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ABSTRACT

The fundamental principle of Graph Neural Networks (GNNs) is to exploit the
structural information of the data by aggregating the neighboring nodes using a
‘graph convolution’. Therefore, understanding its influence on the network per-
formance is crucial. Convolutions based on graph Laplacian have emerged as the
dominant choice with the symmetric normalization of the adjacency matrix A, de-
fined as D− 1

2AD− 1
2 , being the most widely adopted one, where D is the degree

matrix. However, some empirical studies show that row normalization D−1A
outperforms it in node classification. Despite the widespread use of GNNs, there
is no rigorous theoretical study on the representation power of these convolution
operators, that could explain this behavior. In this work, we analyze the influence
of the graph convolutions theoretically using Graph Neural Tangent Kernel in a
semi-supervised node classification setting. Under a Degree Corrected Stochastic
Block Model we analyze different graphs that have homophilic, heterophilic and
core-periphery structures, and prove that: (i) row normalization preserves the un-
derlying class structure better than other convolutions; (ii) performance degrades
with network depth due to over-smoothing, but the loss in class information is the
slowest in row normalization; (iii) skip connections retain the class information
even at infinite depth, thereby eliminating over-smoothing. We finally validate
our theoretical findings numerically and on real datasets.

1 INTRODUCTION

With the advent of Graph Neural Networks (GNNs), there has been a tremendous progress in the
development of computationally efficient state-of-the-art methods in various graph based tasks, in-
cluding drug discovery, community detection and recommendation systems (Wieder et al., 2020;
Fortunato & Hric, 2016; van den Berg et al., 2017). Many of these problems depend on the struc-
tural information of the entities along with the features for effective learning. Because GNNs exploit
this topological information encoded in the graph, it can learn better representation of the nodes or
the entire graph than traditional deep learning techniques, thereby achieving state-of-the-art perfor-
mances. In order to accomplish this, GNNs apply aggregation function to each node in a graph that
combines the features of the neighboring nodes, and its variants differ principally in the methods of
aggregation. For instance, graph convolution networks use mean neighborhood aggregation through
spectral approaches (Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017) or spatial
approaches (Hamilton et al., 2017; Duvenaud et al., 2015; Xu et al., 2019), graph attention networks
apply multi-head attention based aggregation (Velickovic et al., 2018) and graph recurrent networks
employ complex computational module (Scarselli et al., 2008; Li et al., 2016). Of all the aggregation
policies, the spectral approach based on graph Laplacian is most widely used in practice, specifi-
cally the one proposed by Kipf & Welling (2017) owing to its simplicity and empirical success. In
this work, we focus on such graph Laplacian based aggregations in Graph Convolution Networks
(GCNs), which we refer to as graph convolutions or diffusion operators.

Kipf & Welling (2017) propose a GCN for node classification, a semi-supervised task, where the
goal is to predict the label of a node using its feature and neighboring node information. This work
suggests symmetric normalization Ssym = D− 1

2AD− 1
2 as the graph convolution. Ever since its in-

troduction, Ssym remains the popular choice. However, subsequent works (Wang et al., 2018; Wang
& Leskovec, 2020; Ragesh et al., 2021) explore row normalization Srow = D−1A and particu-

1



Under review as a conference paper at ICLR 2023

larly, Wang et al. (2018) observes that Srow outperforms Ssym for two-layered GCN empirically.
Intrigued by this observation, and as both Ssym and Srow are simply degree normalized adjacency
matrices, we study the behavior over depth and observe that Srow performs better than Ssym in this
case as well, as illustrated in Figure 1 (Details of the experiment in Appendix B.1).

2 4 8
Depth of GCN

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 o
f c

la
ss

 p
re

di
ct

io
n 

(%
)

Srow
Ssym

Skip Srow
Skip Ssym

Figure 1: Performance of GCN
over depth with and without
skip connections using Ssym and
Srow evaluated on Cora dataset.

Furthermore, another striking observation from Figure 1 is that
the performance of GCN without skip connections decreases
considerably with depth for both Ssym and Srow. This contra-
dicts the conventional wisdom about standard neural networks
which exhibit improvement in the performance as depth in-
creases. Several works (Kipf & Welling, 2017; Chen et al.,
2018; Wu et al., 2019) observe this behavior empirically and
attribute it to the over-smoothing effect from the repeated ap-
plication of the diffusion operator, resulting in averaging out of
the feature information to a degree where it becomes uninforma-
tive (Li et al., 2018; Oono & Suzuki, 2019; Esser et al., 2021).
As a solution to this problem, Chen et al. (2020) and Kipf &
Welling (2017) propose different forms of skip connections that
overcome the smoothing effect and thus outperform the vanilla
GCN. Extending it to the comparison of graph convolutions, our experiment shows Srow is prefer-
able to Ssym over depth even in GCNs with skip connections (Figure 1). Naturally, we ask: what
characteristics of Srow enable better representation learning than Ssym in GCNs?

Rigorous theoretical analysis is particularly challenging in GCNs compared to the standard neural
networks because of the graph convolution. Adding skip connections further increase the complexity
of the analysis. To overcome these difficulties, we consider GCN in infinite width limit wherein the
Neural Tangent Kernel (NTK) captures the network characteristics very well (Jacot et al., 2018). The
infinite width assumption is not restrictive for graph convolution analysis as the convolution operates
on the graph and not the network directly, thus showing same observations as trained GCN (Fig-
ure 5). Moreover, NTK enables the analysis to be parameter-free and hence eliminating additional
complexity induced for example by optimization. Through the lens of NTK, we study the impact
of different graph convolutions under a specific data distributional assumption — Degree Corrected
Stochastic Block Model (DC-SBM)(Karrer & Newman, 2011), a sparse random graph model. The
node degree heterogeneity induced in DC-SBM allows us to analyze the effect of different types
of normalization of the adjacency matrix, thus revealing the characteristic difference between Ssym

and Srow. Additionally, this model enables analysis of graphs that have homophilic, heterophilic
and core-periphery structures. In this paper, we present a formal approach to analyze GCNs and,
specifically, the representation power of different graph convolutions, the influence of depth and the
role of skip connections. This is a significant step toward understanding GCNs as it facilitates for
more informed network design choices like the convolution and depth, as well as development of
more competitive methods based on grounded theoretical reasoning rather than heuristics.

Contributions. This paper provides rigorous theoretical analysis of the discussed empirical observa-
tions in GCN under DC-SBM distribution using graph NTK, leading to the following contributions.

(i) In Section 2, we derive the NTK for GCN in infinite width limit considering node classification
setting. Using the NTK for linear GCN and under DC-SBM data distribution, we show in Section 3
that Srow preserves class information by computing the population NTK for different graph convo-
lutions. We also present numerical validation of the result in homophilic and heterophilic graphs.

(ii) We prove the convolution operator specific over-smoothing effect in vanilla GCN by showing
the degradation in class separability with depth in Section 3.1, and also illustrate it experimentally.

(iii) In Section 4, we leverage the power of NTK to analyze two different skip connections (Kipf &
Welling, 2017; Chen et al., 2020). We derive the corresponding NTKs and show that skip connec-
tions retain class information even at infinite depth along with numerical validation.

(iv) We show that Ssym maybe preferred over Srow in absence of class structure in Section 5, and
validate the theoretical results on real datasets Cora in Section 6 and Citeseer in Appendix B.5.

We finally conclude in Section 7 with the discussion on the impact of the result and further possibil-
ities, and provide all the proofs, experimental details and additional experiments in the appendix.
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Related Work. While GNNs are extensively used in practice, their understanding is limited, and
the analysis is mostly restricted to empirical approaches (Bojchevski et al., 2018; Zhang et al., 2018;
Ying et al., 2018; Wu et al., 2020). Beyond empirical methods, rigorous theoretical analysis using
learning theoretical bounds such as VC Dimension, Scarselli et al. (2018) or PAC-Bayes Liao et al.
(2021) are propounded. Rademacher Complexity bounds (Garg et al., 2020; Esser et al., 2021)
show that normalized graph convolution is beneficial, but those works do not provide insight on
the different normalizations, and their influence on the GCN performance. Another possible tool
is the NTK using which interesting theoretical insights in deep neural networks are derived (e.g.
(Du et al., 2019a)). In the context of GNNs, Du et al. (2019b) derives the NTK in the supervised
setting (each graph is a data instance to be classified) and empirically studies the NTK performance,
however does not extend it to a theoretical analysis. In contrast, we derive the NTK in the semi-
supervised setting for GCN with and without skip connections, and use it to further theoretically
analyze the influence of different convolutions with respect to over-smoothing. Theoretical studies
(Oono & Suzuki, 2019; Cai & Wang, 2020) show that over-smoothing causes the expressive power
of GNNs to decrease exponentially with depth, while Keriven (2022) proves that in linear GNNs
a finite number of convolutions improves learning before over-smoothing kicks in. While over-
smoothing and role of skip connections in GNNs are theoretically analyzed in some works (Esser
et al., 2021), the influence of different convolutions that causes over-smoothing and their interplay
with skip connections is not studied. For a comprehensive theory survey see Jegelka (2022).

Notations. We represent matrix and vector by bold faced uppercase and lowercase letters, respec-
tively, the matrix Hadamard (entry-wise) product by ⊙ and the scalar product by ⟨., .⟩. We use M⊙k

to denote Hadamard product of matrix M with itself repeated k times. Let N (µ,Σ) be Gaussian
distribution with mean µ and co-variance Σ. We use σ̇(.) to represent derivative of function σ(.),
1n×n for the n × n matrix of ones, In for identity matrix of size n × n, 1[.] for indicator function,
E [.] for expectation, and [d] = {1, 2, . . . , d}.

