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ABSTRACT

Text embeddings enable various applications, but their performance deteriorates
on longer texts. In this paper, we find that the performance degradation is due to
a phenomenon called Length Collapse, where longer text embeddings collapse
into a narrow space. This collapse results in a distributional inconsistency be-
tween embeddings of different text lengths, ultimately hurting the performance
of downstream tasks. Theoretically, by considering the self-attention mecha-
nism inherently functions as a low-pass filter, we prove that long sequences
increase the attenuation rate of the low-pass filter effect of the self-attention
mechanism. With layers going deeper, excessive low-pass filtering causes the
token signals to retain only their Direct-Current (DC) component, which means
the input token feature maps will collapse into a narrow space, especially in
long texts. Based on the above analysis, we propose to mitigate the undesirable
length collapse limitation by introducing a temperature in softmax(-), which
achieves a higher low-filter attenuation rate. The tuning-free method, called
TempScale, can be plugged into multiple transformer-based embedding mod-
els. Empirically, we demonstrate that TempScale can improve existing em-
bedding models especially on long text inputs, bringing up to 0.53% perfor-
mance gains on 40 datasets from Massive Text Embedding Benchmark (MTEB)
and 0.82% performance gains on 4 datasets from LongEmbed, which specifi-
cally focuses on long context retrieval. The source code is available at https::
//anonymous.4open.science/r/Length_Collapse—-22D2.

1 INTRODUCTION

Text embeddings—dense vectors that preserve the semantic information of given texts—have become
fundamental to many downstream natural language processing (NLP) applications, including text
analysis (Aggarwal & Zhail, [2012;|Angelov, 2020), question answering (Tan et al.| 2023; Xu et al.}
2024), web search (Zhao et al., 2023}; | Yates et al., |2021), and retrieval-augmented generation (Gao
et al.| 2023} [Fan et al.| 2024)). Typically, embeddings are generated by pre-trained language models
(PLMs), which produce fixed-dimensional embeddings regardless of the input text length. In practice,
we expect PLMs to perform consistently on texts of varying lengths in any downstream applications.

Unfortunately, we observe that popular transformer-based embedding models perform poorly on
longer texts. As shown in Figure [Ta] using the classification task on the IMDB dataset from the
Massive Text Embedding Benchmark (MTEB) (Muennighoff et al.,|2023)) leaderboard as an example,
we evaluate the performance of mainstream embedding models on test sets grouped by different text
lengths. The experimental results reveal that models of different capabilities and context window sizes
consistently exhibit performance degradation as text length increases. For instance, the BGE (Xiao
et al.;,2023) model’s classification accuracy drops significantly from 75.6% in the length range [0,
100) tokens to 59.0% in the range [400, 500) tokens, indicating a substantial decline of 16.6% points.

We attribute this performance degradation to a biased behavior of embedding models: embeddings of
longer texts tend to cluster together, a phenomenon we term as length collapse. To verify this, we
conduct controlled experiments depicted in Figures[Ib]and[Ic] Figure [Ib|shows that embeddings of
longer texts are more densely clustered near the origin in the dimensionally reduced embedding space,
indicating a collapse that reduces variance among embeddings. Details of the rewriting process can be
found in Appendix Figure|lc|further demonstrates that embeddings of longer texts exhibit higher
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Figure 1: (a) Performance of embedding models on IMDb classification across length intervals [0,
100) to [400, 500). The bluer M a cell, the higher the classification accuracy. (b) t-SNE visualization
of embeddings from the BGE on NFCorpus dataset, with @ for the original dataset and A and
x for LLM-summarized versions, retaining semantic meaning with varying lengths. L indicates
average text length, and D denotes mean distance to the origin. (¢) Mean pairwise cosine similarity
of embeddings from the BGE model across text length intervals on the corpus from NFCorpus, with
an X-axis for length intervals and a Y-axis for average pairwise similarity.

cosine similarity to each other, leading to smaller differences between them. This collapse results in a
distributional inconsistency between embeddings of different text lengths, adversely affecting the
performance of various downstream tasks (Yan et al.| [2021) such as text classification.

To study how text length affects the distribution of embeddings, we conduct a rigorous analysis of the
self-attention mechanism in Fourier space (Wang et al.,[2022b)) (Section[2.2). Based on the finding
that cascading self-attention blocks are equivalent to repeatedly applying a low-pass filter, we further
prove that the attenuation rate of the low-pass filter is proportional to the largest singular value o, of
the high-frequency components (HC) in self-attention matrix. Furthermore, assuming that the input
keys and query tokens follow a Gaussian distribution, we can prove that the o, value decreases as
text length increases. As a result, longer input texts retain more of the Direct Component (DC) in the
token signals, which means that the embeddings at the output layer will collapse to a very narrow
space. This theoretical proof explains the observations in Figure [Tb]

Building on this theoretical analysis, we propose a simple yet effective solution named Temperature
Scaling (TempScale) to mitigate the length collapse phenomenon. TempScale manipulates the
calculated attention map by dividing the attention scores by a parameter named temperature smaller
than 1 before applying the softmax(-) operator. This adjustment increases the variance of the
attention score matrix, as shown in Eqn. [3] leading to a larger o, for the self-attention matrix. As a
result, the self-attention matrix has a lower filter attenuation rate, leading to more diverse embeddings.
As shown in Figure|lc| a smaller temperature enables embeddings to exhibit lower pairwise cosine
similarity and results in a more even distribution, thereby alleviating length collapse.

Our contributions can be summarized as follows:

* We uncover the length collapse phenomenon and then establish a rigorous theoretical analysis
from the spectral domain and show that the length collapse is due to the low-pass filtering strength
of self-attention increases as the sequence length increases, leading the token signals retain only
their DC component.

* We present TempScale, a theoretically grounded scaling technique that incorporates a temperature
parameter into the softmax(-) function to achieve a higher attenuation rate in the self-attention
matrix. TempScale is efficient, easy to use, tuning-free, and able to generalize across different
embedding models compared to extending context window methods.

* We conduct extensive experiments by integrating TempScale with mainstream embedding models.
We demonstrate that TempScale can improve existing embedding models especially on long
text inputs, bringing up to 0.53% performance gains on 40 different datasets from Massive Text
Embedding Benchmark (MTEB) (Muennighoft et al.l 2023)) and 0.82% performance gains on 4
tasks from LongEmbed (Zhu et al., 2024)).
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2 LONG INPUTS LEAD TO HOMOGENEOUS EMBEDDINGS

In this section, we first present our notations and define the problem. Then, we introduce the Trans-
former structure in the mainstream embedding model and briefly explain the Fourier transform used
in (Wang et al.,[2022b). Based on the Fourier transform, we show that the attention mechanism acts
as a low-pass filter, and longer input sequences strengthen the filtering effect, leading to increasingly
similar representations. This results in cosine similarity increasing with the length of the text.

2.1 PRELIMINARIES AND BACKGROUND

Notations. Let X € R"*4 denote the input feature matrix, where n is the number of input tokens,
and d is the embedding dimension. Let ; € R represent the vector corresponding to the i-th token
and z; € R™ represent the token sequence corresponding to the j-th dimension, where ¢ € {1,...,n}
denotes the i-th row, and j € {1,...,d} denotes the j-th column.

Transformer Architecture. In most modern embedding models (Chen et al.| 2024; Xiong et al.,
2021)), a bidirectional transformer architecture based on attention mechanisms is widely used. These
models generally consist of three key components: the embedding layer, a stack of transformer
encoder blocks incorporating Multi-Head Self-Attention (MSA) and Feed-Forward Networks (FFN),
and a pooling layer at the end to generate the final embedding representation of the input sequence.
The Self-Attention(SA) module is the fundamental part of MSA, which takes inputs consisting of
the token representations X from the previous layer, and it encodes each token by aggregating
information from other tokens based on the attention scores, formulated as below (Vaswani, [2017)):

XWo(XWgk)T
Q(K)> XWy, (1
Vd
where Wy € R™¥4 W, € R, Wy, € R4 are the key, query and value weight matrices,
respectively. The dimensions of the query and key vectors are denoted by d, and d,, while Vd serves
as a scaling factor to adjust the magnitude of the dot product. The function softmax(-) normalizes
the attention scores row-wisely. Multi-Head Self-Attention (MSA) consists of SA heads, with their
outputs combined through a linear projection:
MSA(X) = [SA1(X) -+ SAyx(X)] Wy,

where the subscripts indicate the number of self-attention (SA) heads, H represents the total number
of heads, and W € R X4 projects the combined multi-head outputs back to the hidden dimension.

SA(X) = softmax (

Fourier Analysis. We use Fourier transform as the main analytic tool in this paper as used
in (Wang et al., [2022b). Let F : R™ — C™ represent the Discrete Fourier Transform (DFT),
with its inverse, the Inverse Discrete Fourier Transform (IDFT), denoted by F~! : C* — R™.
Applying F to a token sequence z is equivalent to left multiplying a DFT matrix, where k-
th row of DFT matrix denotes the Fourier basis corresponding to a certain frequency fr =
[ e2mitk=1)0 = g2milk=1)(n=1) 1T/ /n € R", and j is the imaginary unit. Let Z = Fz
represent the spectrum of z, where z3. € C and 2z, € cnt correspond to the first element and
the remaining elements of Z, respectively. We define the Direct-Current (DC) component of the
input sequence z as DC[z] = Z4.f1 € C", and the complementary high-frequency component as
HC[z]=[ fo -+ fn ]Zrc € C", consistent with the definition in (Wang et al., 2022b).

