
Local policy search with Bayesian optimization

Sarah Müller∗1,4 Alexander von Rohr∗1,2,3 Sebastian Trimpe 1,2

1Max Planck Institute for Intelligent Systems, Stuttgart, Germany
2Institute for Data Science in Mechanical Engineering, RWTH Aachen University, Germany

3IAV GmbH, Gifhorn, Germany
4 Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany

sar.mueller@uni-tuebingen.de
{vonrohr, trimpe}@dsme.rwth-aachen.de

Abstract

Reinforcement learning (RL) aims to find an optimal policy by interaction with an
environment. Consequently, learning complex behavior requires a vast number of
samples, which can be prohibitive in practice. Nevertheless, instead of systemat-
ically reasoning and actively choosing informative samples, policy gradients for
local search are often obtained from random perturbations. These random sam-
ples yield high variance estimates and hence are sub-optimal in terms of sample
complexity. Actively selecting informative samples is at the core of Bayesian
optimization, which constructs a probabilistic surrogate of the objective from past
samples to reason about informative subsequent ones. In this paper, we propose
to join both worlds. We develop an algorithm utilizing a probabilistic model of
the objective function and its gradient. Based on the model, the algorithm decides
where to query a noisy zeroth-order oracle to improve the gradient estimates. The
resulting algorithm is a novel type of policy search method, which we compare to
existing black-box algorithms. The comparison reveals improved sample complex-
ity and reduced variance in extensive empirical evaluations on synthetic objectives.
Further, we highlight the benefits of active sampling on popular RL benchmarks.

1 Introduction

Reinforcement learning (RL) is a notoriously data-hungry machine learning problem, where state-of-
the-art methods easily require tens of thousands of data points to learn a given task [1]. For every
data point, the agent has to carry out potentially complex interactions with its environment, either
in simulation or in the physical world. This expensive data collection motivates the development of
sample-efficient algorithms. Herein, we consider policy search problems, a type of RL technique
where we directly optimize the parameters of a policy with respect to the cumulative reward over a
finite episode. The collected data is utilized to estimate the direction of local policy improvement,
enabling the use of powerful optimization techniques such as stochastic gradient descent. Policy
gradient methods (e.g., [2–5]) usually rely on random perturbations for data generation, e.g., in
the form of exploration noise in the action space or stochastic policies, and do not reason about
uncertainty in their gradient estimation. However, innate in the RL setting is the ability to actively
generate data, allowing the agent to decide on informative queries, thereby potentially reducing the
amount of data needed to find a (local) optimum. Active sampling has the potential to allow those
algorithms to improve sample complexity, reducing the number of environment interactions.

∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

−5

0

5

10

J(θ)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

θ

−20

0

20

∇θJ

Figure 1: Estimation of a Jacobian GP model
(bottom) of a 1-dimensional objective function
(top). The model has function observations (black
crosses), but is able to form a posterior belief over
the gradient. Uncertainty for the Jacobian model
is reduced between samples. An active sample
strategy can improve gradient estimates.

In contrast to random sampling, Bayesian op-
timization (BO) [6] is a paradigm to optimize
expensive-to-evaluate and noisy functions in a
sample-efficient manner. At the core of BO
is the question of how to query the objective
function efficiently to maximize the information
contained in each sample. By building a prob-
abilistic model of the objective using past data
and, critically, prior knowledge, the algorithm
can reason about how to query a noisy oracle
to solve the optimization task. Since RL can be
framed as a black-box optimization problem, we
can use BO to learn policies in a sample-efficient
way. However, even though BO has been used to
tackle RL, these approaches are often restricted
to low-dimensional problems. One reason is that
BO aims to find a global optimum; hence, with-
out further assumptions, BO algorithms need
to model and search the entire domain, which
needs a lot of data and gets exponentially more
difficult as the dimensionality increases. Additionally, as the amount of data grows so does the
computational complexity of probabilistic models, which becomes a significant problem. However,
the success of RL algorithms using policy gradient methods indicates that for many problems it is
sufficient to find a locally optimal policy.

Our proposed algorithm combines the strength of gradient-based policy optimization with active
sampling of policy parameters using BO. We thereby improve the computational complexity of BO
methods on the one hand, and the sample-inefficiency of gradient-based methods on the other hand,
especially when proper prior knowledge is available. We achieve these improvements by explicitly
learning a probabilistic model of the objective in the form of a Gaussian process (GP) [7]. From this
model, we can jointly infer the objective and its gradients with a tractable probabilistic posterior. The
resulting Jacobian estimate includes all data points, rendering data usage more efficient. Further, the
algorithm infers informative queries from the uncertainty of the probabilistic model to improve the
estimate of the local gradient. While in this paper we adapt the setting of Mania et al. [1] and assume
access to zeroth-order information only, the algorithm extends straightforwardly to policy gradient
algorithms where additional first-order information is available. In summary, the contribution of
this paper is a local BO-like optimizer called Gradient Information with BO (GIBO). The queries of
GIBO are chosen optimally to minimize uncertainty about the Jacobian. GIBO uses a local GP model
for active sampling and gradient estimation and can be used with existing policy search algorithms.
Using only zeroth order information, GIBO is able to

• significantly improves sample complexity in extensive within-model comparisons, i.e., when
accurate prior knowledge is available;

• is able to solve RL benchmark problems in a sample efficient manner; and
• reduces variance in the rewards when compared to non-active sampling baselines.

