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Abstract

Reliable uncertainty quantification is crucial in
high-stakes applications, such as healthcare. The
ECEgw has been the most commonly used es-
timator to quantify the calibration error (CE),
but it is heavily biased and can significantly un-
derestimate the true calibration error. While al-
ternative estimators, such as ECEpggiasep and
ECEswggp, achieve smaller estimation bias in
comparison, they exhibit a trade-off between over-
estimation of the CE on uncalibrated models and
underestimation on recalibrated models. To ad-
dress this trade-off, we propose a new estima-
tor based on K-Nearest Neighbors (KNN), called
ECExnn, which constructs representative overlap-
ping local neighbourhoods for improved CE esti-
mation. Empirical evaluation results demonstrate
that ECEgnn simultaneously achieves near-zero
underestimation of the CE on uncalibrated mod-
els while also achieving lower degrees of overes-
timation on recalibrated models. The implemen-
tation of our proposed ECExny is available at
https://github.com/esterlab/KNN-ECE/.

1. Introduction

Uncertainty quantification is crucial in high-stakes applica-
tions such as healthcare. The model should not only predict
the outcome of a sample but also reliably communicate the
prediction uncertainty. One common approach for commu-
nicating prediction uncertainty is to use the probability of
the predicted class, also known as prediction confidence.
Figure 1 illustrates the process of uncertainty quantification.
Reliable uncertainty quantification requires (1) calibrated
models that produce prediction confidence that match the
prediction accuracy and (2) evaluation metrics (estimators)
that can accurately estimate the calibration error. The cal-
ibration error is the expected difference between the pre-

“Equal contribution 'School of Computing Science, Simon
Fraser University, Burnaby, Canada. Correspondence to: Shuman
Peng <shumanp@sfu.ca>.

Workshop on Interpretable ML in Healthcare at International Con-
ference on Machine Learning (ICML), Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

Step 1: Quantify the predictive uncertainty

x —{ f ﬁ
f@)

— ? Predicted class

Prediction confidence

Step 2: Evaluate the predictive uncertainty

f) ( Y . ;
R . : stimate
b4 Calibration error

estimator calibration error
y e — (the smaller, the better)

Figure 1: The uncertainty quantification process. First,
a model (e.g., deep neural network) f takes a sample x
as input and outputs the predicted class ¢ along with the
probability of the predicted class (i.e., prediction confidence)
f(z). Then, a calibration error estimator takes f(x), ¢, and
y (the true class of x) of a set of samples as input and outputs
the estimated calibration error. In this work, we focus on the
second step of the uncertainty quantification process (i.e.,
evaluating models’ predictive uncertainty).

diction confidence and the accuracy. In this paper, we will
use the terms “estimators” and “evaluation metrics” inter-
changeably.

Medical applications increasingly use deep neural networks
(DNNs) for tasks such as medical diagnosis/prognosis
(Sharifi-Noghabi et al., 2018), cancer treatment (Sharifi-
Noghabi et al., 2020; Snow et al., 2021), and medical imag-
ing analysis (Rajpurkar et al., 2017; Yao et al., 2021). How-
ever, DNNs often make over-confident and poorly calibrated
predictions, resulting in highly confident incorrect predic-
tions, which go undetected (Guo et al., 2017; Nixon et al.,
2019). Many recalibration methods, such as Temperature
Scaling, Deep Ensembles, and Monte Carlo Dropout, exist
to improve DNN calibration to alleviate this problem (Guo
et al., 2017; Lakshminarayanan et al., 2016; Gal & Ghahra-
mani, 2015; Kull et al., 2019; Zhang et al., 2020; Wang et al.,
2020). Once recalibrated, the DNNs require an assessment
to determine their calibration error. The Expected Calibra-
tion Error (ECE)! based on equal-width binning (ECEgy) is

