264

When selecting a subset of layers for computational 265

reductions, those with the highest ranks are priori- 266

tized. 267

3.1 Computational Reductions for Visual 268

Tokens 269

3.1.1 Probe-Activated Dynamic FFN 270

Inspired by MoE (Shazeer et al., 2016), we reduce 271

FFN computations for visual tokens by structurally 272

activating only a subset of FFN parameters. How- 273

ever, we cannot directly adopt MoE, as it requires 274
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Figure 2: Illustration of the proposed computational reductions for visual tokens: (a) Probe-Activated Dynamic
FFN and (b) Hollow Attention. The symbol ‘×’ denotes matrix multiplication.

training a router that dynamically selects which275

parameters to activate. To achieve this without ad-276

ditional training, we propose the Probe-Activated277

Dynamic FFN.278

For each forward pass, the visual input X ∈279

RN×dmodel consists of N visual tokens, derived from280

a single image or multiple cropped images, where281

dmodel is the feature dimension. The vanilla FFN282

layer (Vaswani et al., 2017) performs the following283

operations to obtain the output Y :284

H = ReLU(XW1 + b1) ∈ RN×dff , (1)285
286

Y = HW2 + b2 ∈ RN×dmodel , (2)287

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel are288

the weight matrices.289

In the proposed Probe-Activated Dynamic FFN,290

we first randomly sample a subset Xsample ∈291

RM×dmodel from X , where M (M ≪ N ) denotes292

the number of sampled tokens. This sampled subset293

is used to compute the hidden representation:294

Hsample = ReLU(XsampleW1 + b1) ∈ RM×dff .
(3)295

We then take the element-wise absolute value of296

each token’s hidden representation and compute297

the mean across the sampled tokens:298

h̄ =
1

M

M∑
i=1

∣∣∣Hsample
i

∣∣∣ ∈ Rdff . (4)299

Next, we select the top K elements from h̄ with the300

highest values. Let S represent the set of selected301

indices:302

S = TopK(h̄). (5)303

Using the selected indices S, we activate a subset304

of the weight matrices W1 and W2 as follows:305

W act
1 = W1[:, S] ∈ Rdmodel×K , (6)306

307
W act

2 = W2[S, :] ∈ RK×dmodel . (7) 308

The corresponding bias b1
act is activated similarly: 309

b1
act = b1[S] ∈ RK . (8) 310

Finally, the forward propagation proceeds as fol- 311

lows: 312

Hact = ReLU(XW act
1 + b1

act) ∈ RN×K , (9) 313
314

Y = HactW act
2 + b2 ∈ RN×dmodel . (10) 315

Figure 2 (a) provides a more intuitive illustration 316

of the computation process in the Probe-Activated 317

Dynamic FFN, with activation functions and biases 318

omitted for simplicity. It is important to note that 319

this process applies only to visual tokens, while 320

the FFN for text tokens remains unchanged. Some 321

MLLMs modify the vanilla FFN, such as by adding 322

gating mechanisms (Wang et al., 2024a; Chen et al., 323

2024c), yet our method can still be directly applied 324

in these cases. 325

3.1.2 Hollow Attention 326

Inspired by sparse attention (Zaheer et al., 2020), 327

we introduce a custom sparse attention pattern for 328

MLLMs, called Hollow Attention, to reduce the 329

attention computation for visual tokens. As illus- 330

trated in Figure 2 (b), global attention among visual 331

tokens is replaced with local attention, while the 332

attention between visual and text tokens, as well 333

as within text tokens, remains unchanged. Specif- 334

ically, each visual token attends to the preceding 335

RA visual tokens (where RA denotes the attention 336

range) and all text tokens, whereas text tokens re- 337

tain the ability to attend to all tokens. Since visual 338

tokens typically outnumber text tokens by a large 339

margin in MLLMs, this reduction effectively elimi- 340

nates the majority of the attention overhead. 341
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Algorithm 1 Layer Ranking Search
1: Input: Number of layers L, validation set
2: Output: Ranked list of layer indices
3: RankedLayers← []
4: UnrankedLayers← {1, 2, . . . , L}
5: while UnrankedLayers ̸= ∅ do
6: SelectedLayer ← null
7: BestPerformance← −∞
8: for each layer in UnrankedLayers do
9: Apply reduction to RankedLayers ∪ {layer}

10: Evaluate the model on the validation set
11: and store the performance metric as P
12: if P > BestPerformance then
13: BestPerformance← P
14: SelectedLayer ← layer
15: end if
16: end for
17: RankedLayers.append(SelectedLayer)
18: UnrankedLayers.remove(SelectedLayer)
19: end while
20: Return: RankedLayers