2 Preliminaries

This work presents a local optimizer with active sampling. The objective function and its derivative’s
joint distribution are modeled using a GP. Since we have developed the optimizer with the RL
application in mind, we also introduce the RL problem. For the sake of brevity, we refer the reader to
[7] and [8] for an introduction into GPs and BO, respectively.

2.1 Problem setting

In the following we phrase policy search as a black-box optimization problem. For a parameterized
policy πθ : Θ × S → A that maps states s ∈ S and the static policy parameters θ ∈ Θ to actions
a ∈ A, we use the same performance measure as in policy gradient methods for the episodic case.

2

Hence, the objective function J : Rd → R is defined as

J(θ) = Eπθ

[
I∑

i=0

ri

]
,

where Eπθ is the expectation under policy πθ, ri is the reward at time step i, and I the length of
the episode. A BO query is equivalent to the return of one rollout following the policy πθ in the
environment. The expected episodic reward is entirely determined by choice of policy parameters
(and the initial conditions). Thus, the optimizer explores the reward function in the parameter space
rather than in the action space. Since initial conditions might vary and the environment can be
non-deterministic, reward evaluations are noisy.

Policy search herein is abstracted as a zeroth-order optimization problem of the form

θ∗ = arg max
θ∈Θ

J(θ), (1)

where θ is the variable and Θ ⊂ Rd a bounded set. To solve (1), an optimization algorithm can query
an oracle for a noisy function evaluation y = J(θ) + ω. We assume an i.i.d. noise variable ω ∈ R to
follow a normal distribution ω ∼ N (0, σ2) with variance σ2. We do not assume access to gradient
information or other higher-order oracles for conciseness. Albeit, GIBO requires that the following
critical assumption is fulfilled:
Assumption 1. The objective function J is a sample from a known GP prior J ∼ GP (m(θ), k(θ, θ′)),
where the mean function is at least once differentiable and the covariance function k is at least twice
differentiable, w.r.t. θ.

This is the standard setting for BO with the addition that the mean and kernel need to be differentiable,
which is satisfied by some of the most common kernels such as the squared exponential (SE) kernel.
In the empirical section, we investigate the performance of the developed algorithm with and without
Assumption 1 holding true.

2.2 Jacobian GP model

Since GPs are closed under linear operations, the derivative of a GP is again a GP [7]. This enables
us to derive an analytical distribution for the objective’s Jacobian, which we can use as a proxy for
gradient estimates and enable gradient-based optimization.

Following Rasmussen and Williams [7], the joint distribution between a GP and its derivative at the
point θ∗ is

[
ȳ

∇θ∗J∗

]
∼ N

([
m(X)
∇θ∗m(θ∗)

]
,

[
K(X,X) + σ2I ∇θ∗K(X, θ∗)
∇θ∗K(θ∗, X) ∇2

θ∗K(θ∗, θ∗)

])
, (2)

where ȳ are the n zeroth-order observations, X ⊂ Θ are the locations of these observations X =
[θ1, . . . , θn], andK the covariance matrix given by the kernel function k : Θ×Θ→ R. The posterior
can be derived by conditioning the joint Gaussian prior distribution on the observation [7]

p
(
∇θ∗J∗

∣∣θ∗, X, ȳ
)
∼ N (µ′∗,Σ

′
∗)

µ′∗ = ∇θ∗m(θ∗)︸ ︷︷ ︸
∈Rd

+∇θ∗K(θ∗, X)︸ ︷︷ ︸
∈Rd×n

(
K(X,X) + σ2I

)−1

︸ ︷︷ ︸
∈Rn×n

(ȳ −m(X))︸ ︷︷ ︸
∈Rn

∈ Rd

Σ′∗ = ∇2
θ∗K(θ∗, θ∗)︸ ︷︷ ︸
∈Rd×d

−∇θ∗K(θ∗, X)︸ ︷︷ ︸
∈Rd×n

(
K(X,X) + σ2I

)−1

︸ ︷︷ ︸
∈Rn×n

∇θ∗K(X, θ∗)︸ ︷︷ ︸
∈Rn×d

∈ Rd×d.

(3)

Remark 1. Note that the term (K(X,X) + σ2I)−1 with the highest computational cost (O(N3)) is
the same term that is used to compute the posterior over J . Therefore, calculating the Jacobian does
not add to the computational complexity once a GP posterior has been computed.

Any twice differentiable kernel is sufficient for the presented framework, but we assume a SE kernel
for the remainder of the paper. For the derivatives of the SE kernel function see Appendix A.1. For
a visual example of function- and the Jacobian-posterior, refer to Fig. 1. The figure indicates that

3

a zeroth-order oracle is enough to form a reasonable belief over the function’s gradient. Moreover,
Fig. 1 shows that the uncertainty about the Jacobian gets reduced between query points more so than
at the query points themselves. To minimize uncertainty about the Jacobian at a specific point, it
intuitively makes sense to space out query points in its immediate surrounding. Herein, we formalize
this intuition and formulate an optimization problem that sequentially decides on query points that
provide the most information about the Jacobian.