'Also referred to as the Estimated Calibration Error in the
existing literature.
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Figure 2: ECEgwggp and ECEpggiasep exhibit a tradeoff
between underestimation of the calibration error (CE) on un-
calibrated models (left) and overestimation on recalibrated
models (right). Specifically, ECEswggp achieves lower un-
derestimation on uncalibrated models but shows greater
overestimation on recalibrated models, while the opposite
holds true for ECEpggiasep. The x-axis represents varying
sample sizes, while the y-axis represents the CE estimation
bias, which measures the difference between the estimated
CE and the true CE. Negative bias values indicate under-
estimations of the CE, and positive bias values indicate
overestimations.

a widely used metric for this purpose, which partitions pre-
diction confidence into M equal-width bins and computes
the mean discrepancy between the prediction confidence and
empirical accuracy across the M bins (Naeini et al., 2015;
Guo et al., 2017). However, ECEgy is highly biased and
can significantly underestimate the calibration error (Kumar
et al., 2019; Nixon et al., 2019; Roelofs et al., 2022), pos-
ing a major concern for medical applications. Seemingly
well-calibrated but poorly calibrated models can make in-
correct predictions with high confidence, creating a false
sense of certainty for users, which can lead to potentially
fatal outcomes.

To address calibration error estimation bias, recent works
introduced alternative calibration error estimators. The
equal-mass binning-based ECE (ECEgy) creates M non-
equally spaced bins containing an equal number of confi-
dence scores (Nixon et al., 2019). The debiased ECE esti-
mator (ECEpgpiasep) subtracts an estimated bias correction
term (Kumar et al., 2019), while the monotonic sweep ECE
(ECEswggp) adaptively determines the optimal number of
bins (Roelofs et al., 2022).

ECEsweep and ECEpggiasep have emerged as the top-
performing estimators in previous studies (Roelofs et al.,
2022). Specifically, when applied to the CIFAR-10, CIFAR-
100, and ImageNet datasets using the equal-mass binning
scheme, these estimators demonstrate the lowest mean ab-
solute bias on uncalibrated models and models recalibrated
using Temperature Scaling (Guo et al., 2017) — a widely

adopted recalibration method — respectively. However,
both ECESWEEP and ECEDEBIASED exhibit a trade-off be-
tween underestimation and overestimation of calibration
errors on uncalibrated and recalibrated models (see Fig-
ure 2). While ECEgwggp achieves a lower underestima-
tion? of calibration error on uncalibrated models, it tends to
overestimate® the error on recalibrated models. Conversely,
ECEpggiasep reduces overestimation on recalibrated mod-
els but increases underestimation on uncalibrated models.

In practical applications where the calibration level of a
model is unknown, finding the right balance becomes criti-
cal. Underestimating the calibration error on uncalibrated
models can lead to misplaced trust and potential risks, such
as incorrect diagnoses or treatment decisions. Conversely,
overestimating the error on recalibrated models can result
in unnecessary caution, potentially causing delays in critical
interventions or resource allocation.

In this paper, our goal is to address the tradeoff between
the over and underestimation of calibration errors on un-
calibrated and recalibrated models. To accomplish this, we
propose a novel K-Nearest Neighbors (KNN)-based ECE
estimator (ECEgny). This estimator constructs overlapping
local neighborhoods, each containing &k prediction confi-
dence scores, to estimate the deviation between the predic-
tion confidence and empirical accuracy. By ensuring that
each local neighborhood has a representative sample size,
ECEknN provides less biased estimations.

We evaluate the performance of our proposed KNN-based
ECE (ECEgnn) estimator alongside existing calibration er-
ror estimators (ECEEw, ECEDEBIASED7 and ECESWEEP) on
the same datasets (CIFAR-10, CIFAR-100, and ImageNet)
and model backbones used in (Roelofs et al., 2022), across
various sample sizes. Our estimator strikes a superior bal-
ance in estimation bias on both uncalibrated and recalibrated
models compared to the best baseline estimators. Notably,
our estimator exhibits significantly less underestimation of
calibration error on uncalibrated models compared to the
best baseline (ECEgwggp) while demonstrating less conser-
vatism (by reducing overestimation) on recalibrated mod-
els. The implications of these experimental findings ex-
tend to healthcare applications, particularly in the context
of DNNs trained on medical imaging tasks, such as skin
cancer detection using the HAM 10000 dataset (Tschandl
et al., 2018). The confidence distributions produced by these
medical imaging models, based on commonly used DNN
backbones such as ResNet, closely resemble those trained
on the CIFAR-10, CIFAR-100, and ImageNet datasets (as

A more negative calibration error estimation bias indicates
a more severe underestimation of calibration error, while a less
negative bias implies a less severe underestimation.