In signal processing, a low-pass filter is a system that attenuates the high-frequency components
of a signal while retaining the low-frequency components. In this paper, we specifically define a
low-pass filter as one that preserves only the DC component DC [z], while diminishing all other
high-frequency components HC [z]. A more precise definition is provided in Definition [I]

Definition 1. Ler f : R™ — R” be an endomorphism with ft obtained by applying f for t times.

The function f acts as a low-pass filter if and only if lim;_, o, % =0 forall z € R™.

For additional background information, please refer to Appendix [A]

2.2 THEORETICAL ANALYSIS ON LENGTH COLLAPSE

Overview. In this subsection, we aim to demonstrate that increasing the sequence length n accelerates
the rate of low-pass filtering in the attention matrix, leading to greater similarity in text embeddings
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Figure 2: Visualization of the intensity of high-frequency components and their theoretical upper
bounds. The blue line is defined by log(||HC [X+1]||7/||HC [Xi]||F), and the red line is estimated
using the results in Theorem E} More details can be found in Appendix [E;Z}

for longer texts, and provide a theoretical justification of self-attention based on its spectral-domain
effect. Based on the previous findings that self-attention is constantly a low-pass filter (Lemmal[T),
which continuously erases high-frequency information, our main result is that the largest singular
value o, of HC [A] can influence the filtering rate, with a smaller o, indicating that self-attention
can eliminate more high-frequency information (Theorem [2). Furthermore, our analysis shows
that longer input sequences lead to a smaller o, value for the attention matrix, resulting in the
embedding of longer texts losing more feature expressiveness (Theorem [3). In conclusion, based
on the assumption that natural language texts exhibit relatively consistent means, we can infer that
longer texts tend to yield more similar representations (Corollary [d) and cause the length collapse.
Lastly, we discuss the impact of other modules in Transformer on length collapse and distinguish our
work from prior studies on similar collapse phenomena induced by deep layers in Transformers.

Formally, the following lemma demonstrates that the attention matrix generated by a softmax function
(e.g., Eqn. [T) acts as a low-pass filter, independent of the specific token features or context window.

Lemma 1. (Attention Matrix is A Low-pass Filter) Let A = softmax(P), where P € R"*™. Then
A must be a low-pass filter. For all z € R",

mciAt])s
A% pefar]l; ~

Lemmaﬂ]follows directly from the Perron-Frobenius theorem (Meyer, [2000). Since all elements of
the self-attention matrix are positive and each row sums to 1, the largest eigenvalue is 1. One can
see that repeatedly applying the self-attention matrix can be viewed as the forward process of the
embedding model. As the number of layers in the embedding model increases indefinitely, the final
output retains only the DC component and thus loses all the feature expressive power. More detailed
proofs of this lemma are provided in Theorem 1 in|Wang et al.|(2022b).

Understanding that self-attention matrices act as low-pass filters, we are interested in the extent to
which an SA layer suppresses high-frequency components. Additionally, we provide a filter rate to
illustrate the speed at which these high-frequency components are eliminated.

Theorem 2. (Filter Rate of SA) Let o,, be the largest singular value of HC [A] and SA(X) =
AX Wy, the output of a self-attention module, we have

IHC SA(X)][|F < oul|Wy [l2[HC [X]] £ @

The proof of Theorem [2] can be found in Appendix Theorem 2] suggests the high-frequency
intensity ratio to the pre- and post- attention aggregation is upper bounded by o,|| Wy |2. When
oa||Wv |2 < 1, HC [ X] converges to zero exponentially. We further present Figure 2]to justify our
results, showing that the upper bound is consistent with the trend observed in the actual values.

Based on the proof that a lower o, will lead to a higher filter-pass rate, we give proof that the o, will
decrease with input length n increases in the following theorem.

Theorem 3. (Filter Rate of Different Input Length n) Let XWq and X W be a Gaussian matrix,
where elements qi; ~ N(0,07) and kij ~ N(0,07),Vi,j. Let pij = q;' k;/\/d the attention
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score of pair 1, j, whose variance can be expressed as af = aga,% + Crross, where Coposs 1S the

cross-covariance of the squared queries and keys (Goodman, |1960). Then we have

n
04 < )

A\ 2(/1+ S —-1)7 +1
e s

3

where o, decreases with n increasing.

The proof of Theorem [3]is provided in Appendix [B.2] Theorem [3| builds on the work of [Fenton
(1960); Nahshan et al.| (2024), which addresses the sum of log-normal variables. As the input length
n increases, o, decreases, leading to the suppression of more high-frequency information and a
reduction in feature expressiveness due to the low-pass filtering effect of the self-attention matrix. To
validate our conclusions, we sample texts of varying lengths and plot the o, values of the attention
matrix from the final layer of the model after inputting, as presented in Figure[/| The results indicate
that o, decreases as the text length increases, ultimately leading to a higher filtering rate.

To facilitate further analysis, we define the temperature of the SA defined in|[Nahshan et al.| (2024) as:
1 1

Ty = = — 4)
s \/ O'ZO’k + Ceross
Then denote p;; = p;; /0, and each element in attention matrix A can be rewritten as follows:
ei’m /Ts
A (5

v ZZ:l eﬁik/Ts ’
where p;; ~ N(0,1) and o, increases with 7, decreases. This implies that with a lower temperature
T, the self-attention (SA) mechanism preserves more high-frequency components in the token signals,
thereby preventing collapse in long texts.

Corollary 4. (Length Collapse in Text Embeddings) Given two texts of length n, the cosine similarity
of their text embeddings tends to increase as n grows.

The proof of Corollary ] can be found in Appendix [B.3|and

is primarily based on the assumption that the mean of word Avg. Cosine Similarity

embeddings in natural language texts maintains a relatively

consistent representation. Specifically, as illustrated in Figure[3] 0.96

we get the text embedding by averaging the word embeddings ) 5

derived from the BGE model’s embedding matrix for a given

text. We then assess the similarity within specified length in- 094

tervals. The results indicate that as text length increases, the .93

similarity between any two embeddings also rises significantly, g —%— NFCorpus
supporting the validity of the assumption. According to The- E :gf};gcs
orem 3} with an increase in text length, text embeddings tend 091+ *

to converge more rapidly towards the consistent representation W ® L ©®
stated in our assumption, ultimately resulting in higher similar- RO R
ity for longer texts. Additionally, we analyze text embeddings Figure 3: Mean pairwise co-

for certain special sequences, such as repeated tokens. Our
findings reveal that even when two texts have no overlapping to-
kens, the cosine similarity of their text embeddings approaches
1 as the sequence length increases. A comprehensive analysis
of this phenomenon can be found in Appendix [E.5] This further
corroborates the existence of length collapse, even when the

sine similarity of text embeddings
across length intervals, with embed-
dings computed as the mean of to-
ken embeddings from the model’s
word embedding matrix.

two sequences exhibit different mean word embeddings on average.

2.3 DISCUSSION

Other Components in Transformer. After discussing how self-attention contributes to length
collapse, we proceed to examine the influence of other modules in the Transformer, such as multi-
head, residual, and FFN. Fortunately, previous work (Wang et al.| 2022b) has talked about whether
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these components can effectively alleviate the low-pass filtering drawbacks. The proof demonstrates
that while these components help preserve high-frequency signals, they do not alter the fact that
the MSA block, as a whole, functions solely with the representational power of a low-pass filter.
Furthermore, the ability of these models to preserve high-frequency signals is solely determined by
their internal parameters and architecture, independent of the input text length. As a result, these
modules do not impact our analysis of length collapse in practical models.

Difference from Over-Smoothing in Deeper Layers. In previous research (Wang et al.} [2022b), it
has been noted that a self-attention module acts as a low-pass filter, causing input feature maps to
gradually lose high-frequency signals as the model layers go deeper. Furthermore, other studies
I& Suzuki}; [Cai & Wang], [2020) indicate that the node features of Graph Convolutional Networks
(GCNs) can become exponentially trapped in the null space of the graph Laplacian matrix. The
root cause of this phenomenon is that both graph Laplacian matrices and self-attention matrices
consistently exhibit a dominant eigenvector, commonly referred to as the DC component. While
these studies address over-smoothing in deeper layers, we focus on how the low-pass filtering process
changes as the input sequence lengthens, specifically examining over-smoothing in longer sequences.

3 How DOES LENGTH COLLAPSE LEAD TO PERFORMANCE DEGRADATION

@ Long Document
@ Short Query

B Golden Document
@ Golden Query

@ Noise Document

@ Long Sentence
@ Short Sentence
W Long Golden Sentence
@ Short Golden Sentence
B Noise Sentence

@ Long Sentence
@ Short Sentence

Cluster Center

(a) Classification and Clustering (b) Retrieval (c) STS
Figure 4: A 3D toy example explains why length collapse leads to performance degradation.

The tasks in the MTEB benchmark can be divided into two categories: classification and cluster-
ing, and matching. For classification and clustering tasks, a classifier needs to be trained on text
embeddings to categorize and cluster embeddings of different classes. Matching tasks, on the other
hand, typically involve calculating the similarity between two text embeddings using cosine similarity
or dot product. Furthermore, since the texts used for similarity calculations can vary greatly in
length, we further divide matching-based methods into two types: retrieval and STS. In the MTEB
benchmark, retrieval tasks include retrieval, longembed retrieval, and rerank, where the two texts
being matched have significant length differences. The other type includes STS and summarization,
where the two texts have similar lengths. Next, we will discuss these three types of tasks to analyze
how the distributional differences in embeddings of long and short texts caused by length collapse
impact performance across different tasks.

Impact on classification and clustering tasks. As shown in Figured] (Left), length collapse causes
long-text embeddings to cluster near the center, while short-text embeddings are more dispersed
around the periphery. In KNN classification, this makes clustering centers closer to long texts,
resulting in the classifier being more influenced by long texts and thus reducing its performance.