2.3 Related work

In the presented contribution we focus on the benefits of active sampling in policy search, specifically
on sample efficiency. Therefore, this section focuses on active sampling in model-free RL setting
using probabilistic uncertainty estimations. Most of the literature in this setting is based on BO, but
generating informative samples is also discussed in literature regarding evolutionary strategies as
well as in policy gradient methods.

Bayesian optimization as an active sampling method has been used for global policy search, mostly in
lower dimensional parameter spaces from 2–15 dimensions [9–13]. Global BO for RL, exemplified by
the mentioned literature and without additional assumptions, is limited to relatively low dimensional
problems for two reasons: (i) the computational complexity of global probabilistic models does not
scale well with the number of data points, (ii) global optimization of high-dimensional non-convex
objectives is a challenging problem to solve in general. To combat these problems local variants of BO
have been proposed and applied to RL problems, see e.g., [14–17]. These works rely on restricting
the search space of BO by a probabilistic belief over the optimums location [14] using rectangular
trust-regions [15], learning a partition [16], or by staying close (as defined by the GP kernel) to past
samples [17]. Restrictions in the parameter space avoid ’over-exploration’ of high-dimensional search
spaces and thereby encourage exploitation of (local) minima. Our proposed method delegates the
exploitation to a gradient-based optimizer after exploring a local property, the function’s derivative at
the current iterate, for which a local search (and model) is sufficient. McLeod et al. [18] and more
recently Shekhar and Javidi [19] suggest switching from global BO to a local gradient-based method
once a locally convex region containing a low-regret solution has been identified, thereby improving
convergence properties of BO. In [18] GIBO can replace the local optimizer of choice and in Shekhar
and Javidi [19] GIBO can be used for optimal uncertainty reduction in the gradient estimate.

In general, a GP posterior can incorporate gradient information if the kernel is differentiable and a
first-order oracle is available. Bayesian optimization methods that utilize gradient observations are
known as first-order BO, and different approaches on how to include the derivative information in the
model and acquisition functions have been proposed [20–23]. Since computing the joint posterior
using first- and zeroth-order information is computationally expensive, Ahmed et al. [21] and Wu
et al. [22] are using a single directional derivative instead of all partial derivatives. A first-order BO
approach for RL, where the gradient information is actively used to decide on the following query, is
introduced by Prabuchandran et al. [23]. The method therein actively searches for local optima by
querying points where the gradient is expected to be zero. In contrast to this approach, we actively
reduce local uncertainty of the Jacobian model and afterwards a gradient-based optimizer decides on
the next location.

Reinforcement learning problems in the form of (1) can also be used by evolutionary methods such
as [1, 24–26] and recently by policy gradient methods Faccio et al. [27]. These methods typically
explore through random perturbations in the parameter space of the policy instead of active sampling.
However, generating more informative samples improves evolutionary strategies. Maheswaranathan
et al. [25] shows this by adapting the sampling distribution using surrogate gradient information such
as previous estimates, and Choromanski et al. [26] uses determinantal point processes for informative
samples.

Policies that generate more informative samples have helped to improve model-free RL algorithms’
performance during the past decade; we mention three examples here: Levine and Koltun [28]
propose so-called guiding samples in high reward areas using differential dynamic programming and
model knowledge. Soft actor-critic (SAC) methods [3] add the policy’s entropy to the reward function
to encourage exploration and improve the variance of gradient estimates. Based on SAC an optimistic
actor-critic algorithm is introduced in [29] with a different exploration strategy that samples more
informative actions. To reduce variance in the gradient estimate, it is possible to use GIBO as a layer
between the policy gradient estimator such as SAC and a gradient-based optimizer, e.g., stochastic

4

−20

0

20

∇θJ

−1 0 1 2

θ

α(θ)

−1 0 1 2

θ

−1 0 1 2

θ

−1 0 1 2

θ

Figure 2: We visualize GIBO’s active sampling process with a simple 1-dimensional function. The
blue filled circle refers to the current parameter θt. The figure shows 4 steps of the algorithm, where in
the first two steps, the acquisition function α (solid green line) proposes two new query points (green
stars) of the objective function J (solid light grey line). With the history of sampling points (black
crosses), the model of the Jacobian ∇θJ (in blue with confidence intervals) is updated, reducing
uncertainty around the analytic Jacobian (dashed light grey line). The next step show a gradient
ascent update step to θt+1 (blue star) and the last step is again a suggested query after the update.

gradient ascent or Adam [30]. In future work GIBO can be extended to utilize state-of-the art policy
gradient methods as an additional oracle for first-order information and help these methods reducing
the variance of their gradient estimates through active sampling. Based on the posterior conditioned
on all collected rewards, our algorithm can supply posterior gradient estimates and subsequent queries
to evaluate.

