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Nicolò Cesa-Bianchi 1 5 Yevgeny Seldin 3

Abstract
We study a K-armed bandit with delayed feed-
back and intermediate observations. We consider
a model where intermediate observations have a
form of a finite state, which is observed immedi-
ately after taking an action, whereas the loss is
observed after an adversarially chosen delay. We
show that the regime of the mapping of states to
losses determines the complexity of the problem,
irrespective of whether the mapping of actions to
states is stochastic or adversarial. If the mapping
of states to losses is adversarial, then the regret
rate is of order

√
(K + d)T (within log factors),

where T is the time horizon and d is a fixed delay.
This matches the regret rate of a K-armed bandit
with delayed feedback and without intermediate
observations, implying that intermediate observa-
tions are not helpful. However, if the mapping
of states to losses is stochastic, we show that the
regret grows at a rate of

√(
K +min{|S|, d}

)
T

(within log factors), implying that if the number
|S| of states is smaller than the delay, then in-
termediate observations help. We also provide
refined high-probability regret upper bounds for
non-uniform delays, together with experimental
validation of our algorithms.

1. Introduction
Delay is an ubiquitous phenomenon that many sequential de-
cision makers have to deal with. For example, outcomes of
medical treatments are often observed with delay, purchase
events happen with delay after advertisement impressions,
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and acceptance/rejection decisions for scientific papers are
observed with delay after manuscript submissions. The
impact of delay on the performance of sequential decision
makers, measured by regret, has been extensively studied
under full information and bandit feedback, and in stochas-
tic and adversarial environments. Yet, in many situations
in real life intermediate observations may be available to
the learner. For example, a health check-up might give a
preliminary indication on the effect of a treatment, an ad-
vertisement click might be a precursor for an upcoming
purchase, and preliminary reviews might provide some in-
formation regarding an upcoming acceptance or rejection
decision. In this work we study when, and how, intermedi-
ate observations can be used to reduce the impact of delay
in observing the final outcome of an action in a multi-armed
bandit setting.

Online learning with delayed feedback and intermediate
observations was studied by Mann et al. (2019) in a
full-information setting, and then by Vernade et al. (2020)
in a nonstationary stochastic bandit setting. In the paper
of Vernade et al. (2020), at each time step the learner
chooses an action and immediately observes a signal (also
called state) belonging to a finite set. The actual loss (i.e.,
feedback) incurred by the learner in that time step is only
received with delay, which can be fixed or random. More
formally, the observed state is drawn from a distribution that
only depends on the chosen action, and the incurred loss is
drawn from a distribution that only depends on the observed
state (and not on the chosen action), forming a Markov chain.

Action
At

State
St = st(At)

Loss
ℓt(St)

no delay delay dt

The work of Vernade et al. (2020) studies a setting, where
st are nonstationary and ℓt are i.i.d. stochastic.

In this work, we consider two possible regimes for the map-
pings st from actions to states (stochastic and adversarial)
and two possible regimes for the mappings ℓt from states
to losses (also stochastic and adversarial). Altogether, we
study four different regimes, defined by the combination of
the first and the second mapping type.

We characterize (within logarithmic factors) the minimax re-
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gret rates for all of them, by giving upper and lower bounds.
Similar to Vernade et al., we assume that the states are ob-
served instantaneously, and we assume that the losses are
observed with delay d. We show that the minimax regret
rate is fully determined by the regime of the states to losses
mapping, regardless of the regime of the actions to states
mapping. The results are informally summarized in the
following table, where K denotes the number of actions,
S denotes the number of states, and T denotes the time
horizon. It is assumed that the losses belong to the [0, 1]
interval.

States to losses mapping Regret (within log factors)

Adversarial
√
(K + d)T

Stochastic
√(

K +min{S, d}
)
T

All of our upper bounds hold with high probability (with
respect to the learner’s internal randomization) irrespective
of the regime of the action to states mapping.

We recall that (within logarithmic factors) the minimax re-
gret rate in multi-armed bandits with delays without interme-
diate observations is of order

√
(K + d)T (Cesa-Bianchi

et al., 2019). Therefore, we conclude that if the mapping
from states to actions is adversarial, then intermediate ob-
servations do not help (in the minimax sense), because the
regret rates are the same irrespective of whether the inter-
mediate observations are used or not, and irrespective of
whether the mapping from actions to states is stochastic or
adversarial. However, if the mapping from states to losses
is stochastic, and the number S of states is smaller than
the delay d, then intermediate observations are helpful, and
we provide an algorithm, MetaAdaBIO, which is able to
exploit them. Our result improves on the Õ

(√
KST

)
regret

bound obtained by Vernade et al. (2020) for the case of
stochastic and stationary action to states mapping. Our algo-
rithm also applies to a more general setting of non-uniform
delays (dt)t∈[T ] where we achieve a high-probability re-
gret bound of order

√
KT +min{ST,DT } (ignoring log-

arithmic factors). This improves upon the total delay term
DT = d1 + · · ·+ dT similarly to the respective term in the
fixed delay setting.

Related work Adaptive clinical trials have served an inspi-
ration for the multi-armed bandit model (Thompson, 1933),
and, interestingly, they have also pushed the field to study
the effect of delayed feedback (Simon, 1977; Eick, 1988).
In the bandit setting Joulani et al. (2013) have studied a
stochastic setting with random delays, whereas Neu et al.
(2010; 2014) have studied a nonstochastic setting with con-
stant delays. Cesa-Bianchi et al. (2019) have shown an
Ω(max{

√
KT,

√
dT lnK}) lower bound for nonstochas-

tic bandits with uniformly delayed feedback, and an upper
bound matching the lower bound within logarithmic fac-

tors by using an EXP3-style algorithm (Auer et al., 2002b),
whereas Zimmert & Seldin (2020) have reduced the gap to
the lower bound down to constants by using a Tsallis-INF
approach (Zimmert & Seldin, 2021). Follow up works have
studied adversarial multi-armed bandits with non-uniform
delays (Thune et al., 2019; Bistritz et al., 2019; 2022; Gy-
orgy & Joulani, 2021; Van der Hoeven & Cesa-Bianchi,
2022) with Zimmert & Seldin (2020) providing a minimax
optimal algorithm and Masoudian et al. (2022) deriving a
matching lower bound and a best-of-both-worlds extension.
Two key techniques for handling non-uniform delays are
skipping, introduced by Thune et al. (2019), and algorithm
parametrization by the number of outstanding observations
(an observed quantity at action time), as opposed to the de-
lays (an unobserved quantity at action time), introduced by
Zimmert & Seldin (2020).

Paper structure In Section 2 we provide a formal prob-
lem definition. In Section 3 we introduce two algorithms,
MetaBIO and MetaAdaBIO, for the model of bandits
with intermediate observations. In Section 4 we analyze
both algorithms and prove high-probability regret bounds for
the setting of adversarial action-state mappings and stochas-
tic losses. In Section 5 we provide the lower bounds, and
in Section 6 experimental evaluation, concluding with a
discussion in Section 7.

2. Problem definition
We consider an online learning setting with a finite set A =
[K] of K ≥ 2 actions and a finite set S = [S] of S ≥ 2
states. In each round t = 1, 2, . . . the learner picks an
action At ∈ A and receives a state St = st(At) ∈ S as
an intermediate observation according to some mapping
st ∈ SA. The learner also incurs a loss ℓt(St) ∈ [0, 1],
which is only observed at the end of round t + dt, where
the delay dt ≥ 0 is revealed to the learner only when the
observation is received.

The difficulty of this learning task depends on three elements
all initially unknown to the learner:

• the sequence of action-state mappings s1, . . . , sT ∈ SA;

• the sequence of loss vectors ℓ1, . . . , ℓT ∈ [0, 1]S ;

• the sequence of delays d1, . . . , dT ∈ N, where dt ≤ T−t
for all t ∈ [T ] without loss of generality.

Note that unlike standard bandits, here the losses are func-
tions of the states instead of the actions. However, since ac-
tions are chosen without a-priori information on the action-
state mappings, learners have no direct control on the losses
they will incur and, because of the delays, they also have
no immediate feedback on the loss associated with the ob-
served states. Note also that, for all t ≥ 1, the states st(a)
for a ̸= At and the losses ℓt(s) for s ̸= St are never re-
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vealed to the algorithm. For brevity, we refer to this setting
as (delayed) Bandits with Intermediate Observations (BIO).

In the setting of stochastic losses, we assume the loss vec-
tors ℓt ∈ [0, 1]S are sampled i.i.d. from some fixed but
unknown distribution Q, and let θ ∈ [0, 1]S be the un-
known vector of expected losses for the states. That is,
ℓt(s) ∼ Q(· | s) has mean θ(s) for each t ∈ [T ] and s ∈ S.
Note that we allow dependencies between the stochastic
losses of distinct states in the same round, but require losses
to be independent across rounds. In the setting of stochastic
action-state mappings, we assume that each observed state
St is independently drawn from a fixed but unknown distri-
bution P (· |At). If both losses and action-state mappings
are stochastic, then ℓt(St) is independent of At given St.
When losses or action-state mappings are adversarial, we
always assume oblivious adversaries.

Our main quantity of interest is the regret measured via the
learner’s cumulative loss

∑
t ℓt(St), where St = st(At)

and (At)t≥1 is the sequence of learner’s actions. In case
of stochastic losses, we define the learner’s performance
by
∑

t θ(St). In case of stochastic action-state mappings,
we average each instantaneous loss over the random choice
of the state:

∑
s ℓt(s)P (s |At) for adversarial losses and∑

s θ(s)P (s |At) for stochastic losses. Regret is always
computed according to the best action with respect to appro-
priate notion of cumulative loss. In particular, for stochastic
state-action mappings, the cumulative losses of the best
action are

min
a∈A

T∑
t=1

∑
s∈S

ℓt(s)P (s | a)

and

min
a∈A

T∑
t=1

∑
s∈S

θ(s)P (s | a) .

3. Algorithm
In this section we introduce MetaBIO (Algorithm 1) that
transforms any algorithm B tailored for the delayed setting
without intermediate observations into an algorithm for our
setting. We then propose MetaAdaBIO, a modification of
MetaBIO that delivers an improved regret bound for our
setting.

