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Abstract
001

Despite the impressive capabilities of Large Lan-002

guage Models (LLMs) such as GPT-4, they still003

encounter challenges when it comes to generating004

complex, structured outputs. This study aims to005

assess the current capability of LLMs in generat-006

ing structured data and proposes a novel structure-007

aware fine-tuning approach to enhance their ability008

in this aspect. Here we introduce STRUC-BENCH,009

a benchmark that includes representative LLMs010

(GPT-NeoX-20B, GPT-3.5, GPT-4, and Vicuna),011

encompassing text tables, HTML, and LaTeX for-012

mats. To construct the benchmark, we employ013

FORMATCOT (Chain-of-Thought) to generate for-014

mat instructions from target outputs. Moreover,015

considering the lack of task-specific metrics, we016

introduce two novel metrics: P-Score (Prompting017

Score) and H-Score (Heuristical Score). Experi-018

mental results demonstrate that our structure-aware019

fine-tuning approach, applied to LLaMA-7B, sig-020

nificantly improves adherence to natural language021

constraints, surpassing other evaluated LLMs. Our022

analysis reveals common errors and areas open for023

improvement. Accordingly, we present an ability024

map across six dimensions (coverage, formatting,025

reasoning, comprehension, pragmatics, and halluci-026

nation), suggesting promising directions for future027

research.028

1 Introduction029

Significant advancements have been made in var-030

ious natural language processing tasks by Large031

Language Models (LLMs) (Brown et al., 2020;032

Scao et al., 2022; Ouyang et al., 2022; Muennighoff033

et al., 2022; OpenAI, 2023; Zhao et al., 2023a), es-034

pecially in text generation tasks (Qin et al., 2023).035

The ability to output structured data, one of the key036

aspects of generative capability, has also attracted037

great interest in previous studies (Wu et al., 2022;038

Dataset
Curation

FormatCoT self-instruct with
in-context examples Train LLaMA-7B

Guiding Questions
for Prompting

Input:
###Task: Generate a LaTex table from given text
###Text

Input:
###Task: Generate a LaTex table from given text
and format description
###Text
###Format Instruction

###Data
Demo/examples:...
###Describe the detailed format of a given latex table according
to the commands and tags with more than 500 words

Whether there are table borderlines?
How is text alignment? 
What are table attributes? 
Whether to bold? 
Whether to add \ref? 
Whether there are horizontal and vertical lines bordering each row
and column? 
Say anything about special \" \ \" format token in latex. 

Benchmark and
metrics

Figure 1: A system for describing complex structured
formats and learning to follow this format in human
language. We use zero-shot for inference.

Zhao et al., 2023c,b; Zha et al., 2023). 039

However, LLMs still underperform in generat- 040

ing complex structured outputs – a critical ability 041

for various applications ranging from coding as- 042

sistance to automated report writing. Furthermore, 043

most evaluation of LLMs has been on natural text 044

or code generation, and relatively less research has 045

been conducted to evaluate LLMs on their ability 046

to generate structured output. This leaves it unclear 047

whether LLMs can generate complex structured 048

data effectively. We aim to address the following 049

unanswered questions and deliver an in-depth ex- 050

amination of our research. 051

First, there is a lack of systematic analysis and 052

comprehensive benchmarks of the ability of LLMs 053

to output complex structured data. Previous ef- 054

forts on evaluating LLMs (Qin et al., 2023; Ma 055

et al., 2023) on structured data primarily centered 056

around simple Information Extraction (IE) tasks: 057

recognizing named entities, extracting relations, 058

and detecting events. Here the goal of IE tasks is 059

to gather the extracted data in a highly structured 060

form (Zhong and Chen, 2020). Much earlier work 061

was considerably more task-centric as opposed to 062

LLM-centric. The focus was predominantly on gen- 063

erating structured data from text (text-to-data) tasks 064

with pre-trained models (He et al., 2023; Rossiello 065

et al., 2022; Whitehouse et al., 2023; Pietruszka 066

et al., 2022) like BART (Lewis et al., 2019) and 067
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T5 (Raffel et al., 2020).068

