REVISITING THE SCALING EFFECTS OF LLMS ON MEDICAL REASONING CAPABILITIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, LLMs such as the Llama and Owen families have rapidly improved by significantly scaling their training corpora, with smaller models trained on larger datasets now approaching or surpassing the performance of previous-generation larger models on public benchmarks. In this paper, we revisit the scaling effects of LLMs, using the medical field as a case study, by carefully analyzing how training corpus size and parameter size affect model performance on problems of varying difficulty. To this end, we present MedResEval, a new benchmark built upon the MedQA dataset. It is designed to demand more complex reasoning and decision-making and more accurately reflect real-world medical scenarios. Leveraging MedResEval, we investigate the scaling effects of training corpus and model size in LLMs through a comprehensive analysis of several prominent LLM families on medical reasoning tasks of varying complexity. The results reveal that while smaller models like Llama 3 (8B) approach the performance of older, larger models like Llama 2 (70B) on simple tasks like MedQA, they consistently underperform on complex tasks requiring advanced reasoning. Furthermore, we develop a difficulty-dependent scaling-law formula to characterize how LLMs' performance varies with training data size at a fixed model parameter size. The formula reveals that reasoning error reduction rates are 1.3 times greater for largescale LLMs (\approx 70B) compared to small-scale LLMs (\leq 10B) on simple tasks, and 2 times greater on difficult reasoning tasks. Our study highlights that while both data and parameter scales enhance LLM performance, greater emphasis must be placed on parameter scales, particularly for complex reasoning tasks. Only LLMs with sufficiently large parameters can effectively tackle the complexities of realworld medical scenarios.

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

1 INTRODUCTION

Large language model (LLM) technology has witnessed rapid advancement (Ouyang et al., 2022; 037 Achiam et al., 2023; Anil et al., 2023; Touvron et al., 2023a) and shown potential in various domains. Scaling laws (Kaplan et al., 2020) highlight the critical role of training data size and model parameters in enhancing large language models (LLMs). Guided by scaling laws, mainstream LLMs 040 families have been advancing new iterations by continuously scaling their training corpora. For ex-041 ample, the Llama family has evolved from the first generation, Llama 1, to the third generation, 042 Llama 3, by expanding the training corpus size by about 10 times. Another well-known open-source 043 LLM family Qwen has done something similar. Recently, LLMs have achieved significant advance-044 ments by significantly scaling their training corpora. The latest small-scale LLMs (Dubey et al., 2024; Hui et al., 2024) trained on larger datasets are now approaching or even surpassing the performance of previous large-size LLMs across various public benchmarks. For example, on the famous 046 MMLU benchmark (Hendrycks et al.), the latest Llama3 (8B) (Dubey et al., 2024) trained with 15T 047 tokens has significantly outperformed Llama1 (65B) (Touvron et al., 2023a) trained with 1.4T to-048 kens. Therefore, a critical question arises that requires serious consideration: is it sufficient to solely scale up the training corpus to develop strong small-scale LLMs with capabilities of addressing various general or field-specific real-world application needs? 051

In this study, we revisit the scaling effects of both training corpus size and model parameters, examining how they influence the capabilities of LLMs. Since the medical field is a critical application area for LLMs, we use it as a case study to investigate the scaling effects. To ensure consistency

054 70 (a) s (highly co (b) 60.5 055 % 60 056 Normalized Performance 50 057 40 34.4 31.6 27.1 30 20 8.3 10 060 2.9 3.6 -2.7 0 061 -10 062 Simple Tasks Complex Tasks 063 ■7B Params, 1.4T Tokens 7B Params, 15T Tokens ■70B Params, 1.4T Tokens 70B Params, 15T Tokens 064 065

Figure 1: (a) The process of generating medical tasks corresponding to different generalization types based on existing simple evaluation tasks. (b) Performance of models (Llama) with varying numbers of parameters and training tokens on different levels of medical tasks. A performance score below 0 indicates that the model is performing worse than random guessing.

071 and comparability with previous work in the field, we also select the well-known public benchmark 072 MedQA (Jin et al., 2021) as our initial evaluation dataset. However, in real clinical scenarios, med-073 ical reasoning problems are not about choosing the best answer from five predefined options, as 074 in MedQA, but involve more complex situations—such as making correct decisions without prede-075 fined choices or requiring additional reasoning steps to reach an effective conclusion. For example, 076 before making a disease diagnosis, clinicians must first identify and correct potentially inaccurate 077 clinical information, which may stem from the patient's incomplete or inaccurate narratives or from erroneous records. Therefore, we further build a new benchmark MedResEval based on MedQA to investigate the scaling effects of LLMs. It is designed to demand more complex medical reason-079 ing or decision-making and more reflect real-world medical scenarios by the following three typical 080 manners (see Figure 1(a)): (1) increasing reasoning difficulty by reducing available clues (such as 081 without predetermined options), (2) expanding the decision space, and (3) increasing the reasoning steps needed to reach an effective decision. We examine the scaling effects of training corpus 083 and model size in LLMs through a comprehensive analysis of several prominent LLM families by 084 leveraging the proposed new evaluation benchmark MedResEval. 085