3.2 Layer Ranking Algorithm342

Given the number of layers requiring reduction, de-343

noted by Lr (where 0 ≤ Lr ≤ L, and L is the total344

number of layers), the goal is to select the Lr-layer345

combination with the highest redundancy. To this346

end, we construct a compact validation set and use347

the performance variations of the MLLM on it to348

estimate redundancy. Since exhaustively evaluat-349

ing all possible layer combinations for each value350

of Lr is computationally infeasible, we propose a351

search algorithm that ranks each layer, as detailed352

in Algorithm 1. For a given Lr, the layers with the353

highest ranks are prioritized for reduction.354

For each MLLM, the algorithm is applied sep-355

arately to FFN and attention reductions, running356

the process twice. In our experiments, we observe357

that the last few layers of MLLMs tend to exhibit358

greater redundancy, making them a priority for359

reduction. To reduce the number of evaluations,360

we limit the ranking algorithm’s search to the first361

L − Lp layers. The last Lp layers are ranked in362

descending order of their position, starting from363

the last layer.364

4 Experiments365

4.1 Datasets366

To construct the validation set for Layer Rank-367

ing Algorithm, we randomly sample 750 instances368

from the full evaluation dataset collected in (Liu369

et al., 2024c), 200 instances from the validation set370

of DocVQA (Mathew et al., 2021), 200 from the371

validation set of InfoVQA (Mathew et al., 2022),372

200 from the validation set of ChartQA (Masry373

et al., 2022), and 1,000 from MMBench-DEV- 374

EN-V11 (Liu et al., 2024b). To avoid overlap 375

with the test set, for the 750 instances sampled 376

from the evaluation dataset in (Liu et al., 2024c), 377

we remove any data that also appears in OCR- 378

Bench (Liu et al., 2024c) and exclude samples from 379

TextVQA (Singh et al., 2019), DocVQA (Mathew 380

et al., 2021), InfoVQA (Mathew et al., 2022), 381

and ChartQA (Masry et al., 2022). For 382

evaluation, we conduct experiments on eight 383

widely used benchmarks: OCRBench (Liu et al., 384

2024c), DocVQA (Mathew et al., 2021), In- 385

foVQA (Mathew et al., 2022), ChartQA (Masry 386

et al., 2022), TextVQA (Singh et al., 2019), 387

MME (Fu et al., 2024), MMStar (Chen et al., 388

2024b), and HallusionBench (Guan et al., 2024). 389

For TextVQA (Singh et al., 2019), following previ- 390

ous work (Chen et al., 2024c; Wang et al., 2024a), 391

we use its validation set. We assess model perfor- 392

mance using the standard metrics provided by each 393

benchmark. 394

4.2 Implementation Details 395

Our experiments are conducted on NVIDIA 396

A100 GPUs using VLMEvalKit (Duan et al., 397

2024), a framework for evaluating large multi- 398

modality models on diverse multimodal bench- 399

marks. We evaluate state-of-the-art MLLMs, in- 400

cluding InternVL2-8B (Chen et al., 2024c), Qwen2- 401

VL-7B (Wang et al., 2024a), MiniCPM-V 2.6 (Yao 402

et al., 2024), and LLaVA-OneVision (Li et al., 403

2024a). In Hollow Attention, the attention range 404

RA for visual tokens is set to 256, typically rep- 405

resenting the number of tokens in one sub-image. 406

In Probe-Activated Dynamic FFN, the number of 407

randomly sampled visual tokens M is set to 10% 408

of the total visual tokens per sample, while the 409

number of activated parameters K is set to 20% 410

of the original parameter count. During the search 411

process, M is set to 100% of the total visual to- 412

kens per sample to minimize fluctuations caused 413

by uncertainty. 414

4.3 Redundancy Analysis in FFN and 415

Attention for Visual Tokens 416

First, we independently analyze the redundancy 417

of FFN and self-attention operations on visual to- 418

kens in existing decoder-only MLLMs. Specifi- 419

cally, we apply computational reductions for FFN 420

or self-attention in a subset of layers and evaluate 421

the MLLM’s performance on multiple mainstream 422

benchmarks. By gradually increasing the num- 423
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Figure 3: Impact of applying self-attention or FFN reductions across various layer proportions. The x-axis represents
the percentage of layers with reductions applied, and the y-axis indicates model performance on the benchmark
metric. The horizontal line shows the model’s original performance (y-value at x=0).