3A larger positive bias indicates a more severe overestimation
of calibration error.
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Figure 3: The confidence distribution of two ResNet models
trained and tested on the Skin Cancer Detection HAM 10000
dataset (Tschandl et al., 2018). The ResNet models were
pre-trained on the ImageNet dataset and fine-tuned on the
HAM10000 dataset, following the standard practice in med-
ical image classification.

demonstrated in Figures 3 and 4).

Our paper contributes in the following ways:

* We identify a tradeoff observed among top-performing
calibration error (CE) estimators. In particular,
ECEswgep achieves a lower underestimation of CE
on uncalibrated models, but at the expense of higher
overestimation on recalibrated models. Conversely,
ECEpggiasep reduces overestimation on recalibrated
models but suffers from more significant underestima-
tion on uncalibrated models. This tradeoff highlights
the need for a new estimator that strikes a better bal-
ance between over and underestimation on models with
different calibration levels.

* To address this tradeoff, we propose a novel estima-
tor, the KNN-based ECE (ECEgnn). Leveraging the
concept of K-Nearest Neighbors, ECEgnN constructs
overlapping and representative local neighborhoods to
estimate the calibration error more accurately.

» Through comprehensive experiments, we demonstrate
that our ECEgnn estimator strikes a superior balance
in terms of CE estimation bias on uncalibrated and re-
calibrated models. Specifically, our ECEgny estimator
significantly reduces the underestimation of CE on un-
calibrated models while simultaneously reducing over-
estimation on recalibrated models. By striking a better
balance between underestimation and overestimation,
our ECEgnn estimator provides healthcare profession-
als with more reliable uncertainty quantification, pro-
moting informed decision-making and reducing the
risk of false confidence or unnecessary caution.

2. Notations and Background

We consider a multi-class classification problem where
given a variable X € X, denoting the input features of the
data, we want to predict its corresponding categorical vari-
able (i.e., class) Y € {1,2,...,K}. Let f : X — Z € RE
be a probabilistic model that takes input x and outputs
a K-dimensional vector z = (z1, 29, ..., 2x) such that
ZiKzl z; = 1. In other words, z; is the prediction prob-
ability for class k € {1, ..., K'}. Class k corresponding to
arg max,, z is the predicted class.

In this work, we focus on top-label calibration, also com-
monly known as confidence calibration, where we are only
concerned with whether or not the probability of the pre-
dicted class (i.e., the prediction confidence) matches with
the prediction accuracy (Guo et al., 2017; Kumar et al.,
2019; Kull et al., 2019). In the case of top-label calibration,
the multi-class classification problem reduces to a binary
classification problem, where Y = 0 if the class label is in-
correctly predicted and Y = 1 if the class label is correctly
predicted.

The true calibration error (TCE) in the setting of top-
label calibration is defined as the £, norm of the discrepancy
between the model’s prediction confidence f(X) and the
accuracy (i.e., the true likelihood of a correct prediction)
Ey[Y]f(X)] (Roelofs et al., 2022):

TCE(f) = (Ex[|f(X) — Ey[Y[FCOID» ()

The TCE cannot be computed analytically with a finite
number of samples so a common way to estimate it is by
using the Estimated (Expected) Calibration Error (ECE)
(Roelofs et al., 2022)

1/p
1 & 1 p
n;‘f(xz)—wzyg‘ )
1= JGNi

where A; is the neighborhood of confidence instance i,
and the term Wll > jen; Yj is the prediction accuracy in
neighbourhood N;.