The experimental results demonstrate that while some of the latest small-scale LLMs like Llama 086 3 (8B) have achieved comparable or even superior performance to the older version large-scale 087 LLMs on simple tasks like MedQA, they consistently underperform on difficult reasoning tasks that 088 demand more advanced decision-making capabilities (see Figure 1(b)). Furthermore, we develop a 089 difficulty-dependent scaling-law formula which can characterize LLMs' performance with varying 090 training corpus at a fixed model parameter size. The formula quantitatively reveals that reasoning 091 error reduction rates are 1.3 times greater for large-scale LLMs (\approx 70B) compared to small-scale 092 LLMs (<10B) on simple reasoning tasks, and 2 times greater on complex reasoning tasks. Our study 093 highlights that while both data and parameter scales enhance LLM performance, greater emphasis must be placed on model parameter scales, particularly for difficult reasoning tasks, such as some 094 real-world medical problems encountered. LLMs with sufficiently large parameters are essential 095 for effectively addressing difficult reasoning problems. Finally, we further validated our findings 096 regarding the parameter scale of LLMs by performing a diagnosis simulation from a real medical 097 scenario. 098

099 100

101

066

067

068

069

2 RELATED WORK

Neural Scaling Law The classical neural scaling law typically examines the relationship between neural networks' performance and key factors such as the number of parameters N, training data size D, and the training costs C. Kaplan et al. (2020) showed that the test loss L of a Transformer model follows a power-law relationship with key factors N, D and C, when the other two factors are not constrained:

$$L = L_{\infty} + \left(\frac{x_0}{x}\right)^{\alpha_x} \tag{1}$$

108 where x can be N, D or C, depending on which factor is being varied. L_{∞} , x_0 and α_x are parame-109 ters that need to be determined by fitting. The authors also pointed out that, when the computation 110 budget C is fixed, scaling the model size is more important than scaling the training data. Hoffmann 111 et al. (2022) delivered a similar power-law relationship, but they argued that N and D should be 112 scaled up proportionally to achieve optimal performance under a limited computation budget. While the scaling law has been studied in various domains (Zhai et al., 2022; Aghajanyan et al., 2023; Fang 113 et al., 2024), there remains a gap in research regarding the scaling effects on generalization capabili-114 ties across downstream tasks of varying difficulty and complexity. To the best of our knowledge, we 115 are the first to systematically investigate the scaling effects of parameters N and training data size 116 D on the generalization capabilities across downstream tasks of varying complexity. 117

118

LLM Medical Evaluation Existing evaluations of LLM medical capabilities typically utilize the 119 medical OA datasets, where the questions are sourced from medical exams (Jin et al., 2021; Pal 120 et al., 2022; Cai et al., 2024), medical literature (Jin et al., 2019), and consumer health questions 121 (Ben Abacha et al., 2017; Singhal et al., 2023). Other evaluation benchmarks (Zhu et al., 2023) also 122 utilize traditional NLP tasks such as NER, relation extraction to evaluate the medical capabilities of 123 LLMs. Recent studies (Nori et al., 2023; Singhal et al., 2023) indicate that several LLMs perform 124 notably on these medical benchmarks. For example, GPT-4 achieves an accuracy of 90.2 on the 125 medical exam benchmark MedQA, approaching the experts' performance on this benchmark. In this study, we create reasoning-complex tasks by reformulating the MedQA benchmark to investigate the 126 scaling effects of model parameters and training data size on medical reasoning capabilities. 127

128 129

130

132

3 Methodology

131 3.1 PROBLEM FORMULATION

We first formalize the studied problem in this section. For an LLM with N non-embedding parameters, trained on a dataset consisting of D tokens, we aim to study the relationship between these two key factors and the model's performance on a series of K medical downstream tasks with different levels of reasoning complexity:

137

145 146

154

155

 $P_i = f_i(N, D) \quad 1 \le i \le K \tag{2}$

where P_i denotes the performance of i^{th} downstream task and f_i characterizes the scaling effects of N and D on the performance, which is the primary focus of this study. Considering the limited research conditions¹, we primarily focus on how performance changes by varying the training data size while keeping the model parameter size fixed, and study the impact of model size by comparing the effects of data scaling across different model sizes. Inspired by the scaling law (Equation 1), we hypothesize that a power-law relationship also exists between the training data size D and the model's downstream task performance P_i when D is sufficiently large²:

$$P_i = P_i^{MAX} - \left(\frac{D_0}{D}\right)^{\alpha_{N,i}} \quad \text{when } D \text{ is sufficiently large}$$
(3)

where P_i^{MAX} denotes the performance upper bound of the i^{th} task, D_0 and $\alpha_{N,i}$ are parameters to be determined by curve fitting. The exponent term $\alpha_{N,i}$, which varies across different parameter sizes and tasks, determines the rate at which the error $P_i^{MAX} - P_i$ decays as the training data size D increases. For instance, every x-fold increase in D leads to a reduction of error to $x^{-\alpha_{N,i}}$ of its original value. We refer to Equation 3 as the *difficulty-dependent scaling law*, as we find that the error reduction rate varies largely across tasks with different levels of reasoning difficulty (complexity).