Impact on retrieval tasks. As shown in Figure[d(Middle), in retrieval tasks, documents are generally
longer and thus distributed within a smaller, central space, while shorter queries are positioned
more toward the periphery with more contextual representations 2019). Although long
documents, positioned centrally, have higher similarity with all embeddings, their representational
space is also more limited. In this scenario, if there is a shorter noise document (Green Square), it
may be more likely to appear relevant to the query (Purple Circle)—not because it is actually more
relevant, but because its larger representational space gives it an advantage over longer documents.
To verify this, we analyze the NFCorpus dataset, comparing the ranking distributions of the top 10%
longest relevant documents and the top 10% shortest relevant documents, as shown in Figure 5] The
results show that short documents, due to their more contextual representation, exhibit an inverted
U-shaped distribution, meaning that relevant short documents are more likely to appear either at the
top or the bottom of the ranking list. In contrast, long documents, with their collapsed distribution,
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tend to display a more uniform distribution. Additionally, with their generally higher average cosine
similarity, long documents are more likely to rank higher overall.
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Figure 5: The count of relevant documents at different ranking positions, where a smaller ranking
position indicates a document is more relevant to the query.

Impact on STS tasks. As shown in Figure [4] (Right), in STS tasks, length collapse causes all
long-text embeddings to cluster within a narrower space. In this compact space, any two unrelated
embeddings may exhibit high similarity, sometimes even surpassing that of a relevant text pair. Due
to length collapse, noise sentences (Green Square) in the long-text embedding space may show higher
similarity than actual related sentences (Purple Square). In contrast, in the short-text embedding
space, the average distance between embeddings is larger, creating more separation between noise
sentences and short sentences, while related sentences maintain high similarity due to their shared
semantics. This results in lower performance for long texts compared to short texts.

4  MITIGATING LENGTH COLLAPSE VIA TEMPERATURE SCALING

As discussed in Section[2.2] self-attention matrix perform low-pass filtering, which narrows the filter
space embedding model can express. Furthermore, distributional differences between embeddings
of short texts and long texts contribute to performance degradation on longer texts. To address the
problem, an intuitive idea is to increase the diversity of embeddings for long texts, making them
more distinguishable within the space. Inspired by Eqn.[5] we propose a scaling technique, called
Temperature Scaling (TempScale), which directly manipulates the attention map by multiplying 7
by a constant temperature 7 less than 1. This slows down the filtering process by increasing o .

Based on Eqn. 4] a smaller 7, results in a larger o, which will further result in a larger o, based on

Eqn.[3] In other words, the low-pass filtering rate of the attention matrix decreases as 7, decreases.

Inspired by this, TempScale introduces a temperature 7 to re-scale the self-attention matrix A.

XWo(XWg) '
Vd

pass filtering rate of A, we apply a temperature coefficient 7 to the logits before performing the

XWo(XWg) T

Formally, let A = softmax ( ) denote a self-attention matrix. To decrease the low-

softmax operation. Specifically, for each row p; in the attention score matrix , we

d
compute the scaled logits by dividing by a temperature 7 € (0, 1], and then apply the softmax function
to obtain the attention weights:

(6)

.
A = softmax (W) ,

TVd

where a lower 7 results a smaller 75 and furthur a smaller rate of low pass filtering.

Intuitive Explanation. We present the effects of temperature scaling on two extreme cases to
illustrate how TempScale works. As shown in Figure[6] when scaling matrix A with a relatively large
7, the elements in the final matrix A can be approximated as nearly equal. In this scenario, matrix
A applied to X filters out all high-frequency information, causing all token embeddings to become
identical. Similarly, when scaling with a smaller temperature, matrix A no longer acts as a weighted
sum of all token representations but instead selects the representation of a particular token, allowing
for the retention of more high-frequency information. If we view the attention matrix as an adjacency
matrix, a higher temperature leads to a denser graph, facilitating more information exchange between
nodes and resulting in the loss of high-frequency information (Oono & Suzuki; |Cai & Wang, |[2020).
In contrast, a lower temperature produces a sparser graph, allowing self-attention to preserve more
high-frequency information at individual nodes and prevent over-smoothing between nodes. For
further discussion on TempScale and other methods, see Appendix [F
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5 EXPERIMENTS

In this section, we first conduct experiments to validate the effectiveness of our TempScale on
MTEB (Muennighoff et al2023) and LongEmbed. Then we analyze how different tasks can benefit
from TempScale to validate our theoretical analysis.

5.1 CAN TEMPSCALE BENEFIT EMBEDDING MODELS?

Experiment Settings. For long context retrieval, we use 4 real-world tasks curated from long-form
QA and summarization in LongEmbed (Zhu et al., 2024) to access embedding models’ factuality
in short-query and long-document settings. For other embedding tasks, we consider six other tasks,
including classification, clustering, summarization, semantic textual similarity (STS), retrieval, and
reranking, comprising 36 datasets from MTEB (Muennighoff et al., 2023). To comprehensively eval-
uate TempScale, we select several representative Transformer-based embedding models, including:
(1) ANCE (Xiong et al.,|2021)); (2) GTR (Ni et al.| 2022); (3) GIST (Solatorio}, [2024); (4) BGE (Xiao
et al., [2023); (5) ES (Zhu et al.| 2024). These models are fine-tuned from various pretrain language
models, including BERT (Kenton & Toutanoval 2019), RoBERTa (Liu et al.,[2019), and T5 (Chung
et al.l [2024). More descriptions of the datasets and models can be found in Appendix [D| When
evaluating the embedding models, we set the same 7 on the softmax function for the attention modules
across all layers within the range of {0.1,0.5,0.6,0.7,0.8,0.9, 1.0}. Unless otherwise specified, all
temperatures used for TempScale are set to 0.8. The metrics used for different tasks are consistent
with MTEB and can be found in Appendix [C}

Results. We select the optimal temperature 7 for each model based on their performance across
all tasks and organize the experimental results as shown in Table [T} The results show that these
embedding models can benefit from our proposed method TempScale across various general tasks
with an average improvement of 0.53% and across long context retrieval datasets with an average
improvement of 0.82%. In these tasks, some datasets, such as those for STS, have an average text
length of only around 10 tokens, whereas the texts in LongEmbed generally exceed 1000 tokens. Our
method proves effective across both, demonstrating that using TempScale not only prevents long
text collapse but also enhances the embeddings for short texts, leading to improved performance in
downstream tasks. In addition, larger context window sizes lead to greater performance improvements,
with E5 showing the highest improvement of 1.07%. This could be attributed to larger windows
providing more and longer data for adjustment.

5.2 FURTHER ANALYSIS

How do the classification and clustering tasks benefit from TempScale? In Section[3] we attribute
the performance decline in classification and clustering tasks to the distributional differences between
long and short texts, which lead the model to assign greater weight to long text embeddings during
classifier training. TempScale addresses this by adjusting the longer texts to align with the same
space as short texts as descripted in Figure[Ic] ensuring that both contribute equally during training.
More experiments can be found in Appendix
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Table 1: Average of the main metric (see Appendix |C)) per task on MTEB English subsets and
LongEmbd. Relative Improv. means percentage increase over the performance without TempScale
and improvements are highlighted with A while decreasing values are denoted by V.

Class. Clust. Summ. STS BeirRetr. Rerank. LongEmbdRetr. Avg.

Num. Datasets (—) 8 11 1 10 2 4 4 40
window=512
ANCE 55.27 33.04 29.58 66.32 36.87 49.09 34.02 43.45
+ours(7 = 0.9) 55.37 33.28 29.56 66.47 36.86 49.25 33.93 43.53
Relative Improv. (%) 0.17 0.73 -0.05V 0.22 -0.01' Vv 0.32 025V 0.18
GTR 55.10 38.65 29.67 70.11 44.98 54.23 37.33 47.15
+ours(7 = 0.8) 55.51 39.52 29.83 70.26 45.61 54.16 37.33 47.46
Relative Improv. (%) 0.73 2.26 0.54 0.21 1.41 -0.13V 0.01 0.65
GIST 64.75 44.77 31.14 75.61 52.77 58.55 38.21 52.26
“+ours(T = 0.9) 65.00 44.64 31.17 75.59 53.41 58.60 38.35 52.39
Relative Improv. (%) 0.38 029V 0.09 -0.03V 1.21 0.08 0.36 0.26
BGE 64.79 45.80 31.03 75.88 55.29 58.87 37.46 52.73
+ours(r = 0.8) 64.89 45.61 31.51 75.68 56.00 58.97 38.35 53.00
Relative Improv. (%) 0.16 042V 1.53 -026' v 1.29 0.17 2.40 0.51
window=4k

E5 61.72 38.82 30.58 71.77 47.22 53.12 56.01 51.32
+ours(7 = 0.8) 62.15 40.22 31.11 72.17 47.06 53.47 56.88 51.87
Relative Improv. (%) 0.70 3.61 1.74 0.55 033V 0.65 1.56 1.07
Avg Improv. (%) 0.43 1.18 0.77 0.14 0.71 0.22 0.82 0.53

How do the retrieval tasks benefit from TempScale? In Section 3] we attribute the performance
decline in retrieval tasks to the fact that short texts have more contextual embeddings. Therefore,
TempScale improves the performance of long texts by adjusting the temperature to increase high-
frequency information, enabling a more contextual distribution. To validate this, we select NFCorpus
and SciFact to investigate the impact. As shown in Table[2] we record the average ranking position
of the longest positive documents after applying TempScale at different temperatures, where a
lower value indicates the documents are ranked higher. The experimental results show that a lower
temperature causes the model to rank relevant long documents higher. Our method enables long texts
to become more contextual, thereby reducing the bias introduced by length. In summary, TempScale
enhances the performance of long documents by introducing TempScale. Similar phenomena on
more models and datasets are provided in Appendix [E.6]

Table 2: Average ranking position with 20% longest document across different temperature 7.