2 NEURAL TANGENT KERNEL FOR GRAPH CONVOLUTIONAL NETWORK

Before going into a detailed analysis of graph convolutions we provide a brief background on Neu-
ral Tangent Kernel (NTK) and derive its formulation in the context of node level prediction using
infinitely-wide GCNs. Jacot et al. (2018); Arora et al. (2019); Yang (2019) show that the behav-
ior and generalization properties of randomly initialized wide neural networks trained by gradient
descent with infinitesimally small learning rate is equivalent to a kernel machine. Furthermore, Ja-
cot et al. (2018) also show that the change in the kernel during training decreases as the network
width increases, and hence, asymptotically, one can represent an infinitely wide neural network by a
deterministic NTK, which is defined by the gradient of the network with respect to its parameters as

Θ(x,x′) := E
W∼N (0,I)

[〈
∂F (W,x)

∂W
,
∂F (W,x′)

∂W

〉]
. (1)

Here F (W,x) represents the output of the network at data point x parameterized by W and the ex-
pectation is with respect to W, where all the parameters of the network are randomly sampled from
Gaussian distribution. Although the ‘infinite width’ assumption is too strong to model real (finite
width) neural networks, and the absolute performance may not exactly match, the empirical trends
of NTK match the corresponding network counterpart, allowing us to draw insightful conclusions.
This trade-off is worth considering as this allows the analysis of over-parameterised neural networks
without having to consider hyper-parameter tuning and training.

Formal GCN Setup and Graph NTK. We present the formal setup of GCN and derive the corre-
sponding NTK, using which we analyze different graph convolutions. Given a graph with n nodes
and a set of node features {xi}ni=1 ⊂ Rf , we may assume without loss of generality that the set of
observed labels {yi}mi=1 correspond to first m nodes. We consider K classes, thus yi ∈ {0, 1}K
and the goal is to predict the n −m unknown labels {yi}ni=m+1. We represent the observed labels
of m nodes as Y ∈ {0, 1}m×K , and the node features as X ∈ Rn×f with the assumption that entire
X is available during training. We define S ∈ Rn×n to be the graph convolution operator as an
expression of the adjacency matrix A and the degree matrix D. The GCN of depth d is given by

FW(X,S) :=

√
cσ
hd

Sσ

(
. . . σ

(√
cσ
h1

Sσ (SXW1)W2

)
. . .

)
Wd+1 (2)
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where W := {Wi ∈ Rhi−1×hi}d+1
i=1 is the set of learnable weight matrices with h0 = f and

hd+1 = K, hi is the size of layer i ∈ [d] and σ : R → R is the point-wise activation function. We
initialize all the weights to be i.i.d N (0, 1) and optimize it using gradient descent. We derive the
NTK for the GCN in infinite width setting, that is, h1, . . . , hd → ∞. While this setup is similar
to Kipf & Welling (2017), it is important to note that we consider linear output layer so that NTK
remains constant during training (Liu et al., 2020) and additionally add a normalization

√
cσ/hi

for layer i to ensure that the input norm is approximately preserved and c−1
σ = E

u∼N (0,1)

[
(σ(u))

2
]

(similar to Du et al. (2019a)). The following theorem states the NTK between every pair of nodes,
as a n× n matrix that can be computed at once, as shown below.

Theorem 1 (NTK for Vanilla GCN) For the vanilla GCN defined in (2), the NTK Θ at depth d is

Θ(d) =

d+1∑
k=1

Σk ⊙
(
SST

)⊙(d+1−k) ⊙

(
d+1−k⊙
k′=k

Ėk′

)
. (3)

Here Σk ∈ Rn×n is the co-variance between nodes of layer k, and is given by Σ1 = SXXTST ,
Σk = SEk−1S

T with Ek = cσ E
F∼N (0,Σk)

[
σ(F)σ(F)T

]
and Ėk = cσ E

F∼N (0,Σk)

[
σ̇(F)σ̇(F)T

]
.

Comparison to Du et al. (2019b). While the NTK in (3) is similar to the graph NTK in Du et al.
(2019b), the main difference is that NTK in our case is computed for all pairs of nodes in a graph
as we focus on semi-supervised node classification, whereas Du et al. (2019b) considers supervised
graph classification where input is many graphs and so the NTK is evaluated for all pairs of graphs.

3 CONVOLUTION OPERATOR Srow PRESERVES CLASS INFORMATION

We use the derived NTK in Theorem 1 to analyze different graph convolutions for S defined in
Definition 1 by making the following assumption on the network.

Assumption 1 (Linear GCN with orthonormal features) GCN in (2) is said to be linear with or-
thonormal features if the activation function σ(x) = x and XXT = In.

Remark on Assumption 1. The linear activation does not impact the performance of a GCN sig-
nificantly as Wu et al. (2019) empirically demonstrates that the linearized GCN performance is at
par with the non-linear models with much reduced complexity. Additional orthonormal features
assumption eliminates the influence of the features and facilitates identification of the influence of
different convolution operators. Besides, the evaluation of our theoretical results without this as-
sumption on real datasets is presented in Section 6 and Appendix B.5 that substantiate our findings.

Therefore, the NTK for linear GCN with orthonormal features of depth d is,

Θ(d) =

d+1∑
k=1

Σk ⊙
(
SST

)⊙(d+1−k)
with Σk = SkSkT

. (4)

Definition 1 Symmetric degree normalized Ssym = D− 1
2AD− 1

2 , row normalized Srow = D−1A,
column normalized Scol = AD−1 and unnormalized Sadj =

1
nA convolutions.

While the NTK in (4) gives a precise characterization of the infinitely wide GCN, we can not directly
draw conclusions about the convolution operators without further assumptions on the input graph.
Therefore, we consider a planted graph model as described below, that helps in establishing the exact
representation power of each operator.

Random Graph Model. We consider that the underlying graph is from the Degree Corrected
Stochastic Block Model (DC-SBM) (Karrer & Newman, 2011) since it enables us to distinguish
between Ssym, Srow, Scol and Sadj by allowing non-uniform degree distribution on the nodes.
The model is defined as follows: Consider a set of n nodes divided into K latent classes (or com-
munities), Ci ∈ [1,K]. The DC-SBM model is characterized by the parameters p, q ∈ [0, 1]—
governing the edge probabilities inside and outside classes—and the degree correction vector
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π = (π1, . . . , πn) ∈ [0, 1]n with
∑

i πi = 1. A random graph on n nodes, generated from DC-
SBM, has mutually independent edges with edge probabilities specified by the population adjacency
matrix M = E [A] ∈ Rn×n, where

Mij =

{
pπiπj if Ci = Cj
qπiπj if Ci ̸= Cj

This allows us to model different graph types: Homophilic graphs: 0 ≤ q < p ≤ 1, Heterophilic
graphs: 0 ≤ p < q ≤ 1 and Core-Periphery graphs: p = q (no assumption on class structure)
and π encode core and periphery. It is evident that the NTK is a complex quantity and computing
its expectation is challenging given the dependency of terms from the degree normalization in S, its
powers Si and SST . To simplify our analysis, we make the following assumption on DC-SBM,

Assumption 2 (Population DC-SBM) The graph has a weighted adjacency A = M.

Remark on Assumption 2. Assuming A = M is equivalent to analyzing DC-SBM in expected
setting and it further enables the computation of analytic expression for the population NTK instead
of the expected NTK. Moreover, we observe empirically that this analysis hold for random DC-SBM
setting as well. In addition, this consideration also implies addition of self loop with a probability p.

In the following theorem, we state the population NTK for graph convolutions Ssym, Srow, Scol

and Sadj for K = 2 with Assumption 1 and 2. The result extends to K > 2 as discussed in the
appendix.

Theorem 2 (Population NTKs Θ̃ for the four graph convolutions S) Let Assumption 1 and 2
hold, K = 2 and r = p−q

p+q , δij = (−1)
1[Ci ̸=Cj ]. Furthermore, π is chosen such that

∑n
i=1 πi1[Ci =

k] = 1
K and

∑n
i=1 π

2
i 1[Ci = k] = γ ∀ k, where γ is a constant. Then ∀i, j, population NTKs Θ̃sym,

Θ̃row, Θ̃col and Θ̃adj of depth d for S = Ssym, Srow,Scol and Sadj respectively, are,(
Θ̃(d)

sym

)
ij
=

√
πiπj

[
1−

(√
πiπj

(
1 + δijr

2
))d+1

1−√
πiπj (1 + δijr2)

+ δijr
2(d+1)

1−
(√

πiπj

(
1 + δijr

2
)
r−2
)d+1

1−√
πiπj (1 + δijr2) r−2

]
,

(
Θ̃(d)

row

)
ij
= 2γ

[
1−

(
2γ
(
1 + δijr

2
))d+1

1− 2γ (1 + δijr2)
+ δijr

2(d+1) 1−
(
2γ
(
1 + δijr

2
)
r−2
)d+1

1− 2γ (1 + δijr2) r−2

]
,

(
Θ̃

(d)
col

)
ij
= nπiπj

[
1−

(
nπiπj

(
1 + δijr

2
))d+1

1− nπiπj (1 + δijr2)
+ δijr

2(d+1) 1−
(
nπiπj

(
1 + δijr

2
)
r−2
)d+1

1− nπiπj (1 + δijr2) r−2

]
,

(
Θ̃

(d)
adj

)
ij
= πiπj

d+1∑
k=1

γ2k+d−k

n2k

(
1[δij = 1]

(
p2 + q2

)
+ 1[δij = −1] (2pq)

)d+1−k ×

2k−1∑
l=0

1[δij = 1]

(
2k

2l

)
p2

k−2lq2l + 1[δij = −1]

(
2k

2l + 1

)
p2

k−2l−1q2l+1.

Note that the two assumptions on π are only to express the kernel in a simplified, easy to comprehend
format. It is derived without the assumptions on π in Appendix A.2.2. Furthermore, the numerical
validation of our result is without both these assumptions (Section 3.2).