3.2 FACTORS OF REASONING COMPLEXITY

Though solving problems in current medical benchmarks also requires reasoning capabilities to some extent, handling real-world clinical tasks typically demands significantly more complex rea-

 ¹Given that different LLM series trained on datasets with varying sizes, and within the same series, typically only 2-3 model sizes are open-sourced, studying the scaling effects of model parameters on performance under fixed training data size is extremely challenging.

²The proposed empirical power-law may hold only when D is sufficiently large given the lower bound of downstream performance.

Figure 2: Overview of our study. Left: the generation process of reasoning-complex tasks in the proposed MedResEval benchmark. Right: evaluation and analysis of the scaling effects of LLMs on the constructed benchmark.

soning. In our study, we primarily focus on three key factors that cause the difference between existing benchmarks and real clinical tasks regarding reasoning complexity:

- Available clues: Current medical benchmark questions often provide extra clues within the context, which can aid LLMs in predicting the correct answer with tricks. For example, in multiple-choice questions (MCQs), there is only one correct answer among the options, allowing LLMs to reach the correct answer through the process of elimination rather than deriving it directly. However, real-world clinical scenarios typically offer less clues (e.g., no option provided), leading to more challenging reasoning.
- **Decision space**: The decision space of existing evaluation tasks is quite restricted. For example, the decision space of MCQs contains limited options (typically 4-6 options). In contrast, the decision spaces for real-world tasks are typically much larger. For instance, in clinical diagnosis, there may be hundreds of potential candidate diseases, requiring more complex reasoning to reach the correct diagnosis within a broader decision space.
- **Reasoning steps**: Solving problems in existing benchmarks often requires a single step of decision-making (e.g., choosing an option, making a judgement). In contrast, real-world tasks typically involve a more extended decision-making process. For instance, when managing a patient's care, a doctor first establishes a diagnosis and then prescribes treatment based on the diagnosis made in the previous step.

3.3 MEDICAL REASONING CAPABILITIES EVALUATION BENCHMARK

Studying the scaling effects of LLMs in the medical domain requires further evaluating them on tasks with reasoning complexity approaching the level of real-world clinical scenarios. Although some existing medical datasets involve real clinical tasks, variations in the underlying medical knowl-edge across these benchmarks may introduce bias in performance comparisons across tasks. To address this, we developed a new benchmark, MedResEval, by reformulating the well-known med-ical benchmark MedQA (Jin et al., 2021), which contains multiple-choice questions sourced from United States Medical Licensing Examination (USMLE). Tasks in MedResEval are designed to re-quire more complex reasoning and decision-making capabilities related to the key factors introduced above, leading to more accurate reflection of the reasoning complexity involved in real medical tasks. The generation process of this benchmark and our evaluation process are illustrated in Figure 2.

Evaluation Tasks Given the key factors of reasoning complexity, we first devise three types of reformulated tasks that focus on reducing available clues, expanding decision space, and increasing reasoning steps, respectively:

Reducing Available Clues: We consider reducing the extra available clues provided in the MCQ options by combining the question part of each MCQ sample with one of its options, resulting in a statement verification task. To verify the statements, LLMs must rely solely

Figure 3: The proposed diagnosis-simulation task requires LLMs to first identify and revise the contradiction in the patient condition record, followed by selecting the correct diagnosis from a larger set of candidates.

on the information in the question and the content of statements, without the additional clues provided by comparing choices.

- Expanding Decision Space: Inspired by Rajpurkar et al. (2018), we generate unanswerable questions to expand the decision space of original MCQ questions. Specifically, we randomly replace the correct answer of each MCQ question with a wrong option, resulting in a corresponding unanswerable question. Next, we ask LLMs to determine whether the correct answer is included among the options of a question extracted from either the original dataset or the reformulated dataset. To make the judgment, LLMs must consider possible answers beyond the given options, leading to a more open decision space.
- **Increasing Reasoning Steps**: To increase the reasoning steps, we design a simple two-hop reasoning task where LLMs first verify the correctness of an answer to the given MCQ, and then select the correct option if the provided answer is incorrect. Solving this task requires LLMs to make consistent decisions across steps, emphasizing their reasoning consistency throughout the increased reasoning steps.

244 Although the above tasks evaluate LLMs' medical reasoning capabilities from three separate as-245 pects, real medical tasks often require integrating multiple reasoning skills simultaneously. More-246 over, considering that real-world medical context may contain noise and contradictions, the ability 247 to identify and revise contradictory information is crucial for real-world clinical tasks, such as diag-248 nosis. Therefore, we design a more complex **diagnosis-simulation** task to evaluate LLMs' ability 249 to apply multiple reasoning skills simultaneously. Figure 3 presents an example of this task. Specif-250 ically, we perturb the key diagnostic information (gender, examination results, symptoms) in the original diagnosis-type MCQs. Next, we have three experienced doctors annotate whether a contra-251 diction exists in the perturbed questions. For each perturbed question, LLMs should first determine if a contradiction exists. If so, they must revise it by choosing the appropriate revision option before 253 providing the final diagnosis; otherwise, they directly answer the original question. We further ex-254 pand the decision space of this task by adding more candidate diseases and randomly removing the correct diagnosis from the options, requiring LLMs to select "None of the above" in such cases. 256