The idea of MetaBIO is to reduce the impact of delays
using the information we get from intermediate observations.
More precisely, if we have enough observations for the
current state St at time t, we immediately feed to B the
estimate of the mean loss of this state as if it were the actual
loss at time t; otherwise, we wait for dt time steps and refine
our estimate using the additional loss observations.

The are two key steps in the design of our algorithm: how
we construct the mean estimate and when we use it instead

of waiting for the actual loss. They are the steps highlighted
in green in Algorithm 1. For all t ∈ [T ] and s ∈ S, we use
θ̃t(s) to denote the mean estimate of θ(s) at round t and
nt(s) to denote the number of observations for state s that
we want to observe before using θ̃t(s). We add a subscript
t to L(s) in Algorithm 1 to denote the set of observations
we have collected at the end of round t. Thus, θ̃t(s) uses
Nt(s) = |Lt(s)| observations.

Algorithm 1: MetaBIO
Input: Algorithm B for standard delayed bandits,

confidence parameter δ ∈ (0, 1)
Initialize L(s) = ∅ for all s ∈ S
for t = 1, . . . , T do

Get At from B
Observe St = st(At)
for j : j + dj = t do

Receive (j, ℓj(Sj))
Update L(Sj) = L(Sj) ∪ {(j, ℓj(Sj))}

Initialize feedback set M = ∅
Compute nt(St)
if |L(St)| ≥ nt(St) then

Add t to M
for j : j + dj = t ∧ |L(Sj)| < nj(Sj) do

Add j to M
for j ∈ M do

Compute θ̃t(Sj) from L(Sj) // using δ

Feed (j, Aj , θ̃t(Sj)) to B

Fixed delay setting. When all rounds have delay d, we
simply choose nt(s) = d for all s ∈ S, t ∈ [T ]. In other
words, if we have at least d observations for some state, then
we can compensate for the effect of delays and construct
a well concentrated mean estimate around the actual mean.
Let θ̂t(s) =

∑
j∈Lt(s)

ℓj(s)
/
Nt(s). Then our mean loss

estimate is a lower confidence bound for θ(s) defined by

θ̃t(s) = max

{
0, θ̂t(s)−

1

2
εt(s)

}
(1)

for εt(s) =
√

2
Nt(s)

ln 4ST
δ .

Arbitrary delay setting. In the arbitrary delay setting,
where we do not have preliminary knowledge of delays, we
can not use the delays to set nt(s). Instead, at the end of time
t, we have access to the number of outstanding observations
σt =

∣∣{j ∈ [t] : j+dj > t}
∣∣, which is different from prior

works that consider outstanding observation at the beginning
of the round. Then, for any s ∈ S, we may set nt(s) = σt.
With this choice, incurring zero delay at some round implies
that we received at least half of all the observations we could
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have received in the no-delay setting (see Appendix B.4). In
Section 4 we see that this ensures our mean estimate is well
concentrated around its mean.

Since Algorithm 1 waits for the actual loss at time t only
if Nt(St) < σt, then d̃t = dt 1[Nt(St) < σt] is the actual
delay incurred by the algorithm, and Lt+d̃t

(s) is the set of
observations used to compute the estimate of the mean loss
at time t. Because some observations may arrive at the same
time, the high-probability analysis of MetaBIO requires
these observations to be ordered. More precisely, we con-
struct our mean estimate at time t+ d̃t for the feedback of
round t using the set

L′
t(s) =

{
(j, ℓj(s)) ∈ Lt+d̃t

(s)
∣∣∣ j+d̃j= t+d̃t ⇒ j<t

}
.

Letting N ′
t(s) = |L′

t(s)|, we define the empirical mean

θ̂t(s) =
∑

j∈L′
t(s)

ℓj(s)

N ′
t(s)

. (2)

Then, we set εt(s) =
√

2
N ′

t(s)
ln 4ST

δ and define the mean
loss estimator similarly to Equation (1).

The MetaAdaBIO algorithm. As we said already, the goal
of intermediate observations is to reduce the impact of de-
lays. However, if the number of states is too large compared
to the average delay, then the information we get from inter-
mediate observations could be misleading. To address this
issue, we introduce MetaAdaBIO (Algorithm 2). Given
a horizon T ,1 this algorithm runs B (which is tailored for
the setting without intermediate observations) until the total
incurred delay exceeds ST , and then switches to MetaBIO.
We precise that MetaAdaBIO computes Dt as the sum of
outstanding observation counts up to round t, which is then
used in the switching condition.

4. Regret Analysis
We analyze MetaBIO and MetaAdaBIO in the setting
of adversarial action-state mappings and stochastic losses
where the regret is defined by

RT =

T∑
t=1

θ(St)−min
a∈A

T∑
t=1

θ(st(a)) .

Our analysis guarantees a bound on RT that holds with high
probability (and not just in expectation). A related notion of
regret is

RT =

T∑
t=1

ℓt(St)−min
a∈A

T∑
t=1

ℓt(st(a))

1Note that we may remove the a-priori knowledge of T by
using a doubling trick at the cost of a polylog factor in the regret.
See Remark 4.7 for further details.

Algorithm 2: MetaAdaBIO
Input: Algorithm B for standard delayed bandits,

confidence parameter δ ∈ (0, 1)
Initialize D0 = 0
for t = 1, . . . , T do

Get At from B
for j : j + dj = t do

Receive (j, ℓj(Sj))
Feed (j, Aj , ℓj(Sj)) to B

Set σt =
∑t−1

j=1 1[j + dj > t]

Update Dt = Dt−1 + σt

if Dt(3 lnK + ln(6/δ)) > 49ST ln 8ST
δ then

break

if t < T then
Run MetaBIO(B, δ/2) for the remaining rounds

which considers the realized losses instead of their means.
The two quantities are close with high probability: each
inequality

−
√

2T ln(2K/δ) ≤ RT −RT ≤
√
2T ln(2/δ) (3)

individually holds with probability at least 1 − δ for any
given δ ∈ (0, 1) (see Lemma A.1).

Let DT =
∑T

t=1 dt be the total delay. We start by
showing an upper bound on the total actual delay D̃T =∑T

t=1 dt1[Nt(St) < σt] ≤ DT incurred by MetaBIO.
Then, we provide a high-probability regret analysis of both
MetaBIO and MetaAdaBIO.

More precisely, we can show that MetaBIO incurs the
delays of no more than min{2Sσmax, T} rounds, where
σmax = maxt∈[T ] σt. In the worst case, these rounds corre-
spond with those from the set

Φ ∈ argmax
J⊆[T ]

{
DJ : |J | = min{2Sσmax, T}

}
. (4)

where we denote DJ =
∑

t∈J dt for any J ⊆ [T ].
Note that the set Φ is fully determined by the delay se-
quence d1, . . . , dT . Moreover, the total delay incurred by
MetaBIO cannot be worse than the sum of delays corre-
sponding to the rounds in Φ, as stated in the lemma below.

Lemma 4.1 (Total actual delay). If MetaBIO is run with
any algorithm B on delays (dt)t∈[T ], then D̃T ≤ DΦ.

Lemma 4.1 (proof in Appendix B.1) implies that, if all
delays are bounded by dmax, then D̃T ≤ 2Sσmaxdmax,
which does not depend on T . In the fixed-delay setting with
delay d, for example, we get a total effective delay of at
most 2Sd2, rather than the total delay dT we would incur
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without access to intermediate observations (when T is large
enough).

We now turn MetaBIO into a concrete algorithm by in-
stantiating B. Specifically, we use DAda-Exp3 (Gyorgy &
Joulani, 2021), a variant of Exp3 which does not use inter-
mediate observations and is robust to delays. DAda-Exp3
has the following regret bound.

Theorem 4.2 (Gyorgy & Joulani (2021, Corollary 4.2)).
For any δ ∈ (0, 1), the regret with respect to realized losses
of DAda-Exp3 in the adversarial bandits with arbitrary
delays with probability at least 1− δ satisfies

RT ≤ 2
√
3(2KT +DT ) lnK

+

(√
2KT +DT

3 lnK
+

σmax

2
+ 1

)
ln

2

δ
.

While Theorem 4.2 shows a high-probability bound on RT ,
Equation (3) shows that a high-probability bound for one
notion of regret ensures a high-probability bound for the
other. Although the original bound by Gyorgy & Joulani
(2021) was stated with dmax instead of σmax, we can replace
the former with the latter by observing that, in the analysis of
Gyorgy & Joulani (2021, Theorem 4.1), they only use dmax

to upper bound the number of outstanding observations.
Note that σmax is never larger than dmax, indicating it is
a well-behaved term that is not vulnerable to a few large
delays. See Masoudian et al. (2022, Lemma 3) for a refined
quantification of the relation between σmax and dmax.

If we consider a fixed confidence level δ ∈ (0, 1), then we
can make the learning rate ηt and the implicit exploration
term γt in DAda-Exp3 depend on the specific value of δ so
as to achieve an improved regret bound (see Appendix B.2).
This allows us to show that in the BIO setting with adver-
sarial action-state mappings and stochastic losses, the regret
RT of DAda-Exp3 is upper bounded by

2
√
2KTCK,6δ + 2

√
DTCK,6δ +

σmax + 2

2
ln

2

δ
(5)

with probability at least 1− δ, where

CK,δ = 3 lnK + ln
12

δ
.

Next, we state the regret bound for MetaBIO. We remark
that we initialize DAda-Exp3 with confidence parameter
δ/2 so as to guarantee the high-probability bound as in (5)
with probability at least 1− δ/2 as required.