Comparison of graph convolutions. The population NTKs Θ̃(d) of depth d in Theorem 2 describes
the information that the kernel has after d convolutions with S. To classify the nodes perfectly, the
kernel should ideally have a block structure that aligns with the DC-SBM (p and q blocks) unaffected
by degree correction π, showing class separability, that is, gap between in-class and out-of-class
blocks proportional to p − q. On this basis, only Θ̃row exhibits a block structure unaffected by the
degree correction π, and the gap is determined by r2 and d, making Srow preferable over Ssym,
Sadj and Scol. On the other hand, Θ̃sym, Θ̃col and Θ̃adj are influenced by the degree correction
which obscures the class information especially with depth. Although Θ̃sym and Θ̃col seem similar,
Θ̃col is additionally influenced by the number of nodes n in the graph, making it undesirable over
Ssym. As a result, the preference order from the theory is Θ̃row ≻ Θ̃sym ≻ Θ̃col ≻ Θ̃adj .
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Figure 2: Numerical validation of Theorem 2 using homophilic (q < p) and heterophilic (p < q)
DC-SBM (Column 1). Columns 2 and 3 illustrate the exact NTKs of depth=2 for Ssym and Srow,
respectively. Column 4 shows the average gap between in-class and out-of-class blocks from theory.

3.1 IMPACT OF DEPTH IN VANILLA GCN

Given that r = p−q
p+q < 1, Theorem 2 shows that the difference between in-class and out-of-class

blocks decreases with depth monotonically which in turn leads to decrease in performance with
depth, therefore explaining the observation in Figure 1. The kernel in the limit is stated below.

Corollary 1 (Population NTK Θ̃(∞) as d → ∞ ) From Theorem 2,
(
Θ̃

(∞)
adj

)
ij

= 0 and ∀ i, j for

conv ∈ {sym, row, col},
(
Θ̃

(∞)
conv

)
ij

=
νij

1− νij (1 + δijr2)
where νij =

√
πiπj for sym, νij =

2γ for row and νij = nπiπj for col.

From the corollary, we infer that the class separability at infinite depth is 0 for Sadj , and O(r2) for
Ssym, Srow and Scol showing that the large depth GCN has very little to zero class information. To
further understand this, we plot the average in-class and out-of-class block difference for homophilic
and heterophilic graphs using the theoretically derived population NTK Θ̃(d) for depths [1, 10] in a
well separated DC-SBM (Column 4 of Figure 2). It clearly shows the rapid degradation of class sep-
arability with depth and the gap goes to 0 for large depths in all the four convolutions. Additionally,
the gap in Θ̃

(d)
row is the highest showing that the class information is better preserved, illustrating the

strong representation power of Srow. Consequently, large depth is undesirable for all the four graph
convolutions in vanilla GCN and the theory suggests Srow as the best choice for shallow GCN.

3.2 NUMERICAL VALIDATION FOR RANDOM GRAPHS

Theorem 2 and Corollary 1 show that Srow has better representation power under Assumption 1 and
2, that is, for the linear GCN with orthonormal features and population DC-SBM. We validate this
on homophilous and heterophilous random graphs generated from DC-SBM shown in column 1 of
Figure 2. A graph of n = 1000 nodes with equal sized classes is sampled from each DC-SBM,
respectively. The heatmaps for depth=2 in the case of both homophily and heterophily graphs show
that the class information for all the nodes is well preserved in Srow as there is a clear block structure
than Ssym in which each node is diffused unequally due to the degree correction. Thus validating
the results derived from population NTK. Appendix B.3 presents the results for Sadj and Scol where
both are uninformative and behave as derived theoretically.

4 SKIP CONNECTIONS RETAIN INFORMATION EVEN AT INFINITE DEPTH

Skip connection is the most common way to overcome the performance degradation with depth in
GCNs, but little is known about the effectiveness of different skip connections and their interplay
with the convolutions. While our focus is to understand the interplay with convolutions, we also
include the impact of convolving with and without the feature information. Hence, we consider the
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following two variants: Skip-PC (pre-convolution), where the skip is added to the features before
applying convolution (Kipf & Welling, 2017); and Skip-α, which gives importance to the features by
adding it to each layer without convolving with S (Chen et al., 2020). To facilitate skip connections,
we need to enforce constant layer size, that is, hi = hi−1. Therefore, we transform the input layer
using a random matrix W to H0 = XW of size n × h where Wij ∼ N (0, 1) and h is the hidden
layer size. Let Hi be the output of layer i.

Definition 2 (Skip-PC) In a Skip-PC (pre-convolution) network, the transformed input H0

is added to the hidden layers before applying the graph convolution S, that is, Hi :=√
cσ
h S (Hi−1 + σs (H0))Wi ∀i ∈ [d], where σs(.) can be linear or ReLU.

The above definition deviates from Kipf & Welling (2017) in the fact that we skip to the input layer
instead of the previous layer. The following defines the skip connection similar to Chen et al. (2020).

Definition 3 (Skip-α) Given an interpolation coefficient α ∈ (0, 1), a Skip-α network is defined
such that the transformed input H0 and the hidden layer are interpolated linearly, that is, Hi :=√

cσ
h ((1− α)SHi−1 + ασs (H0))Wi ∀i ∈ [d], where σs(.) can be linear or ReLU.

4.1 NTK FOR GCN WITH SKIP CONNECTIONS

We derive NTKs for the skip connections – Skip-PC and Skip-α by considering the hidden layers
width h → ∞. Both the NTKs maintain the form presented in Theorem 1 with the following
changes to the co-variance matrices. Let Ẽ0 = E

F∼N (0,Σ0)

[
σs(F)σs(F)

T
]
.

Corollary 2 (NTK for Skip-PC) The NTK for an infinitely wide Skip-PC network is as presented
in Theorem 1 where Ek is defined as in the theorem, but Σk is defined as

Σ0 = XXT , Σ1 = SẼ0S
T and Σk = SEk−1S

T +Σ1.

Corollary 3 (NTK for Skip-α) The NTK for an infinitely wide Skip-α network is as presented in
Theorem 1 where Ek is defined as in the theorem, but Σk is defined with Σ0 = XXT ,

Σ1 = (1− α)
2
SE0S

T + α (1− α)
(
SE0 +E0S

T
)
+ α2E0 and Σk = (1− α)2SEk−1S

T + α2Ẽ0.

4.2 IMPACT OF DEPTH IN GCNS WITH SKIP CONNECTION

Similar to the previous section we use the NTK for Skip-PC and Skip-α (Corollary 2 and 3) and
analyze the graph convolutions Ssym and Sadj under the same considerations detailed in Section 3.
Since, Sadj and Scol are theoretically worse and not popular in practice, we do not consider them
for the skip connection analysis. The linear orthonormal feature NTK, Θ(d), for depth d is same as
(4) with changes to Σk as follows,

Skip-PC: Σk = SkSkT + SST ,

Skip-α: Σk = (1− α)
2k

SkSkT + α (1− α)
2k−1

Sk−1
(
S+ ST

)
Sk−1T + α2

k−1∑
l=0

(1− α)
2l
SlSlT .

We derive the population NTK Θ̃(d) and, for convenience, only state the result as d → ∞ in the
following theorems.

Theorem 3 (Population NTK for Skip-PC Θ̃
(∞)
PC ) Under the assumptions of Theorem 2,

(
Θ̃

(∞)
PC,sym

)
ij
=

√
πiπj

(
2 + δijr

2
)

1−√
πiπj (1 + δijr2)

, and
(
Θ̃

(∞)
PC,row

)
ij
=

2γ(2 + δijr
2)

1− 2γ (1 + δijr2)
. (5)
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Figure 3: Left: average in-class and out-of-class block difference at d = ∞ (in log scale) for
different true class separability. Heatmaps: Θ(8) for Ssym and Srow for vanilla GCN and Skip-PC.

Theorem 4 (Population NTK for Skip-α Θ̃
(∞)
α ) Under the assumptions of Theorem 2,(

Θ̃(∞)
α,sym

)
ij
=

α2√πiπj

1−√
πiπj (1 + δijr2)

(
1

1− (1− α)
2 +

δij

1− (1− α)
2
r2

)
, and

(
Θ̃(∞)

α,row

)
ij
=

2γα2

1− 2γ (1 + δijr2)

(
1

1− (1− α)
2 +

δij

1− (1− α)
2
r2

)
. (6)

Similar to Theorem 2, assumptions on π in above theorems is to simplify the results. To understand
the role of skip connections, we plot the gap between in-class and out-of-class blocks at infinite
depth for different values of true class separability r, for vanilla GCN, Skip-PC and Skip-α using
Corollary 1, Theorems 3–4, respectively (Figure 3). The plot clearly shows that the gap is away
from 0 for both the skip connections given a reasonable true separation, unlike vanilla GCN. This
implies the class information is retained in skip connections even at infinite depth.

4.3 NUMERICAL VALIDATION FOR RANDOM GRAPHS

We validate our theoretical result using the same setup detailed in Section 3.2 without the assump-
tions, and compute the exact NTKs for Skip-PC and Skip-α for both Ssym and Srow. We show
the result on homophilic graphs but they equally extend to the heterophilic case. While Ssym has
no class information for depth=8 in vanilla GCN (Figure 3 middle), it is retained well in Skip-PC
(right plot). In the case of Srow, we clearly observe the blocks in both cases with more prevalent gap
in Skip-PC illustrating our theoretical results. Similar observation is made for Skip-α despite con-
sidering XXT = In as the model interpolates with the feature, and is discussed in Appendix B.3.
While both Ssym and Srow retain the class information in larger depths, we observe that the degree
correction plays a significant role in Ssym as elucidated in our theoretical analysis.

5 Ssym MAYBE PREFERRED OVER Srow IN ABSENCE OF CLASS STRUCTURE

While we showed that the graph convolution Srow preserves the underlying class structure, it is
natural to wonder about the random graphs that have no communities (p = q). One such case is
graphs with core-periphery structure where the graph has core nodes that are highly interconnected
and periphery nodes that are sparsely connected to the core and other periphery nodes. Such a graph
can be modeled using only the degree correction π such that πj ≪ πi ∀j ∈ periphery, i ∈ core
(similar to Jia & Benson (2019)). Extending Theorem 2, we derive the following Corollary 4 and
show that the convolution Ssym contains the graph information while Srow is a constant kernel.