257 258

259

260

261

262

264

227

229

230 231

232

233

234

235

237

238

239

240

241

242

243

Task-wise Performance Alignment To study the scaling effects of LLMs on medical reasoning capabilities, it is crucial to compare their performance across tasks of varying reasoning complexity. However, due to the differing formats of each task, performance metrics must be further aligned for meaningful comparison. For example, a 50% accuracy on a 5-choice MCQ task is relatively high, while the same accuracy is close to random guessing in a statement verification task with balanced labels. Therefore, we normalize the performance of downstream tasks as follows:

$$P_i^{norm} \triangleq \frac{P_i - P_i^{rand}}{P_i^{MAX} - P_i^{rand}} \tag{4}$$

265 266 267

Here, P_i^{rand} is the random guessing performance on the i^{th} task. Note that $P_i^{norm} = 1$ indicates the upper limit of performance, $P_i^{norm} = 0$ refers to the random guessing performance, and $P_i^{norm} < 0$ indicates performance worse than random guessing.

270 4 **EXPERIMENT SETUP**

271 272

Datasets We primarily conduct experiments on both the original MedQA benchmark and the pro-273 posed MedResEval benchmark to compare the scaling effects of LLMs on tasks that require varying 274 levels of medical reasoning capabilities. However, given that the differences in results between 275 MedResEval and MedQA could also be due to simple generalization effects, it is important to introduce an additional baseline task to eliminate the impact of generalization. On the other hand, 276 apart from reasoning capabilities, mastering the diverse semantic representations of the same medical concept is also crucial for addressing real-world medical tasks. Therefore, we construct another 278 semantic-varied task by replacing the medical terms in the original MedQA dataset with corre-279 sponding synonyms. By introducing this baseline task, we can eliminate the effects of simple gener-280 alization and further explore the differences in scaling effects across various dimensions of medical 281 capabilities, including semantic understanding and reasoning capabilities. More details of dataset 282 generation, including the statistics and examples of tasks, are provided in Appendix A. 283

284 **Evaluation Setting** For evaluation, we employ the 5-shot Chain-of-Thought (CoT) setting (Wei 285 et al., 2022) to maximize the evaluation of LLMs' potential in the medical domain. Following 286 (Nori et al., 2023), we use GPT-40 to generate CoTs that are consistent with the ground truth labels. 287 Additionally, we apply the self-consistency approach (Wang et al., 2022) to enhance performance 288 and ensure evaluation stability. We used handcrafted regular expressions to parse the answers from the LLM responses and found that they successfully extracted the answers most of the time. We 289 select accuracy as the performance metrics, and conduct the normalization mentioned in Equation 290 4. More details of evaluation (e.g., prompt formats, inference setting) are provided in Appendix B. 291

292 **Evaluated Models** We conduct most of the experiments and analysis with LLMs from the Llama 293 (Touvron et al., 2023a;b; Dubey et al., 2024) and Qwen families (Bai et al., 2023; Yang et al., 294 2024), since these two model families span a broader range of parameter sizes and pretraining data 295 sizes than other LLM series, and are widely used for developing downstream applications. Specifi-296 cally, we evaluate 12 LLMs across three generations and two model sizes $(\sim 7B, \sim 70B)^3$. We also 297 evaluated several instruction-tuned LLMs (Qwen2-Instruct, Qwen2.5-Instruct) to study the effect of 298 instructing tuning on the scaling effects. Finally, we evaluated GPT-40 and GPT-40-mini (OpenAI, 299 2024)) for reference. Statistics of the evaluated LLMs are listed in Table 3 of Appendix C.

5 RESULTS

300 301

302

323

303 5.1 MAIN ANALYSIS 304

305 **Qualitative Analysis** We begin by comparing the scaling effects of LLMs on medical tasks with 306 varying levels of reasoning complexity. Specifically, we split the evaluation tasks into two groups: (1) Reasoning-simple tasks, including the original MedOA task and the semantic-varied task; 307 (2) Reasoning-complex tasks, including the reducing-available-clues task, the expanding-decision-308 space task, and the increasing-reasoning-steps task⁴. Figure 4 presents the results of this analysis. 309 We observed that for simple tasks, scaling model size and training data size by the similar fac-310 tor yields similar performance improvement, and those smaller models trained on much larger 311 datasets have matched or even outperformed larger models trained on smaller datasets. For example, 312 Llama3-8B (~7B, 15T) performs comparably to Llama-65B (~70B, 1.4T) on simple tasks (34.4%) 313 vs. 31.6%), despite being 8x smaller but trained on 10x more data. However, for tasks that re-314 quire more complex reasoning, scaling model size by the similar factor results in significantly 315 greater gains compared to scaling data by the similar factor. The experimental results show that 316 Llama models with \sim 7B parameters consistently underperform compared to Llama-65B, even when trained on 10x more data. A similar trend is also observed in the Qwen model family, with the latest 317 Qwen2.5-7B underperforming Qwen-72B by 10% on complex tasks. In general, as tasks require 318 more complex reasoning, the effect of scaling model size becomes much more pronounced than 319 scaling data size. 320

³²¹ ³We primarily focus on 7B and 70B LLMs since open-source LLMs of these scales are relatively abundant 322 and have been widely applied in various downstream tasks.