To demonstrate the benefits of GIBO in a simple setup, we adopt the setting proposed by Mania et al.
[1] as a baseline. Augmented Random Search (ARS) [1] assumes a black-box setting without access
to gradient samples and estimates the gradient from the finite-difference of random perturbations,
effectively solving RL problems. We replace the random sampling strategy of ARS with active
sampling and the gradient estimation with a GP model. These changes improve the sample complexity
and variance of ARS, especially when prior knowledge about the objective function is available.

3 Gradient informative Bayesian optimization

In this section, we introduce the proposed method GIBO. First, we define an acquisition function
to reduce uncertainty for the Jacobian. Second, we outline the basic GIBO algorithm, including
implementation choices.

3.1 Maximizing gradient information

We employ the BO framework to design a set of iterative queries maximizing gradient information.
To this extend, we propose a novel acquisition function Gradient Information (GI) actively suggesting
query points most informative for the gradient at the current parameters θt. Acquisition functions
measure the expected utility of a sample point based on a surrogate model conditioned on the observed
data. The utility U : Rd → R of our method depends on a Jacobian GP model, the objective’s
observation data D, and the current parameter θt. It measures the decrease in the derivative’s variance
at θt when observing a new point θ of the objective function. Hence, we define the utility as the
expected difference between the Jacobian’s variance Σ′(θt|D) before and the Jacobian’s variance
Σ′(θt|{D, (θ, y)}) after observing a new point (θ, y)

αGI(θ|θt,D) = E [U(θ|θt,D)] = E [Tr (Σ′(θt|D))− Tr (Σ′ (θt| {D, (θ, y)}))], (4)

where Tr denotes the trace operator and Σ′(θt|D) is the variance of the Jacobian’s GP model evaluated
at θt

∇θJ
∣∣
θ=θt

∼ GP (µ′(θt|D),Σ′(θt|D)) . (5)

5

The Jacobian’s variance Σ′(θt|{D, (θ, y)}) depends on the extended dataset {D, (θ, y)}. A property
of the Gaussian distribution is, that the covariance function is independent of the observed targets y as
shown in Equation (3). Hence, we simplify the optimization over the expectation (see Appendix A.2)
to

arg max
θ

αGI(θ|θt,D) = arg min
θ

Tr (Σ′ (θt| [X, θ])), (6)

where the variance only depends on a virtual data set X̂ = [θ1, . . . , θn, θ] =: [X, θ]. In conclusion,
the most informative new parameter θ to query is only dependent on where we sample next and is
independent of its outcome f(θ) = y.

When we replace the Jacobian’s variance in (6) with (3) and leave out constant factors we get

θ∗ = arg max
θ

Tr

(
∇θtK(θt, X̂)

(
K(X̂, X̂) + σ2

nI
)−1 (

∇θtK(θt, X̂)
)T)

. (7)

Since the acquisition function only depends on the virtual data set, its optimization can be handled
computationally efficient by performing the matrix inversion in (7) with Cholesky factor updates.
Furthermore, since the Jacobian is a local property we can optimize (7) effectively using the of-the-
shelf optimizer supplied by BoTorch [31] (L-BFGS-B) using multiple restarts.

3.2 The GIBO algorithm

The guided sequential search of the acquisition function for gradient estimates divides the resulting
algorithm into two loops: An outer loop for iterative parameter updates and an inner loop where the
acquisition function queries points to increase gradient information. The basic algorithm is given in
Alg. 1.

Algorithm 1 GIBO
1: Hyperparameters: stepsize η, hyperpriors for GP hyperparameters, number of iterations N and number of

samples for a gradient estimate M .
2: Initialize: place a GP prior on J(θ), set θ0 and D = {}.
3: for t = 0, . . . , N do . Parameter updates.
4: Sample noisy objective function: yt = J(θt) + εt
5: Extend data set: D ← {D, (θt, yt)}
6: GP hyperparameter optimization.
7: for m = 1, 2, . . . ,M do . Sample points for a gradient estimate.
8: Get query point: θ̂ = argmaxθ̂ αGI(θ̂|θt,D).
9: Sample noisy objective function: ŷ = J(θ̂) + ω. . Optionally: Use a policy gradient method

for additional derivative observations.
10: Extend data set: D ← {D, (θ̂, ŷ)}.
11: Update the posterior probability distribution of∇θJ .
12: end for
13: θt+1 = θt + η · E

[
∇θJ

∣∣
θ=θt

]
. Gradient ascent, or any other gradient based optimizer.

14: end for

3.3 Implementation choices

In the following, we introduce some details of our implementation of Algorithm 1 that further improve
the performance and computational efficiency of our method.

Local GP model. Sparse approximation of GPs can be applied on BO when the computational
burden of exact inference is too big [32]. In our case, however, we are only interested in estimating
the local Jacobian at the current parameter θt. We define a sparse approximation of the posterior at
the current parameter θt heuristically with the last Nm sampled points. Estimating a local model has
the additional benefit of making the model selection and hyperparameter optimization simpler. We
can approximate non-stationary processes locally by dynamically adapting hyperparameters.