Corollary 4 (Population NTKs Θ̃ for p = q) Let Assumption 1 and 2 hold, K = 2 and p = q.
Furthermore, π is chosen such that

∑
i∈core π

2
i = λ and

∑
i∈periphery π

2
i = µ. Then ∀i and j, the

population NTKs Θ̃sym and Θ̃row of depth d for S = Ssym and Srow, respectively, are,(
Θ̃(d)

sym

)
ij
=

√
πiπj

1−
(√

πiπj

)d+1

1−√
πiπj

and
(
Θ̃(d)

row

)
ij
= (λ+ µ)

1− (λ+ µ)
d+1

1− (λ+ µ)
.
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Figure 4: Evaluation on Cora dataset. Heatmaps show results of vanilla GCN, Skip-PC and Skip-α
where a min and max threshold of 10 and 90 percentile is set for better visualization.

From Corollary 4, it is evident that the Ssym has the graph information and hence could be preferred
when there is no community structure. Furthermore, interestingly even skip connections prove to be
of no use for Srow and it remains a constant kernel in this case as well. We validate it experimentally
and discuss the results in Appendix B.3 (Figure 10). While Srow results in a constant kernel for core-
periphery without community structure, it is important to note that when there exists a community
structure and each community has core-periphery nodes, then Srow is still preferable over Ssym as it
is simply a special case of homophilic networks. This is demonstrated in Appendix B.3 (Figure 11).

6 EMPIRICAL ANALYSIS ON REAL DATA

In this section, we explore how well the theoretical results translate to real dataset Cora with features,
that is, XXT ̸= In and A ̸= M. We also provide experimental details and additional experiments
on Citeseer in Appendix B.5. We consider multi-class node classification for Cora (K = 7) using
GCN with linear activations and provide the results for ReLU activations in Appendix B.4 The NTKs
for vanilla GCN, GCN with Skip-PC and Skip-α are illustrated in Figure 4. We make the following
observations from the experiments that validate the theory even in a much relaxed setting, (i) clear
block structures show up in both GCN with and without skip connections for Srow, thus illustrating
that the class information is well retained by Srow than Ssym; (ii) while we cannot compare the skip
connections, it is still evident that Srow is better than Ssym for both Skip-PC and Skip-α as block
structures emerge even in the case of large depth. Thus, although the theoretical result is based on
DC-SBM with mild assumptions, the conclusions hold well in real settings on real datasets as well.

7 CONCLUSION

Graph convolution operators significantly influence the performance of GCNs, but existing learning
theoretic bounds for GCNs do not provide insight into the representation power of the operators.
We present a NTK based analysis that characterizes different convolutions, thereby proving the
strong representation power of Srow in community detection and explaining why Srow, and to some
extent Ssym, are preferred in practice (Theorem 2). In contrast to applying spectral analysis of
the convolutions to explain over-smoothing, our explicit characterization of the network provides
more exact quantification of the impact of over-smoothing in deep GCNs (Corollary 1, see Figure
2). In addition, the NTKs for GCNs with skip connections enable precise understanding of the role
of skip connections in countering the over-smoothing effect (Theorems 3–4). While the DC-SBM
assumption may seem restrictive, experiments on Cora and Citeseer show that our theoretical results
hold beyond DC-SBM, although formally characterizing such behavior could be difficult without
model assumptions. We note that our analysis could be extended by considering feature information
(XXT ̸= In) or random samples from DC-SBM, which would require more involved analysis but
could provide further insights into GCNs, such as interplay between graph and feature information.

The present NTK based setup allows for the analysis of different graphs having homophilic, het-
erophilic and core-periphery structures, and can be extended to other graph generating processes.
Furthermore, the general formulation of NTK for vanilla GCNs (Theorem 1) and with skip connec-
tions (Corollaries 2–3) can be used for analyzing any new convolutions like topological structure
preserving convolutions, for obtaining a rigorous understanding of GCNs by deriving statistical
consistency results or information theoretic limits, as well as for theoretical analysis of other graph
learning problems, such as link prediction.
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8 ETHICS STATEMENT

Our work focuses on understanding some characteristics of the graph neural network theoretically
and hence it doesn’t have direct implications on the ethical and fairness aspects.

9 REPRODUCIBILITY STATEMENT

The assumptions for the theory are stated clearly in Assumptions 1–2, and all the theoretical results,
Theorems 1–4, Corollaries 1–3, are proved in detail in Appendix A. The implementation of GCN
and NTK for GCNs with and without skip connections are provided in ntk gcn conv.zip as a
supplementary material. Datasets used in the experiments are publicly available and also provided
in data folder available in the zip. The experimental results can be reproduced by following the
instructions in readme.md.
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A MATHEMATICAL DERIVATIONS AND PROOFS

We first derive the NTK (Theorem 1) for GCN defined in (2) and prove Theorem 2 by considering
linear GCN and computing the population NTK Θ̃(d) for different graph convolutions. We use 1n

to denote a vector of n dimension with all 1s and 1̂n for a vector of n dimension with −1 as first n
2

entries and +1 as the remaining n
2 entries.

A.1 THEOREM 1: NTK FOR VANILLA GCN

We rewrite the GCN FW(X,S) defined in (2) using the following recursive definitions:

G1 = SX, Gi =

√
cσ
hi−1

Sσ(Fi−1) ∀i ∈ {2, . . . , d+ 1}, Fi = GiWi ∀i ∈ [d+ 1]. (7)

Thus, FW(X,S) = Fd+1 and using the definitions in (7), the gradient with respect to Wi is
∂FW(X,S)

∂Wi
= GT

i Bi with Bd+1 = 1n, Bi =

√
cσ
hi

STBi+1W
T
i+1 ⊙ σ̇(Fi). (8)

We derive the NTK, as defined in (1), using the recursive definition of FW(X,S) in (7) and its
derivative in (8).

Co-variance between Nodes. We will first derive the co-variance matrix of size n × n for each
layer comprising of co-variance between any two nodes u and v. The co-variance between u and v
in F1 and Fi are derived below. We denote u-th row of matrix Z as Zu. throughout our proofs.

E [(F1)uk (F1)vk′ ] = E [(G1W1)uk (G1W1)vk′ ]

= E

[
h0∑
r=1

(G1)ur (W1)rk

h0∑
s=1

(G1)vs (W1)sk′

]
(W1)xy∼N (0,1)

= 0 ; if r ̸= s or k ̸= k′

E [(F1)uk (F1)vk]
r=s
=

k=k′
E

[
h0∑
r=1

(G1)ur (G1)vr (W1)
2
rk

]
(W1)xy∼N (0,1)

=

h0∑
r=1

(G1)ur (G1)vr = ⟨(G1)u. , (G1)v.⟩ (9)

E [(Fi)uk (Fi)vk]
r=s
=

k=k′
E

hi−1∑
r=1

(Gi)ur (Gi)vr (Wi)
2
rk


(Wi)xy∼N (0,1)

=

hi−1∑
r=1

(Gi)ur (Gi)vr = ⟨(Gi)u. , (Gi)v.⟩ (10)

Evaluating (9) and (10) in terms of the graph in the following,
(9) : ⟨(G1)u. , (G1)v.⟩ = ⟨(SX)u. , (SX)v.⟩ = Su.XXTST

.v = (Σ1)uv (11)

(10) : ⟨(Gi)u. , (Gi)v.⟩ =
cσ
hi−1

⟨(Sσ(Fi−1))u. , (Sσ(Fi−1))v.⟩

=
cσ
hi−1

hi−1∑
k=1

(Sσ(Fi−1))uk (Sσ(Fi−1))vk

hi−1→∞
= cσE [(Sσ(Fi−1))uk (Sσ(Fi−1))vk] ; law of large numbers

= cσE

[(
n∑

r=1

Surσ (Fi−1)rk

)(
n∑

s=1

Svsσ (Fi−1)sk

)]

= cσE

[
n∑

r=1

n∑
s=1

SurSvsσ (Fi−1)rk σ (Fi−1)sk

]
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(a)
=

n∑
r=1

n∑
s=1

Sur (Ei−1)rs S
T
sv = Su.Ei−1S

T
.v = (Σi)uv (12)

(a): using E [(Fi−1)rk (Fi−1)sk] = (Σi−1)rs and the definition of Ei−1 in Theorem 1.

NTK for Vanilla GCN. Let us first evaluate the tangent kernel component from Wi respective to
nodes u and v. The following two results are needed to derive it.

Result 1 (Inner Product of Matrices). Let a and b be vectors of size d1 × 1 and d2 × 1, then

〈
abT ,abT

〉
= tr

(
abT

(
abT

)T)
= tr

(
abTbaT

)
= tr

(
aTabTb

)
=
(
aTa

)
⊙
(
bTb

)
= ⟨a,a⟩ ⊙ ⟨b,b⟩ (13)

Result 2 ⟨(Br)u. , (Br)v.⟩. We evaluate ⟨(Br)u. , (Br)v.⟩ =
(
BrB

T
r

)
uv

appearing in the gradient.

(
BrB

T
r

)
uv

=
cσ
hr

hr∑
k=1

(
STBr+1W

T
r+1

)
uk

σ̇(Fr)uk
(
STBr+1W

T
r+1

)
vk

σ̇(Fr)vk

=
cσ
hr

hr∑
k=1

n,hr+1∑
i,j

Siu (Br+1)ij (Wr+1)kj σ̇(Fr)ukσ̇(Fr)vk

n,hr+1∑
i′,j′

Si′v (Br+1)i′j′ (Wr+1)kj′

=
cσ
hr

n,hr+1∑
i,j

n,hr+1∑
i′,j′

(Br+1)ij (Br+1)i′j′ SiuSi′v

hr∑
k=1

(Wr+1)kj σ̇(Fr)ukσ̇(Fr)vk (Wr+1)kj′

=

hr+1,hr+1∑
j,j′

(
STBr+1

)
uj

(
STBr+1

)
vj′

cσ
hr

hr∑
k=1

(Wr+1)kj σ̇(Fr)ukσ̇(Fr)vk (Wr+1)kj′

hr→∞
=

hr+1∑
j

(
STBr+1

)
uj

(
STBr+1

)
vj

cσE
[(
W2

r+1

)
kj

σ̇(Fr)ukσ̇(Fr)vk

]
; 0 for j ̸= j′

(b)
=
〈(
STBr+1

)
u.