Second, there is a lack of evaluation metrics of069

structured data generation. Existing benchmarks070

often rely on rudimentary objective metrics such071

as word overlap to measure the accuracy of the072

content generated by the model (Li et al., 2023;073

Wu et al., 2022; Pietruszka et al., 2022). This may074

be insufficient for evaluating whether LLMs can075

generate structured output, as an ideal evaluation076

metric ought to also consider the format of gener-077

ated content.078

Third, is there potential for enhancing the per-079

formance of current LLMs to better follow natural080

language inputs and generate outputs with the cor-081

rect format?082

Our contributions are summarized as:083

(1) We introduce STRUC-BENCH, a benchmark084

specifically designed to generate structured data085

in Tables, HTML, and LaTeX formats. (2) We086

evaluate popular LLMs on STRUC-BENCH via two087

proposed metrics to gain a comprehensive under-088

standing of prevailing error types and limitations.089

(3) We propose structure-aware instruction tuning,090

leveraging GPT-3.5 to generate format instructions091

and training the LLaMA model to follow these092

formats. The promising results demonstrate that093

fine-tuning small models can surpass the perfor-094

mance of a large language model in this particular095

task.096

2 Problem Analysis and Benchmark097

2.1 Problem Analysis098

The task of generating complex structured data099

presents a notable challenge that tests the capabili-100

ties of LLMs in producing intricate, format-specific101

outputs. This task moves beyond conventional text102

generation. The complexity lies not only in the103

need to generate accurate and coherent content but104

also in maintaining a strict and specific data struc-105

ture or format. For example, text-to-table is a task106

that aims to convert unstructured textual data into107

structured tabular data, by extracting necessary con-108

tents from text and following the required structure109

or format.110

In our investigation, we have identified a signifi-111

cant limitation of GPT-3.5 and GPT-4 in handling112

complex structured output. Despite being state-of-113

the-art LLMs developed by OpenAI, these models114

both have demonstrated certain limitations in gen-115

erating output in more complex formats, examples116

can be found in Appendix A.117

This shortcoming becomes evident when the 118

model is tasked with producing data that adhere 119

to specific structural formats or templates, such as 120

tables. Here, we select the Rotowire dataset (Wise- 121

man et al., 2017) as an investigation, as shown 122

in Appendix B. We collect human annotation by 123

MTurk (See Appendix C) to examine the error 124

types in 100 example instances. Figure 2 presents 125

the proportions of errors and each error type: EL- 126

EMENT ERRORS, ELEMENT FORMAT ERRORS, 127

STRUCTURE ERROR, STRUCTURE NAMING ER- 128

RORS. 129

We find that only 3% of the output of GPT-3.5 is 130

completely correct, while GPT-4 is only 9%. This 131

observation may be attributed to the inherent design 132

of the GPT family. While the GPT-4 excels at cap- 133

turing the statistical patterns of human language, it 134

does not specifically account for structured outputs 135

that require maintaining a state across a longer span 136

of tokens. 137
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Figure 2: Error analysis by human annotation. Some
error types are explained in Appendix A.

2.2 Benchmark 138

Firstly, we select tables from four prominent data- 139

to-text datasets: Rotowire (Wiseman et al., 2017), 140

E2E (Novikova et al., 2017), WikiTableText (Bao 141

et al., 2018), and WikiBio (Lebret et al., 2016) with 142

dimensions greater than 3x3 to ensure a sufficient 143

level of complexity. Simultaneously, we construct 144

more diverse datasets drawn from broader domains. 145

This includes tables from LATEX and HTML data 146

strategically sourced from GitHub. Every kind of 147

table format introduces its unique intricacies, layers 148

of complexity, and degrees of structuration. 149

Table 1 gives statistics for the Rotowire dataset 150

and our constructed datasets. Then we evaluate 4 151

popular LLMs, including GPT-NeoX-20B (Black 152

et al., 2022), GPT-3.5 (Ouyang et al., 2022), GPT- 153

4 (OpenAI, 2023) and Vicuna-13B (Chiang et al., 154

2023). For LaTex and HTML data without paired 155

text, we harness GPT-3.5 to construct synthetic 156

descriptions to be utilized as input. To guarantee 157

the quality of our benchmark, we sample 50 ta- 158

bles for each format to ensure the correctness of 159

the descriptions. Initially, we achieved a satisfac- 160

tion rate of 76%. However, upon incorporating a 161
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manual interpretation template (e.g. tab names for162

HTML) tailored to each format (Appendix E), our163

satisfaction rate improved significantly, reaching164

96%. For example, HTML tables possess their own165

unique tags and structure, conforming faithfully to166

the syntax rules of HTML language.167

Dataset # Train # Test Format Rows & Columns

Rotowire (Wiseman et al., 2017) 3.4k 728 Raw tex 7.26 & 8.75
Struc-Bench LATEX 5.3k 500 LATEX 2.75 & 4.47
Struc-Bench HTML 5.4k 499 HTML 5.50 & 3.54

Table 1: Struc-Bench data statistics. The number of
Rows & Columns has been averaged.