Theorem 4.3. Let δ ∈ (0, 1). If we run MetaBIO using
DAda-Exp3, then the regret of MetaBIO in the BIO set-
ting with adversarial action-state mappings and stochastic

losses with probability at least 1− δ satisfies

RT ≤ 2
√
2KTCK,3δ + 7

√
ST ln

4ST

δ

+ 2
√
DΦCK,3δ +

σmax + 2

2
ln

4

δ
. (6)

We begin the analysis of Theorem 4.3 by decomposing the
regret into two parts: (i) the regret RT of DAda-Exp3 with
losses θ̃t(St), and (ii) the gap RT −RT , corresponding to
the cumulative error of the estimates fed to DAda-Exp3.
For the first part, we follow an approach similar to Gyorgy
& Joulani (2021) and apply Neu (2015, Lemma 1) to ob-
tain a concentration bound for the loss estimates defined
using importance weighting along with implicit exploration.
When using the actual losses, the application of Neu (2015,
Lemma 1) is straightforward. However, when the mean loss
estimate θ̃t(St) is used rather than the actual loss, there is
a potential dependency between the chosen action At and
θ̃t(St). In Appendix B.3 we carefully design a filtration to
show that we may indeed use the high-probability regret
bound of DAda-Exp3 in order to upper bound the first part
(regret RT defined in terms of the estimates θ̃t).

The second part requires to bound the cumulative error of
our estimator in (2) for the observed states {St}t∈[T ]. To
this end, we use the Azuma-Hoeffding inequality to control
the error of these estimates. Doing so causes a Õ(

√
ST )

term to appear in the regret bound. The detailed proof of
this part is in Appendix B.4, together with the proof of
Theorem 4.3.

The presence of the Õ(
√
ST ) term in the regret bound im-

plies that, when S ≫ max{DT /T,K}, using intermediate
feedback leads to no advantage over ignoring it. So we
ideally want to recover the original bound in (5) when this
happens. MetaAdaBIO solves this issue and gives the fol-
lowing regret guarantee. The proof of this result is deferred
to Appendix B.5. We remark that, to achieve this bound,
before the eventual switch we use algorithm DAda-Exp3
with confidence parameter set to δ/3 so as to guarantee
a high-probability bound on Rt∗ with probability at least
1 − δ/2 over the first t∗ rounds that DAda-Exp3 runs by
itself.
Theorem 4.4. Let δ ∈ (0, 1). If we run MetaAdaBIO
with DAda-Exp3, then the regret of MetaAdaBIO in the
BIO setting with adversarial action-state mappings and
stochastic losses with probability at least 1− δ satisfies

RT ≤ 3min

{
7

√
ST ln

8ST

δ
,
√

DTCK,2δ

}
(7)

+ 6
√
KTCK,2δ + 2

√
DΦCK,2δ + (σmax + 2) ln

8

δ
.

If we consider any upper bound dmax on the delays
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(dt)t∈[T ], we can further observe that the regret RT of
MetaAdaBIO (with DAda-Exp3) satisfies

RT = Õ
(√

KT +min
{√

S
(√

T + dmax

)
,
√
dmaxT

})
with high probability. This also follows from the fact that,
as previously mentioned, we can bound the total delay of
MetaBIO by DΦ ≤ 2Sd2max.

Given the previous regret bounds, we observe that we may
further improve the dependency on the delays by adopting
the idea of skipping rounds with large delays when comput-
ing the learning rates. This “skipping” idea was introduced
by Thune et al. (2019) and has been leveraged by Gyorgy &
Joulani (2021) to show that DAda-Exp3 can achieve a re-
fined high-probability regret bound—see Gyorgy & Joulani
(2021, Theorem 5.1). As a consequence, we can indeed pro-
vide an improved bound in our setting by following similar
steps as in the proof of Theorem 4.3. The only main change
is the adoption of the version of DAda-Exp3 that uses the
skipping procedure.

Corollary 4.5. Let δ ∈ (0, 1). If we run MetaBIO with
DAda-Exp3 with skipping (Gyorgy & Joulani, 2021, The-
orem 5.1), then the regret of MetaBIO in the BIO set-
ting with adversarial action-state mappings and stochastic
losses with probability at least 1− δ satisfies

RT = O
(√

KTCK,δ +

√
ST ln

ST

δ
+ ln

1

δ

+
√

CK,δ lnK min
R⊆Φ

{
|R|+

√
DΦ\R lnK

})
.

This result could also be extended in a similar way to
MetaAdaBIO, so as to achieve the best result from the
presence of intermediate feedback.

So far, we have provided some high-probability guaran-
tees for the regret of both MetaBIO and MetaAdaBIO, by
which we can derive some expectation bounds as well (e.g.,
by setting δ ≈ 1/T ). However, using the empirical mean
estimators θ̂t as the mean loss estimators at time t and work-
ing directly with the expected regret allows us to improve
the achievable bound by a polylogarithmic factor. Hence,
for the expected regret we use Tsallis-INF (Zimmert
& Seldin, 2020), a learning algorithm for the standard de-
layed bandit problem that uses a hybrid regularizer to deal
with delays and gives a minimax-optimal expected regret
bound. The proof of this expected regret upper bound is in
Appendix B.6.

Proposition 4.6. If we execute MetaAdaBIO with
Tsallis-INF (Zimmert & Seldin, 2020), and use the
switching condition

√
8Dt lnK > 6

√
ST ln(2ST ) at each

round t ∈ [T ], where Dt =
∑t

j=1 σj , then the regret of

MetaAdaBIO in the BIO setting with adversarial action-
state mappings and stochastic losses satisfies

E[RT ] ≤ 4
√
2KT +

√
8DΦ lnK

+ 2min
{
6
√
ST ln(2ST ),

√
8DT lnK

}
.

Remark 4.7. In MetaBIO, we can replace T by t2 in the
definition of the confidence intervals for (2) and remove
the need for prior knowledge of the time horizon T . In
MetaAdaBIO, we could use a doubling trick to avoid the
prior knowledge of T in the switching condition. On the
other hand, it is not required to know the number of states S
for expectation bounds on the regret of MetaBIO. However,
removing the prior knowledge of S in the high-probability
regret bounds is challenging. Indeed, to the best of our
knowledge, there is no result in BIO that avoids prior knowl-
edge on the number of states. Lifting this requirement in
the high-probability analysis is thus an interesting question
for future work.

5. Lower Bounds
The lower bounds in this section are for the expected regret
E[RT ]. Since our algorithms provide high-probability guar-
antees, the upper bounds also apply to the expected regret.
Throughout this section we will make use of constant delay
i.e. dt = d for all t ∈ [T ]. We will first prove a general√
KT lower bound for all algorithms in BIO, after which

we specialize to particular cases.

We start by proving a Ω
(√

KT
)

lower bound for any algo-
rithm in our setting and for any combination of stochastic
or adversarial action-state mappings and loss vectors. The
construction is a reduction to the standard bandits lower
bound construction.

Theorem 5.1. Irrespective to whether the action-state map-
pings and loss vectors are stochastic or adversarial, there
exists a sequence of losses such that any (possibly random-
ized) algorithm in BIO suffers regret E[RT ] = Ω

(√
KT

)
.

Proof. Our construction only uses two states h1 and h2. The
loss vectors, which are deterministic and do not change over
time, are defined as follows: ℓt(h1) = 1 and ℓt(h2) = 0
for all t ≥ 0. The stochastic action-state mapping, which is
also constant over time, is given by

st(a) =

{
h1 with probability pa

h2 with probability 1− pa

for all a ∈ A and t ≥ 0, where the probabilities pa are to
be determined. Thus, the loss of an arm a is ℓt(st(a)) =
ℓt(h1) = 1 with probability pa and ℓt(st(a)) = ℓt(h2) =
0 with probability 1 − pa. Since the loss is determined
by the state, the learner receives bandit feedback without

6
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delay. We can then choose pa for a ∈ A to mimic the
standard Ω

(√
KT

)
distribution-free bandit lower bound—

e.g., see Slivkins et al. (2019, Chapter 2). By Yao’s minimax
principle, the same lower bound also applies to the case with
adversarial action-state mappings. Since the loss vectors are
deterministic, this covers all possible cases in BIO.

Adversarial action-state mapping and stochastic losses.
We first prove a lower bound

√
ST for any number K ≥ 2

of actions. However, we do need a minor generalization
of our setting to allow correlation between unseen losses.
Specifically, we allow all pairs of losses ℓj(s), ℓj′(s

′) of
distinct states s ̸= s′ to be correlated if j > j′ and j−j′ ≤ d,
while we guarantee the i.i.d. nature of losses for any fixed
state. Since E[ℓt(St)] = E[θ(St)], this does not affect the
analysis for the upper bound on the regret of our algorithms
since E[RT ] ≤ E[RT ] (see Lemma A.3). However, for a
high-probability upper bound, we need to relate RT and
RT , which now leads to an additive Õ(

√
ST ) term rather

than an additive Õ(
√
T ) term as in Equation (3).

In the proof of the
√
ST lower bound, we leverage the

fact that losses are independent only across time steps for
a fixed state, while they may depend on the losses of the
other states. Note that our lower bound holds even when the
learner knows the action-state assignments beforehand.

Theorem 5.2. Suppose that the action-state mapping is
adversarial and the losses are stochastic and that dt = d
for all t ∈ [T ]. If T ≥ min{S, d} then there exists a distri-
bution of losses and a sequence of action-state mappings
such that any (possibly randomized) algorithm suffers regret
E[RT ] = Ω

(√
min{S, d}T

)
.

We provide a sketch of the proof of Theorem 5.2 (see Ap-
pendix C for the full proof). First, suppose that S ≤ 2d.
For the construction of the lower bound we only consider
two actions and equally split the states over these two
actions. Then, we divide the T time steps in blocks of
length S/2 ≤ d. In each block, each state has the same
loss. Since the block length is smaller then the delay, we
have effectively created a two-armed bandit problem with
T ′ = T/(S/2) rounds and loss range [0, S/2], for which
we can prove a Ω

(
S
√
T ′
)
= Ω

(√
ST
)

lower bound by
showing an equivalent lower bound for the full information
setting. If S > 2d, we use the same construction with only
2d states, and obtain a Ω

(√
dT
)

lower bound.

Finally, we can show the following lower bound, whose
proof can be found in Appendix C.

Theorem 5.3. Suppose that the action-state mapping is
adversarial, the losses are stochastic, and that dt = d for
all t ∈ [T ]. If T ≥ d+ 1 then there exists a distribution of
losses and a sequence of action-state mappings such that

any (possibly randomized) algorithm suffers regret

E[RT ] = Ω
(
min

{
(d+ 1)

√
S,
√
(d+ 1)T

})
.