(a) NFCorpus (b) SciFact
Temperature 7 1.0 0.9 0.8 Temperaturer 1.0 09 0.8
ANCE 1,306.2 1,291.6 1,278.1 ANCE 80.7 78.7 8l.5
GTR 1,132.8 11,1205 1,113.1 GTR 81.7 76.6 724
GIST 1,111.0 1,112.8 1,113.8 GIST 144 124 113
BGE 998.3 978.9 965.1 BGE 133 123 124
ES5 1,193.3 11,1723 1,162.8 E5 66.8 47.5 389

How do the STS tasks benefit from TempScale? TempScale enhances performance by giving
long-document embeddings the same spatial representation as short texts. To verify this, we record the
cosine similarity between random sentences, related sentences, and unrelated sentences at different
temperatures, as shown in Table[3] The results show that as the temperature in TempScale decreases,
the similarity between related sentences remains relatively high, while the similarity between unrelated
sentences is further reduced. Specifically, although the similarity between random sentences increases
with temperature in STS13 and STS14, the increase in the unrelated part is not as large as that of the
random sentences. This indicates that the distance between unrelated sentences is increasing.

Can the temperature be set based on the length of the text? As shown in Table 2] the ranking
of relevant long documents in retrieval tasks improves as the temperature decreases. This indicates
that using a smaller temperature 7 for long texts can better align the embeddings of long and short
texts within the same distribution. For longer texts, better performance can be achieved by setting a
smaller 7, and the discussions can be found in Appendix
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Table 3: Average cosine similarities across different temperature settings.

STS12 STS13 STS14
Temperature
Random | Related | Unrelated | Random | Related | Unrelated | Random | Related | Unrelated
1.0 0.9097 0.9611 0.7973 0.8707 0.9470 0.7931 0.8877 0.9494 0.7889
0.9 0.9096 0.9612 0.7937 0.8721 0.9481 0.7942 0.8886 0.9499 0.7893
0.8 0.9097 0.9612 0.7926 0.8741 0.9490 0.7969 0.8897 0.9501 0.7912

6 RELATED WORK

Text Embedding Models. Embeddings are generated by pre-trained language models (PLMs), which
produce fixed-dimensional embeddings regardless of the input text length, laying the foundation
of numerous NLP applications. Early works on text embeddings lack context awareness and are
thus commonly labeled as word embedding models (Pennington et al.,[2014). Modern embedding
models (Wang et al., [2022a; Xiao et al.,|2023) incorporate context awareness into language models
through self-attention mechanisms, serving as the foundation for the latest embedding models.
These models, based on Transformer architectures like BERT (Kenton & Toutanova, 2019) and
RoBERTa (Liu et al.,[2019), are first pre-trained on large-scale weakly supervised text pairs using
contrastive loss (Gao et al.,|2021), then fine-tuned on small scale but high-quality datasets. More
recently, (Muennighoff et al.l 2024) investigates the integration of generative and embedding tasks in
large language models, introducing transformer-based GritLM, which enhances performance in both
areas. Among the diverse range of pre-trained transformers (Wolf et al.| [2020), self-attention plays a
crucial role, and this paper focuses on how this module contributes to length collapse.

Context Window Extension for Embedding Model. Despite transformer-based embedding models
excelling in generating vector representations, they are typically constrained by a narrow context
window of around 512 input tokens (Wang et al.| [2022a; [Xiao et al., 2023 Ni et al., [2022). This
limitation significantly restricts their use in scenarios that require processing long inputs, such as ex-
tensive Wikipedia entries or meeting transcripts (Saad-Falcon et al., [2024} Zhu et al., 2024). Previous
work attributes this poor performance to limited context windows and attempts to extend the window
size. Current initiatives to develop long-context embedding models generally begin with acquiring a
long-context backbone model, either by pre-training from scratch with long inputs (Giinther et al.|
2023} [Nussbaum et al.| 2024; |Chen et al.| |2024) or utilizing existing models (Wang et al., 2024} |[Zhu
et al.,[2024). This is followed by training the backbone model to generate embeddings. However, in
this paper, we discover that regardless of the model’s context window size, the model consistently
performs worse on longer texts than on shorter texts due to length collapse. Therefore, we aim
to improve the performance of long texts across all context window size models by analyzing and
addressing length collapse, rather than simply expanding context window size.

7 CONCLUSION AND FUTURE WORK

In this paper, we identify the phenomenon of length collapse, where embeddings of longer texts tend
to cluster together and propose practical solutions through Fourier domain analysis. Our theoretical
findings suggest that Multi-Head Self-Attention inherently performs stronger low-pass filtering as
the token sequence length increases, leading to patch uniformity issues in longer sentences. To this
end, we propose a technique called TempScale, which effectively reduces the low-pass filtering effect
by introducing a temperature parameter when applying softmax in the self-attention matrix. Our
extensive experiments validate the effectiveness of our methods and enhance the performance of
general embedding models on the MTEB and LongEmbed benchmarks. Overall, TempScale is a
crucial advancement in enhancing the performance of embedding models on longer texts.

Future work includes: 1) LLM-based embedding model: Although we have observed Length
Collapse in LLM-based embedding models in Appendix [G] further analysis is needed to investigate
how unidirectional attention mechanisms specifically contribute to this phenomenon; 2) Tuning
method: The work in this paper relies on existing models and pre-trained parameters without using a
training dataset. In future work, we will focus on tuning the temperature for additional improvements.
3) Analysis on more modules: We primarily investigate the impact of the self-attention module on
length collapse in this paper. Moving forward, we plan to explore the effects of additional modules in
transformers such as LayerNorm and FFN.

10
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A BACKGROUND INFORMATION ABOUT FOURIER ANALYSIS

In this appendix, we provide additional background information on Fourier analysis. Specifically,
consider the discrete Fourier transform (DFT) in the real-valued domain, denoted as F : R® — C".
The DFT can be expressed in matrix form as shown below:

1 1 - 1
1 eQ‘n’j . eQ‘n’j(n—l)
1 : : i .
DFT = % 1 e2mitk—1)1 . 2mi(k—1)-(n—1) | >
1 emin=) L e2min-1)?

and inverse discrete Fourier transform is DFT~' = DFT " = DFT. In signal processing, we can
regard matrices as multi-channel signals. For example, X € R"*¢ means d-channel n-length signals.
When the DFT and inverse DFT are applied to multi-channel signals, each channel is transformed
independently. Thatis, F(X) = [F(x1) - - F(zq)]= DFT-X.

Hereby, we can independently operators DC [-] and HC [-] on echo channel using the matrices in Eqn.
Then we can write DC [-] as below:

DC [x] = DFT ' diag(1,0,--- ,0)DFTx
= lllTw.
n
Conversely, we can denote HC [-] as:
HC [x] = DFT ' diag(0,1,--- ,1)DFTx

= DFT (I — diag(1,0,--- ,0))DFTx

1
= - =117z,
(I - 11"

B DETAILED PROOFS

B.1 PROOF OF THEOREM[Z]

We start our analysis by providing a lemma.
Lemma 5. The following holds | AB||r < ||A|2||B||r and ||AB||r < ||A| r| B2
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Proof. Denote B = (by --- bp)and we have AB = (Ab; --- Ab,). From the definition
of the spectral norm, we have:| Az > “ﬁi’ﬁ!? Taking the average of the right-hand side, we

. b:ll2 ||Ab; |2 .. .
obtain: [[A[3 > Yo, fzls Ik, This implies: |A|3IBI3 > LI, | Abill} = [|ABI3.

Finally, the last step utilizes the result [|A[|%. = 37, - lai;[* = >77_,[la;||3. Because both the

spectral norm and the Frobenius norm of a matrix remain unchanged under transposition, we have
|AB||r = |BTAT||r < || BT|2|AT[F = [|All7 ]| B]l2.

O

Theorem 6. (Filter Rate of SA) Let o, be the largest singular value of HC [A]. Define SA(X) =
AX Wy, as the output of a self-attention module, then

[HC [SA(X)]l|r < oal Wy [l2|HC [X]|| - @)

Proof. First, we write X = DC [X] + HC [X] = 1117 X + H, where H = 1C [X] represents
the remaining part of the original signals.