⁴Considering that the diagnosis-simulation task is derived from part of the original benchmark (diagnosis questions), we do not directly compare its performance with other tasks.

Figure 4: Performance (normalized) of LLMs with varying model sizes and training data sizes on different levels of reasoning complexity in MedResEval. Blue bars: ~7B LLMs; Red bars: ~70B LLMs. The depth of color represents the amount of training data.

Figure 5: Performance (normalized) of Llama models with varying model sizes and training data sizes on different medical tasks in MedResEval.

356 We further investigate the fine-grained scaling effects across various tasks in the proposed MedRe-357 sEval. Taking the Llama series as an example (the complete evaluation results are provided in 358 Appendix D), we categorize the models into four groups based on the number of training tokens 359 (less (1.4T, 2T), more (15T)) and the parameter size (less (\sim 7B), more (\sim 70B)), and average the performance of models within each group. Figure 5 presents the performance of each group on 360 different downstream medical tasks. On the original benchmark task, we observe that the latest 7B 361 model trained on 15T tokens has surpassed 70B models trained on \sim 2T tokens. The results on the 362 semantic-varied task are very similar to those on the original task, suggesting that current LLMs 363 have mastered the semantic representations of medical concepts quite well. However, we found that 364 the 70B models consistently outperform the 7B models across all three reasoning-complex tasks, 365 particularly in the increasing-reasoning-steps task. Such phenomenon indicates that **simply scaling** 366 up the training data size of small-scale LLMs cannot effectively enhance their capabilities to 367 handle more reasoning steps. We also observe that on the expanding-decision-space task, scaling 368 up the training data leads to only a 5% improvement for 7B models, whereas it results in a $\sim 25\%$ 369 improvement for 70B models. These results suggest that enhancing reasoning capabilities in a more 370 open decision space requires simultaneous scaling of both the training data size and the model size, 371 as increasing the training data size alone is insufficient.

372

336

337

338

353

354 355

Quantitative Analysis To better understand the scaling effects on medical tasks with varying levels of reasoning complexity, we further conduct a quantitative analysis by plotting the evaluation results against the number of training tokens and the *normalized error rate* $1 - P_i^{norm}$ (see Figure 6). We observe an approximate power-law relationship between the training data size and the normalized error rate, which confirms our hypothesis in Section 3.1 (Equation 3). We further conduct curve fitting using the evaluated performance and the reported training data sizes of LLMs with

Figure 6: The performance of LLMs with fixed model sizes varies predictably with training data size *D*, with curves (dashed lines) fitted based on the *difficulty-dependent scaling law* (Equation 3).

_	Task Type	#Model Params	Fitting Formula	R^2
	Simple	$\sim 7 \mathrm{B}$	$P = 1 - 0.982D^{-0.168}$	0.944
	Shiple	$\sim 70 \mathrm{B}$	$P = 1 - 0.719 D^{-0.224}$	0.978
	Complay	$\sim 7B$	$P = 1 - 1.052D^{-0.067}$	0.991
	Complex	$\sim 70 \mathrm{B}$	$P = 1 - 0.927 D^{-0.132}$	0.919

Table 1: Formulas of the fitting curves presented in Figure 6 with R^2 scores (some outliers are discarded in calculating R^2).

varving model sizes across tasks of different reasoning complexity⁵. The details of curve fitting is 406 407 provided in Appendix E, while the fitting results are presented in Table 1. Overall, the fitting curves achieve relatively high R^2 scores, which quantitatively supports the validity of our proposed em-408 pirical formula. Only a few models (e.g., Llama3) deviate significantly from the predicted curves, 409 possibly due to other factors such as training data quality. Moreover, the fitting results indicate that 410 the profit of scaling training data are greater for models with larger sizes, especially for tasks 411 that rely on complex reasoning. Based on the fitting equations, a 7B model trained on \sim 54.7T 412 tokens can achieve the same performance on simple tasks as a 70B model trained on 5T tokens; 413 however, to match the performance of that 70B model on complex tasks, the 7B model would need 414 to be trained on \sim 157T tokens, which is 10 times the number of tokens used for training Llama3. 415 Therefore, considering the difficulty of collecting high-quality training data, the approach of scal-416 ing up the training data size to further improve the performance of small-scale LLMs on 417 real-world medical tasks, which requires more complex reasoning, is unsustainable.

418 419 420

394

403

404 405

5.2 CASE STUDY ON DIAGNOSIS-SIMULATION TASK

We also conduct a case study on the proposed diagnosis-simulation task that requires revising possi-421 ble contradictions in the patient condition and then making the correct diagnosis. The performance 422 of LLMs on this task is presented in Figure 7. Generally, larger LLMs consistently outperform 423 smaller LLMs on this task, which exhibits similar trends compared to reasoning-complex tasks. 424 Moreover, we observe that the performance of 70B LLMs improves more rapidly with increased 425 training data compared to 7B LLMs: for the 7B Llama models, a 10x increase in data resulted in 426 approximately an 8% performance improvement, whereas the 70B Llama model saw about a 20% 427 improvement. Qwen LLMs did not exhibit consistent performance gains with increased data, which 428 may be attributed to differences in training data distribution. Nevertheless, we also observe that in-429 creasing the training data size from 7T to 18T leads to a 7% performance improvement for the 70B 430 Qwen LLMs, while the performance of the 7B LLMs remains unchanged. Such phenomenon sug-

⁴³¹

⁵Some outliers were not considered in the fitting.