3 Methodology168

3.1 Data Generation169

As shown in Figure 1, we propose FORMATCOT170

and self-instruct with GPT-3.5 to generate data, in-171

struction pairs. Here the prompt of FORMATCOT172

involves guiding models to accurately extract, in-173

terpret, and employ the core elements present in174

a LaTeX table, inspired by (Wang et al., 2023b)175

in the summarization task. To verify the effective-176

ness of the FormatCOT, we do an ablation study177

in Appendix G. In essence, FORMATCOT analyzes178

a given LaTeX table and generates a comprehen-179

sive description that exceeds 500 words. This de-180

tailed description encompasses all relevant factors181

in defining and formatting a LaTeX table, then used182

as the input.183

3.2 Structure-aware Instruction Tuning184

Here we propose a structure-aware instruction tun-185

ing method to bolster the capability of LLMs in186

generating structured text (Touvron et al., 2023;187

Patil et al., 2023). Our ultimate goal is to enable188

LLaMA to comprehend the task at hand and de-189

liver the output in a conversational mode. The190

entire pipeline can be found in Figure 1.191

3.3 Evaluation Metrics192

Evaluating the similarity of generated tables to the193

ground-truth tables is non-trivial: for instance, the194

same table can be formatted in many different ways195

in HTML or LATEX. Hence, our evaluation metric196

should ideally capture meaningful differences in197

the data presented, while being invariant to insignif-198

icant differences in formatting.199

We propose to break down the similarity of two200

tables into two coarse components: content and201

format. In scoring content similarity, we attempt202

to parse content out the data within the table cells,203

and compute the similarity. This similarity is com- 204

puted between the generated and ground-truth table 205

cells by commonly used similarity metrics. In scor- 206

ing format similarity, we place higher emphasis 207

on components such as the number of columns 208

and rows, cell alignment, and the table caption. 209

Both similarity scores do overlap (e.g. a table with 210

the wrong number of rows/columns would likely 211

score poorly on content), but we find that these two 212

scores allow us to perform more involved analysis 213

on where predicted and ground-truth tables differ. 214

3.3.1 P-Score 215

We take two approaches to score each metric. First, 216

we perform model-based evaluation, querying GPT- 217

3.5 with both tables and having it score the simi- 218

larity of content and format separately. Following 219

Wang et al. (2023a), we prompt the model to per- 220

form Chain-of-Thought (Wei et al., 2023) reason- 221

ing before outputting its scores, and we query the 222

model with the predicted and ground-truth tables in 223

both orders and average the scores. We report these 224

as the P-Score (Prompting Score). The prompt of 225

P-Score can be found in Appendix D. 226

3.3.2 H-Score 227

In addition to model-based evaluation, we also im- 228

plement hand-crafted scoring functions to score the 229

similarity of the tables. Since the tables can be pre- 230

sented in different formats, we implement several 231

heuristics to normalize the tables and to compute 232

their similarity. We use an average of Levenshtein 233

distance and the Ratcliff/Obershelp similarity met- 234

ric to compute the similarities between strings or 235

data structures. These heuristically normalized met- 236

rics are reported as the H-Score (Heuristical Score). 237

The implementation of scoring functions for differ- 238

ent formats can be found in Appendix D. 239

4 Experiments 240

4.1 Basic Settings 241

For metrics, we use SacreBLEU, ROUGE-L, 242

BERTScore, BARTScore, and BLEURT metrics as 243

they are all classical metrics to evaluate text sim- 244

ilarity, as well as two proposed metrics: P-Score 245

and H-score. In our dataset, each item consists of 246

three parts: instruction, input, and output. When 247

generating results, we put each item’s instruction 248

and input together as the final input to models. Dur- 249

ing the inference process, we provide the model 250

with a natural language prompt to describe the form 251

and content of our task, as well as the expected re- 252
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Model SacreBLEU ROUGE-L BERTScore BARTScore BLEURT Content P-Score Format P-Score Content H-Score Format H-Score

Tables from Raw Text
GPT-NeoX-20B 35.24 55.78 68.91 -2.34 33.51 3.86 6.10 0.50 -1.32
GPT-3.5 56.92 70.97 91.35 -1.68 36.85 6.19 8.16 0.52 -1.27
GPT-4 68.13 75.44 94.89 -0.99 55.24 6.88 8.30 0.85 0.53
Vicuna-13B 40.12 50.77 75.21 -2.05 40.02 4.07 6.33 0.55 -1.38
Ours-7B 90.6 88.98 98.54 -0.69 66.07 7.69 8.60 1.65 3.61
w.o.finetune 9.9 36.56 81.63 -2.50 70.24 4.58 6.00 0.51 -1.01