Self-Attention Reduction FFN Reduction

Figure 4: Performance comparison of the reductions
applied to visual tokens (blue line) versus all tokens
(red line), evaluated on ChartQA by InternVL2-8B.
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Figure 5: The reduction pattern for Qwen2-VL-7B. No-
tably, the attention from text tokens to all visual tokens
needs to be preserved.

ber of layers where these reductions are applied, 424

from a single layer to all layers, we obtain perfor- 425

mance variation curves that reflect the degree of 426

redundancy in the self-attention and FFN opera- 427

tions across layers. 428

The experimental results are shown in Figure 3. 429

The results indicate that applying the proposed re- 430

ductions to about half of the layers maintains the 431

MLLM’s performance at a level comparable to the 432

original model on most benchmarks, and in some 433

cases, even surpasses the unreduced baseline. This 434

outcome holds true for both the InternVL2 (Chen 435

et al., 2024c) and Qwen2-VL (Wang et al., 2024a), 436

regardless of whether the reductions are applied to 437

self-attention or FFN operations. However, when 438

reductions are applied to more than half of the lay- 439

ers, the performance of the MLLMs begins to de- 440

cline rapidly across most benchmarks, with FFN re- 441

ductions causing a sharper drop than self-attention 442

reductions. In addition, further applying these re- 443

ductions to text tokens leads to a sharp decline in 444

model performance, as shown in Figure 4. These 445

findings reveal that decoder-only MLLMs exhibit 446

substantial redundancy in the processing of visual 447

tokens within certain layers. 448

Current state-of-the-art MLLMs are built on pre- 449

trained LLMs and fine-tuned on vast multimodal 450

datasets, such as Qwen2-VL (Wang et al., 2024a), 451
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Method FLOPs Ratio OCRBench DocVQA InfoVQA ChartQA TextVQA MME MMStar HallusionBench

InternVL2-8B (32 Layers) 100% 793 91.6 74.4 83.2 77.7 2210 61.3 45.0

+ VTW (Lin et al., 2024) (L=23) 72% 704 87.9 69.3 80.0 69.3 2201 61.2 44.6
+ FastV (Chen et al., 2025) (K=2, R=30%) 72% 793 90.6 71.6 82.9 77.6 2181 60.7 45.3
+ Ours (LRA=16, LRF=17) 72% 801 91.3 74.4 83.1 77.2 2212 61.7 45.6

+ VTW (Lin et al., 2024) (L=17) 53% 64 14.5 30.9 17.9 20.8 2200 59.3 44.8
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 768 85.4 66.1 80.6 77.1 2195 59.3 44.9
+ Ours + FastV (K=2, R=30%) 52% 797 90.3 71.6 83.0 77.1 2192 60.9 45.9

Qwen2VL-7B (28 Layers) 100% 865 94.5 76.6 83.2 84.3 2322 60.7 51.0

+ VTW (Lin et al., 2024) (L=20) 71% 41 13.7 31.1 19.4 15.9 2311 60.7 50.3
+ FastV (Chen et al., 2025) (K=2, R=30%) 72% 829 94.4 75.1 82.6 84.0 2306 59.9 49.8
+ Ours (LRA=13, LRF=14) 71% 859 94.5 75.7 83.0 84.6 2309 60.5 51.1

+ VTW (Lin et al., 2024) (L=15) 54% 36 8.4 23.8 16.6 13.7 2174 53.7 39.7
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 766 93.4 71.0 79.4 83.6 2309 58.6 49.3
+ Ours + FastV (K=2, R=30%) 53% 832 94.3 74.3 81.8 84.2 2310 59.7 51.1

LLaVA-OneVision-7B (28 Layers) 100% 623 87.5 65.0 80.4 76.0 2002 61.7 39.3

+ VTW (Lin et al., 2024) (L=20) 71% 47 15.2 30.5 19.8 15.3 1991 61.4 40.2
+ FastV (Chen et al., 2025) (K=2, R=30%) 72% 590 85.4 61.4 77.0 75.1 2007 60.1 40.1
+ Ours (LRA=13, LRF=14) 71% 635 85.6 63.2 80.2 75.0 2019 61.0 40.3

+ VTW (Lin et al., 2024) (L=15) 54% 34 10.5 25.0 18.4 14.2 1897 52.5 29.6
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 506 78.9 53.8 68.0 72.5 1974 57.9 39.2
+ Ours + FastV (K=2, R=30%) 53% 597 84.0 59.3 76.8 74.4 2019 59.9 40.2

MiniCPM-V 2.6 (28 Layers) 100% 846 90.6 64.6 80.4 79.2 2276 57.5 48.3

+ VTW (Lin et al., 2024) (L=20) 71% 130 16.8 31.0 21.3 20.4 2250 57.3 34.9
+ FastV (Chen et al., 2025) (K=2, R=30%) 72% 800 85.5 59.3 78.4 79.0 2252 56.3 46.1
+ Ours (LRA=13, LRF=14) 71% 847 90.0 63.8 79.8 79.6 2274 57.5 46.7