Model	S	imple		Complex		
WIUdel	Base	IT	Δ	Base	IT	Δ
Qwen2-7B	33.7	31.9	-1.8	6.8	18.6	11.7
Qwen2-72B	56.6	60.5	3.9	31.3	46.5	15.1
Qwen2.5-7B	39.6	42.7	3.1	13.7	23.3	9.6
Qwen2.5-72B	61.1	65.5	4.4	34.2	49.9	15.7
GPT-40-mini	-	67.0	-	-	43.5	-
GPT-40	-	82.1	-	-	69.3	-

diagnosis-simulation task.

Figure 7: Performance of LLMs with vary- Table 2: Impact of instruction tuning on the downing model sizes and training data sizes on the stream performance of LLMs with varied model sizes and training data sizes.

gests that further increasing the training data size of 7B LLMs may not lead to better performance on tasks involving complex reasoning skills.

5.3 IMPACT OF INSTRUCTION TUNING

452 Finally, we also investigate the impact of instruction tuning on downstream performance of LLMs 453 with varied model sizes and training data sizes. Specifically, we evaluate four instruction-tuned 454 LLMs with varying model sizes and training data sizes, and compare them to their respective base 455 models. We also evaluate two flagship commercial LLMs (GPT-4o-mini and GPT-4o) for reference. 456 The experimental results are presented in Table 2, with detailed performance provided in Appendix 457 D. The experimental results demonstrate the effectiveness of instruction tuning, as it largely improves performance on complex tasks by > 10%. However, instruction tuning does not reduce 458 the performance gap between models with different parameter scales. In fact, for complex 459 tasks, the performance gap between 7B and 70B models widened by $\sim 5\%$ after instruction tuning. 460 This further confirms the generalizability of our conclusions regarding parameter and training data 461 scales. Finally, we observe that although GPT-40-mini outperforms all of the evaluated LLMs on 462 simple tasks, it falls behind Qwen2.5-72B on complex and real-world simulation tasks. In contrast, 463 GPT-40 significantly outperforms all of the evaluated LLMs across tasks of varying difficulty levels. 464 This further underscores the importance of scaling model size for addressing complex real-world 465 problems. It is worth noting that a large gap (13%) still exists between GPT-4o's performance on 466 simple and complex tasks, indicating that the current ability of LLMs to generalize medical knowl-467 edge across different tasks requires further improvement.

468 469

470

441

442

447

448 449 450

451

6 CONCLUSION

471 472

Solving real-world clinical problems require LLMs to master advanced medical reasoning capabili-473 ties. In this paper, we revisiting the scaling effects of LLMs on medical reasoning capabilities. We 474 focus on three key factors that affect the reasoning complexity, and devise a specific task that sim-475 ulates a problem from a real medical scenarios. Based on the evaluation of 18 LLMs with varying 476 model sizes and training data amounts, we find that though some latest 7B LLMs have achieved 477 comparable or even superior performance than elder 70B LLMs on existing benchmarks, they per-478 form consistently worse than the latter on tasks involving more complex reasoning. Furthermore, 479 our quantitative analysis demonstrate that scaling the model size always lead to a more pronounced 480 performance improvement than scaling data size, especially on reasoning-complex tasks. Further 481 investigation indicates that though instruction-tuning does improve LLMs' reasoning capabilities to 482 some extent, the scaling effects of model size are still notable. Our study findings indicate that while 483 both data and parameter scales enhance LLM performance, greater emphasis must be placed on model parameter scales, particularly for difficult reasoning tasks. LLMs with sufficiently large-scale 484 model size are essential for effectively addressing difficult reasoning tasks, such as some real-world 485 medical problems encountered.

486 REFERENCES

498

499

500

516

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative mixed-modal language models. In *International Conference on Machine Learning*, pp. 265–279. PMLR, 2023.
- Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
 - Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- Asma Ben Abacha, Eugene Agichtein, Yuval Pinter, and Dina Demner-Fushman. Overview of the
 medical question answering task at tree 2017 liveqa. In *TREC 2017*, 2017.
- Yan Cai, Linlin Wang, Ye Wang, Gerard de Melo, Ya Zhang, Yanfeng Wang, and Liang He. Medbench: A large-scale chinese benchmark for evaluating medical large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 17709–17717, 2024.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, Weihang Su, Jia Chen, and Yiqun Liu. Scaling
 laws for dense retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1339–1349, 2024.
- 513
 514
 514
 515
 515
 516
 517
 518
 519
 519
 510
 510
 511
 511
 511
 512
 513
 514
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 515
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. 2022.
- Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
 2024.
- Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this patient have? a large-scale open domain question answering dataset from medical exams. *Applied Sciences*, 11(14):6421, 2021.
- Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 2567–2577, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1259. URL https://aclanthology.org/D19–1259.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*, 2020.
- Zeljko Kraljevic, Thomas Searle, Anthony Shek, Lukasz Roguski, Kawsar Noor, Daniel Bean, Aurelie Mascio, Leilei Zhu, Amos A Folarin, Angus Roberts, et al. Multi-domain clinical natural language processing with medcat: the medical concept annotation toolkit. *Artificial intelligence in medicine*, 117:102083, 2021.