Local optimization of GI. Following similar reasoning as above, we do not have to optimize the GI
acquisition function globally since we expect informative points to be relatively close to the current
parameter θt when using a SE kernel. Hence, we define our search bounds locally as [θt− δb, θt+ δb].

6

10−1

100

f
∗
−
f̂
∗

f
∗

4-dim. domain 8-dim. domain 16-dim. domain 20-dim. domain

0 100 200 300

of evaluations

10−1

100

f
∗
−
f̂
∗

f
∗

24-dim. domain

0 100 200 300

of evaluations

28-dim. domain

0 100 200 300

of evaluations

32-dim. domain

0 100 200 300

of evaluations

36-dim. domain

ARS Vanilla BO CMA-ES GIBO

Figure 3: Within-model comparison: Mean of the normalized distance of the function value at
optimizers’ best guesses from the true global maximum for eight different dimensional function
domains. 40 runs. Logarithmic scale.

Gradient normalization. The gradient is normalized with the Mahalanobis norm using the length-
scales of the SE kernel. Hence, the stepsize η is adapted automatically to scale with the correlation
between points. For the details see Appendix A.3.

State normalization. In the RL setting we can apply state normalization before we evaluate the
policy to determine the next action. This has the same effect as data whitening for regression tasks
and is beneficial when performing GP regression in unknown policy spaces. In case of a linear policy
πθ : Rp → Rm, πθ(s) = As + b with bias b ∈ Rm, states s ∈ Rp, means of states µs ∈ Rp and
variances of states σs ∈ Rp, state normalization can be defined by πθ

(
s−µs
σs

)
= A

(
s−µs
σs

)
+ b =

A · 1
σs
s−A · µsσs + b. State normalization is implemented in an efficient way that does not require

the storage of all states. Also, we only keep track of the diagonal of the state’s covariance matrix
with Welford’s online algorithm [33].

4 Empirical results

We empirically evaluate the performance of GIBO in three types of experiments. In the first experi-
ment, we compare our algorithm on several functions sampled from a GP prior so that Assumption 1
is satisfied. In these within-model comparisons [34], we can show that GIBO outperforms the
benchmark methods in terms of sample complexity and variance of regret, especially in higher
dimension. In a second experiment, we perform policy search for a linear quadratic regulator (LQR)
problem proposed by Mania et al. [1]. Finally, for RL environments of Gym [35] and MuJoCo
[36], we show that GIBO reaches acceptable rewards thresholds faster and with significantly less
variance than ARS. All data and source code necessary to reproduce the results are published at
https://github.com/sarmueller/gibo.

4.1 Within-model comparison

We evaluate GIBOs performance as a general black-box optimizer on functions that satisfy Assump-
tion 1. A straightforward way to guarantee this is by sampling the objective from a known GP prior.
This approach has been called within-model comparison by Hennig and Schuler [34] but has likewise
been used in other BO literature (e.g., [37, 38]). To show that GIBO scales particularly well to
higher-dimensional search spaces, we analyze synthetic benchmarks for up to 36 dimensions.

The experiment was carried out over a d-dimensional unit domain I = [0, 1]d. For each domain, we
generate 40 different test functions. For each function, 1000 values were jointly sampled from a GP
prior with a SE kernel and unit signal variance. To cover the space evenly, we used a quasi-random

7

https://github.com/sarmueller/gibo

4 12 20 28 36

dimensions

0.00

0.25

0.50

0.75

1.00

f
∗
−
f̂
∗

f
∗

ARS

4 12 20 28 36

dimensions

Vanilla BO

4 12 20 28 36

dimensions

CMA-ES

4 12 20 28 36

dimensions

GIBO

Figure 4: Within-model comparison: Boxplots (40 runs) show the normalized distance of optimizers’
best found values after 300 function evaluations from the true global maximum. The whiskers lengths
are 1.5 of the interquartile range; the black horizontal lines represent medians, green dots the means.

Sobol sampler. To perform experiments with comparable difficulty across different dimensional
domains, we increase the lengthscales in higher dimensions by sampling them from the distribution
`(d), introduced in Appendix A.4. The resulting posterior means were the objective function. All
algorithms were started in the middle of the domain x0 = [0.5]d and had a limited budget of 300
noised function evaluations. The noise was Gaussian distributed with standard deviation σ = 0.1.
A more detailed description of the experiments, including the true global maximum search and an
out-of-model comparison, is given in Appendix A.4.

We compared our algorithm GIBO to ARS, CMA-ES [24] and standard BO with expected improve-
ment [39] as acquisition function (‘Vanilla BO’). To ensure a fair comparison, domain knowledge was
passed to the ARS and CMA-ES algorithms by scaling the space-dependent hyperparameters with the
mean of the lengthscale distribution `(d). For details about the hyperparameters see Appendix A.7.
The unknown hyperparameters were hand-tuned on a low dimensional example.