This term is also present in the dynamic regret bound of
NSD-UCRL2, but it is necessarily incurred from their anal-
ysis even in the stationary case (Vernade et al., 2020, Theo-
rem 1).

This last lower bound implies that the regret of our algo-
rithm is near-optimal. Since the lower bound of Theorem 5.1
applies to the case where the action-state mapping is adver-
sarial and the losses are stochastic, we find the following
result as a corollary of Theorem 5.1, Theorem 5.2, and
Theorem 5.3.

Corollary 5.4. Suppose that the action-state mapping is
adversarial, the losses are stochastic, and that dt = d for
all t ∈ [T ]. If T ≥ 1 + min{S, d}, then there exists a dis-
tribution of losses and a sequence of action-state mappings
such that any (possibly randomized) algorithm suffers regret

E[RT ] = Ω
(
max

{√
KT,

√
min{S, d}T , (d+ 1)

√
S
})

.

Stochastic action-state mappings and adversarial losses.
In this case we recover the standard lower bound for adver-
sarial bandits with bounded delay.

Theorem 5.5. Suppose that the action-state mapping is
stochastic, the losses are adversarial, and that dt = d
for all t ∈ [T ]. Then there exists a stochastic action-
state mapping and a sequence of losses such that any
(possibly randomized) algorithm suffers regret E[RT ] =
Ω
(
max

{√
KT,

√
dT
})

.

Proof. Since by Theorem 5.1 we already know that any
algorithm must suffer Ω

(√
KT

)
regret, we only need to

show a Ω(
√
dT ) lower bound. We use two states, h1 and h2.

Our action-state mapping is deterministic and, for all t ≥ 0,
assigns st(a) = h1 to all but one action a⋆, to which the
mapping assigns st(a

⋆) = h2. We now have constructed
a two-armed bandit problem with delayed feedback and T
rounds, for which a Ω(

√
dT ) lower bound is known (Cesa-

Bianchi et al., 2019).

Adversarial action-state mappings, adversarial losses.
Since we can recover the construction of the lower bound in
Theorem 5.5, we have the following result.

Corollary 5.6. Suppose that the action-state mapping is
adversarial, the losses are adversarial, and that dt = d for
all t ∈ [T ]. Then there exists an action-state mapping and
a sequence of losses such that any (possibly randomized)
algorithm suffers regret E[RT ] = Ω

(
max

{√
KT,

√
dT
})

.

7



Delayed Bandits: When Do Intermediate Observations Help?

6. Experiments
We empirically compare our algorithm MetaBIO with
the following baselines: DAda-Exp3 (Gyorgy & Joulani,
2021) for adversarial delayed bandits without intermediate
observations (which we used to instantiate the algorithm
B), the standard UCB1 algorithm (Auer et al., 2002a) for
stochastic bandits without delays and intermediate obser-
vations, and NSD-UCRL2 (Vernade et al., 2020) for non-
stationary stochastic action-state mappings and stochastic
losses. We run all experiments with a time horizon of
T = 104. All our plots show the cumulative regret of
the algorithms considered as a function of time. The per-
formance of each algorithm is averaged over 20 indepen-
dent runs in every experiment, and the shaded areas con-
sider a range centered around the mean with half-width
corresponding to the empirical standard deviation of these
20 repetitions. In the first two experiments, we consider
both fixed delays d ∈ {50, 100, 200} and random delays
dt ∼ Laplace(50, 25) sampled i.i.d. from the Laplace dis-
tribution with E[dt] = 50.
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Figure 1. Cumulative regret over time for the stochastic action-
state mapping when delays are fixed or random.

Experiment 1: stochastic action-state mappings. Here
we use a stationary version of the experiments in (Vernade
et al., 2020)—see Table 1 in Appendix D for details. We set
K = 4 and S = 3, while we repeat this experiment for the
previously mentioned values of delays. Figure 1 shows that,
across all delay regimes, MetaBIO largely improves on the
performance of DAda-Exp3 by exploiting intermediate
observations.

Experiment 2: adversarial action-state mappings. In this
construction, we simulate the adversarial mapping using a
construction adapted from (Zimmert & Seldin, 2021): we
alternate between two stochastic mappings while keeping

the loss means fixed. We set K = 4, S = 3, and we con-
sider multiple instances for the different values of delays
as in the previous experiment. The interval between two
consecutive changes in the distribution of action-state map-
pings grows exponentially. See Table 2 in Appendix D for
details. Figure 2 shows that MetaBIO and MetaBIO with
“skipping” outperform both UCB1 and NSD-UCRL2.
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(b) d = 100
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Figure 2. Cumulative regret over time for the adversarial action-
state mapping when delays are fixed or random. All algorithms
have small variance except for UCB1 and NSD-UCRL2.

Experiment 3: utility of intermediate observations. Here
we set K = 8, d = 100, and investigate how the perfor-
mance of MetaBIO changes when the number S of states
varies in {4, 6, 8, 10, 12}. The mean loss is always 0.2 for
the optimal state and 1 for the others. The optimal action
always maps to the optimal state. The suboptimal actions
map to the optimal state with probability 0.6 and map to a
random suboptimal state with probability 0.4. This implies
that the expected loss of each arm remains constant when
the number of states changes. Figure 3 shows that the regret
gap between MetaBIO and DAda-Exp3 shrinks as the
number of states increases. This observation confirms our
theoretical findings about the dependency of the regret on
the number of states, which lead to a larger improvement
the fewer they are.

Experiment 4: performance of MetaAdaBIO when
S < d. We use the same setting as in Experiment 1
with delay d = 20.2 Figure 4 shows the performance
of MetaAdaBIO compared with both DAda-Exp3 and

2Compared to the switching condition used for the analysis of
MetaAdaBIO, we replace 49ST ln 8ST

δ
with ST . This change

allows the switching condition to be triggered more easily to
provide a better visualization of the behaviour of MetaAdaBIO,
while it only introduces a polylog factor in its regret bound.
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Figure 3. Cumulative regret over time of both DAda-Exp3 and
MetaBIO with different numbers of states S ∈ {4, 6, 8, 10, 12}.

MetaBIO. Before the switching point, MetaAdaBIO runs
DAda-Exp3 (up to independent internal randomization).
Afterwards, MetaAdaBIO switches to MetaBIO (which
in turn runs DAda-Exp3 as a subroutine) and quickly
aligns with its performance. Note that, at the switching time,
MetaAdaBIO uses (via MetaBIO) the same instance of
DAda-Exp3 that was already running, rather than start-
ing a new instance. It can be shown that our analysis
of MetaAdaBIO applies to this variant as well without
changes in the order of the bound.
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Figure 4. Cumulative regret over time of DAda-Exp3, MetaBIO
and MetaAdaBIO. The vertical blue line marks the switching
point of MetaAdaBIO.

Experiment 5: performance of MetaAdaBIO when
S > d. We use a setting that is almost identical to that of
Experiment 3 (Section 6), except we set d = 4 and S = 14.
The performance of the three algorithms is shown in Fig-
ure 5. We can observe that MetaAdaBIO does not switch
to MetaBIO and its performance is thus the same as that of
DAda-Exp3, whereas MetaBIO incurs a larger regret.
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Figure 5. Cumulative regret over time of DAda-Exp3, MetaBIO
and MetaAdaBIO when S > d.

7. Future Work
The work of Vernade et al. (2020) also considers a non-
stationary action-state mapping and derive regret bounds
for the switching regret. Preliminary results suggest that,
as long as there is an algorithm that can provide bounds on
the switching regret with delayed feedback, our ideas also
transfer to this setting. Unfortunately, there is currently no
algorithm that can provide bounds on the switching regret
with delayed feedback and we leave this as a promising
direction for future work.
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A. Auxiliary Results
Lemma A.1. Consider any algorithm that picks actions (At)t∈[T ] in the adversarial delayed bandits problem with
intermediate feedback with arbitrary action-state mappings (st)t∈[T ] and i.i.d. loss vectors (ℓt)t∈[T ]. Then, for any given
δ ∈ (0, 1),

RT −RT ≤
√
2T ln(2/δ) and RT −RT ≤

√
2T ln(2K/δ)

individually hold with probability at least 1− δ.

Proof. First, observe that we can relate the two notions of regret as

RT = RT +

T∑
t=1

(
θ(St)− ℓt(St)

)
+min

a∈A

T∑
t=1

ℓt(st(a))−min
a∈A

T∑
t=1

θ(st(a))︸ ︷︷ ︸
(△)

.

By Azuma-Hoeffding inequality, we can show that each side of

−

√
T

2
ln

(
1

δ′

)
≤

T∑
t=1

(
θ(St)− ℓt(St)

)
≤

√
T

2
ln

(
1

δ′

)
(8)

holds with probability at least 1− δ′. Now, define

a∗ℓ ∈ argmin
a∈A

T∑
t=1

ℓt(st(a)) and a∗θ ∈ argmin
a∈A

T∑
t=1

θ(st(a)) .

On the one hand, observe that

(△) ≤
T∑

t=1

ℓt(st(a
∗
θ))−

T∑
t=1

θ(st(a
∗
θ)) ≤

√
T

2
ln

(
1

δ′

)
,

where the last inequality holds with probability at least 1− δ′ by Azuma-Hoeffding inequality. On the other hand, we can
show that

(△) ≥
T∑

t=1

ℓt(st(a
∗
ℓ ))−

T∑
t=1

θ(st(a
∗
ℓ )) =: (⋄) .

However, in this case a∗ℓ depends on the entire sequence ℓ1, . . . , ℓT . We thus need to use a union bound in order to show that

P

(
(⋄) ≤ −

√
T

2
ln

(
K

δ′

))
≤
∑
a∈A

P

(
T∑

t=1

ℓt(st(a))−
T∑

t=1

θ(st(a)) ≤ −

√
T

2
ln

(
K

δ′

))
≤ δ′ ,

where the last inequality follows by Azuma-Hoeffding inequality. We conclude the proof by setting δ′ = δ/2.