1
HC[SA(X)] = <I — n11T> AXWy 8)
1. .7 1. .+
=(I—--11" | A(-11' X + H)Wy C)]
n n
1 Lo 7 T L7
=—|I--11" | A1l XWy + |I—-—-11" | AHWy (10)
n n n
_ (1 - 111T) AHWy (1)
n
Therefore,
1
|HC [SA(X)]||F = H (I - nllT) AHWy (12)
F
1
<[[(r-30m) | 1w (13)
2
= oa||[Wv 2| H|[r (14)
The Eqn. [[3]leverages inequality in Lemma 5]
O

B.2 PROOF OF THEOREM[3]

Theorem 7. (Filter Rate of Different Input Length n) Let XWq and X W be a Gaussian matrix,
where elements qi; ~ N(0,02) and ki; ~ N(0,0%),Vi,j. Let x;; = q; k;/\/d the attention

score of pair 1, j, whose variance can be expressed as af = 030,% + Crross, where Coposs 1S the

cross-covariance of the squared queries and keys (Goodman, |1960). Then we have

00 < — (15)
2. /14 5= —1)2 +1

202

where o, decreases with n increasing.
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Proof. First we have

Og = H (I — 111T> A (16)
n 2
1 T
< |1 - =117 ||A]2 (17)
n 2
< lAllr (18)

The Eqn. leverages |[T—L1117]|, = 1 and |Al2 < ||Allr. Now we need to upper bound
||A|| 7. Generally, the product of two independent Gaussian variables has a density in the form of a
modiffed Bessel function of the second kind (Nahshan et al., 2024). When the vector dimensions
are sufficiently large, the Central Limit Theorem implies that the distribution of the dot product
between g; and k; can be approximated by a Gaussian distribution with zero mean and variance
J?. As mentioned in Theorem , the variance of q;'— k; can be expressed as 0? = 0'30'2 + Cerosss
where Ceross = Cov(g?, k%) — Cov(q, k)? is the cross-covariance of the squared queries and
keys (Goodman, [1960). Thus we can suppose that each element p; ~ N(0,0) in the matrix
XWoW4 XT is independent, where j € (1,--- ,n):

Tj

n 2
e
—n . 19
n;<2i—1e%> (19

T}_ e2%;
=[N ZJ‘;H_ — (20)
230 Zj:Lj;éi@ T+ Z_j:l e

Al

2_ 1 Ao g
neln n+2057§ In -
= A .
26111 n(n—1)+oi—5In =5 + elnn+20§—% In &—=1
n
— : — (22)
2 1—|—626§(n—1)2 +1

The derivation in Eqn. @primari]y relies on the theorem from [Fenton| (1960), which addresses the
sum of log-normal variables. First, we have e ~ LogNormal(0, c%) and e?* ~ LogNormal(0, 4052).
Additionally, we assume that e¢** and €% are independent, leading to % 7% ~ LogNormal(0, 202).
Now, considering the sum of log-normal variables, [Fenton| (1960)’s theorem provides that, for
moderate values of o2, the sum of zero-mean i.i.d. log-normal variables can be approximated by
another log-normal distribution with mean px, and variance 0%, where:

1
0% =1In (n (6‘72 — 1) + 1) .y =1Inn+ (0? —0d)/2.

For moderate values of n and 02, the variance 0% can be approximated as:

1 2
2 o
~1 — ( — 1) .
0% =~ In (n e >
Thus, the sum ?:1 €23 follows a log-normal distribution:

- 1 (1 44 1 [ 402
Z e**i ~ LogNormal (lnn +202 — -In < <e4" - 1)) ,In ( (64” - 1))) .
2 n n

j=1

Similarly, the sum >0, >0, ., e® % follows:
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- - 1 e2r — 1 e — 1
Z e“ "t ~ LogNormal [ Inn(n — 1)+ 02— -In| —— | ,In [ —— | | .
— 2 n(n—1) n(n—1)
i=1j=1,j7i
From these, Eqn. follows naturally. Finally, we have
n
Oq < . )
2,/14+ 5 (n—-1)2 +1

where o, decreases with n increasing.

B.3 PROOF OF COROLLARY [4]

Theorem 8. (Length Collapse in Text Embeddings) Given two texts of length n, the cosine similarity
of their text embeddings tends to increase as n grows.

Proof. Given the two texts embeddings 1 and x2, we have

(HC [21] + DC [w1]) (HC [25] + DC [2F])

COS(«'E17-’B2) — (23)
21 [l2]|z2 ]2
_ HClzi| HC [27] + DC [a1] DC [ | (24)
212|222
2
o
> ; 25
T Va2 +ai/a? + a3 .
O

where «; and aw represent the maximum values in the frequency domain of HC [x;] and HC [x2]
and « represent the value of DC [x1] and DC [x2], respectively, after applying the discrete Fourier
transform. Eqn. 24 leverages that HC [-] and DC [-] are orthogonal. Eqn. [25| leverages that the
assumption the mean of word embeddings in natural language texts maintains a relatively consistent
representation. Thus HC [x] and HC [x2] have the same value « after applying the discrete Fourier
transform. Finally, according to Theorem 3] c; and a» will gradually decrease with n grows, leading
to a higher cosine similarity between x; and x-.

C DATASETS AND EVALUATION METRICS

Table[d]provides an overview of the datasets used in our experiments. Next, we give a brief description
of the tasks involved in the experiments and the corresponding datasets and evaluation metrics they
include.

C.1 CLASSIFICATION

In general, we use the provided embedding model to obtain a training set and a test set. The
embeddings of the training set are used to train a logistic regression classifier with a maximum of
100 iterations, which is then scored on the test set. The main evaluation metrics are accuracy, average
precision, and the f1 score.

AmazonPolarity (Zhang et al., 2015) consists of Amazon customer reviews, each labeled as either
“positive" or “negative."

Banking77 (Casanueva et al.,|2020) dataset consists of online banking user queries labeled with one
of 77 specific intents.
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Emotion (Saravia et al.||2018)) comprises Twitter messages categorized by six fundamental emotions:
anger, fear, joy, love, sadness, and surprise.

Imdb (Maas et al., |2011) consists of extensive movie reviews categorized as either positive or
negative.

Massivelntent (FitzGerald et al.,[2022)) is a multilingual dataset featuring a diverse array of utterances
from Amazon Alexa, each labeled with one of 60 different intents across 51 languages.

MassiveScenario (FitzGerald et al.,2022) dataset comprises a diverse collection of Amazon Alexa
user utterances, each labeled with one of 60 thematic intents, and supports 51 languages.

ToxicConversations []_-], sourced from a Kaggle competition, comprises comments from the Civil
Comments platform, complete with annotations indicating whether each comment is toxic.

TweetSentimentExtraction a dataset from a Kaggle competition focuses on classifying tweets
into three categories: neutral, positive, and negative sentiments.

C.2 CLUSTERING

Clustering aims at grouping a given set of sentences or textbfs into meaningful clusters by training
a mini-batch k-means model on the text embeddings. The model is scored using the v-measure
(Rosenberg & Hirschbergl 2007). Since the v-measure does not depend on the cluster labels, the
arrangement of the labels will not affect the score.

ArxivClusteringS2S, ArxivClusteringP2P, BiorxivClusteringS2S, BiorxivClusteringP2P, Medrx-
ivClusteringP2P, MedrxivClusteringS2S (Muennighoff et al.,[2023). These datasets are tailored for
MTEB, utilizing titles or a combination of titles and abstracts from arXiv, bioRxiv, and medRxiv,
with clustering labels derived from human-assigned categories, emphasizing both main and secondary
classification levels.

RedditClustering (Geigle et al.l 2021), a dataset consists of titles from 199 subreddits, is organized
into 25 splits, each featuring 10 to 50 classes, with every class containing between 100 and 1,000
sentences.

RedditClusteringP2P (Muennighoff et al.,2023), developed for the MTEB, consists of Reddit posts
combined with their titles, organized into ten splits featuring 10 and 100 clusters each, with a total of
1,000 to 100,000 posts, aimed at clustering based on subreddit affiliation.

StackExchangeClustering (Geigle et al.l 2021, a dataset consisting of titles from 121 Stack
Exchange communities, is organized into 25 subsets, each containing 10 to 50 categories, with 100 to
1,000 sentences per category.

StackExchangeClusteringP2P (Muennighoff et al., 2023)), designed for MTEB, comprises 10 splits
of posts from StackExchange, each containing 5,000 to 10,000 entries, clustered by subreddit based
on the combined content of titles and posts.

TwentyNewsgroupsClustering E] consists of article titles from 20 different newsgroups, designed
for clustering tasks, and includes 10 splits with each split featuring between 1,000 and 10,000 titles
across the 20 categories.

C.3 RERANKING

Reranking involves inputting a query along with a series of relevant and irrelevant reference texts, then
sorting the results based on their relevance to the query. The provided model embeds the reference
texts, which are compared to the query using cosine similarity. Each query is scored, and the average
score across all queries is used to generate the final ranking. The evaluation metrics are MRR @k and
MAP, with MAP serving as the primary metric.

"ToxicConversations
ZTweetSentimentExtraction
*https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
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AskUbuntuDupQuestions E] dataset comprises questions sourced from AskUbuntu, accompanied by
manually annotated labels that indicate whether pairs of questions are similar or dissimilar.

MindSmall (Wu et al.|, 2020) dataset is a comprehensive English resource designed for research in
news recommendation, focusing on ranking news articles based on the title of a currently read article
to suggest related content.

SciDocsRR (Cohan et al.l [2020) is a dataset designed for ranking related scientific papers using their
titles as the primary basis for assessment.

StackOverflowDupQuestions (Liu et al., 2018)) dataset focuses on identifying whether questions
tagged with Java, JavaScript, and Python on Stack Overflow are duplicates of existing queries.

C.4 RETRIEVAL

In retrieval task, each dataset consists of a corpus, queries, and a mapping of each query to relevant
documents. The task goal is to find these relevant documents based on a given query. When evaluating,
we first use the provided model to embed queries and corpus documents and then calculate the cosine
similarity to obtain relevance scores and rank the corpus documents for each query based on these
scores. The evaluation metrics consists of nDCG@k, MRR @k, MAP @k, precision @k, and recall @k,
with nDCG @10 as the primary metric.

C.4.1 BEIR RETRIVAL

NFCorpus (Boteva et al., |2016)) is a dataset that includes natural language queries sourced from
NutritionFacts, paired with annotated medical documents from PubMed, utilizing the original splits
from various types of content from NF, such as videos, blogs, and Q&A posts.

SciFact (Wadden et al.,[2020) dataset evaluates scientific claims by matching them with evidence
sourced from research literature, specifically utilizing a set of 300 test queries and the complete
document collection from the original dataset.

C.4.2 LONGEMBD RETRIVAL

LongEmbed (Zhu et al., 2024) includes 4 real-world retrieval tasks curated from long-form QA
and summarization. The document in LongEmbed is much longer compared to BEIR. Thus, it can
effectively evaluate the capability of the embedding model on long texts.