(
STBr+1

)
v.

〉
cσE [σ̇(Fr)ukσ̇(Fr)vk]

(13)
=
(
SST

)
uv

⟨Br+1,Br+1⟩uv cσE [σ̇(Fr)ukσ̇(Fr)vk]

=
(
SST

)
uv

⟨Br+1,Br+1⟩uv
(
Ėr

)
uv

(14)

(b): (Wr+1)kj is independent and E
[(
W2

r+1

)
kj

= 1
]
.

Now, lets derive
〈(

∂F
∂Wk

)
u
,
(

∂F
∂Wk

)
v

〉
and

〈(
∂F

∂W1

)
u
,
(

∂F
∂W1

)
v

〉
using the above results.〈(

∂F

∂Wk

)
u

,

(
∂F

∂Wk

)
v

〉
=
〈
(Gk)

T
u. (Bk)u. , (Gk)

T
v. (Bk)v.

〉
(13)
= ⟨(Gk)u. , (Gk)v.⟩ ⊙ ⟨(Bk)u. , (Bk)v.⟩

(12),(14)
= (Σk)uv

(
SST

)
uv

⟨Br+1,Br+1⟩uv
(
Ėr

)
uv

(c)
= (Σk)uv

((
SST

)
uv

)d+1−k

(
d+1−k∏
k′=k

(
Ėk′

)
uv

)
⟨Bd+1,Bd+1⟩uv

(d)
= (Σk)uv

((
SST

)
uv

)d+1−k

(
d+1−k∏
k′=k

(
Ėk′

)
uv

)
(15)
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(c): repeated application of (14).
(d): definition of Bd+1.

Extending (15) to all n nodes which will result in n× n matrix,

〈
∂F

∂Wk
,

∂F

∂Wk

〉
= Σk ⊙

(
SST

)⊙d+1−k
d+1−k⊙
k′=k

Ėk′

E
Wk

[〈
∂F

∂Wk
,

∂F

∂Wk

〉]
= Σk ⊙

(
SST

)⊙d+1−k
d+1−k⊙
k′=k

Ėk′ (16)

Finally, NTK Θ is,

Θ =

d+1∑
k=1

E
Wk

[〈
∂F

∂Wk
,

∂F

∂Wk

〉]

=

d+1∑
k=1

Σk ⊙
(
SST

)⊙(d+1−k) ⊙

(
d+1−k⊙
k′=k

Ė′
k

)
(17)

with definition of Σk and Ėk mentioned in the theorem. □

A.2 THEOREM 2 AND COROLLARY 1: POPULATION NTK Θ̃ FOR DIFFERENT S

We consider Assumption 1, that is, linear GCN with orthonormal features and Assumption 2 without
assumption on γ. We first prove it for K = 2 and then extend it to K classes. We consider that all
nodes are sorted per class for ease of analysis which implies A is a n× n matrix with pπiπj entries
in [1, n

2 ][1,
n
2 ] and [n2 +1, n][n2 +1, n] blocks and qπiπj entries in [1, n

2 ][
n
2 +1, n] and [n2 +1, n][1, n

2 ]
blocks. Therefore,

A = ππT ⊙
(
p+ q

2
11T +

p− q

2
1̂1̂T

)
=

p+ q

2
ππT +

p− q

2
π̂π̂T (18)

where the entries of π̂ are −πi ∀ i ∈ [1, n
2 ] and +πi ∀ i ∈ [n2 + 1, n]. D be the degree matrix of A

and D = p+q
2 diag(π).

A.2.1 SYMMETRIC DEGREE NORMALIZED ADJACENCY Ssym

Now, lets compute Ssym using A (18) and its degree matrix D.

Ssym = D− 1
2AD− 1

2

=
2

p+ q
diag(π)−

1
2

(
p+ q

2
ππT +

p− q

2
π̂π̂T

)
diag(π)−

1
2

= π
1
2π

1
2T +

p− q

p+ q
π̂

1
2 π̂

1
2T

=


√
π1 −√

π1

...
...√

πn +
√
πn


n×2

[
1 0
0 r

]
2×2


√
π1 −√

π1

...
...√

πn +
√
πn


T

2×n

; r =
p− q

p+ q

= UΛUT (19)

Note that πTπ = π̂T π̂ = 1, πT π̂ = 0 and UTU = I2, thus (19) is the singular value decomposi-
tion of Ssym.
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To compute the population NTK Θ̃
(d)
sym in (4), we need Sk

symSkT
sym. Using (19),

Sk
symSkT

sym
(19)
= UΛ2kUT

=


√
π1 −√

π1

...
...√

πn +
√
πn


n×2

[
1 0
0 r2k

]
2×2


√
π1 −√

π1

...
...√

πn +
√
πn


T

2×n

(
Sk
symSkT

sym

)
ij
=
(
1 + δijr

2k
)√

πiπj ; δij = (−1)
1[Ci ̸=Cj ]

Sk
symSkT

sym
matrix
=

notation


(
1 + r2k

)√
πiπj

(
1− r2k

)√
πiπj

(
1− r2k

)√
πiπj︸ ︷︷ ︸

n
2 entries

(
1 + r2k

)√
πiπj︸ ︷︷ ︸

n
2 entries


n×n

(20)

Consequently, population NTK Θ̃
(d)
sym for nodes i and j using (20) is as follows,(

Θ̃(d)
sym

)
ij
=

d+1∑
k=1

√
πiπj

(
1 + δijr

2k
) (√

πiπj

(
1 + δijr

2
))d+1−k

=

d+1∑
k=1

(√
πiπj

)d+2−k (
1 + δijr

2
)d+1−k

+ δij

d+1∑
k=1

(√
πiπj

)d+2−k
r2k
(
1 + δijr

2
)d+1−k

=
√
πiπj

1−
(√

πiπj

(
1 + δijr

2
))d+1

1−√
πiπj (1 + δijr2)

+ δij
√
πiπjr

2(d+1)
1−

(√
πiπj

(
1 + δijr

2
)
r−2
)d+1

1−√
πiπj (1 + δijr2) r−2

(21)

Since we consider
∑

i∈Ck
πi = 1/K, the maximum of √πiπj < 1/4 for K = 2. This implies

√
πiπj

(
1 + r2

)
< 1. Therefore, NTK at d → ∞ is(

Θ̃(∞)
sym

)
ij
=

√
πiπj

1−√
πiπj (1 + δijr2)

(22)

Equations (21) and (22) prove the population NTK Θ̃
(d)
sym and Θ̃

(∞)
sym in Theorem 2 and Corollary 1,

respectively. □

A.2.2 ROW DEGREE NORMALIZED ADJACENCY Srow

The assumption on γ in Assumption 2 is only to simplify the expression of population NTK for
Srow. We derive it without this assumption in the following. We first derive Sk

rowS
kT
row.

Srow = D−1A

= D− 1
2D− 1

2AD− 1
2D+ 1

2

= D− 1
2UΛUTD+ 1

2

Sk
row = D− 1

2UΛkUTD+ 1
2

Sk
rowS

kT
row = D− 1

2UΛkUTD+ 1
2D+ 1

2UΛkUTD− 1
2

= D− 1
2UΛkUTDUΛkUTD− 1

2

=
(
D− 1

2UΛkUTD− 1
2

)
D+ 1

2DD+ 1
2

(
D− 1

2UΛkUTD− 1
2

)
=
(
ÛΛkÛT

)
D2
(
ÛΛkÛT

)
; Û = D− 1

2U =

√
2

p+ q

[
1T
n

1̂T
n

]
n×2

16



Under review as a conference paper at ICLR 2023

(
Sk
rowS

kT
row

)
ij
=


(
1 + rk

)2
λ+

(
1− rk

)2
µ if i and j ∈ class 1(

1 + rk
) (

1− rk
)
(λ+ µ) if i and j /∈ same class(

1− rk
)2

λ+
(
1 + rk

)2
µ if i and j ∈ class 2

; λ =

n
2∑

s=1

π2
s ; µ =

n∑
s=n

2 +1

π2
s

Sk
rowS

kT
row

matrix not.
=


(
1 + rk

)2
λ+

(
1− rk

)2
µ

(
1 + rk

) (
1− rk

)
(λ+ µ)

(
1 + rk

) (
1− rk

)
(λ+ µ)︸ ︷︷ ︸

n
2 entries

(
1− rk

)2
λ+

(
1 + rk

)2
µ︸ ︷︷ ︸

n
2 entries


n×n

(23)

Note that each block is a constant and independent of individual πi. Using (23), NTK in (4) for i
and j belonging to class 1 is,(

Θ̃(d)
row

)
ij

(23)
=

d+1∑
k=1

((
1 + rk

)2
λ+

(
1− rk

)2
µ
)(

(1 + r)
2
λ+ (1− r)

2
µ
)d+1−k

=

d+1∑
k=1

(λ+ µ)
(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1−k

+

d+1∑
k=1

2 (λ− µ) rk
(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1−k

+

d+1∑
k=1

(λ+ µ) r2k
(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1−k

= (λ+ µ)
1−

(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1

1−
(
(1 + r)

2
λ+ (1− r)

2
µ
) +

2 (λ− µ) rd+1
1−

(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1

r−(d+1)

1−
(
(1 + r)

2
λ+ (1− r)

2
µ
)
r−1

+

(λ+ µ) r2(d+1)
1−

(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1

r−2(d+1)

1−
(
(1 + r)

2
λ+ (1− r)

2
µ
)
r−2

(24)

Similarly for i and j in class 2,(
Θ̃(d)

row

)
ij
=

d+1∑
k=1

((
1− rk

)2
λ+

(
1 + rk

)2
µ
)(

(1− r)
2
λ+ (1 + r)