ECEx (f) =

A popular approach to define the neighborhoods N is by
placing the confidence values into discrete histogram bins
B = {Bx,..., By} such that each bin B;,i = 1, ..., M has
an equal interval/width (i.e., ﬁ) as the other bins (Naeini
et al., 2015; Guo et al., 2017), which can lead to highly bi-
ased calibration error estimates (Roelofs et al., 2022; Kumar
et al., 2019; Nixon et al., 2019). The ECEgw calibration
error estimator, based on this approach, is expressed as

1/p
p
) 3

flai) =i

M
ECEgw (f) = <Z %
=1
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Figure 4: The CIFAR-10 dataset has the most skewed confidence distribution, the CIFAR-100 dataset is less skewed, and the
ImageNet dataset is the least skewed. This figure illustrates the distribution of 10k uncalibrated prediction confidence values
on the CIFAR-10, CIFAR-100, and ImageNet datasets. The confidence distributions shown are the prediction confidences
from a ResNet-110 model for CIFAR-10/100 and a ResNet-152 model for ImageNet. Other variants of the ResNet model

and Densenet models show similar confidence distributions.

Here, n represents the total number of samples, f(x;) de-
notes the mean prediction confidence in bin B;, |B;| rep-
resents the size of bin B;, and y; indicates the prediction
accuracy within bin B;.
Definition 2.1 (Bias). Bias is the difference between the
ECE and the true calibration error TCE (Roelofs et al.,
2022):

Bias = E[ECE] — TCE 4)

A positive bias indicates an overestimate of the TCE,
whereas a negative bias indicates an underestimate of the
TCE.

The bias can be estimated using the bias-by-construction
(BBC) framework proposed by Roelofs et al. (2022), in
which the TCE can be computed analytically based on an as-
sumed confidence distribution F and true calibration curve
Ey[Y|f(x) = ¢] :==T(c). A dataset { f(z;), y:}1—, gener-
ated from f(z;) ~ Fand Ey [Y|f(x) = ] := T(c) is used
to compute the ECE. A total of m datasets is generated. The
sample estimate of the bias is the difference between the
mean ECE taken across m simulated datasets and the TCE:

_— 1 &
Bias(n) = — > ECE - TCE )

=1
3. KNN-based Calibration Error Estimator

In this work, we introduce an alternative calibration er-
ror estimator based on K-Nearest Neighbors (KNN). The
KNN method is a commonly used non-parametric approach
for density estimation due to its flexibility to adapt to any
underlying probability density function and simple hyper-
parameter tuning (Zhao & Lai, 2020).

Closely following the ECE formulation (equation 2), we
propose a KNN-based estimator (ECEgny) that estimates

the calibration error in the local neighborhood of each pre-
diction confidence. ECEgny is formulated as follows:

1/p
p
) (6)

where f(z;) is the mean confidence of the k nearest neigh-
bors of confidence instance ¢ and ¥; is the classification
accuracy amongst the k£ neighbors of ¢. Each confidence
instance ¢ has a local neighborhood of size |A;| = k. The
sum of the sizes of all local neighborhoods is > _; [Ny
Since there are n samples (confidence instances), there is a
total of n local overlapping neighborhoods. An illustration
of the KNN neighborhoods is shown in Figure 5.

ECEknn(f) = (Z; sz\ﬂ/\[ﬂ}f@z) — Y

While f(z;), namely the confidence value of instance 4, is
also a sensible statistic to use in place of f(z;) in equa-
tion (6), we follow the formulation of existing estimators
(ECEgw, ECEgy, ECEswegp) and use f(x;).

KNN neighborhoods for z;, z4 with k = 2
N, N,
Z; @ Z3  Z4 Zs Ze Z7
Prediction Confidences

Figure 5: An illustration of constructing overlapping K-
Nearest Neighbors (KNN) neighborhoods with k = 2 near-
est neighbors for confidence values zo, z4.
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Figure 6: The process of setting of number of neighbors
k involves determining n,., the number of samples in the
region r with the highest density in the confidence distri-
bution, and setting the hyper-parameter o controlling the
neighborhood sizes and the similarity between neighbors.