LEMBNarrativeQARetrieval (KocCisky et al., 2018) is a question-answering dataset featuring
lengthy narratives, averaging 50,474 words, that challenge models to comprehend and extract
information about characters and events dispersed throughout the stories.

LEMBQMSumRetrieval (Zhong et al.,|2021) dataset focuses on generating summaries of meetings
based on specific queries, necessitating the extraction and synthesis of relevant information from
various segments of the conversation that cover multiple topics and participants.

LEMBSummScreenFDRetrieval (Chen et al.|[2021) dataset consists of pairs of transcripts from TV
series and their corresponding human-crafted summaries, requiring the integration of dispersed plot
elements into concise narrative descriptions.

LEMBWikimQARetrieval (Ho et al.,[2020) dataset is a complex question-answering resource that
includes questions requiring up to five reasoning steps, designed using specific templates to encourage
deep understanding rather than simple retrieval of information.

C.5 SEMANTIC TEXTUAL SIMILARITY (STS)

The task goal is to determine the similarity between a pair of sentences, where continuous scores
serve as labels, with higher values indicating greater similarity. The provided model embeds the
sentences, and their similarity is calculated using cosine similarity. The primary evaluation metric is
the Spearman correlation (Reimers et al.,|2016)).

*https://github.com/taclei87/askubuntu
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Table 4: Statistics of the experimental datasets used in the work.

Type | Name | Coten. | #ang. | i | Do | somptes | o™ | Ve | Tinean®
. NFCorpus s2, 1 0 0 3,956 0 0 1,462.7
BEIR Retrival ‘ SciFuctp ‘ szg ‘ 1 ‘ 0 ‘ 0 ‘ 5,483 ‘ 0 ‘ 0 ‘ 1,422.3
AmazonPolarityClassification p2p 1 3,600,000 0 400,000 431.6 0 431.4
Banking77Classification $2s 1 10,003 0 3,080 59.5 0 54.2
EmotionClassification $2s 1 16,000 2,000 2,000 96.8 95.3 96.6
Classification Imdbclassiﬁca[ion o p2p 1 25,000 0 25,000 1,325.1 0 1,293.8
MassivelntentClassification s2s 51 11,514 2,033 2,974 35.0 34.8 34.6
MassiveScenarioClassification s2s 51 11,514 2,033 2,974 35.0 34.8 34.6
ToxicConversationsClassification $2s 1 50,000 0 50,000 298.8 0 296.6
TweetSentimentExtractionClassification $2s 1 27,481 0 3,534 68.3 0 67.8
ArxivClusteringP2P p2p 1 0 0 732,723 0 0 1,009.9
ArxivClusteringS2S $2s 1 0 0 732,723 0 0 74.0
BiorxivClusteringP2P p2p 1 0 0 75,000 0 0 1,666.2
BiorxivClusteringS2S s2s 1 0 0 75,000 0 0 101.6
MedrxivClusteringP2P p2p 1 0 0 37,500 0 0 1,981.2
Clustering MedrxivClusteringS2S s2s 1 0 0 37,500 0 0 114.7
RedditClustering s2s 1 0 420,464 | 420,464 0 64.7 64.7
RedditClusteringP2P p2p 1 0 0 459,399 0 0 727.7
StackExchangeClustering $2s 1 0 417,060 | 373,850 0 56.8 57.0
StackExchangeClusteringP2P p2p 1 0 0 75,000 0 0 1,090.7
TwentyNewsgroupsClustering s2s 1 0 0 59,545 0 0 32.0
LEMBNarrativeQARetrieval s2p 1 0 0 10,804 0 0 326,753.5
LongEmbd Retrival LEMBQMSumRetrieval s2p 1 0 0 1,724 0 0 53,335.8
LEMBSummScreenFDRetrieval s2p 1 0 672 0 0 30,854.3 0
LEMBWikimQARetrieval s2p 1 0 0 500 0 0 37,445.6
AskUbuntuDupQuestions s2s 1 0 0 2,255 0 0 525
Reranking MindSmallReranking s2s 1 231,530 0 107,968 69.0 0 70.9
° SciDocsRR s2s 1 0 19,594 19,599 0 69.4 69.0
StackOverflowDupQuestions s2s 1 23,018 3,467 3,467 49.6 49.8 49.8
BIOSSES s2s 1 200 200 200 156.6 156.6 156.6
SICK-R s2s 1 19,854 19,854 19,854 46.1 46.1 46.1
STS12 s2s 1 4,468 0 6,216 100.7 0 64.7
STS13 s2s 1 0 0 3,000 0 0 54.0
STS STS14 s2s 1 0 0 7,500 0 0 543
STS15 s2s 1 0 0 6,000 0 0 577
STS16 s2s 1 0 0 2,372 0 0 653
STS17 s2s 11 0 0 500 0 0 433
STS22 p2p 18 0 0 8,060 0 0 1,992.8
STSBenchmark s2s 1 11,498 3,000 2,758 57.6 64.0 53.6
Summarization | SummEval [ p2p | 1 | 0 | 0 | 2,800 | 0 | 0 | 359.8

STS12, STS13, STS14, STS15, STS16, STS17, STS22, STSBenchmark (Agirre et al., 2012; 2013;
Bandhakavi et al., |2014; [Bicicil [2015; Nakov et al., 2016)) E]E] are collections of sentence pairs
designed to evaluate semantic textual similarity, with the former set focused on monolingual English
pairs and the latter two incorporating cross-lingual comparisons across multiple languages.

BIOSSES (Sogancioglu et al.,[2017) comprises 100 pairs of sentences specifically focused on the
biomedical domain.

SICK-R (Dadas et al., [2020) , which stands for Sentences Involving Compositional Knowledge, com-
prises 100,000 diverse sentence pairs that exhibit rich lexical, syntactic, and semantic characteristics.

C.6 SUMMARIZATION

The input consists of a set of summaries written by humans and machines. The goal is to score
the machine-generated summaries. Use the provided model to embed the summaries. Calculate
the distance between each machine summary and all human summary embeddings. Retain similar
scores as the model score for each individual machine-generated summary. Calculate the Spearman
correlation based on cosine similarity (Reimers et al., 2016) as the main metric.

SummEval (Fabbri et al.,2021) consists of summaries produced by advanced summarization models
trained on CNN and DailyMail articles.

5https ://alt.gcri.org/semeval2017/taskl/
®https://competitions.codalab.org/competitions/33835
"nttps://github.com/PhilipMay/stsb-multi-mt/
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Table 5: Embedding models used in the experiments.

Model Name | Publicly Available Link

ANCE https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
GTR https://huggingface.co/sentence-transformers/gtr-t5-base

GIST https://huggingface.co/avsolatorio/GIST-small-Embedding-v0

BGE https://huggingface.co/BAAl/bge-base-en-v1.5

E5 https://huggingface.co/dwzhu/eS-base-4k

D EMBEDDING MODELS

Table 5] provides the models used in the experiments and their publicly available links. Below is a
brief introduction to these models.

ANCE (Xiong et al.,2021)) enhances dense retrieval by selecting challenging negative samples from
the entire corpus and asynchronously updating the Approximate Nearest Neighbor (ANN) index with
each training iteration, using a context window size of 512.

GTR (Ni et al.,2022)) improves dual encoder performance for retrieval tasks by scaling up model size
while keeping a fixed bottleneck embedding, leading to significant improvements in out-of-domain
generalization, all within a context window size of 512.

GIST (Solatoriol [2024) consistently improves performance across different model sizes by leveraging
the strengths of large, resource-intensive models to enhance smaller ones, making advanced Al
technologies more accessible and cost-effective, all within a context window size of 512.

BGE (Xiao et al., 2023) offers a range of well-trained embedding models based on a BERT-like
architecture, enabling users to balance performance and efficiency for various applications while also
allowing easy fine-tuning. In our experiments, we use the gte-base-en-v1.5 model, which operates
with a context window size of 512.

ES (Zhu et al.| 2024) is a long-context embedding model fine-tuned to support 4k token inputs
while maintaining the original performance for shorter contexts, designed to advance research in
long-context embedding technologies. It uses a context window size of 4k.

E MORE EXPERIMENTS AND ANALYSIS

E.1 REWRITING PROCESS

To investigate the differences in embedding distributions across texts of varying lengths, we use
the Llama3 (i.e,, Llama—-3.1-8B-Instruct) (Dubey et al) 2024) model to rewrite the texts.
Specifically, we used two prompts, “Please express the given text in one sentence. No more than
10 tokens. {{original text}}” and “Please use few sentences to summarize the given text. {{original
text}}”, to summarize the texts. This rewriting allows the texts to retain the same semantics while
having lower lengths. By studying the differences in texts of varying lengths, we conclud that the
cause of the length collapse phenomenon is that longer texts cluster to each other in embedding space.

E.2 DETAILS ON FIGURE[]
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Figure 8: Visualization of the intensity of high-frequency components and their theoretical upper
bounds. The setting is the same with Figure@

To verify Theorem 2] we illustrate the high-frequency intensity of each layer’s output along with
its theoretical upper limit. Our visualization is based on the official checkpoint of 12-layer ANCE,
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GIST and BGE. We use a logarithmic scale for the purpose of a better view. Let X; denote the
output of the [-th layer. For red line, we directly calculate log(||HC [X;+1]||r/||HC [X}]||F) at each
layer. In practice, models typically employ multi-head attention, so we replace | Wy ||2 in Eqn.
with o1 H, where o1 = max;__, ||W{||2. For blue line, we obtain the coefficient oy with respect to
network parameters and apply the logarithmic scale. To summarize, Figure 2]imply an convergence
rate, which is consistent with our Theorem 2} Figure[§]show the same trend as Figure[2] although the
E5 model exhibits anomalies at deeper layers.