540 Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King, 541 Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. Can generalist foundation models outcompete 542 special-purpose tuning? case study in medicine. arXiv preprint arXiv:2311.16452, 2023. 543 OpenAI. Gpt-40 mini: advancing cost-efficient intelligence, July 2024. URL https://openai. 544 com/index/gpt-4o-mini-advancing-cost-efficient-intelligence. 546 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong 547 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-548 low instructions with human feedback. Advances in neural information processing systems, 35: 549 27730-27744, 2022. 550 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale 551 multi-subject multi-choice dataset for medical domain question answering. In Gerardo Flores, 552 George H Chen, Tom Pollard, Joyce C Ho, and Tristan Naumann (eds.), Proceedings of the Con-553 ference on Health, Inference, and Learning, volume 174 of Proceedings of Machine Learning Re-554 search, pp. 248-260. PMLR, 07-08 Apr 2022. URL https://proceedings.mlr.press/ 555 v174/pal22a.html. 556 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational 558 Linguistics (Volume 2: Short Papers), pp. 784–789, 2018. 559 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan 561 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode 562 clinical knowledge. Nature, 620(7972):172-180, 2023. 563 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée 564 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and 565 efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a. 566 567 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-568 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b. 569 570 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-571 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. 572 arXiv preprint arXiv:2203.11171, 2022. 573 574 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in 575 neural information processing systems, 35:24824–24837, 2022. 576 577 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, 578 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint 579 arXiv:2407.10671, 2024. 580 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. 581 In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 582 12104-12113, 2022. 583 584 Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen, and Buzhou Tang. Promptcblue: a chinese 585 prompt tuning benchmark for the medical domain. arXiv preprint arXiv:2310.14151, 2023. 586 587 588 DETAILS OF BENCHMARK CONSTRUCTION А 589 590 We construct MedResEval by reformulating the original MedQA dataset, as introduced in preceding

We construct MedResEval by reformulating the original MedQA dataset, as introduced in preceding
 sections. MedQA is a large-scale medical exam dataset, containing medical exams sourced from
 three different regions. In this study, we use the questions in the US subset, which are collected from
 the United States Medical Licensing Examination (USMLE). Questions in MedQA are MCQs with
 five options, as shown in the top of Figure 8. Typically, a MedQA question consist of introduction of

a patient's condition, together with a corresponding question part regarding the diagnosis, treatment, or other aspect of the patient. For task reformulation, we first use regular expressions to identify and parse the question part to determine the type of question. Furthermore, we generate three types of reasoning-complex questions as follows:

- reducing-available-clues questions: We combine the extracted question part of the MCQ with a correct answer and a randomly selected incorrect answer, resulting in two statements. To increase the reasoning difficulty, we further derive two additional statements by adding negation words. Finally, we concatenate these statements with the description of the patient's condition.
- expanding-decision-space questions: We replace the correct option in the original MCQ with a distractor generated by GPT-4 to create unanswerable questions. To ensure the accuracy of the generated questions, we had two experienced doctors on our team review the reformulated questions.
- increasing-reasoning-steps questions: We generate this type of question by providing a possible answer and instructing LLMs to verify the given answer, correcting it if it is incorrect. For example, we might ask, "Alice chose answer [given answer]. Please verify if this is correct, and if not, provide the correct answer." In our implementation, we generate two questions based on the original MCQ by providing a correct answer and a randomly selected incorrect answer.

Examples of these three types of are provided in the bottom of Figure 8. Based on a total of 800
parsable questions sourced from the MedQA test set, we generate 3,200 questions for the reducingavailable-clues type, and 1,600 questions each for the expanding-decision-space type and increasingreasoning-steps type.

Reasoning-complex Questions

Figure 8: An example of reformulating questions in the MedQA dataset.

We also generate diagnosis-simulation questions based on the MedQA dataset. Figure 10 illustrates
an example of this type of question. For the diagnosis-simulation task, given that the number of
diagnosis-type questions in the MedQA test set is relatively low (fewer than 100 questions), we
collect all diagnosis-related questions from the entire MedQA dataset, resulting in 900 questions.
We then use regular expressions to identify and perturb key information, such as gender, examination
results, and symptoms. Next, we expand the original option set by randomly sampling four negative

660

diseases and adding a "none of the above" option. We shuffle the sequence of options and randomly
replace the correct answer with a distractor disease in 10% of the questions to balance the selection
probability of options and avoid potential positional bias. Finally, two doctors review the perturbed
questions to determine whether any contradictions exist; if not, they assess whether a correct answer
is present among the options. We also generate three revision options, with two incorrect options that
replace the correct information with the perturbed details, and one option that contains the correct
revision. As a result, a total of 1,989 questions are generated through this process.

We also construct a semantic-varied task by replacing the medical terms in the questions of the MedQA benchmark. Specifically, we use a medical NER tool MedCAT (Kraljevic et al., 2021) to identify the medical terms presented in the questions. Then we search in the UMLS database to retrieve the synonyms of these medical terms. Finally, we randomly replace these identified medical terms with corresponding synonyms to varied the original questions in the semantic-level.