3.1. Choosing k

The key to estimating the calibration error using our pro-
posed ECEgnn is constructing representative neighbor-
hoods for each confidence instance, where a representative
neighborhood should include as many samples as possible
without including dissimilar neighbors.

The choice of the number of nearest neighbors (k) for each
sample is critical, and it depends on both the sample size
and the distribution of the confidence values. With a larger
sample size providing a more densely distributed set of sam-
ples, a larger k£ can be used for density estimation using
KNN (Zhao & Lai, 2020) as there would be a larger number
of similar neighbors. Similarly, with a larger sample size, a
larger k can also be used to construct more representative
local neighborhoods. However, the choice of k also depends
on the confidence distribution, as a highly skewed distri-
bution, such as that of the CIFAR-10 dataset (see Figure
4), may require a smaller k& to avoid including dissimilar
neighbors in the tail end of the distribution. Conversely,
a smaller £ may exclude many similar neighbors in a less
skewed distribution, such as that of the ImageNet dataset
(see Figure 4).

We propose the following three-step process for selecting
the value of k, which is illustrated in Figure 6.

Step 1: determine the region r with the highest density
in the confidence distribution We determine the region
with the highest density in the confidence distribution, 7,
separately by visual inspection for the confidence distribu-
tions of the CIFAR-10, CIFAR-100, and ImageNet datasets
(see Figure 4). r is smallest for the confidence distribu-
tion of CIFAR-10, with CIFAR-10 having the most skewed

distribution; r is the second smallest for the confidence dis-
tribution of CIFAR-100, with CIFAR-100 having the second
most skewed distribution; r is the largest (relatively) for the
confidence distribution of ImageNet, as ImageNet has the
least skewed distribution.

Step 2: count the number of samples in » The number
of samples in the most dense region r is denoted as n,..

Step 3: setting & based on the remaining samples Using
the remaining samples (n — n,.), k is set as follows
ko — " 7

F [
1+log(%)

where n is the total number of samples, n, is the number
of samples in the dense region r, and « € (0, n] is a hyper-
parameter that controls the relative size of the neigborhoods
with respect to the sample size. Lower values of « result
in smaller neighborhoods with higher degrees of similarity
among the neighbors. In contrast, larger values of « lead
to larger neighborhoods that can encompass a more diverse
selection of neighbors.

The intuition behind Equation (7) is to adapt the neighbor-
hood size k according to the sample size n for effective
calibration estimation. When the sample size is small, the
tail regions of the confidence distribution are sparser, ne-
cessitating larger neighborhoods k relative to n — n,. to
ensure an adequate number of samples for reliable local
CE estimation. Conversely, for larger sample sizes, the tail
regions become denser, allowing us to prioritize neighbor-
hood similarity and use a relatively smaller k& with respect
ton —n,.

To control the scaling of k in a stable manner, we choose to
make it inversely proportional to the logarithm of n, ensur-
ing that k£ remains larger than 1 and changes gradually as n
increases. The addition of +1 in the denominator prevents
k from becoming larger than n — n,.. The hyperparameter
« should be chosen such that log(Z) is greater than zero to
maintain the effectiveness of the scaling.

In the subsequent section, we empirically validate the effec-
tiveness of our proposed ECExnn.

4. Empirical Evaluation
4.1. Experimental Design

Datasets We utilize logits data* (Kull et al., 2019) ob-
tained from ten different DNNs with popular backbones
(e.g., ResNet, ResNet-SD, Wide-ResNet, and DenseNet),
trained and evaluated on the CIFAR-10, CIFAR-100, and

*https://github.com/markus93/NN _calibration
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ImageNet image classification datasets. In the uncalibrated
model setting, we directly use the logits. In the recalibrated
model setting, we apply Temperature Scaling® to recalibrate
the logits.