2
µ
)d+1−k

= (λ+ µ)
1−

(
(1− r)

2
λ+ (1 + r)

2
µ
)d+1

1−
(
(1− r)

2
λ+ (1 + r)

2
µ
) +

2 (−λ+ µ) rd+1
1−

(
(1− r)

2
λ+ (1 + r)

2
µ
)d+1

r−(d+1)

1−
(
(1− r)

2
λ+ (1 + r)

2
µ
)
r−1

+

(λ+ µ) r2(d+1)
1−

(
(1− r)

2
λ+ (1 + r)

2
µ
)d+1

r−2(d+1)

1−
(
(1− r)

2
λ+ (1 + r)

2
µ
)
r−2

(25)
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When i and j are in different classes,(
Θ̃(d)

row

)
ij
=

d+1∑
k=1

(
1− r2k

)
(λ+ µ)

((
1− r2

)
(λ+ µ)

)d+1−k

=

d+1∑
k=1

(λ+ µ)
d+2−k (

1− r2
)d+1−k − r2k (λ+ µ)

d+2−k (
1− r2

)d+1−k

= (λ+ µ)
1− (λ+ µ)

d+1 (
1− r2

)d+1

1− (λ+ µ) (1− r2)

− (λ+ µ) r2(d+1) 1− (λ+ µ)
d+1 (

1− r2
)d+1

r−2(d+1)

1− (λ+ µ) (1− r2) r−2
(26)

As λ and µ < 1
4 , (1 + r)

2
λ+ (1− r)

2
µ < 2

(
1 + r2

)
1
4 < 1, population NTK Θ̃row at d → ∞ is

(
Θ̃(∞)

row

)
ij
=



(λ+ µ)

1−
(
(1 + r)

2
λ+ (1− r)

2
µ
) if i and j ∈ class 1

(λ+ µ)

1− (λ+ µ) (1− r2)
if i and j ∈ different class

(λ+ µ)

1−
(
(1− r)

2
λ+ (1 + r)

2
µ
) if i and j ∈ class 2

(27)

When the assumption on γ is introduced, ∃ γs.t.
∑n

i=1 π
2
i 1[Ci = k] = γ ∀ k, λ + µ = 2γ and

λ − µ = 0. Hence, equations (24), (25) and (26) of the population NTK Θ̃
(d)
row and (27) of Θ̃(∞)

row

reduce to the expressions in Theorem 2 and Corollary 1, respectively. □

A.2.3 COLUMN NORMALIZED ADJACENCY Scol

In this section we derive the population NTK Θ̃
(d)
col .

Scol = AD−1

= D+ 1
2UΛUTD− 1

2

Sk
col = D+ 1

2UΛkUTD− 1
2

Sk
colS

kT
col = D+ 1

2UΛkUTD− 1
2D− 1

2UΛkUTD+ 1
2

=
(
ŨΛkŨT

)
D−2

(
ŨΛkŨT

)
; Ũ = D+ 1

2U =

√
p+ q

2

[
πT

π̂T

]
n×2

= nπiπj

(
1 + δijr

2k
)

matrix not.
=

 nπiπj

(
1 + r2k

)
nπiπj

(
1− r2k

)
nπiπj

(
1− r2k

)︸ ︷︷ ︸
n
2 entries

nπiπj

(
1 + r2k

)︸ ︷︷ ︸
n
2 entries


n×n

(28)

Therefore, Θ̃(d)
col is(

Θ̃
(d)
col

)
ij
=

d+1∑
k=1

nπiπj

(
1 + δijr

2k
) (

nπiπj

(
1 + δijr

2
))d+1−k

=

d+1∑
k=1

(nπiπj)
d+2−k (

1 + δijr
2
)d+1−k

+ δij

d+1∑
k=1

(nπiπj)
d+2−k

r2k
(
1 + r2

)d+1−k

= nπiπj

[
1−

(
nπiπj

(
1 + r2

))d+1

1− nπiπj (1 + r2)
+ δijr

2d+2 1−
(
nπiπj

(
1 + r2

)
r−2
)d+1

1− nπiπj (1 + r2) r−2

]
(29)

18
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Since
∑n

i πi = 1, πi = O( 1n ). So, nπiπj

(
1 + r2

)
< 1. Therefore, using (29),(

Θ̃
(∞)
col

)
ij
=

nπiπj

1 + nπiπj (1 + δijr2)
. (30)

Hence, equations (29) and (30) prove the population NTK Θ̃
(d)
col and Θ̃

(∞)
col in Theorem 2 and Corol-

lary 1, respectively. □

A.2.4 UNNORMALIZED ADJACENCY Sadj

We can rewrite A as follows,

A = ππT ⊙
[

p q
q︸︷︷︸

n
2 entries

p︸︷︷︸
n
2 entries

]
n×n

=

π1

. . .
πn


n×n

 p q

q p


n×n

π1

. . .
πn


n×n

(31)

We consider γ assumption for the analysis of unnormalised adjacency to simplify the computation.
But the result holds without this assumption.

A2 (31)
=

π1

. . .
πn



(
p2 + q2

)
γ 2pqγ

2pqγ
(
p2 + q2

)
γ


π1

. . .
πn



A4 =

π1

. . .
πn



(
p4 + q4 + 6p2q2

)
γ3

(
4p3q + 4pq3

)
γ3

(
4p3q + 4pq3

)
γ3

(
p4 + q4 + 6p2q2

)
γ3


π1

. . .
πn


Note that in the above shown A2k it is the even powers of binomial expansion of (p+ q)

2k for i, j
in same class whereas it is the odd powers for i, j not in the same class. We compute the filter Sadj

using this fact.

Sadj =
1

n
A

Sk
adj =

1

nk
Ak

Sk
adjS

kT
adj =

1

n2k
A2k

=


πiπj

γ2k−1

n2k

2k−1∑
l=0

(
2k

2l

)
p2

k−2lq2l if i and j ∈ same class

πiπj
γ2k−1

n2k

2k−1−1∑
l=0

(
2k

2l+1

)
p2

k−2l−1q2l+1 if i and j ∈ different class

Θ̃
(d)
adj =


πiπj

d+1∑
k=1

γ2k+d−k

n2k

(
p2 + q2

)d+1−k 2k−1∑
l=0

(
2k

2l

)
p2

k−2lq2l if i and j ∈ same class

πiπj

d+1∑
k=1

γ2k+d−k

n2k
(2pq)

d+1−k
2k−1−1∑

l=0

(
2k

2l+1

)
p2

k−2l−1q2l+1 if i and j ∈ different class

19
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The above form is not simplified as it is not an interesting case where the gap between the two
blocks disappears rapidly and

(
Θ̃

(∞)
adj

)
ij

= 0. There is no information in the kernel proving both

Theorem 2 and Corollary 1. □

A.2.5 NUMBER OF CLASSES K > 2

From the above derivation for K = 2, it can be seen that once Sk
symSkT

sym is computed, the popula-
tion NTK for all the graph convolutions can be derived using it. Therefore, we derive it for K > 2
and it suffices to show the conclusions of Theorem 2 and Corollary 1. We denote the vector π̂1k

with −πi∀i ∈
[
1, n

K

]
, +πi∀i ∈

[
n(k−1)

K , nk
K

]
and 0 for the rest. With this definition, A is

A =
p+ (K − 1)q

K
ππT +

p− q

K

K∑
l=2

π̂1lπ̂
T
1l. (32)

D for K classes is p+(K−1)
K diag(π) from (32). We can compute Ssym using A and D as follows,

Ssym = D− 1
2AD− 1

2

=
K

p+ (K − 1)q
diag(π− 1

2 )

(
p+ (K − 1)q

K
ππT +

p− q

K

K∑
l=2

π̂1lπ̂
T
1l

)
diag(π− 1

2 )

= π
1
2π

1
2T +

p− q

p+ (K − 1)q

K∑
l=2

π̂
1
2

1lπ̂
1
2T

1l

(Ssym)ij =
√
πiπj

(
1 + δij

(
p− q

p+ (K − 1)q

) K∑
l=2

K

l + l2

)
(
Sk
sym

)
ij
=

√
πiπj

(
1 + δij

(
p− q

p+ (K − 1)q

)k K∑
l=2

K

l + l2

)
(
Sk
symSkT

sym

)
ij
=

√
πiπj

(
1 + δij

(
p− q

p+ (K − 1)q

)2k K∑
l=2

K

l + l2

)
(33)

It is noted that the equation (33) is very much similar to (20) for K = 2. The further derivations of
the population NTKs Θ̃ for all the convolutions are similar and the theoretical results extend without
any issues.

A.3 NTK FOR GCN WITH SKIP CONNECTIONS (COROLLARY 2 AND 3)

We observe that the definitions of Gi ∀i ∈ [1, d+1] are different for GCN with skip connections from
the vanilla GCN. Despite the difference, the definition of gradient with respect to Wi in (8) does
not change as Gi in the gradient accounts for the change and moreover, there is no new learnable
parameter since the input transformation H0 = XW0 where (W0)ij is sampled from N (0, 1) is
not learnable in our setting. Given the fact that the gradient definition holds for GCN with skip
connection, the NTK will retain the form from NTK for vanilla GCN as evident from the derivation
of NTK for vanilla GCN in Section A.1. The change in Gi will only affect the co-variance between
nodes. Hence, we will derive the co-variance matrix for Skip-PC and Skip-α in the following.

Skip-PC: Co-variance between nodes. The co-variance between nodes u and v in F1 and Fi are
derived below.