+ VTW (Lin et al., 2024) (L=15) 54% 113 12.7 27.6 18.3 18.1 2053 53.5 30.1
+ FastV (Chen et al., 2025) (K=2, R=50%) 53% 749 72.5 52.2 72.9 77.0 2189 54.4 46.5
+ Ours + FastV (K=2, R=30%) 53% 805 84.7 58.9 78.2 78.8 2228 55.1 46.7

Table 1: Comparison of training-free methods for accelerating MLLM inference. The LRA and LRF in our method
represent the number of layers for attention reduction and FFN reduction, respectively. FLOPs Ratio indicates the
proportion of floating-point operations retained after applying the acceleration method compared to the full model.
The best results are highlighted in bold, while the second-best results are underlined.

trained on over 1.4 trillion tokens of multimodal452

data. Therefore, the redundancy observed in pro-453

cessing visual tokens within LLMs cannot be at-454

tributed solely to insufficient training. We argue455

that this redundancy arises more from the inherent456

differences between visual and text tokens. On one457

hand, visual and text tokens originate from differ-458

ent modalities; on the other, visual tokens undergo459

extensive processing through an image encoder,460

while text tokens are processed only through linear461

mapping. These differences suggest that treating462

them equivalently within the LLM may not be the463

most efficient approach, especially considering the464

high computational demands of MLLMs in prac-465

tice. By highlighting such redundancy, we hope466

to provide valuable insights for future architecture467

design.468

4.4 Comparison with Training-free MLLM469

Inference Acceleration Methods470

Building on the previous conclusions, our frame-471

work can accelerate decoder-only MLLM inference472

in a training-free manner, with the reduction pattern473

shown in Figure 5. We compare our approach with474

current state-of-the-art methods, which achieve ac- 475

celeration by compressing the number of visual 476

tokens, specifically FastV (Chen et al., 2025) and 477

VTW (Lin et al., 2024). As shown in Table 1, our 478

approach achieves comparable or superior perfor- 479

mance to these token compression methods while 480

reducing floating point operations (FLOPs) by ap- 481

proximately 30%. Additionally, our method and 482

token compression methods address acceleration 483

from different perspectives: token compression 484

methods aim to reduce the number of visual tokens, 485

whereas our approach focuses on lowering the com- 486

putation required per visual token. This distinction 487

indicates that the two methods are orthogonal and 488

can be combined to achieve further acceleration. 489

Table 1 demonstrates this synergy: when applying 490

our approach alongside FastV (Chen et al., 2025) to 491

reduce FLOPs by about 50%, model performance 492

significantly surpasses that of FastV (Chen et al., 493

2025) alone with a higher compression rate across 494

most benchmarks. 495

It is important to emphasize that our primary 496

objective is to demonstrate the effectiveness of per- 497

token computation reduction as an alternative accel- 498
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(a) Hollow Attention (b) Probe-Activated Dynamic FFN

Figure 6: Ablation studies on (a) the attention range in
Hollow Attention and (b) the proportion of activated
parameters in Probe-Activated Dynamic FFN, evaluated
on ChartQA by InternVL2-8B. The x-axis represents
the percentage of layers with reductions applied, and the
y-axis indicates model performance on the benchmark
metric.

(b) FFN Reduction(a) Self-Attention Reduction

Figure 7: Performance comparison of different layer
ranking strategies, evaluated on ChartQA by InternVL2-
8B. The first half of the orange line (Position-based)
overlaps with and is obscured by the green line (Hybrid).