Fig. 3 shows the normalized difference between the global optimum and the function values of the
optimizer’s best guesses. The within-model comparison shows that our algorithm outperforms vanilla
BO on all test functions, except for the 4-dimensional domain. With a limited budget of 300 function
evaluations the proposed method, GIBO, achieved lower regret than the baseline methods, especially
in higher dimensions. Further, GIBO was able to reduce the variance of obtained regret significantly,
as shown in Figure 4, which indicates a consistently better performance.

4.2 Linear quadratic regulator

The classic LQR with known dynamics is a fundamental problem in control theory. In this setting, an
agent seeks to control a linear dynamical system while minimizing a quadratic cost. With available

0 10000 20000 30000 40000

Number Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

F
eq

u
en

cy
o
f

S
ta

b
il
it

y

GIBO

LSPI

ARS

0 10000 20000 30000 40000

Number Timesteps

10−2

10−1

100

101

R
el

a
ti

v
e

C
o
st

GIBO

LSPI

ARS

Figure 5: Results for the LQR experiment. Left: How frequently GIBO found stabilizing controllers
in comparison to ARS and LSPI. The frequencies are estimated from 100 trials. Right: The sub-
optimality gap of the controllers produced by GIBO compared to ARS and LSPI. The points along
the dashed line denote the median cost, and the shaded region covers 2-nd to 98-th percentile out of
100 trials. Values for the benchmark methods in both images are estimated from [1].

8

0 25 50 75 100

of evaluations

0

200

400

600

A
ve

ra
ge

R
ew

a
rd

Cartpole-v1

0 500 1000 1500 2000

of evaluations

0

200

400

Swimmer-v1

0 2000 4000 6000 8000

of evaluations

0

1000

2000

3000

4000
Hopper-v1

ARS

GIBO

Figure 6: Training curves of GIBO and ARS for classic control and MuJoCo tasks, averaged over 10
trails (thin lines). The shaded regions show the standard deviation.

dynamics, the LQR problem has an efficiently determinable optimal solution. LQR with unknown
dynamics, on the other hand, is less well understood. As argued in Mania et al. [1], this offers a new
type of benchmark problems, where one can set up LQR problems with challenging dynamics, and
compare model-free methods to known optimal costs. We compare GIBO against ARS and LSPI [40]
on a challenging LQR instance with unknown dynamics, proposed by Dean et al. [41]. The reader is
referred to Appendix A.6 for a complete introduction to the setup.

Fig. 5 shows the frequency of stable controllers found and the cost compared to the optimal cost
for GIBO, ARS, and LSPI. On the left in Fig. 5 we observe that GIBO requires significantly fewer
samples than ARS, equivalent to LSPI, to find a stabilizing controller. But we note that LSPI requires
an initial controller K0, which stabilizes a discounted version of the LQR problem. Neither GIBO
nor ARS require any special initialization. All algorithms achieve similar regrets.

4.3 Gym and MuJoCo

Lastly, we evaluate the performance of GIBO on classic control and MuJoCo tasks included in the
OpenAI Gym [35, 36]. The OpenAI Gym provides benchmark reward functions that we use to
evaluate our policies’ performance compared to policies trained by ARS. Mania et al. [1] showed
that deterministic linear policies, πθ : Rp → Rm, πθ(s) = As + b, are sufficiently expressive for
MuJoCo locomotion tasks. Consequently, we define our parameter space by θ = (A, b) ∈ Rp×m+m.
For the CartPole-v1 we need 4, for the Swimmer-v1 16 and for the Hopper-v1 36 dimensions. For all
environments, we normalize the reward axis. For the Hopper environment, we additionally subtract
the survival bonus and use state normalization; find further details in Appendix A.5. We hand-tuned
the hyperparameter of GIBO within a reasonable degree, where the hyperparameter for ARS are taken
from [1]. In the following, we use the reward over function evaluations (calls of RL environment) as
evaluation metric for sample efficiency. We averaged the reported policy rewards over ten trials. In
Fig. 6 we observe that GIBO reaches the reward thresholds faster and with significantly less variance
than ARS.

0 100 200 300

of evaluations

10−1

100

f
∗
−
f̂
∗

f
∗

12-dim. domain

0 100 200 300

of evaluations

24-dim. domain

0 100 200 300

of evaluations

36-dim. domain

GIBO GIBO w/o grad. norm.

12 24 36

dimensions

0.00

0.25

0.50

0.75

1.00

GIBO

12 24 36

dimensions

GIBO w/o grad. norm.

Figure 7: Ablation study for within-model comparison. GIBO with and without gradient normal-
ization. Left: Regret over 300 function evaluations. Right: Distribution of regret after 300 function
evaluations.

9

0 25 50 75 100

of evaluations

0

200

400

600

A
ve

ra
g
e

R
ew

a
rd

Cartpole-v1

0 500 1000 1500 2000

of evaluations

0

200

400

Swimmer-v1

0 2000 4000 6000 8000

of evaluations

0

2000

Hopper-v1

GIBO

w/o grad.
norm.

w/o state
norm.

Figure 8: Ablation study for RL environments. Training curves of GIBO and its ablated variants
on different RL environments, averaged over 10 trials.