Lemma A.2. The estimates (θ̂t)Tt=1 defined in Equation (2) are such that |θ̂t(s)− θ(s)| ≤ 1
2εt(s) simultaneously holds for

all t ∈ [T ] and all s ∈ S with probability at least 1− δ/2.

Proof. In a similar way as in Vernade et al. (2020), define Xm(s) to be the empirical mean estimate for θ(s) which
uses the first m ∈ [T ] observed losses corresponding to state s ∈ S. Notice that θ̂t(s) = XN ′

t(s)
(s), while we define

ε′m(s) =
√

2
m ln( 4ST

δ ) so that εt(s) = ε′N ′
t(s)

(s). We can additionally observe that E[Xm(s)] = θ(s). Then, we can use
Azuma-Hoeffding inequality to show that

P

⋂
s∈S

⋂
t∈[T ]

{
|θ̂t(s)− θ(s)| ≤ 1

2
εt(s)

} ≥ P

⋂
s∈S

⋂
m∈[T ]

{
|Xm(s)− θ(s)| ≤ 1

2
ε′m(s)

}
≥ 1− 2

∑
s∈S

T∑
m=1

e−
1
2 ε

′
m(s)2m

= 1− δ

2
,
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where we also used a union bound in the second inequality.

Lemma A.3. Consider any algorithm that picks actions (At)t∈[T ] in the BIO setting with adversarial action-state mappings
(st)t∈[T ] and stochastic loss vectors (ℓt)t∈[T ]. Assume that the losses for any fixed state are i.i.d., whereas pairs of losses
ℓj(s), ℓj′(s

′) of distinct states s ̸= s′ might be correlated when j > j′ and j− j′ ≤ dj′ . Then, it holds that E[RT ] ≤ E[RT ],
where the expectation is with respect to the stochasticity of the losses and the randomness of the algorithm.

Proof. We know that E[ℓt(st(a))] = θ(st(a)) for any fixed a ∈ A and all t ∈ [T ]. We further observe that

E[ℓt(St)] = E
[
E[ℓt(st(At)) | At]

]
= E[θ(St)]

holds for all t ∈ [T ], as At is independent of losses that can be correlated with ℓt. Now, define

a∗ℓ ∈ argmin
a∈A

T∑
t=1

ℓt(st(a)) and a∗θ ∈ argmin
a∈A

T∑
t=1

θ(st(a)) .

Then, we conclude the proof by showing that

E[RT ] =

T∑
t=1

E[ℓt(St)]− E

[
T∑

t=1

ℓt(st(a
∗
ℓ ))

]

≥
T∑

t=1

E[ℓt(St)]− E

[
T∑

t=1

ℓt(st(a
∗
θ))

]
=

T∑
t=1

E[θ(St)]−
T∑

t=1

θ(st(a
∗
θ)) = E[RT ] .

B. High-Probability Regret Bound
B.1. Total delay bound

Lemma 4.1 (Total actual delay). If MetaBIO is run with any algorithm B on delays (dt)t∈[T ], then D̃T ≤ DΦ.

Proof of Lemma 4.1. For any s ∈ S , we define Ts = {t ∈ [T ] : St = s} to be the set of all rounds when the state observed
by the learner corresponds to s. Denote by ts the last time step t ∈ Ts such that Nt(s) < σt and let Cs = {t ∈ Ts : t ≤ ts}
be those rounds in Ts that come no later than ts. According to the choice of ts, all the rounds in Ts for which learner waits for
the respective delayed loss, must belong to Cs, while the learner incurs d̃t = 0 delay for rounds t ∈ Ts \Cs. Now we partition
Cs into two sets: the observed set Cobs

s = {t ∈ Cs : t + dt ≤ ts} and the outstanding set Cout
s = {t ∈ Cs : t + dt > ts}.

From the choice of ts, we can see that the number of rounds in Cobs
s is

|Cobs
s | ≤ Nts(s) < σts ≤ σmax ,

and the number of rounds in Cout
s is

|Cout
s | ≤ σts ≤ σmax .

Therefore, we have |Cs| ≤ 2σmax. So if we define Call =
⋃

s∈S Cs, then |Call| ≤ min{2Sσmax, T} = |Φ|. This also implies
that

T∑
t=1

d̃t ≤
∑
t∈Call

dt ≤
∑
t∈Φ

dt

by definition of Φ.
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B.2. Improved Regret for DAda-Exp3 for Fixed δ

We follow the analysis of Theorem 4.1 in Gyorgy & Joulani (2021, Appendix A) and our goal is to use the knowledge of
δ ∈ (0, 1) to tune the learning rates (ηt)t∈[T ] and the implicit exploration terms (γt)t∈[T ], accordingly. Let d1, . . . , dT be
the sequence of delays perceived by DAda-Exp3, and let DT =

∑T
t=1 dt be its total delay. Furthermore, let σt be the

number of outstanding observations of DAda-Exp3 at the beginning of round t ∈ [T ]. Suppose that we take γt = cηt with
c > 0 for all t ∈ [T ], then following the same analysis as in Gyorgy & Joulani (2021, Appendix A), we end up with the
following regret bound that holds with probability at least 1− 2δ′ for any δ′ ∈ (0, 1/2):

RT ≤ ln(K)

ηT
+

T∑
t=1

ηt(σt + (c+ 1)K) +
ln(K/δ′)

2cηT
+

σmax + c+ 1

2c
ln(1/δ′)

=
1

ηT

(
ln(K) +

ln(K/δ′)

2c

)
+

T∑
t=1

ηt(σt−1 + (c+ 1)K) +
σmax + 1

2c
ln(1/δ′) +

ln(1/δ′)

2
.

Therefore, by taking η−1
t =

√
(c+1)Kt+

∑t
j=1 σj

2 ln(K)+ 1
c ln(K/δ′)

, we get the following bound with probability at least 1− 2δ′:

RT ≤ 2

√√√√((c+ 1)KT +

T∑
t=1

σt

)(
2 ln(K) +

ln(K/δ′)

c

)
+

σmax + 1

2c
ln(1/δ′) +

ln(1/δ′)

2
.

We know that
∑T

t=1 σt = DT by definition of σt. Then, we can set c = 1 to obtain that the regret RT (as per the original
notion of regret used in Gyorgy & Joulani (2021)) is

RT ≤ 2
√
2KT (3 ln(K) + ln(1/δ′)) + 2

√
DT (3 ln(K) + ln(1/δ′)) +

σmax + 2

2
ln(1/δ′) (9)

with probability at least 1− 2δ′.

From Lemma A.1, we have that
RT ≤ RT +

√
2T ln(2/δ′) (10)

holds with probability at least 1− δ′. So, combining Equations (9) and (10), and setting δ = 3δ′, we can upper bound our
notion of regret RT as

RT ≤ 2
√
2KT (3 ln(K) + ln(3/δ)) +

√
2T ln(6/δ) + 2

√
DT (3 ln(K) + ln(3/δ)) +

σmax + 2

2
ln(3/δ) (11)

with probability at least 1− δ.

B.3. Reduction to DAda-Exp3 via MetaBIO

Based on the reduction via MetaBIO, we require that B guarantee a regret bound

R̂B
T =

T∑
t=1

θ̃t(St)−min
a∈A

T∑
t=1

θ̃t(st(a)) (12)

that holds with high probability when the losses experienced by B are of the form θ̃t
(
st(a)

)
. Note that, even though the

action-state mappings s1, . . . , sT are unknown to the learner, we can provide those losses as long as B requires bandit
feedback only. Indeed, we can compute θ̃t(St) defined in Equations (1) and (2), while we cannot determine st(a) for all
actions a ∈ A that are not At. As mentioned in Section 4, in this work we consider DAda-Exp3 (Gyorgy & Joulani, 2021)
as algorithm B used by MetaBIO. In what follows, we refer to this specific choice for the algorithm B.

The analysis of DAda-Exp3 for the high-probability bound (Theorem 4.2) is such that most steps only require that the loss
of each action is bounded in [0, 1]. Then, those steps apply for any such sequence of loss vectors. However, the crucial part
of that analysis that requires attention is the application of Lemma 1 from Neu (2015). We restate it below for reference.
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Before that, we introduce the notation required for stating the result. We consider a learner choosing actions A1, . . . , AT

according to probability distributions p1, . . . , pT over actions. We denote by Ft−1 the observation history of the learner until
the beginning of round t. The result uses importance-weighted estimates for the losses ℓ1, . . . , ℓT with implicit exploration,
where the implicit exploration parameter is γt ≥ 0 for each time t. These loss estimates are defined as

ℓ̃t(a) =
1[At = a]

pt(a) + γt
ℓt(a) ∀t ∈ [T ],∀a ∈ A . (13)

Lemma B.1 (Neu (2015, Lemma 1)). Let γt and αt(a) be nonnegative Ft−1-measurable random variables such that
αt(a) ≤ 2γt, for all t ∈ [T ] and all a ∈ A. Let ℓ̃t(a) be as in (13). Then,

T∑
t=1

K∑
a=1

αt(a)
(
ℓ̃t(a)− ℓt(a)

)
≤ ln(1/δ)

holds with probability at least 1− δ for any δ ∈ (0, 1).

In our case, we require an analogous result that work when loss vectors correspond with our estimates θ̃1, . . . , θ̃T . However,
these estimate have a dependency with the past actions chosen by the learner. This requires some nontrivial changes in the
proof of Neu (2015, Lemma 1).

Before that, we introduce some crucial definitions for this proof. Let ρ(t) = t + dt be the arrival time for the realized
loss ℓt(St) of the state St observed at time t ∈ [T ]. Let ρ̃(t) = t+ d̃t be instead the arrival time perceived by algorithm
B relative to its choice of At at time t, i.e., when B receives θ̃t(St). This also means that θ̃t(St) is only defined at time
ρ̃(t) ≤ ρ(t).