Baselines We compare the performance of our proposed
KNN-based calibration error estimator (ECEgny) against
three baseline estimators commonly used in the literature.
These include the equal width ECE (ECEgyw), debiased ECE
(ECEpggiasep), and mean sweeps ECE (ECEswggp). The
ECEgw estimator has been widely used in previous works,
while the latter two, which are based on the equal mass
binning scheme, have shown to exhibit lower estimation
bias than other alternatives (Roelofs et al., 2022). We adopt
the common practice of using 15 bins for baseline estimators
(ECEgw, ECEpgpiasep) that employ a fixed number of bins
(Park et al., 2020; Wang et al., 2020; Roelofs et al., 2022).
Additionally, following Roelofs et al. (2022), we utilize the
{5 norm to measure the calibration errors.

Bias Estimation We use the bias-by-construction (BBC)
framework developed by Roelofs et al. (2022) to estimate
the bias of the estimators on uncalibrated and recalibrated
model outputs (logits) of the CIFAR-10, CIFAR-100, and
ImageNet datasets across sample sizes n = 200, 400, 800,
1600, 3200, 6400, and 12800. m = 250 datasets are gener-
ated for each sample size to perform a sample estimate of
the bias shown in equation (5). In the experiments, the TCE
and ECE are computed as percentage values in [0, 100], so
the estimated bias is in [—100, 100].

ECEgnn configuration In Section 3, we visually in-
spected the confidence distributions of the CIFAR-10,
CIFAR-100, and ImageNet datasets to identify the region
r with the highest density. We selected » = [0.998, 1.0]
for CIFAR-10, » = [0.99, 1.0] for CIFAR-100, and r =
[0.98,1.0] for ImageNet. The choice of  depends on the
skewness of the distributions, with smaller values for more
skewed distributions and larger values for less skewed distri-
butions. In all our experiments, we set &« = 100 to determine
the value of k in equation (7).

4.2. Empirical Results

ECExnn  strikes a better balance Our proposed
ECEknN estimator successfully addresses the trade-off ob-
served in the top-performing baseline estimators, namely
ECESWEEP and ECEDEBIASED- While ECESWEEP achieves
lower underestimation of the calibration error (CE) on un-
calibrated models, it suffers from severe overestimation
on recalibrated models. Conversely, ECEpgpiasgp reduces
overestimation of the CE on recalibrated models but exhibits

Shttps://github.com/google-research/google-
research/blob/master/caltrain/calibration_methods.py
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Figure 7: Comparison of calibration error estimator bias on
uncalibrated and recalibrated models for CIFAR-10, CIFAR-
100, and ImageNet datasets. Both the x-axis (uncalibrated
bias) and y-axis (recalibrated bias) indicate better perfor-
mance closer to zero. Our proposed estimator, ECEgnn,
achieves the best balance between the calibration error esti-
mation bias on uncalibrated and recalibrated models.

substantial underestimation on uncalibrated models. This
trade-off is overcome by ECEgny -

Figure 7 demonstrates that our ECEgnn outperforms the
baseline estimators in achieving a more desirable balance
between estimation bias on uncalibrated and recalibrated
models across diverse datasets, model backbones, and sam-
ple sizes. Notably, ECEgny attains the lowest underestima-
tion of the CE on uncalibrated models, with significantly
less negative uncalibrated bias. Moreover, it effectively
mitigates the degree of overestimation of the calibration
error, as indicated by markedly smaller positive recalibrated
bias compared to the baseline estimator with the second
lowest level of underestimation on uncalibrated models,
ECEgswekp.

Uncalibrated models Our proposed ECExnn surpasses
the state-of-the-art metric (ECEgswggp) in terms of calibra-
tion error estimation bias on uncalibrated model prediction
confidences across the CIFAR-10, CIFAR-100, and Ima-
geNet datasets, as demonstrated in Figure 8. The mean
absolute bias of ECExnn 1s 0.183 across all datasets, sam-
ple sizes, and model backbones, while ECEgwggp exhibits
a mean absolute bias of 0.364. This difference in means is
statistically significant (¢ = 4.74, p < be — 5).