E.3 DETAILS ON FIGURE[]]
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Figure 9: o, of HC [A] before the last layer across different text length under different 7 setting.

To verify Theorem 3] we visualize the value of o, across different text length. Our visualization is
based on the texts from NFCorpus. We sample 100 samples for each bin from 0 to 500 with a bin
size of 50. The o, value is computed as the average of the o, based on the attention of all heads
before the output of the final layer. To summarize, Figure [7limply that o, shows a decreasing trend
as n increases, which is consistent with our Theorem@ Moreover, o, also increases as 7 decreases,
further validating our proposed method, TempScale. Figure [9]also show the same trend as Figure
and the E5 model shows an increasing o, with length, which may be due to anomalies in the deep
layer attention patterns.

E.4 MORE DISCUSSIONS ON CLASSIFICATION AND CLUSTERING TASKS
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Figure 10: Probability entropy and classification accuracy of models across different length intervals
on AmazonPolarity dataset. Each model has bars representing intervals of 100 in length, with 500
text samples per interval, covering a range from O to 300. Bars represent raw outputs, with green and
red hatching indicating increases and decreases after TempScale, respectively.

For data grouping tasks like classification and clustering, in the case of N-class tasks, we can think
of the model as learning N classification boundaries. The farther the text embedding is from the
boundary, the closer the output probability approaches 1 or 0. As shown in Figure|10|(left), we plot
the entropy of the model output probabilities across different length intervals. The model outputs
higher entropy for longer texts, which may be because the embeddings of longer texts are positioned
closer to the center of the space as described in Figure resulting in a shorter distance to various
classification boundaries. Meanwhile, in Figure [I0] (right), we can also observe that accuracy and
entropy follow the same trend: the model achieves higher accuracy when it has lower entropy. In
other words, the model performs better if the text embeddings are farther from the boundary. After
applying TempScale, a decreased entropy will result in increased accuracy. This further supports the
relationship between entropy and accuracy in classification tasks. Moreover, if the model exhibits
a more severe length collapse phenomenon, meaning a greater performance drop on longer texts,
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the more performance improvement it experiences after applying TempScale. This suggests that
one possible reason TempScale is effective on shorter text datasets is that it adjusts the distribution
differences between texts of varying lengths. As shown in Figure after applying TempScale,
the distribution of text embeddings across different length intervals becomes more uniform, which
facilitates the model in learning length-agnostic parameters.

E.5 MORE ANALYSIS ABOUT ASSUMPTION IN THEOREM [4]
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Figure 11: The cosine similarity of embeddings of texts generated by repeating word “dog” and “cat”.

In Corollary ] we hypothesize and verify that all natural language sequences tend to have a relatively
consistent representation. As a result, different texts tend to exhibit consistent low-pass signals after
losing high-frequency information, leading to ultimately consistent text embeddings. This leads to an
increase in cosine similarity for longer texts. However, as shown in Figure[TT] we repeat the word
“dog” and “word” n times and calculate the similarity between these two texts. The results show
that even when the sequences do not have overlap, the text embeddings tend to converge to similar
representations as the sequence length increases. This further demonstrates that length collapse
causes completely different sequences to converge toward similarity.

E.6 MORE RESULTS ON LONGER TEXTS

ANCE GTR GIST ES
o627 % 5 Sea=— S647T 3 S 96T
g g — s S “a Long Query S 1
S S - = [ g S —
= cg| = Long Query L = 7 Sl T ® Short Query S
® ° o —— ®62 [©) ~ ®94 9
Short Query _— -

8 _— 8 —=— Long Query 8 ~_ | 8 —=— Long Query
a — a o Short Query 260 ~7 a e o Short Query
Z 541 g— Z 60 z . Z g9

0.6 0.8 1.0 0.6 08 1.0 0.6 0.8 1.0 0.6 08 1.0

temperature T temperature T temperature T temperature T

Figure 12: Results about performance difference between long query and short query across varying
temperature 7 on SummScreenFD dataset.

Can the temperature be set based on the length of the text? In the previous experiments, we use
the same temperature 7 for scaling all texts in the same task. However, our analysis indicates that
texts of different lengths have varying filtering rates, so a natural idea is to use different temperatures
for texts of different lengths. As shown in Figure|14] We plot the performance trend for texts under
the same settings in Figure[I0]as the temperature varies. The results indicate that a higher temperature
is optimal for short texts, while a lower temperature is preferable for long texts, as confirmed by the
results in Table 2} When performing retrieval tasks, we can also set different temperatures for queries
and documents to achieve better performance. As shown in Figure[I3] on the QMSum dataset, we
can consistently achieve better performance by setting a lower temperature for queries. Moreover, as
shown in Figure|15] compared to the QMSum dataset, SummScreenFD requires a lower temperature
for scaling the document due to its longer length. This further supports the conclusion that longer
texts require a lower temperature for scaling. In Figure[IZ] we observe a similar phenomenon across
other models. Except for ANCE, the performance of other models on long queries decreases as
the temperature decreases. This suggests that long queries require a lower temperature to mitigate
the length collapse phenomenon. However, ANCE’s performance degradation with decreasing
temperature is likely attributable to its inherent limitations in processing long texts.
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Figure 13: Relative performance compared to the raw results with varying query (Q Temperature)
and document (D Temperature) temperatures using different models on QMSum.
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Figure 14: Results about performance difference between long query and short query across varying
temperature 7 on AmazonPolarity dataset.

F MORE DISCUSSIONS ABOUT TEMPSCALE

F.1 RELATIONSHIP WITH CONTRASTIVE LEARNING METHODS

F.1.1 BACKGROUND AND MOTIVATION

Contrastive learning is a technique widely adopted to improve the anisotropy of the embedding
space, which can reduce the high similarity between embeddings of random text samples across
varied lengths. This anisotropy mitigation is achieved by maximizing distances among negative
pairs while aligning positive pairs closely. However, while contrastive learning has demonstrated
improvements in embedding quality across multiple applications, its effects on the length collapse
phenomenon remain unexamined. This section explores how contrastive learning impacts length
collapse, evaluating its contributions and limitations.

As shown in previous worksWang & Isolal (2020)), the InfoNCE loss, when scaled to a large number
of negative samples, can be decomposed into two primary components: Alignment and Uniformity.
Alignment ensures that positive pairs—texts with similar content—are close in the embedding space,
while Uniformity spreads embeddings of negative pairs to prevent them from clustering excessively.
Mathematically, as the number of negative samples M — oo, the normalized InfoNCE loss can be
expressed as:

. 1 .
A}l_r}n(}(}L(f, 7) —log M = _;E(w,x+)Nppos [f(a:)Tf (CC+)] Alignment
data

+ Eonpia [log E, - - [ef(I)Tf(z_)/TH . Uniformity

These properties make contrastive learning especially effective in tasks such as retrieval, where
maximizing inter-sample variance is crucial.

F.1.2 WHY CONTRASTIVE LEARNING CANNOT FULLY ADDRESS LENGTH COLLAPSE

While contrastive learning alleviates high similarity issues across all text lengths, it does not entirely
resolve the length collapse issue inherent in transformer-based models. Length collapse arises from
self-attention’s tendency to push embeddings for longer texts toward a concentrated representation
space. This characteristic is unaffected by contrastive learning’s alignment or uniformity mechanisms
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Figure 15: Relative performance compared to the raw results with varying query (Q Temperature)
and document (D Temperature) temperatures using different model on SummScreenFD

because contrastive learning optimizes the relative positioning of positive and negative pairs rather
than mitigating the length-induced clustering trend.

F.2 COMPARISON WITH OTHER POST-PROCESSING TECHNIQUES

In addition to TempScale, several post-processing methods have been proposed to address high
similarity in embeddings, such as the Flow Function (2020) and Whitening (2021).
For comparative analysis, we implemented the last2avg version of the Flow Function, as the full flow
version requires additional training, and the Whitening method is based on its original formulation.
The results, summarized in Table 6} highlight that these methods do not perform as effectively in our
specific application. These results indicate that Flow and Whitening, originally developed for standard
BERT embeddings, are less effective with the fine-tuned transformer model used in this paper, which
includes additional normalization layers. While TempScale reduces similarity in long-sequence
embeddings, achieving distributional consistency across different sequence lengths is more critical
for performance. Therefore, lowering similarity alone may not significantly improve downstream
tasks.

Table 6: Performance comparison of different post-processing methods across various tasks

Model Rerank. Summ. Class. Clust. LongEmbdRetr. STS BeirRetr. Avg.
ANCE 49.09 29.58 5527 33.04 34.02 66.32 36.87 43.45
+Flow 48.49 29.57 56.34  32.11 31.92 66.02 36.57 43.00
+Whitening 25.16 21.76 25.82 3.21 1.29 2.78 0.79 11.54
GTR 54.23 29.67 55.10 38.65 37.33 70.11 44.98 47.15
+Flow 37.49 28.09 4198 21.87 7.65 35.55 1.35 24.85
+Whitening 24.63 20.69 25.71 3.06 1.35 -3.02 0.63 10.44
GIST 58.55 31.14 64.75 44.77 38.21 75.61 52.77 52.26
+Flow 58.16 30.56 65.68 44.67 35.83 74.98 51.40 51.61
+Whitening 24.08 24.26 20.06 9.83 1.78 -4.31 0.81 10.93
BGE 58.87 31.03 64.79  45.80 37.46 75.88 55.29 52.73
+Flow 58.48 30.73 64.77 45.28 36.95 74.43 54.52 52.16
+Whitening 24.75 19.61 16.50 4.23 2.39 1.60 0.47 9.94
E5-4K 53.12 30.58 61.72 41.01 56.01 71.77 47.22 51.63
+Flow 52.48 29.82 62.33 3995 44.71 68.55 30.68 46.93
+Whitening 24.94 22.14 22.73 4.04 1.85 1.96 0.56 11.17

F.3 COMPARISON WITH OTHER SIMILAR LONG-TEXT METHODS

To thoroughly evaluate our TempScale approach, we compare it with two related attention scalin
methods: softmax (%QKT ) V (Method1) (iChiang & Cholak, 2022) and YaRN (Peng et al).