E [(F1)uk (F1)vk] = ⟨(G1)u. , (G1)v.⟩

=
cσ
h

⟨(Sσs(H0))u. , (Sσs(H0))v.⟩

=
cσ
h

h∑
k=1

(Sσs(H0))uk (Sσs(H0))vk

20
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h→∞
= cσE [(Sσs(H0))uk (Sσs(H0))vk] ; law of large numbers

= Su.Ẽ0S
T
.v ; Ẽ0 = cσ E

F∼N (0,XXT )

[
σs(F)σs(F)

T
]

= (Σ1)uv (34)

E [(Fi)uk (Fi)vk] = ⟨(Gi)u. , (Gi)v.⟩

=
cσ
h

⟨(S (σ(Fi−1) + σs(H0)))u. , (S (σ(Fi−1) + σs(H0)))v.⟩

=
cσ
h

h∑
k=1

(Sσ(Fi−1) + Sσs(H0))uk (Sσ(Fi−1) + Sσs(H0))vk

h→∞
= cσE [(Sσ(Fi−1) + Sσs(H0))uk (Sσ(Fi−1) + Sσs(H0))vk] ; law of large numbers

= cσ

[
E [(Sσ(Fi−1))uk (Sσ(Fi−1))vk] + E [(Sσ(Fi−1))uk (Sσs(H0))vk]

+ E [(Sσs(H0))uk (Sσ(Fi−1))vk] + E [(Sσs(H0))uk (Sσs(H0))vk]
]

= Su.Ei−1S
T
.v + cσE [(Sσ(Fi−1))uk (Sσs(XW0))vk]

+ cσE [(Sσs(XW0))uk (Sσ(Fi−1))vk]

+ cσE

[
n∑

r=1

n∑
s=1

SurSqsσs (XW0)rk σs (XW0)sk

]
(f)
= Su.Ei−1S

T
.v + cσSu.E [σs (XW0)rk σs (XW0)sk]S

T
.v

= Su.Ei−1S
T
.v + Su.Ẽ0S

T
.v = Su.Ei−1S

T
.v + (Σ1)uv = (Σi)uv (35)

(f): E [(Sσ(Fi−1))uk (Sσs(XW0))vk] and E [(Sσs(XW0))uk (Sσ(Fi−1))vk] evaluate to 0

by conditioning on W0 first and rewriting the expectation based on this conditioning.
The terms within expectation are independent when conditioned on W0, and hence it is

E
W0

[
E

Σi−1|W0

[(Sσ(Fi−1))uk |W0] E
Σi−1|W0

[(Sσs(XW0))vk |W0]

]
by taking h in W0 going to

infinity first. Here, E
Σi−1|W0

[(Sσs(XW0))vk |W0] = 0.

We get the co-variance matrix for all pairs of nodes Σ1 = SẼ0S
T and Σi = SEi−1S

T +Σ1 from
(34) and (35).

Skip-α: Co-variance between nodes. Let u and v be two nodes and the co-variance between u and
v in F1 and Fi are derived below.

E [(F1)uk (F1)vk] = ⟨(G1)u. , (G1)v.⟩

=
cσ
h

h∑
k=1

((1− α)Sσs(H0) + ασs(H0))uk ((1− α)Sσs(H0) + ασs(H0))vk

h→∞
= cσE [((1− α)Sσs(H0) + ασs(H0))uk ((1− α)Sσs(H0) + ασs(H0))vk]

= cσ

[
(1− α)2E [(Sσs(H0))uk (Sσs(H0))vk]

+ (1− α)α
(
E [(Sσs(H0))uk (σs(H0))vk] + E [(Sσs(H0))vk (σs(H0))uk]

)
+ α2E [(σs(H0))uk (σs(H0))vk]

= (1− α)2Su.Ẽ0S
T
.v + (1− α)α

(
Su.

(
Ẽ0

)
.v
+
(
Ẽ0

)
u.
ST
.v

)
+ α2

(
Ẽ0

)
uv

= (Σ1)uv

(36)
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E [(Fi)uk (Fi)vk] = ⟨(Gi)u. , (Gi)v.⟩

=
cσ
h

h∑
k=1

((1− α)Sσ(Fi−1) + ασs(H0))uk ((1− α)Sσ(Fi−1) + ασs(H0))vk

h→∞
= cσE [((1− α)Sσ(Fi−1) + ασs(H0))uk ((1− α)Sσ(Fi−1) + ασs(H0))vk]

= cσ

[
(1− α)2E [(Sσ(Fi−1))uk (Sσ(Fi−1))vk] + α2E [(σs(H0))uk (σs(H0))vk]

+ (1− α)α
(
E [(Sσ(Fi−1))uk (σs(H0))vk] + E [(σs(H0))uk (Sσ(Fi−1))vk]

) ]
(g)
= (1− α)2Su.Ei−1S

T
.v + α2

(
Ẽ0

)
uv

= (Σi)uv (37)

(g): same argument as (f) in derivation of Σi in Skip-PC.

We get the co-variance matrix for all pairs of nodes Σ1 = (1 − α)2SẼ0S
T + α(1 −

α)
(
SẼ0 + Ẽ0S

T
)
+ α2Ẽ0 and Σi = (1− α)2SEi−1S

T + α2Ẽ0 from (36) and (37).

A.4 THEOREM 3: POPULATION NTK Θ̃ FOR SKIP-PC

NTK at depth d, Θ(d)
PC for Skip-PC with linear activations is

Θ
(d)
PC =

d+1∑
k=1

(
SkSkT + SST

)
⊙
(
SST

)⊙d+1−k

=

d+1∑
k=1

SkSkT ⊙
(
SST

)⊙d+1−k︸ ︷︷ ︸
I

+
(
SST

)⊙d+2−k︸ ︷︷ ︸
II

(38)

In (38), I is NTK without skip connection and II is computed for Srow and Ssym as follows.

Computing II for population NTK Θ̃(d) for Ssym: for nodes i and j,
d+1∑
k=1

(
SsymST

sym

)⊙d+2−k

ij
=

d+1∑
k=1

(√
πiπj

(
1 + δijr

2
))d+2−k

=
√
πiπj

(
1 + δijr

2
) 1− (√πiπj

(
1 + δijr

2
))d+1

1−√
πiπj (1 + δijr2)

d→∞
=

√
πiπj

(
1 + δijr

2
)

1−√
πiπj (1 + δijr2)

(39)

It converges to (39) as d → ∞ since √
πiπj

(
1 + δijr

2
)
< 1 according to our setup. Therefore,

using (39) and (22) we get the population NTK Θ̃
(∞)
PC,sym for Skip-PC at d → ∞,(

Θ̃
(∞)
PC,sym

)
ij
=

√
πiπj

(
2 + δijr

2
)

1−√
πiπj (1 + δijr2)

,

hence deriving Theorem 3. □

Similarly, computing II for Srow without assumption on γ, i and j in class 1,
d+1∑
k=1

(
SrowS

T
row

)⊙d+2−k

ij
=

d+1∑
k=1

(
(1 + r)

2
λ+ (1− r)

2
µ
)d+2−k

=
(
(1 + r)

2
λ+ (1− r)

2
µ
) 1−

(
(1 + r)

2
λ+ (1− r)

2
µ
)d+1

1−
(
(1 + r)

2
λ+ (1− r)

2
µ
)
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d→∞
=

(1 + r)
2
λ+ (1− r)

2
µ

1−
(
(1 + r)

2
λ+ (1− r)

2
µ
) (40)

For i and j in class 2,

d+1∑
k=1

(
SrowS

T
row

)⊙d+2−k

ij
=
(
(1− r)

2
λ+ (1 + r)

2
µ
) 1−

(
(1− r)

2
λ+ (1 + r)

2
µ
)d+1

1−
(
(1− r)

2
λ+ (1 + r)

2
µ
)

d→∞
=

(1− r)
2
λ+ (1 + r)

2
µ

1−
(
(1− r)

2
λ+ (1 + r)

2
µ
) (41)

For i and j in different class,

d+1∑
k=1

(
SrowS

T
row

)⊙d+2−k

ij
=
(
1− r2

)
(λ+ µ)

1−
((
1− r2

)
(λ+ µ)

)d+1

1− (1− r2) (λ+ µ)

d→∞
=

(
1− r2

)
(λ+ µ)

1− (1− r2) (λ+ µ)
(42)

Therefore, the population NTK Θ̃
(∞)
α,row with γ assumption is obtained by substituting λ + µ = 2γ

and λ− µ = 0 in (40), (41) and (42) .

Θ̃(∞)
α,row =

2γ(2 + δijr
2)

1− 2γ (1 + δijr2)
,

hence deriving Theorem 3 □.

A.5 THEOREM 4: POPULATION NTK Θ̃ FOR SKIP-α

We expand Σ1 and Σk of Skip-α first to derive the population NTK.

Σ1 = (1− α)
2
SST + α (1− α)

(
S+ ST

)
+ α2In

Σk = (1− α)
2
SΣk−1S

T + α2In

= (1− α)
2k

SkSkT + α (1− α)
2k−1

Sk−1
(
S+ ST

)
Sk−1T + α2

k−1∑
l=0

(1− α)
2l
SlSlT (43)

Exact NTK of depth d for Skip-α is expanded using the above as follows.

Θ(d)
α =

d+1∑
k=1

Σk ⊙
(
SST

)⊙d+1−k

=

d+1∑
k=1

(1− α)
2k

SkSkT ⊙
(
SST

)⊙d+1−k

︸ ︷︷ ︸
I

+

d+1∑
k=1

α (1− α)
2k−1

Sk−1
(
S+ ST

)
Sk−1T ⊙

(
SST

)⊙d+1−k

︸ ︷︷ ︸
II

+

d+1∑
k=1

α2
k−1∑
l=0

(1− α)
2l
SlSlT ⊙

(
SST

)⊙d+1−k

︸ ︷︷ ︸
III

(44)
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We compute I , II and III of (44) for population NTK Θ̃
(∞)
α using Ssym focusing on d → ∞.