eration approach, rather than to establish its superi-499

ority over token compression approaches. In fact,500

each approach is suited to different scenarios, as501

shown in Table 1. In cases of high information den-502

sity within images, especially in text-rich contexts503

like OCRBench (Liu et al., 2024c), the potential for504

visual token compression is limited, making per-505

token computation reduction more effective. Con-506

versely, in scenarios with lower information density,507

such as MME (Fu et al., 2024), reducing the num-508

ber of visual tokens offers a higher upper bound509

for acceleration. This complementarity between510

approaches suggests that the optimal choice of ac-511

celeration strategy should be context-dependent,512

with the potential for combined implementation in513

hybrid solutions.514

4.5 Ablation Studies515

Ablation Studies on the Extent of Reduction in516

Self-Attention and FFN. To comprehensively eval-517

uate the impact of reducing self-attention and FFN518

operations, we conduct ablation studies focusing on519

two factors: the proportion of activated parameters520

in the Probe-Activated Dynamic FFN and the atten-521

tion range in the Hollow Attention, as illustrated522

in Figure 6. The results show that as the extent of523

reduction decreases (i.e., as the proportion of acti-524

vated parameters or the attention range increases), 525

more layers can be reduced without significantly 526

impacting model performance. These two hyperpa- 527

rameters are selected by trading off efficiency and 528

effectiveness. 529

Ablation Study of Layer Ranking Strategies. 530

We compared three layer ranking strategies: (1) 531

Position-based Strategy, which assigns the highest 532

rank to the last layer and progressively decreases 533

the rank toward the first layers; (2) Search-only 534

strategy, which relies solely on Algorithm 1, with 535

no layers pre-assigned ranks; and (3) Hybrid strat- 536

egy, where the last Lp layers are pre-assigned the 537

highest rank, with the remaining layers ranked by 538

Algorithm 1. As shown in Figure 7, when reduction 539

is applied to only a few layers, the position-based 540

strategy outperforms the search-only strategy, in- 541

dicating that later layers tend to exhibit higher re- 542

dundancy in visual token processing. Additionally, 543

the limited size of our validation set may not fully 544

capture the true behavior of the models. As the 545

number of reduced layers increases, the search-only 546

strategy begins to yield better results. Therefore, 547

we adopt the hybrid strategy, which combines the 548

position-based strategy with the search-only strat- 549

egy, to achieve better performance and reduce the 550

number of evaluations required by Algorithm 1. 551

5 Conclusion 552

In this paper, we present a systematic investiga- 553

tion into the redundancy of visual token processing, 554

which plays a crucial role in the trade-off between 555

performance and efficiency in mainstream MLLM 556

architectures. Through careful analysis of existing 557

MLLMs, we propose a new framework consisting 558

of two key components: computational reductions 559

for visual tokens and a layer ranking algorithm. 560

These reductions are applied across various layer 561

proportions to evaluate their impact on MLLM per- 562

formance. Extensive experiments reveal that cur- 563

rent decoder-only MLLMs exhibit significant re- 564

dundancy in visual token processing within certain 565

layers. This structured and clustered redundancy 566

can be effectively leveraged, providing valuable in- 567

sights for future architectural design. Furthermore, 568

this work opens new perspectives on training-free 569

acceleration strategies for MLLMs, suggesting that 570

future improvements in model efficiency might ben- 571

efit from considering both token-level compression 572

and computation-level optimization. 573
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Limitations574

Determining the layer rank for reduction through575

search in the validation set presents two limitations.576

First, it requires constructing a validation set and577

performing hundreds of evaluations. Additionally,578

to reduce computational resource demands, we use579

a limited-scale validation set and a greedy search-580

based algorithm, which may fail to identify the opti-581

mal combination of layers for reduction. Therefore,582

improvements to the Layer Ranking Algorithm or583

exploration of alternative features for determining584

layer reduction priorities warrant further investiga-585

tion.586
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A Evaluation Metrics for Each903

Benchmark904

OCRBench (Liu et al., 2024c) uses the num-905

ber of correctly generated answers as its evalu-906

ation metric. DocVQA (Mathew et al., 2021)907

and InfoVQA (Mathew et al., 2022) use Aver-908

age Normalized Levenshtein Similarity (ANLS)909

and are evaluated on their respective official910

websites. ChartQA (Masry et al., 2022) mea-911

sures performance with relaxed accuracy, while912

TextVQA (Singh et al., 2019) relies on VQA accu-913

racy (Goyal et al., 2017). MME (Fu et al., 2024)914

reports the sum of perception and cognition scores.915

MMStar (Chen et al., 2024b) evaluates models916

based on overall accuracy. HallusionBench (Guan917

et al., 2024) reports the average of Question Pair918

Accuracy, Figure Accuracy, and Overall Accu-919

racy. All datasets, except DocVQA and InfoVQA,920

are evaluated using the VLMEvalKit (Duan et al.,921

2024).922

The validation set for Layer Ranking Algorithm923

consists of multiple subsets from different datasets.924

The total evaluation score is obtained by summing925

the scores across all subsets. For each subset, we926

calculate the difference between the evaluation met-927

ric of the reduced model and the original model.928

If the difference is negative, meaning the reduced929

model performs worse, it is multiplied by a penalty930

coefficient α > 1 to amplify the impact of the931

performance drop. This approach ensures that per-932

formance drops are further penalized, guiding the933

reduction strategy toward solutions with more sta-934

ble overall performance across the entire validation935

set. The penalty coefficient α is set to 2.936
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