In YaRN, the scaling formula for the attention matrix is given as softmax (%\/EQK T) V', where
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% =0.1lns+1,and s = %, with L’ representing the extended context window length and L the
original context window length. These methods propose different scaling strategies, but they differ in
their theoretical motivations, applications, and experimental outcomes.

While Method1, YaRN, and TempScale share a similar structural approach, they tackle different
challenges. Methodl is for binary classification tasks, specifically determining if the first string in a
sequence of binary strings is a *1’. It focuses on resolving straightforward decision-making problems
in binary data. YaRN, by contrast, extends the context window of LLMs without requiring retraining,
particularly adjusting the attention mechanism to handle larger contexts. TempScale addresses length
collapse in embedding models for long texts, improving performance without retraining by preserving
distinct representations as text length increases. Moreover, Method1 offers a solution using a specially
designed Transformer example, but its motivation is limited by the specificity of this example. In
contrast, YaRN introduces an empirically derived scaling formula. TempScale is based on a rigorous
low-pass filtering analysis, giving it a strong theoretical foundation and an intuitive explanation.

Table 7: Average main metric on MTEB and LongEmbd across Method1 and YaRN.

Model | Rerank. Summ. Class. Clust. LongEmbdRetr. STS BeirRetr. Avg.
ANCE 49.09 29.58 5527 33.04 34.02 66.32 36.87 43.45
+Method1 41.80 29.21 4821 20.72 6.23 53.40 7.74 29.61
+YaRN(A = 0.0001) | 49.09 29.58  55.62 33.01 34.02 66.32 36.86 43.50
+YaRN(A = 0.001) 49.08 29.57  55.62 33.05 33.96 66.32 36.87 43.49
+YaRN(A = 0.01) 49.10 29.31  55.65 3295 33.92 66.27 36.87 43.44
+YaRN(A = 0.1) 48.95 29.30 5545 32.65 32.31 65.72 35.77 42.38
+YaRN(A = 1) 45.71 29.28  52.80 26.16 10.59 60.15 13.34 34.00
GTR 54.23 29.67  55.10 38.65 37.33 70.11 44.98 47.15
+Method1 38.12 28.44 4034 1446 3.61 47.09 0.82 24.70
+YaRN(A = 0.0001) 54.23 29.68  55.06 38.30 37.42 70.11 44.98 47.11
+YaRN(A = 0.001) 54.23 29.71  55.08 38.29 37.56 70.11 44.97 47.13
+YaRN(A = 0.01) 54.23 29.71  55.04 38.63 37.39 70.06 45.00 47.15
+YaRN(A = 0.1) 54.12 2934  54.86 34.07 36.53 69.86 43.06 45.98
+YaRN(A = 1) 55.19 29.00 47.27 19.06 3.99 61.87 1.46 31.12
GIST 58.55 31.14 6475 4477 38.21 75.61 52.77 52.26
+Method1 58.64 2826  51.05 28.11 5.42 62.43 7.51 34.49
+YaRN(A = 0.0001) 58.55 31.14 6426 4475 38.21 75.61 52.78 52.19
+YaRN(A = 0.001) 58.55 31.12  64.28 44.75 38.20 75.61 52.78 52.18
+YaRN(A = 0.01) 58.53 3126 6424 4478 38.05 75.60 52.79 52.18
+YaRN(A = 0.1) 58.45 3036  63.86 44.62 37.34 75.31 52.10 51.72
+YaRN(A = 1) 55.75 2676 58.79  36.95 11.85 69.00 23.59 40.38
BGE 58.87 31.03 6479 4580 37.46 75.88 55.29 52.73
+Method1 37.78 29.17  37.80 14.36 2.10 43.72 0.84 23.68
+YaRN(A = 0.0001) 58.86 31.04 6478 4577 37.45 75.88 55.29 52.72
+YaRN(A = 0.001) 58.86 3096  64.78  45.75 37.47 75.87 55.28 52.71
+YaRN(A = 0.01) 58.85 31.02 64.73 45.61 37.26 75.86 55.22 52.65
+YaRN(A = 0.1) 58.86 3090 6451 45.19 36.55 75.55 54.96 52.36
+YaRN(A = 1) 52.65 29.09  50.51 25.50 2.36 64.20 2.14 32.35
E5-4K 53.12 30.58  61.72  41.01 56.01 71.77 47.22 51.63
+Method1 40.90 24.11  42.85 13.64 3.24 41.62 1.05 23.92
+YaRN(A = 0.0001) 53.12 30.57 61.78  40.77 56.01 71.77 47.22 51.61
+YaRN(A = 0.001) 53.11 30.55 61.78  40.75 55.98 71.77 47.22 51.59
+YaRN(A = 0.01) 53.07 3042  61.73  40.61 55.53 71.71 47.21 51.47
+YaRN(A = 0.1) 52.64 3020  61.51 40.19 48.39 70.68 46.36 50.00
+YaRN(A = 1) 45.00 29.01  50.81 17.99 291 57.27 1.46 29.21

To effectively compare the performance of the above methods, we tested them on the MTEB
benchmark. Since we are not modifying the context window length, we adapt YaRN as

softmax (ﬁQKT> V, with 7 = Alogn + 1. We explore values for A in the range

{0.0001,0.001,0.01,0.1,1}. This setup is reasonable, as our findings indicate that longer texts
generally benefit from a smaller temperature scale. The experimental results are as shown in Table[7]

The experimental results indicate that neither Method1 nor YaRN effectively adapts to the embedding
model scenario. (Although YaRN shows slight improvement when the A value is small, in this
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case, Method 2 degenerates into TempScale.) Some potential reasons are as follows: A plausible
explanation is that while both methods perform finer scaling on the attention matrix, applying different
temperature adjustments across varying text lengths may lead to embeddings from different lengths
falling into distinct distributions, which is unfavorable for downstream tasks. Moreover, in generation
tasks, Method1 and YaRN succeed likely because of differences in output requirements. For these
tasks, the model outputs a probability distribution and samples from it. Minor perturbations generally
don’t affect the token output significantly; even if one sequence’s token distribution changes, it doesn’t
impact the output of other sequences. In contrast, any substantial change in a single embedding
for an embedding model can directly affect the entire downstream performance. For instance, in
classification tasks, a classifier model relies on embeddings as input, and in retrieval tasks, a change
in embedding impacts document ranking. Overall, for embedding tasks, simply applying a single
temperature adjustment better maintains the overall embedding distribution, helping mitigate length
collapse and achieve better results across various downstream applications.

G LENGTH COLLAPSE IN LLM-BASED EMBEDDING MODELS

To explore whether length collapse also occurs in long-context LLMs, we select three widely used
LLM-based embedding models from the MTEB benchmark—bge-multilingual-gemma2 (Chen et al.|
2024), NV-Embed-v2 (Lee et all [2024), and e5-mistral-7b-instruct (Wang et al., [2022a)—all of

which rank within the top 20 on the MTEB leaderboard. We conduct experiments using three
commonly used long-text datasets, including nq and hotpotqa in LongRAG and
LongAlpaca-12k (Chen et al.), which are selected based on relevance to the keyword "long" and
chosen for their evenly distributed text lengths. Specifically, we analyze shifts in embedding space
across different text length intervals by calculating the average Euclidean distance of each embedding
from the central embedding (the mean of all embeddings) and computing cosine similarity between
each pair of embeddings as in Table[§]and Table[9]

Table 8: Euclidean distance results for different datasets and LLM-based embedding models.

Dataset Model 0-1000  1000-2000 2000-3000
bge-multilingual-gemma2  0.94 0.92 0.91

nq NV-Embed-v2 0.98 0.91 0.89
eS-mistral-7b-instruct 0.68 0.64 0.64
bge-multilingual-gemma2  0.93 0.88 0.87

hotpotga NV-Embed-v2 0.95 0.84 0.79
e5-mistral-7b-instruct 0.70 0.61 0.57
bge-multilingual-gemma2  0.71 0.48 0.49

LongAlpaca-12k  NV-Embed-v2 0.89 0.86 0.87
eS-mistral-7b-instruct 0.69 0.53 0.53

Table 9: Pair cosine similarities results for different datasets and LLM-based embedding models.

Dataset Model 0-1000  1000-2000 2000-3000
bge-multilingual-gemma2  0.39 0.42 0.45

nq NV-Embed-v2 0.32 0.47 0.59
eS-mistral-7b-instruct 0.75 0.77 0.78
bge-multilingual-gemma2  0.51 0.52 0.59

hotpotga NV-Embed-v2 0.48 0.59 0.69
eS-mistral-7b-instruct 0.75 0.81 0.85
bge-multilingual-gemma2  0.76 0.90 0.89

LongAlpaca-12k  NV-Embed-v2 0.48 0.65 0.68
eS-mistral-7b-instruct 0.78 0.87 0.87
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The experimental results show that as text length increases, the embeddings from different LLM-based
embedding models exhibit a gradual convergence trend, with the average Euclidean distance between
embeddings decreasing and pairwise cosine similarity increasing. This indicates that even mainstream
long-context LLM embedding models tend to experience embedding convergence (Length Collapse)
and reduced distinctiveness in long-text processing due to the low-pass filtering effect.
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