4.4 Ablation study

In this section, we investigate different implementation choices of the GIBO algorithm. We conduct
our ablation experiments on the within-model comparison with synthetic objective functions as
well as on RL environments. Gradient normalization using the known GP lengthscales leads to a
significant improve in mean performance as well as reduced variance, see Fig. 7. When optimizing
policies for the RL benchmarks the GP lengthscales are not known and are learned during training.
Fig. 8 shows that even in the case of learned hyperparameters gradient normalization proves to be
important for the performance. We applied state normalization only to the Hopper environment and
found that for this task it is not possible to learn well-performing policies without this extension. This
shows that the normalization of an unknown policy space can be crucial for GP regression.

5 Conclusion

We introduce GIBO, a gradient-based optimization algorithm with a BO-type active sampling strategy
to improve gradient estimates for black-box optimization problems. When the model assumptions
of BO are satisfied, we show that the algorithm is significantly more sample-efficient, especially in
higher dimensions, compared to baseline algorithms for black-box optimization.

Additionally, we show the benefits of active sampling and probabilistic gradient estimates with GIBO
by solving popular RL benchmarks for which the model assumptions do not hold exactly. When
compared to random sampling, GIBO is more sample efficient and has lower variance. Yet, the
performance benefits are less pronounced in the RL task. This highlights that GIBO especially
shines when prior knowledge is available while it still performs reasonably otherwise. Nonetheless,
we want to remark that the prior biases the gradient estimates and wrong assumptions about the
objective function can deteriorate performance. However, in some sense, all hyperparameters in RL
algorithms encode some form of prior knowledge about the problem at hand. In our view, explicit
probabilistic priors are an appropriate and intuitive form of prior knowledge to obtain, e.g., from
domain knowledge or available data from prior experiments.

Since it is straightforward to include derivative observations into GIBO, we expect similar improve-
ments for other existing RL methods when integrating our method as an additional layer between
gradient estimators and optimizers. The proposed framework can suggest different exploration
policies and combine all available data into a posterior belief over the Jacobian. For future research,
we want to utilize GIBO with state-of-the-art actor-critic algorithms to improve sample complexity
of these methods.

In a more general context, our active sampling methodology makes a step towards autonomous
decision-making. GIBO decides on a learning experiment for the autonomous agent. Whenever a
decision process is automated, the responsibility for legal and ethical consequences of these decisions
must be resolved. However, we do not discuss how the decision-maker, GIBO, can be constrained to
ensure compliance with regulatory requirements, which is a relevant aspect for future research.

10

Acknowledgments and Disclosure of Funding

The authors thank D. Baumann, P. Berens, A. R. Geist, H. Heidrich and F. Solowjow for their helpful
comments and discussions. This work was supported in part by the Cyber Valley Initiative; the
Max Planck Society; by the German Federal Ministry of Education Research (BMBF): Tübingen
AI Center, FKZ: 01IS18039A; and by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy – EXC number 2064/1 – Project number
390727645. The authors thank the International Max Planck Research School for Intelligent Systems
for supporting A. von Rohr and S. Müller.

References
[1] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies

is competitive for reinforcement learning. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[2] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[5] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[6] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization, 13(4):455–492, 1998.

[7] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[8] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, pages
148–175, 2016.

[9] Daniel J. Lizotte, Tao Wang, Michael H. Bowling, and Dale Schuurmans. Automatic gait
optimization with gaussian process regression. In International Joint Conferences on Artificial
Intelligence, volume 7, pages 944–949, 2007.

[10] Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using Trajectory Data to Improve Bayesian
Optimization for Reinforcement Learning. Journal of Machine Learning Research, pages
253–282, 2014.

[11] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic LQR tuning based on
Gaussian process global optimization. In IEEE International Conference on Robotics and
Automation, pages 270–277, 2016.

[12] Ruben Martinez-Cantin. Bayesian optimization with adaptive kernels for robot control. In IEEE
International Conference on Robotics and Automation, pages 3350–3356, 2017.

[13] Alexander von Rohr, Sebastian Trimpe, Alonso Marco, Peer Fischer, and Stefano Palagi. Gait
learning for soft microrobots controlled by light fields. In International Conference on Intelligent
Robots and Systems, pages 6199–6206, 2018.

11

[14] Riad Akrour, Dmitry Sorokin, Jan Peters, and Gerhard Neumann. Local Bayesian optimization
of motor skills. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 41–50. PMLR, 06–11 Aug 2017.

[15] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[16] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for
black-box optimization using monte carlo tree search. In Advances in Neural Information
Processing Systems, volume 33, pages 19511–19522. Curran Associates, Inc., 2020.

[17] Lukas P. Fröhlich, Melanie N. Zeilinger, and Edgar D. Klenske. Cautious bayesian optimization
for efficient and scalable policy search. In Proceedings of the 3rd Conference on Learning for
Dynamics and Control, volume 144, pages 227–240. PMLR, 07 – 08 June 2021.