Among all calibration metrics, ECEgxnn achieves the low-
est underestimation of the calibration error on uncalibrated
models, with a mean bias of —(0.115 across all datasets,
sample sizes, and model backbones. In comparison, the
mean biases of ECEswggp » ECEpgpiasep , and ECEgw are
—0.281, —0.521, and —1.210, respectively. The difference
in mean bias between ECExny and the second-best metric,
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Figure 8: Calibration error estimation bias on uncalibrated models. We observe that ECEgny is the least biased estimator,
achieving near-zero estimation bias across all datasets. These plots show the bias of calibration error estimators across
different sample sizes on simulated data drawn from the confidence distribution and calibration curve fits on the CIFAR-10,
CIFAR-100, and ImageNet datasets. Each line in the figure represents the mean bias across the different model backbones,
with the shaded color around the line indicating the variance in bias between models.

ECEgsweep, is statistically significant (t = 3.50, p < 5e —4).

Furthermore, when applied to the uncalibrated models of the
CIFAR-10 and ImageNet datasets, ECExnn achieves near-
zero mean bias of —0.01 and —0.03, respectively, demon-
strating significantly improved accuracy in estimating the
calibration error compared to all baseline estimators.

Recalibrated models When applied to model prediction
confidences that have been recalibrated using Tempera-
ture Scaling, our proposed ECEgnn exhibits significantly
smaller estimation bias compared to ECEgwggp across
all three datasets, as illustrated in Figure 9. Specifically,
ECEknN achieves a significantly lower overestimation of
the calibration error on recalibrated models compared to
ECEswegp. Across all datasets, model backbones, and sam-
ple sizes, ECExnn demonstrates a mean bias of 0.676,
whereas ECEswggp has a mean bias of 1.422 (¢t = 9.50,
p < 5e — 14). Moreover, on recalibrated models of all
three datasets, ECExnn achieves estimation bias compara-
ble to that of ECEpggiasep when the sample size is small
(n = 200).

5. Related Works

Recalibration methods Several recalibration methods
have been developed to improve the calibration of DNNs
(Blundell et al., 2015; Gal & Ghahramani, 2015; Guo et al.,
2017; Kull et al., 2019; Krishnan & Tickoo, 2020; Zhang
et al., 2020; Wang et al., 2020). Deep ensemble (Laksh-
minarayanan et al., 2016), temperature scaling (Guo et al.,
2017), and Monte Carlo dropout (Gal & Ghahramani, 2015)

are amongst the notable recalibration methods as they have
shown great recalibration performance on the CIFAR-10
and ImageNet datasets in both the i.i.d. setting and under dif-
ferent degrees of distribution shift (Ovadia et al., 2019). Ex-
isting recalibration methods either perform during training
or post-hoc calibration. During training calibration meth-
ods calibrate the model at training time either by estimating
the distribution of model weights (Blundell et al., 2015;
Louizos & Welling, 2017), training multiple models and
averaging their predictions (Lakshminarayanan et al., 2016),
employing additional data augmentation techniques (Thu-
lasidasan et al., 2019), or by optimizing auxiliary loss terms
that promote better calibration (Karandikar et al., 2021;
Krishnan & Tickoo, 2020). Post-hoc calibration methods,
such as Temperature Scaling, calibrate the model outputs
after training by rescaling the model’s logits using a single
temperature parameter 7' > 0 that minimizes the model’s
negative log-likelihood on a held-out validation set (Guo
et al., 2017). In this work, we investigate the bias in the
calibration error estimation of models recalibrated using
Temperature Scaling, which is widely used for its simplicity
and good performance. Furthermore, Temperature Scaling
is the basis of many recent recalibration methods (Park et al.,
2020; Wang et al., 2020).