Let π : [T ] → [T ] be the permutation of [T ] that orders rounds according to their value of ρ̃. In other words, π satisfies the
following property:

π(r) < π(t) ⇐⇒ ρ̃(r) < ρ̃(t) ∨ (ρ̃(r) = ρ̃(t) ∧ r < t) ∀r, t ∈ [T ] . (14)

This permutation allows us to sort rounds according to the order in which MetaBIO feeds B with a respective estimate for
the mean loss. In particular, the r-th round in this order corresponds with the round tr = π−1(r), for any r ∈ [T ]. Hence,
we can equivalently define the round tr as the round such that its estimate θ̃tr (Str ) for the mean loss θ(Str ) is the r-th
estimate received by B.

Define
Fr = {(j, Aj , Sj , ℓj(Sj)) | j ∈ [T ], π(j) ≤ r} ∀r ∈ [T ] (15)

as the information observed by B by the end to the time step when we feed it the estimate relative to round tr. Note that
this defines a filtration, as Fr−1 ⊆ Fr for all r ∈ [T ], which has some desirable properties thanks to the ordering π we
consider. In particular, we have that d̃tr , εtr , ptr , N

′
tr are Fr−1-measurable random variables by the way we define them.

This property is also due to the fact that Ntr and L′
tr are determined when conditioning on Fr−1. Moreover, we are now

interested in the following importance-weighted loss estimates with implicit exploration:

ℓ̃t(a) =
1[At = a]

pt(a) + γt
θ̃t(st(a)) ∀t ∈ [T ],∀a ∈ A . (16)

Corollary B.2. Let γtr and αtr (a) be non-negative Fr−1-measurable random variables such that αtr (a) ≤ 2γtr , for all
r ∈ [T ] and all a ∈ A. Let ℓ̃t(a) be as in (16). Then,

T∑
t=1

K∑
a=1

αt(a)
(
ℓ̃t(a)− θ̃t(st(a))

)
≤ ln(1/δ)

holds with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We follow the proof of Neu (2015, Lemma 1) by considering any realization ℓ1, . . . , ℓT of the losses. The main
difference is that, when defining the supermartingale as in the original proof, we need to consider the terms of the sum in the
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order denoted by π instead of the increasing order of t. For this reason, we rewrite the sum from the statement by following
the order given by π:

T∑
r=1

K∑
a=1

αtr (a)
(
ℓ̃tr (a)− θ̃tr (str (a))

)
.

At this point, we need prove that E
[
ℓ̃tr (a)

∣∣Fr−1

]
≤ θ̃tr (str (a)), where we recall that tr = π−1(r). Also recall that εtr ,

ptr and γtr are Fr−1-measurable. This property allows us to prove the inequality with the conditional expectation of θ̂t
instead of the one with the actual optimistic estimates θ̃t, by the definition of the latter. In other words, we now need to
prove that E

[
ℓ̂tr (a)

∣∣Fr−1

]
≤ θ̂tr (str (a)), where ℓ̂t(a) =

1[At=a]
pt(a)+γt

θ̂t(st(a)).

We can consider two cases depending on whether d̃tr < dtr is true or not (and, thus, we are in the case d̃tr = dtr ). In the
first case, note that the realized losses used for computing θ̂tr (str (a)) correspond to time steps in L′

tr (str (a)), for which
there is a corresponding tuple in Fr−1. Therefore, we have that θ̂tr (str (a)) is Fr−1-measurable, and we can show that

E
[
ℓ̂tr (a)1[d̃tr < dtr ]

∣∣∣ Fr−1

]
= E

[
1[Atr = a]

ptr (a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr < dtr ]

N ′
tr (str (a))

∑
j∈L′

tr
(str (a))

ℓj(str (a)) .

In the second case, we have that d̃tr = dtr , which implies that tr ∈ L′
tr (str (a)) in the case Atr = a. This means that we

have a corresponding tuple in Fr−1 only for rounds in L′
tr (str (a)) \ {tr}. Nonetheless, this does not pose an issue since we

have the indicator 1[Atr = a], and thus Str = st(a). Indeed, we have that

E
[
ℓ̂tr (a)1[d̃tr = dtr ]

∣∣∣ Fr−1

]
= E

 1[Atr = a]

ptr (a) + γtr
· 1[d̃tr = dtr ]

N ′
tr (str (a))

∑
j∈L′

tr
(str (a))

ℓj(str (a))

∣∣∣∣∣∣ Fr−1


= E

[
1[Atr = a]

ptr (a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr = dtr ]

N ′
tr (str (a))

∑
j∈L′

tr
(str (a))

j ̸=tr

ℓj(str (a))

+ E
[
1[Atr = a]

ptr (a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr = dtr ]

N ′
tr (str (a))

ℓtr (str (a))

= E
[
1[Atr = a]

ptr (a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr = dtr ]

N ′
tr (str (a))

∑
j∈L′

tr
(str (a))

ℓj(str (a))

and therefore the inequality

E
[
ℓ̂tr (a)

∣∣∣ Fr−1

]
= E

[
1[Atr = a]

ptr (a) + γtr

∣∣∣∣ Fr−1

]
θ̂tr (str (a)) ≤ θ̂tr (str (a))

is true because 1[d̃t < dt] + 1[d̃t = dt] = 1 for all t ∈ [T ], and by definition of θ̂t.

As already mentioned, this is equivalent to proving that E
[
ℓ̃tr (a)

∣∣Fr−1

]
≤ θ̃tr (str (a)) holds. By using a notation similar

to the original proof, if we define λ̃r =
∑K

a=1 αtr (a)ℓ̃tr (a) and λr =
∑K

a=1 αtr (a)θ̃tr (str (a)), the process (Zr)r∈[T ] with
Zr = exp(

∑r
j=1(λ̃j − λj)) is a supermartingale with respect to (Fr)r∈[T ] which has the same properties as in the proof of

Neu (2015, Lemma 1). This concludes the current proof by following a similar reasoning as in the original one.

Thanks to this result, we can conclude that the adoption of DAda-Exp3 for the reduction via MetaBIO can guarantee a
high-probability regret bound on R̂B

T as stated in Theorem 4.2, but with total delay D̃T =
∑T

t=1 d̃t instead of DT .

B.4. Regret of MetaBIO

By Lemma A.2, we have that

RT ≤
T∑

t=1

θ̃t(St)−min
a∈A

T∑
t=1

θ̃t(st(a)) +

T∑
t=1

εt(St) = R̂B
T +

T∑
t=1

εt(St) (17)
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with probability at least 1 − δ/2, where R̂B
T (Equation (12)) is the regret of algorithm B when fed with (θ̃t ◦ st)t∈[T ] as

losses.

Lemma B.3. Conditioning on the event as stated in Lemma A.2, the sum of errors suffered from MetaBIO by using the
loss estimates (θ̃t)t∈[T ] from Equations (1) and (2) is

T∑
t=1

εt(St) ≤
(
4 + 2

√
2
)√

ST ln

(
4ST

δ

)
.

Proof. First, observe that we can rewrite the sum of errors as

T∑
t=1

εt(St) =

T∑
t=1

εt(St)1[d̃t < dt] +

T∑
t=1

εt(St)1[d̃t = dt] .

We now provide an upper bound for the first sum of errors. For any s ∈ S , we define Ts = {t ∈ [T ] : St = s} to be the set
of all rounds when the state observed by the learner corresponds to s. We can bound it as

T∑
t=1

εt(St)1[d̃t < dt] =
∑
s∈S

∑
t∈Ts

εt(s)1[d̃t < dt]

=

√
2 ln

(
4ST

δ

)∑
s∈S

∑
t∈Ts

√
1

N ′
t(s)

1[d̃t < dt]

≤ 2

√
ln

(
4ST

δ

)∑
s∈S

∑
t∈Ts

√
1

Mt(s)
1[d̃t < dt] (because N ′

t(s) ≥ 1
2Mt(s))

≤ 4

√
ln

(
4ST

δ

)∑
s∈S

√
MT (s) (since Mt(s) is increasing over Ts)

≤ 4

√
ST ln

(
4ST

δ

)
,

where the second inequality holds because N ′
t(St) = Nt(St) ≥ 1

2Mt(St) when d̃t < dt since Mt(St) ≤ Nt(St) + σt,
while the last one follows by Jensen’s inequality and the fact that

∑
s∈S MT (s) = T .

As a last step, we provide an upper bound to the second sum. Let Js = {r ∈ Ts : d̃r = dr} and notice that |Js| ≤ |Ts| =
MT (s). Observe that ρ(t) = ρ̃(t) for each round t such that d̃t = dt, and thus by Equation (14) we have that

π(r) < π(t) ⇐⇒ ρ(r) < ρ(t) ∨ (ρ(r) = ρ(t) ∧ r < t)

for all r, t ∈ [T ] such that d̃r = dr and d̃t = dt. Define νs : Js →
[
|Js|
]

by

νs(t) = |{r ∈ Js : π(r) ≤ π(t)}| ∀t ∈ Js .