Iij = (1− α)
2(d+1) √

πiπj

[
1−

(√
πiπj

(
1 + δijr

2
)
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−2
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(√
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2
)
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1−√
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−2

]
d→∞
= 0 (45)

II = α

d+1∑
k=1

(1− α)
2k−1
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sym ⊙
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III = α2
d+1∑
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(47)

Therefore the population NTK as d → ∞ is obtained by combining (45), (46) and (47).(
Θ̃(∞)

α,sym

)
ij
=

α2√πiπj

1−√
πiπj (1 + δijr2)

(
1

1− (1− α)
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δij
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2
r2

)
,
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proving Theorem 4. □

We now compute I , II and III for population NTK Θ̃
(∞)
α using Srow. For nodes i and j in class 1:

Iij = (λ+ µ) (1− α)
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+
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Similarly for nodes i and j in class 2 and different classes Iij = 0 as d → ∞. Likewise, IIij = 0
as d → ∞ for any i and j. This is similar to Ssym.

For i and j in class 1,
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(49)

Similarly for i and j in class 2,

IIIij
d→∞
= α2
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For i and j in different classes,

IIIij
d→∞
= α2

(
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1− (1− α)
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1− (1− α)
2
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)
1
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Thus, applying γ assumption to (49), (50) and (51) the population NTK Θ̃
(∞)
α,row as d → ∞ is,(

Θ̃(∞)
α,row

)
ij
=

2γα2

1− 2γ (1 + δijr2)

(
1

1− (1− α)
2 +

δij

1− (1− α)
2
r2

)
,

hence proving Theorem 4. □

B EMPIRICAL ANALYSIS

B.1 EXPERIMENTAL DETAILS OF FIGURE 1

We use the code for GCN without skip connections from github1(Kipf & Welling, 2017) and skip
connection from github2(Chen et al., 2020). The following hyperparameters are used for GCN
without skip connections: learning rate is 0.01, weight decay is 5e− 4, hidden layer width is 64 and
epochs is 500, 1500, 2000 for depths 2, 4, 8 respectively. For the skip connections, we used GCNII
model, same parameters as vanilla GCN with α = 0.1. The performance is averaged over 5 runs.

B.2 COMPARISON OF GCN AND NTK

Although it is theoretically clear that the infinite width assumption should not affect the observa-
tions made on performance of GCN with Ssym and Srow in Figure 1, we illustrate the same using
graph NTK. Figure 5 shows that the observation is seen in graph NTK as well, thus supporting our
theoretical argument.

Figure 5: Comparison of the accuracy of a trained finite width GCN and the corresponding NTK.
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B.3 NUMERICAL VALIDATION FOR DC-SBM FOR VANILLA GCN AND SKIP-α

Experimental Details. For the experiments, we fix the size of the sampled graphs to n = 1000,
p = 0.8 and q = 0.1 for homophily DC-SBM, p = 0.1 and q = 0.8 for heterophily DC-SBM
and p = q = 1 for core-periphery DC-SBM. π is sampled uniformly [0, 1] for homophily and
heterophily, and πi ∼ Unif(0.5, 1)∀i ∈ core and πi ∼ Unif(0, 0.5)∀i ∈ periphery for core-
periphery DC-SBM.

Illustration of impact of depth in Vanilla GCN using Homophily DC-SBM. We show the impact
of depth in Vanilla GCN using homophily DC-SBM in Figure 6. The DC-SBM is shown in the first
column and columns 2 and 3 show the exact NTK for depth=1 and 8 for symmetric and row normal-
ization, respectively. The plots clearly illustrate the complete loss of class information in symmetric
normalization with depth (column 2). While the prevalence of block difference has decresed in row
normalization over depth (column 3), the block/community structure is still retained. Thus showing
the strong representation power of Srow.

Figure 6: Numerical validation of Theorem 2 using DC-SBM shown in the first plot of column
1. Columns 2 and 3 illustrate the exact NTKs of depth=1 and 8 for Ssym and Srow, respectively.
Second plot in column 1 shows the average gap between in-class and out-of-class blocks from theory.

Illustration of Scol and Sadj in Vanilla GCN using Homophily DC-SBM. We extend the exper-
iments on numerical validation for random graphs using vanilla GCN described in Section 3.2 to
column normalized adjacency Scol and unnormalized adjacency Sadj here. We use the same setup
described in Section 3.2 and Figure 7 illustrates the results. We observe that even for depth 1 both
the convolutions are influenced by the degree correction and there is no class information in the
kernels for higher depth. Thus, this validates the theoretical result in Theorem 2.

Figure 7: Numerical validation of DC-SBM for Vanilla GCN. The first two heatmaps show the exact
NTK Θ(d) for column normalized adjacency convolution Scol and the other two for unnormalized
adjacency Sadj for depths d = 1 and 8.

Illustration of impact of depth in Skip-PC and Skip-α using Homophily DC-SBM. We present
a complementary result to Section 4.3 here. We use the same setting as described in Section 4.3 and
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plot the exact NTKs of depths 1 and 8 for symmetric and row normalization. Figure 8 shows the
results for Skip-PC and we observe that the gap between in-class and out-of-class blocks decreases
for both Srow and Ssym with depth, but the class information is still retained for larger depth and
the gap doesn’t vanish. Between Srow and Ssym, the heatmaps show that Srow retains the block
structure better than Ssym and is devoid of the influence of the degree corrections.

Figure 8: Numerical validation of DC-SBM for Skip-PC showing the exact NTKs Θ(d) for Ssym

and Srow for depths 1 and 8.

In the case of Skip-α,we use α = 0.1 to obtain the result illustrated in Figure 9. Similar conclusions
are derived from the experiment. Although we consider XXT = In for Skip-α which fundamentally
relies on the feature information to interpolate, the results are still meaningful and demonstrate the
theoretical findings.

Figure 9: Numerical validation of DC-SBM for Skip-α showing the exact NTKs Θ(d) for Ssym and
Srow for depths 1 and 8.

Numerical Validation of Core-Periphery DC-SBM. In this section, we validate the two scenar-
ios discussed in Section 5 - core-periphery without community structure and core-periphery with
community structure. For the firsr case, we consider core-periphery DC-SBM with n/4 nodes as
core and the rest as periphery as shown in the first heatmap of Figure 10. We plot the exact NTKs
of depth 2 for symmetric and row normalization using Vanilla GCN as shown in the second and
third heatmaps of Figure 10. This clearly demonstrates the theoretical result presented in Corol-
lary 4 where the symmetric normalization exhibits the graph structure and the row normalization is
a constant kernel.

Figure 10: Numerical validation of Core-Periphery DC-SBM showing the exact NTKs Θ(d) for
Ssym and Srow for depth 2.
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In the second setting, we consider two communities of equal size n/2 with core-periphery in
each, and the link probabilities between cores of the communities is higher than core-periphery
or periphery-periphery of the two communities as shown in the first heatmap of Figure 11. The
exact NTKs of symmetric and row normalization are illustrated in the second and third heatmaps of
Figure 11 where we see that row normalization retains the community structure again.

Figure 11: Numerical validation of Core-Periphery DC-SBM with community structure showing the
exact NTKs Θ(d) for Ssym and Srow for depth 2.

B.4 EXPERIMENTS ON REAL DATASET: CORA

Orthonormal Feature XXT = In Assumption. In this section, we present additional experiments
on Cora. Since our theory assumed orthonormal features XXT = In, we validate it experimentally
in similar setup described in Section 6. Figure 12 shows the result for Ssym and Srow for depth 1
and 8. The conclusions derived from real setting hold here as well and shows Srow preserves the
class information better than Ssym.

Figure 12: Evaluation on Cora with XXT = In for Ssym and Srow for depths 1 and 8.

ReLU GCN. We present the result for ReLU GCN in this section. Figure 13 shows the result where
the conclusions derived in Section 6 holds very well. Additionally, we plot the average in-class
and out-of-class block difference in the case of vanilla GCN (line plots in first row of Figure 13),
we observe that the average in-class and out-of-class block difference degrades with depth for each
class in Cora, showing the negative impact of depth which aligns well with the theoretical result.

Figure 13: Evaluation on Cora dataset. Heatmaps show results of vanilla GCN and the decrease in
class separability with depth for Ssym and Srow. Last two show NTKs of Skip-PC where a min and
max threshold of 30 and 70 percentile is set for better visualization. Skip-α results in Appendix.
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Figure 14: Class wise performance
of trained GCN of depth 4.

Another experimental study is to understand how easy it is to
learn the classes that showed good in-class and out-of-class
gap preservation from the above experiment. The line plot
in Figure 13 shows class C2 and C5 are well represented by
both Ssym and Srow. To study how well this holds in the
trained GCN, we considered depth 4 vanilla GCN with ReLU
activations and used the same hyperparameters mentioned in
Section B.1. The results are shown in Figure 14 where we
observe that C2 and C5 are well learnt. On the other hand,
other classes that showed small gap are also well learnt by the
trained GCN. This needs further investigation as it has to do
with the data split and some classes are poorly represented in
the training data, for instance C6. Thus, we leave it for further analysis.

Linear GCN. We present the result for linear GCN with the same setup as described in Section 6
to check the goodness of our theory. The results are illustrated in Figure 15 where we observe
that the theory holds very well for linear GCN than ReLU GCN. The class information is better
preserved in Srow than Ssym especially for higher depth in the case of both GCN with and without
skip connections. All the conclusions derived in the main section hold here as well.

Figure 15: Evaluation on Cora using linear GCN. First row shows the results for vanilla GCN for
depths 1 and 8. Second row shows the result for Skip-PC and Skip-α for depth 8.

B.5 EXPERIMENTS ON REAL DATASET: CITESEER

Figure 16: Evaluation on Citeseer dataset using linear GCN. First row shows the results for vanilla
GCN for depths 1 and 8. Second row shows the result for Skip-PC and Skip-α for depth 8.
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In this section, we validate our theoretical findings on Citeseer without much of the assumptions.
We consider multi-class node classification (K = 6) using GCN with linear activations and relax
the orthonormal feature condition, so XXT ̸= In. The NTKs for vanilla GCN, GCN with Skip-PC
and Skip-α for depths d = 1, 2, 4, 8, 16 are computed and Figure 16 illustrates the results. All the
observations made in Section 6 hold here as well and clear blocks emerge for Srow making it the
preferable choice as suggested in the theory.
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