Question: A 28-year-old man at 30 weeks gestation is rushed to the emergency room with the
contractions Which of the following is the most likely diagnosis in this patient?
Options:
B: Placenta abruption
C: Eczematous dermatitis
E: Adrenocortical carcinoma
F: Miscarriage G: Attention deficit hyperactivity disorder
H: Placenta previa
I: Extranodal marginal zone lymphoma
Is there any contradiction in the patient's gender, examination items, symptoms, or other key
diagnostic information? If there is, please select the correct revision process from the following options and answer the revised question: if not, please answer the original question.
Revision options:
1: Results of temperature examination: 37.0°C -> 36.5°C 2: Symptoms: sudden onset of vaginal bleeding -> no sudden onset of vaginal bleeding
3: Gender: Male -> Female
Figure 9: An example of the generated diagnosis-simulation question.

702 B DETAILS OF EVALUATION SETTING

We illustrate the prompt format used for evaluation, which combines five-shot Chain of Thought (CoT) prompting with self-consistency reasoning to maximize the performance of large language models (LLMs) on challenging reasoning tasks. Specifically, we concatenate five demonstrative question examples with the test question, where each example consists of a question, a CoT, and the corresponding answer. Using this constructed input sequence, we prompt the evaluated LLM five times to obtain five different reasoning chains. We set the temperature to 0.8 and top_p to 0.8 to encourage more diverse responses. Finally, we use regular expressions to extract answers from the responses and conduct a majority vote to determine the final prediction.

For the generation of CoT, we follow (Nori et al., 2023) by prompting GPT-40 to generate CoT
based on the demonstrative question using the following template: [Question]. Please provide a *complete chain-of-thought to answer the given question.* We prompt the GPT-40 several times for
each questions, only keeping the CoTs that are consistent with the ground-truth label.

Figure 10: An example of the generated diagnosis-simulation question.

C STATISTICS OF EVALUATED LLMS

We list the number of parameters and training tokens in Table 3, regarding the LLMs studied in this paper.

Model	#Parameter (B)	#Training Tokens (T)
Llama	7/65	1.4
Llama2	7/70	2
Llama3	8/70	15
Qwen	7/72	3
Qwen2	7/72	7
Qwen2.5	7/72	18

Table 3: Statistics of studied LLMs in this paper.

758							
750	Model	Origin	SemVar	ReduAvaClu	ExpDeciSpac	IncReasStep	Diagnosis
139	llama-7B	1.1	4.7	2.1	0.5	-11.1	-6.4
760	llama2-7B	20.3	7.5	2.2	-2.1	-2.4	-3.1
761	llama3-8B	36.9	31.9	10.8	1.9	-2.7	6.4
762	Qwen-7B	21.2	18.2	13.1	-1.4	-1.0	4.1
763	Qwen2-7B	34.0	33.5	14.2	6.0	3.0	11.9
764	Qwen2.5-7B	42.0	37.3	17.5	10.6	14.3	17.5
704	llama-65B	34.1	29.1	13.3	4.9	6.7	5.1
C01	llama2-70B	38.7	38.4	17.1	7.0	21.3	13.3
766	llama3-70B	61.0	60.1	26.5	32.5	26.1	24.1
767	Qwen-72B	45.8	42.1	26.4	11.1	31.4	22.0
768	Qwen2-72B	56.6	56.6	36.1	21.8	35.6	23.7
769	Qwen2.5-72B	63.5	58.6	36.4	22.9	44.5	28.8
770	Qwen2-7B-Instruct	33.0	30.8	18.8	11.1	25.7	12.2
770	Qwen2-72B-Instruct	61.6	59.4	48.2	30.4	60.9	30.7
//1	Qwen2.5-7B-Instruct	44.7	40.7	17.7	19.1	32.8	17.4
772	Qwen2.5-72B-Instruct	67.9	63.1	54.9	30.7	64.0	44.6
773	GPT-4o-mini	69.2	64.8	52.1	18.0	60.6	31.9
774	GPT-40	83.2	81.0	75.3	50.7	81.9	47.7

D DETAILED EVALUATION RESULTS ACROSS TASKS

Table 4: Full evaluation results of LLMs on the proposed MedResEval benchmark. Sem-Var: semantic-varied baseline task; ReduAvaClu: reducing-available-clues task; ExpDeciSpac: expanding-decision-space task; IncReasStep: increasing-reasoning-steps task; Diagnosis: diagnosis-simulation task.

E DETAILS OF CURVE FITTING

We conduct linear regression between the normalized log error rate log(1 - P) and the log training data size log(D) using the following formula:

$$\log(1-P) = -\alpha_{N,i}\log(D) + A \tag{5}$$

where $A = \log(D_0)$. Note that this formula is equivalent to the Equation 3 presented in preceding sections. For simple tasks, we use all the evaluation results in the curve fitting; for complex tasks, we observe that the results of Llama3 behave as outliers in the fitting, while the fitting results based on the rest LLMs achieve relative high R^2 scores. Therefore, we do not consider the Llama3 results in curve fitting.