Observe that νs(t) ≤ N ′
t(s) = |L′

t(s)| for all s ∈ S and all t ∈ Js. This is due to the fact that νs(t) counts a subset of
L′
t(s); to be precise, we have that νs(t) = |L′

t(s) ∩ Js|. Moreover, notice that the condition π(r) ≤ π(t) defines a total
order over Js. Hence, νs(t) counts the number of elements of Js preceding t ∈ Js (including t itself) in this total order.
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This implies that νs is a bijection between Js and
[
|Js|
]
. Then, using a similar reasoning as before, we show that

T∑
t=1

εt(St)1[d̃t = dt] =

√
2 ln

(
4ST

δ

)∑
s∈S

∑
t∈Ts

√
1

N ′
t(s)

1[d̃t = dt]

=

√
2 ln

(
4ST

δ

)∑
s∈S

∑
t∈Js

√
1

N ′
t(s)

(by definition of Js)

≤

√
2 ln

(
4ST

δ

)∑
s∈S

∑
t∈Js

√
1

νs(t)
(since νs(t) ≤ N ′

t(s) for t ∈ Js)

≤ 2

√
2 ln

(
4ST

δ

)∑
s∈S

√
|Js| (since νs(t) is bijective)

≤ 2

√
2 ln

(
4ST

δ

)∑
s∈S

√
MT (s) (since |Js| ≤ MT (s))

≤ 2

√
2ST ln

(
4ST

δ

)
. (by Jensen’s inequality)

Theorem 4.3. Let δ ∈ (0, 1). If we run MetaBIO using DAda-Exp3, then the regret of MetaBIO in the BIO setting with
adversarial action-state mappings and stochastic losses with probability at least 1− δ satisfies

RT ≤ 2
√
2KTCK,3δ + 7

√
ST ln

4ST

δ

+ 2
√
DΦCK,3δ +

σmax + 2

2
ln

4

δ
. (6)

Proof of Theorem 4.3. By Equation (17), the regret RT can be bounded as

RT ≤ R̂B
T +

T∑
t=1

εt(St) ≤ R̂B
T + 7

√
ST ln

4ST

δ

with probability at least 1− δ/2, where the last inequality follows by Lemma B.3. From what we argued in Appendix B.3,
we can upper bound R̂B

T using the high-probability regret bound of DAda-Exp3. Notice that the delays incurred by
DAda-Exp3 via MetaBIO are those given when providing the estimates (θ̃t)t∈[T ]. We denote these delays by d̃1, . . . , d̃T ,
and the total delay perceived by DAda-Exp3 is thus D̃T =

∑T
t=1 d̃t. Hence, from the improved bound for DAda-Exp3

in Equation (9), we have that

R̂B
T ≤ 2

√
2KT (3 ln(K) + ln(4/δ)) + 2

√
D̃T (3 ln(K) + ln(4/δ)) +

σmax + 2

2
ln(4/δ)

holds with probability at least 1− δ/2. The combination of the above two inequalities, together with Lemma 4.1, concludes
the proof.

B.5. Regret of MetaAdaBIO

Theorem 4.4. Let δ ∈ (0, 1). If we run MetaAdaBIO with DAda-Exp3, then the regret of MetaAdaBIO in the BIO
setting with adversarial action-state mappings and stochastic losses with probability at least 1− δ satisfies

RT ≤ 3min

{
7

√
ST ln

8ST

δ
,
√

DTCK,2δ

}
(7)

+ 6
√
KTCK,2δ + 2

√
DΦCK,2δ + (σmax + 2) ln

8

δ
.
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Proof of Theorem 4.4. Let t∗ ∈ [T ] be the last round before MetaAdaBIO switches from DAda-Exp3 to MetaBIO, i.e.,
the last round that satisfies Dt∗CK,4δ ≤ 49ST ln 8ST

δ . Then, define a∗ ∈ argmina
∑T

t=1 θ(st(a)). We may decompose
regret as

RT =

t∗∑
t=1

(
θ(St)− θ(st(a

∗))
)
+

T∑
t=t∗+1

(
θ(St)− θ(st(a

∗))
)

≤
t∗∑
t=1

θ(St)−min
a∈A

t∗∑
t=1

θ(st(a))︸ ︷︷ ︸
Rt∗

+

T∑
t=t∗+1

θ(St)−min
a∈A

T∑
t=t∗+1

θ(st(a))︸ ︷︷ ︸
Rt∗:T

.

The incurred delay until time t∗ is Dt∗ . Thus, from Equation (11), we get that the following bound

Rt∗ ≤ 2
√
2Kt∗CK,2δ +

√
2t∗ ln

12

δ
+ 2
√
Dt∗CK,2δ +

σmax + 2

2
ln

6

δ
(18)

holds with probability at least 1− δ/2, where we recall that CK,δ = 3 lnK + ln(12/δ). If our algorithm never switches,
then t∗ = T and we get the bound in (18) for RT . Note that this is no greater than the upper bound in the statement as√

DTCK,2δ ≤ 7
√
ST ln(8ST/δ) by definition of t∗ in this case.

Otherwise, we use the switching condition
√
Dt∗CK,2δ ≤ 7

√
ST ln(8ST/δ) along with the fact that

√
t∗ ln(12/δ) ≤√

Kt∗CK,2δ to get

Rt∗ ≤ 3
√
2Kt∗CK,2δ + 14

√
ST ln

8ST

δ
+

σmax + 2

2
ln

6

δ
. (19)

Furthermore, Theorem 4.3 directly gives us an upper bound for Rt∗:T since MetaAdaBIO runs MetaBIO for t > t∗ with
the confidence parameter set to δ/2. We just need to bound the total incurred delays of these rounds, namely D̃t∗:T . Let σ′

t

be the outstanding observations for any round t > t∗ as perceived by the execution of MetaBIO starting after round t∗,
that is, when considering only delays (dt)t>t∗ . It is immediate to observe that σ′

t ≤ σt and thus maxt>t∗ σ
′
t ≤ maxt>t∗ σt.

Moreover, from Lemma 4.1 we have
D̃t∗:T ≤ DΦ′ ,

where Φ′ denotes a set of min{T − t∗, 2Sσ′
max} rounds with the largest delays among (dt)t>t∗ , with σ′

max = maxt>t∗ σ
′
t.

So we have
DΦ′ ≤ DΦ

due to the fact that |Φ′| = min{T − t∗, 2Sσ′
max} ≤ min{T, 2Sσmax} = |Φ|. Therefore, from Theorem 4.3 we obtain

Rt∗:T ≤ 2
√

2K(T − t∗)CK,3δ + 7

√
ST ln

8ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln

8

δ
(20)

with probability at least 1 − δ/2. We conclude the proof by combining Equations (19) and (20) along with the fact that√
t∗ +

√
T − t∗ ≤

√
2T to get that the bound

RT ≤ 6
√
KTCK,2δ + 3min

{
7

√
ST ln

8ST

δ
,
√
DTCK,2δ

}
+ 2
√

DΦCK,2δ + (σmax + 2) ln
8

δ

holds with probability at least 1− δ.

B.6. Expected Regret Analysis of MetaAdaBIO with Tsallis-INF

Proposition 4.6. If we execute MetaAdaBIO with Tsallis-INF (Zimmert & Seldin, 2020), and use the switching
condition

√
8Dt lnK > 6

√
ST ln(2ST ) at each round t ∈ [T ], where Dt =

∑t
j=1 σj , then the regret of MetaAdaBIO

in the BIO setting with adversarial action-state mappings and stochastic losses satisfies

E[RT ] ≤ 4
√
2KT +

√
8DΦ lnK

+ 2min
{
6
√
ST ln(2ST ),

√
8DT lnK

}
.
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Proof of Proposition 4.6. We begin by studying of expected regret of MetaBIO and we then give a regret analysis of
MetaAdaBIO. When running MetaBIO, we use the unbiased empirical mean estimators (θ̂t)t∈[T ] as the mean loss
estimates, rather than the lower confidence bounds (θ̃t)t∈[T ]. The expected regret is defined as

E[RT ] =

T∑
t=1

E[θ(St)]−
T∑

t=1

θ(st(a
∗)) ,

where a∗ = mina∈A
∑T

t=1 θ(st(a)). Here we use a version of Tsallis-INF that is tailored for the delayed bandits
problem (Zimmert & Seldin, 2020), which guarantees a bound in expectation on the regret

R̂Tsallis
T (a) =

T∑
t=1

θ̂t(St)−
T∑

t=1

θ̂t(st(a))

against any fixed action a ∈ A, using the loss estimates {θ̂t}t∈[T ]. Observe that this regret is defined in terms of our
estimates, as required in our case. By Zimmert & Seldin (2020, Theorem 1), Tsallis-INF guarantees that its expected
regret is

E
[
R̂Tsallis

T (a∗)
]
= E

[
T∑

t=1

θ̂t(St)−
T∑

t=1

θ̂t(st(a
∗))

]
≤ 4

√
KT +

√
8D̃T lnK ≤ 4

√
KT +

√
8DΦ lnK ,

where the last inequality uses Lemma 4.1. Then, we can focus on our notion of regret and use the above regret bound to
obtain that

E[RT ] = E
[
RT − R̂Tsallis

T (a∗)
]
+ E

[
R̂Tsallis

T (a∗)
]

= E

[
T∑

t=1

(
θ(St)− θ̂t(St)

)]
+ E

[
T∑

t=1

(
θ̂t(st(a

∗))− θ(st(a
∗))
)]

+ E
[
R̂Tsallis

T (a∗)
]

≤ E

[
T∑

t=1

(
θ(St)− θ̂t(St)

)
︸ ︷︷ ︸

∆

]
+ E

[
T∑

t=1

(
θ̂t(st(a

∗))− θ(st(a
∗))
)]

+ 4
√
KT +

√
8DΦ lnK . (21)

We know that our mean estimator is unbiased. Therefore, we have that E[θ̂t(st(a∗))] = θ(st(a
∗)) for any t ∈ [T ], meaning

that the second term in the right-hand side of (21) is equal to zero.

On the other hand, we can apply Lemma A.2 to get the following bound for ∆ that holds with probability at least 1− δ/2
for any δ ∈ (0, 1):

∆ ≤ min

{
1

2

T∑
t=1

εt(St), T

}
, (22)

where we recall that εt(s) =
√

2
N ′

t(s)
ln 4ST

δ . In particular, the inequality ∆ ≤ T is true in general. By Lemma B.3, we can
bound the right-hand side of (22) as

1

2

T∑
t=1

εt(St) ≤
7

2

√
ST ln

4ST

δ

when conditioning on the event as in the statement of Lemma A.2. If we denote such an event as E , we have that P
(
E
)
≤ δ/2

and that E[∆ | E ] ≤ 7
2

√
ST ln(4ST/δ). As a consequence, we notice that

E[∆] = E[∆ | E ]P(E) + E
[
∆ | E

]
P
(
E
)
≤ 7

2

√
ST ln

4ST

δ
+

δ

2
T ≤ 5

√
ST ln(2ST ) + 1

where in the last inequality we set δ = 2/T . Since we assume that S ≥ 2, we can easily observe that E[∆] ≤
6
√
ST ln(2ST ). Plugging this into Equation (21) gives us

E[RT ] ≤ 4
√
KT +

√
8DΦ lnK + 6

√
ST ln(2ST ) . (23)
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At this point, we can proceed to the proof of the overall bound on the expected regret of MetaAdaBIO. The behaviour of
MetaAdaBIO follows the same principle as before, but the switching condition is different:√

8Dt lnK > 6
√
ST ln(2ST ) .