[18] Mark McLeod, Stephen Roberts, and Michael A. Osborne. Optimization, fast and slow:
optimally switching between local and Bayesian optimization. In Proceedings of the 35th
International Conference on Machine Learning, volume 80, pages 3443–3452. PMLR, 10–15
Jul 2018.

[19] Shubhanshu Shekhar and Tara Javidi. Significance of gradient information in bayesian opti-
mization. In Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, volume 130, pages 2836–2844. PMLR, 13–15 Apr 2021.

[20] Michael A. Osborne, Roman Garnett, and Stephen J. Roberts. Gaussian processes for global
optimization. In 3rd International Conference on Learning and Intelligent Optimization, pages
1–15, 2009.

[21] Mohamed O. Ahmed, Bobak Shahriari, and Mark Schmidt. Do we need “harmless” bayesian
optimization and “first-order” bayesian optimization. In NeurIPS Workshop on Bayesian
Optimization, 2016.

[22] Jian Wu, Matthias Poloczek, Andrew G. Wilson, and Peter Frazier. Bayesian Optimization with
Gradients. In Advances in Neural Information Processing Systems, pages 5267–5278, 2017.

[23] K. J. Prabuchandran, Santosh Penubothula, Chandramouli Kamanchi, and S. Bhatnagar. Novel
First Order Bayesian Optimization with an Application to Reinforcement Learning. Applied
Intelligence, pages 1565–1579, 2021.

[24] Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-Adaptation in
Evolution Strategies. Evolutionary Computation, pages 159–195, 2001.

[25] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein.
Guided evolutionary strategies: augmenting random search with surrogate gradients. In Proceed-
ings of the 36th International Conference on Machine Learning, volume 97, pages 4264–4273.
PMLR, 09–15 Jun 2019.

[26] Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, and Yunhao Tang. Practical
nonisotropic monte carlo sampling in high dimensions via determinantal point processes.
In Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108, pages 1363–1374. PMLR, 26–28 Aug 2020.

[27] Francesco Faccio, Louis Kirsch, and Jürgen Schmidhuber. Parameter-based value functions,
2021.

[28] Sergey Levine and Vladlen Koltun. Guided policy search. In Sanjoy Dasgupta and David
McAllester, editors, Proceedings of the 30th International Conference on Machine Learning,
volume 28, pages 1–9, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[29] Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with
optimistic actor critic. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

12

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[31] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020.

[32] Mitchell McIntire, Daniel Ratner, and Stefano Ermon. Sparse gaussian processes for bayesian
optimization. In Thirty-Second Conference on Uncertainty in Artificial Intelligence, page
517–526, 2016.

[33] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products.
Technometrics, pages 419–420, 1962.

[34] Philipp Hennig and Christian J. Schuler. Entropy Search for Information-Efficient Global
Optimization. Journal of Machine Learning Research, pages 1809 – 1837, 2012.

[35] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[36] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

[37] José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W. Hoffman,
and Zoubin Ghahramani. A General Framework for Constrained Bayesian Optimization using
Information-based Search. Journal of Machine Learning Research, pages 1–53, 2016.

[38] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization.
In Proceedings of the 34th International Conference on Machine Learning, pages 3627–3635,
2017.

[39] Donald R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization, pages 345–383, 2001.

[40] Stephen Tu and Benjamin Recht. Least-squares temporal difference learning for the linear
quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 5005–5014. PMLR, 10–15 Jul 2018.

[41] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the Sample
Complexity of the Linear Quadratic Regulator. Foundations of Computational Mathematics,
pages 633–679, 2020.

[42] Geoffrey Hinton. Lecture: Neural Networks for Machine Learning, 2012. https://www.cs.
toronto.edu/~hinton/nntut.html.

[43] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, pages 533–536, 1986.

[44] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine Learning Research, pages 2121–2159,
November 2011.

[45] R. S. Anderssen, R. P. Brent, D. J. Daley, and P. A. P. Moran. Concerning∫ 1

0
· · ·
∫ 1

0

(
x2

1 + · · ·+ x2
k

)1/2
dx1 . . . dxk and a Taylor Series Method. SIAM Journal on Ap-

plied Mathematics, pages 22–30, 1976.

[46] Stephen Tu. Sample Complexity Bounds for the Linear Quadratic Regulator. Technical Report
UCB/EECS-2019-42, University of California at Berkeley, 2019.

[47] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon
Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration.
In Advances in Neural Information Processing Systems, 2018.

13

https://www.cs.toronto.edu/~hinton/nntut.html
https://www.cs.toronto.edu/~hinton/nntut.html

	Introduction
	Preliminaries
	Problem setting
	Jacobian GP model
	Related work

	Gradient informative Bayesian optimization
	Maximizing gradient information
	The GIBO algorithm
	Implementation choices

	Empirical results
	Within-model comparison
	Linear quadratic regulator
	Gym and MuJoCo
	Ablation study

	Conclusion
	Supplementary material to Local policy search with Bayesian optimization
	Derivatives of the squared exponential kernel
	Derivation of the acquisition function
	Gradient normalization
	Synthetic experiments
	Gym and MuJoCo
	Linear quadratic regulator
	Hyperparameters
	Software licenses