Calibration metrics The expected calibration error
(ECEgw ) has been widely used to evaluate the calibra-
tion of DNNs and the performance of various recalibra-
tion methods (Guo et al., 2017; Ovadia et al., 2019; Park
et al., 2020; Wang et al., 2020; Krishnan & Tickoo, 2020).
ECEgw estimates the discrepancy between the mean con-
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Figure 9: Calibration error estimation bias on recalibrated models. These plots show the bias of calibration error estimators
across different sample sizes on simulated data drawn from the confidence distribution and calibration curve fits on the
recalibrated model outputs from the CIFAR-10, CIFAR-100, and ImageNet datasets. Each line in the figure represents
the mean bias across the different model backbones, with the shaded color around the line indicating the variance in bias

between models.

fidence and accuracy across prediction confidences parti-
tioned into M equal-width bins (Naeini et al., 2015). How-
ever, recent studies have shown that ECEgw is a biased
estimator of the true calibration error (TCE) and is sen-
sitive to binning scheme and the number of bins (Nixon
et al., 2019; Kumar et al., 2019; Roelofs et al., 2022). To
address this, several alternative and less biased estimators
have been proposed. ECEgy partitions the confidences into
equally sized (equal mass) bins (Nixon et al., 2019), while
ECEpggiasep subtracts a bias term from ECEgy, to further
reduce bias (Kumar et al., 2019). ECEgwggp adaptively
finds the optimal number of bins based on the number
of samples and the confidence distribution. Alternatively,
(Zhang et al., 2020) proposes to estimate the TCE using the
Kernel Density Estimator (KDE) to estimate the unknown
probabilities. While the KDE-based ECE achieves the low-
est estimation bias on perfectly calibrated models, it has a
large bias on uncalibrated models by heavily underestimat-
ing the calibration error (Roelofs et al., 2022).

In this work, we propose an alternative estimator for the
TCE based on overlapping local neighborhoods constructed
using K-Nearest Neighbors. Similar to binning-based es-
timators, our estimator also estimates the calibration error
at the local neighborhood level by computing the discrep-
ancy between the confidence and accuracy. Unlike exist-
ing binning-based estimators, we use overlapping neighbor-
hoods rather than disjoint ones to better capture the nuances
in the calibration error at bin-edges.

6. Discussion

In this paper, we addressed the trade-off observed in
top-performing calibration error (CE) estimators, namely
ECEpgpiasep and ECEgwggp, Which presents a practical
challenge in medical applications. These estimators reduce
underestimation of the CE on uncalibrated models at the
cost of greater overestimation on recalibrated models, and
vice versa. Our proposed calibration error estimator based
on K-Nearest Neighbors (KNN) neighborhoods, ECEgnn,
effectively balances this trade-off.

A notable advantage of ECEgny is its ability to achieve
the lowest underestimation of calibration error, with near-
zero estimation bias, on uncalibrated models. Additionally,
it demonstrates significantly lower degrees of overestima-
tion on recalibrated models compared to other estimators
that also show relatively low underestimation on uncali-
brated models (ECEswggp). By employing a simple strat-
egy to select the value of the critical hyper-parameter k,
ECExnn exhibits promising performance, highlighting its
effectiveness.

In practical medical applications, where the calibration level
of a given model is unknown, it is crucial for a calibration
error estimator to strike a balance between the trade-off of
underestimation and overestimation. Underestimating the
calibration error on uncalibrated models can mislead prac-
titioners with false certainty, potentially leading to adverse
outcomes. Conversely, overestimating the calibration error
on recalibrated models can result in overly conservative
decision-making. Given ECEgnN'’s ability to achieve an op-
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timal balance between underestimation and overestimation
of the CE, it proves to be highly relevant for facilitating
well-informed and reliable decision-making in healthcare
settings.

Future work: In this study, we utilized a simple strategy
to determine the value of k by visually inspecting the con-
fidence distributions and identifying the region with the
highest density. Future work could focus on devising more
effective strategies to optimize the value of k, thereby en-
hancing the performance of ECEgnn. Additionally, it is
important to evaluate ECExnn on a wider range of datasets
with different confidence distributions, as well as for models
recalibrated using methods other than Temperature Scal-
ing. Addressing these limitations would further validate the
usefulness and robustness of our proposed method.
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