Similar to the analysis of MetaAdaBIO in Appendix B.5, we decompose the regret into

E[RT ] ≤
t∗∑
t=1

E[θ(St)]−min
a∈A

t∗∑
t=1

θ(st(a))︸ ︷︷ ︸
Rt∗

+

T∑
t=t∗+1

E[θ(St)]−min
a∈A

T∑
t=t∗+1

θ(st(a))︸ ︷︷ ︸
Rt∗:T

,

where t∗ is the last round satisfying
√
8Dt∗ ≤ 6

√
ST ln(2ST ). Then, we have

E[Rt∗ ] ≤ 4
√
Kt∗ +

√
8Dt∗ lnK . (24)

If t∗ = T then Rt∗ = RT and we get the bound in (24), where we note that
√
8DT lnK ≤ 6

√
ST ln(2ST ) by definition

of t∗ in this case, and we can replace DT by DT . Otherwise, t∗ < T and we can apply the bound for MetaBIO from (23),
along with the fact that the total incurred delay after round t∗ is upper bounded by DΦ, in order to derive an upper bound for
E[Rt∗:T ] that is

E[Rt∗:T ] ≤ 4
√
K(T − t∗) +

√
8DΦ lnK + 6

√
ST ln(2ST ) . (25)

Finally, if we use the fact that
√
8Dt∗ ≤ 6

√
ST ln(2ST ) (by definition of t∗) in (24), and combine it with (25), we conclude

that
E[RT ] ≤ 4

√
2KT +

√
8DΦ lnK + 2min

{
6
√
ST ln(2ST ),

√
8DT lnK

}
,

where we also used the fact that
√
t∗ +

√
T − t∗ ≤

√
2T .

C. Proofs for the Lower Bounds
Theorem 5.2. Suppose that the action-state mapping is adversarial and the losses are stochastic and that dt = d for all
t ∈ [T ]. If T ≥ min{S, d} then there exists a distribution of losses and a sequence of action-state mappings such that any
(possibly randomized) algorithm suffers regret E[RT ] = Ω

(√
min{S, d}T

)
.

Proof of Theorem 5.2. Assume without loss of generality that K = 2 and let S = {h1, . . . , hS} be the finite set of possible
states. Let S′ = ⌊min{S/2, d}⌋ and let I1, . . . , IT be the actions chosen by the considered algorithm. Split the T time steps
into m = ⌊T/S′⌋ blocks B1, . . . , Bm of equal size S′, eventually leaving ≤ S′ − 1 extra time steps. We assume with no
loss of generality that the last step corresponds to the end of the m-th block. The feedback formed by the losses of the
actions chosen by the algorithm in a certain block is received only after the last time step of the same block since S ≤ 2d.
Define bi = (i− 1)S′ +1 for all i ∈ [m]. We assume that the learner receives all the realized losses ℓt(st(A)) for all t ∈ Bi

and all A ∈ {1, 2} at the end of each block, which means that we are in a full information setting, as this only helps the
algorithm.

Now, we define a specific sequence of assignments from actions to states, and construct losses so that the expected regret
becomes sufficiently large. Let st(A) = h2(t−bi)+A for all t ∈ Bi, all i ∈ [m] and all A ∈ {1, 2}; this means that, for the
first time step of any block, actions 1 and 2 will be assigned to states h1 and h2 respectively, then to h3 and h4 respectively
in the next time step of the same block, and so on. Let ε = 1

4

√
S′

2T ln(4/3) ∈ [0, 1
4 ] and let θ(A) ∈ R2 be a vector of mean

losses such that θ(A)
i = 1

2 − I{i = A}ε, for each A ∈ {1, 2}. We simplify the notation with EA[·] = E
[
·
∣∣ θ(A)

]
and

PA(·) = P
(
·
∣∣ θ(A)

)
, where the conditioning on θ(A) means that we sample losses for each state assigned to i ∈ {1, 2}

such that they are Bernoulli random variables with mean θ
(A)
i . In particular, conditioning on θ(A), we sample independent

Bernoulli random variables Xi
1, . . . , X

i
m with mean θ

(A)
i , one for each block, for i ∈ {1, 2}. Then, the losses are defined as

ℓt(st(i)) = Xi
j for each t ∈ Bj and each j ∈ [m].

We can now proceed to show a lower bound for the expected pseudo-regret. Let Ti be the number of times the learner
chooses action i over all T time steps. The expected pseudo-regret over the two instances determined by θ(k) for k ∈ {1, 2}
adds up to

E1[RT ] + E2[RT ] = ε(2T − E1[T1]− E2[T2]) .
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Following the standard analysis, we show that the difference E2[T2]− E1[T2] is such that

E2[T2]− E1[T2] ≤ T · dTV(P2,P1) ≤ T

√
1

2
DKL(P1 ∥P2) ,

where the last step follows by Pinsker’s inequality.

Let λi = {(It, ℓt(St(1)), ℓt(St(2))) | t ∈ Bi} be the feedback set known to the learner by the end of block Bi, and let
λi = (λ1, . . . , λi) be the tuple of all feedback sets up to the end of block Bi. Denote by Pk,i(·) the probability measure of
feedback tuples λi conditioned on θ(A). By the chain rule for the relative entropy, we can observe that

DKL(P1 ∥P2) =

m∑
i=1

∑
λi−1

P1(λ
i−1)DKL(P1,i(· | λi−1)∥P2,i(· | λi−1))

≤
m∑
i=1

∑
λi−1

P1(λ
i−1)16ε2 ln(4/3)

= 16mε2 ln(4/3) ,

where we used the fact that each relative entropy DKL(P1,i(· | λi−1) ∥P2,i(· | λi−1)) corresponds to the sum of the relative
entropy between two Bernoulli distributions with means 1/2 and 1/2−ε and that between Bernoulli distributions with means
1/2− ε and 1/2, respectively, which is upper bounded by 16ε2 ln(4/3) for ε ∈ [0, 1/4]. This follows by an application of
the chain rule for the relative entropy, as well as from the fact that the distribution of It is the same under both P1,i(· | λi−1)
and P2,i(· | λi−1), for all t ∈ Bi and any λi−1. Therefore, we have that

E2[T2]− E1[T2] ≤ 2εT
√
2m ln(4/3)

which also implies that

E1[RT ] + E2[RT ] ≥ εT

(
1− 2ε

√
2
T

S′ ln(4/3)

)
=

εT

2
≥ 1

8

√
⌊S/2⌋T
2 ln(4/3)

≥ 1

8

√
ST

6 ln(4/3)
,

where we used the facts that m ≤ T/S′ and that ⌊S/2⌋ ≥ S/3 for any integer S ≥ 2. This means that the expected

pseudo-regret of the learner has to be 1
16

√
ST

6 ln(4/3) at least in one of the two instances. Now, for S > 2d we use the same

construction, but now we only use 2d states, which leads to the promised Ω(
√
min{S, d}T ) lower bound.

Theorem 5.3. Suppose that the action-state mapping is adversarial, the losses are stochastic, and that dt = d for all
t ∈ [T ]. If T ≥ d + 1 then there exists a distribution of losses and a sequence of action-state mappings such that any
(possibly randomized) algorithm suffers regret

E[RT ] = Ω
(
min

{
(d+ 1)

√
S,
√
(d+ 1)T

})
.

Proof of Theorem 5.3. Let S′ = min{⌊S
2 ⌋, ⌊

T
d+1⌋} ≥ 1. We consider the first (d + 1)S′ rounds of the game and divide

them into S′ blocks B1, . . . , BS′ of same length d+ 1. In this way, we ensure that the feedback for any time step in some
block is revealed to the learner only after its final round.

Without loss of generality, we can assume that the learner observes all the losses of one block immediately after its
last time step; this only helps the learner since they would observe only the incurred losses at possibly later rounds
otherwise. We can further simplify the problem by assuming that losses are deterministic functions of the states, i.e., ℓt ≡ θ
for every round t. This also means that the problem turns into an easier, full-information version of our problem with
deterministic losses. Now, let the adversary choose the action-state mappings such that for each block index i and each
action a ∈ A, St(a) = St′(a) ∈ {s2i−1, s2i} for all t, t′ ∈ Bi. Furthermore, we assume that the losses are chosen such
that θ(s2i−1) ∈ {0, 1} and θ(s2i) = 1− θ(s2i−1) for all i ∈ [S′]. In this construction, the learner cannot obtain any useful
information from the states of a block because of the delays. Moreover, the states observed in one block are not observed
again in the other blocks.
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It thus suffices to prove a lower bound for a standard full information game with S′ rounds and loss range [0, d+ 1]. Hence,
we can conclude that the expected regret of any algorithm has to be

E[RT ] = Ω
(
(d+ 1)

√
S′
)
= Ω

(
min

{
(d+ 1)

√
S,
√

(d+ 1)T
})

.

D. Action-State Mappings and Loss Means Used in the Experiments
Table 1 and Table 2 describe the instances used to generate the data for the experiments of Section 6.

Mean loss s = 1 s = 2 s = 3
θ(s) 0.2 0.4 0.8

Mapping P (1|a) P (2|a) P (3|a)
a = 1 0.8 0.1 0.1
a = 2 0.4 0.5 0.1
a = 3 0.3 0.7 0.0
a = 4 0.5 0.3 0.2

Table 1. Mean losses and stochastic action-state mapping for Experiment 1 in Section 6.

Mean loss s = 1 s = 2 s = 3
θ(s) 0 1 1

Environment 1
Mapping P (1|a) P (2|a) P (3|a)
a = 1 0.06 0.47 0.47
a = 2 0 0.50 0.50
a = 3 0 0.50 0.50
a = 4 0 0.50 0.50

Environment 2
Mapping P (1|a) P (2|a) P (3|a)
a = 1 1 0 0
a = 2 0.94 0.03 0.03
a = 3 0.94 0.03 0.03
a = 4 0.94 0.03 0.03

Table 2. Mean losses and stochastic action-state mappings for Experiment 2 in Section 6.
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