LaTeX
GPT-NeoX-20B 45.92 65.10 76.09 -2.05 40.87 7.23 7.02 0.56 0.72
GPT-3.5 56.94 75.99 86.25 -1.30 42.89 8.22 8.41 0.99 1.27
GPT-4 78.15 85.34 88.07 -1.09 67.11 8.78 8.81 1.10 1.35
Vicuna-13B 50.80 69.48 80.44 -1.07 36.74 7.70 8.10 0.78 1.06
Ours-7B 89.13 88.99 98.55 -0.69 66.07 8.94 9.05 1.14 1.52
w.o.finetune 47.24 70.89 73.27 -2.13 38.13 7.10 6.98 0.51 0.69

HTML
GPT-NeoX-20B 60.36 72.13 86.88 -1.59 30.06 8.42 8.94 0.81 0.92
GPT-3.5 73.80 85.19 96.76 -1.46 34.81 9.11 9.35 1.10 2.15
GPT-4 79.25 85.95 97.22 -1.31 41.59 9.17 9.62 1.15 2.29
Vicuna-13B 58.75 70.37 88.65 -1.58 31.11 8.55 8.88 0.79 0.93
Ours-7B 77.50 86.08 96.25 -1.30 42.89 9.20 9.70 1.18 2.49
w.o.finetune 65.30 78.24 88.12 -1.57 32.78 8.22 8.81 0.92 0.96

Average
GPT-NeoX-20B 47.47 64.33 77.29 -1.99 34.81 6.50 7.35 0.62 0.11
GPT-3.5 62.55 77.38 91.45 -1.48 38.18 7.84 8.64 0.87 0.72
GPT-4 68.11 82.24 93.39 -1.13 54.65 8.28 8.91 1.03 1.39
Vicuna-13B 49.89 63.54 81.43 -1.57 35.96 6.77 7.77 0.71 0.20
Ours-7B 85.74 88.02 97.78 -0.89 58.34 8.61 9.12 1.32 2.54
w.o.finetune 40.81 61.90 81.00 -2.07 47.05 6.63 7.26 0.64 0.21

Table 2: Automated evaluation results on the test set, involving five types of previous metrics and four proposed
ones. w.o.finetune means that we also compared the performance of our model without structure-aware finetuning
as an ablation study. ‘Average’ means calculating each model’s average score. ‘Ours-7B’ means the finetuned
LLaMA.

sponse (e.g., “please generate a table given by the253

following information and format”). Considering254

the inconsistency observed by different metrics, we255

also conducted a human evaluation on 100 exam-256

ples using MTurk. Evaluators rated each example257

on a scale of 10, assessing both format consistency258

and content consistency. Our proposed P-Score and259

Format H-Score have better instance-level Spear-260

man correlation for format accuracy.261

4.2 Results262

Table 2 provides a comparative analysis of differ-263

ent LLMs based on several metrics. For ‘Tables264

from Raw Text’, the Ours-7B outperforms the other265

models in every metric. Interestingly, without fine-266

tuning, the performance drops significantly, partic-267

ularly in SacreBLEU, ROUGE-L, and BERTScore.268

The results for ‘LaTeX’ reveal a similar trend where269

we again achieve the best results across all metrics,270

except for the BLEURT metric, where GPT-4 takes271

the lead. In the ‘HTML’ category, GPT-4 scores272

the highest in SacreBLEU and BERTScore. How-273

ever, these differences are slight and our 7B model274

comes out on top for the rest of the metrics. The275

results demonstrate that our approach exhibits supe-276

rior performance, highlighting the efficacy of fine-277

tuning smaller models in surpassing much larger278

models. 279

Moreover, we delve into an analysis based on 280

our Mturk annotation, attributing observed short- 281

comings to several error types, spanning some key 282

dimensions. And we present an ability map, see 283

details in Appendix F. 284
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Figure 3: Visualization of LLM capability with human
evaluation over STRUC-BENCH.

5 Conclusion 285

In conclusion, this work presents a comprehensive 286

examination of the limitations of LLMs in gener- 287

ating structured data. We propose new evaluation 288

metrics and incorporate diverse data types to de- 289

velop a dedicated benchmark. Our analysis iden- 290

tifies several areas of concern, notably in terms of 291

content accuracy, formatting, numerical reasoning, 292

and the handling of long tables. 293
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6 Limitations294

Although we present a comprehensive analysis, the295

exploration of LLMs in structured text generation296

presented in this paper has several limitations:297

Domain-Specific Benchmark Development298

While we’ve made strides in constructing bench-299

marks for structured text generation, it may be300

beneficial to develop benchmarks that cater to301

specific domains. Different fields might have302

unique structural requirements and understanding303

these nuances can significantly improve the304

models’ applicability across diverse contexts.305

Expand the Range of Datasets There are end-306

less data types and sources that can be explored.307

Incorporating a broader variety of datasets could308

expose the models to an even wider range of struc-309

tural formats, ultimately enhancing their overall310

performance.311

Enhancing Numerical Reasoning Capabilities312

Our study identified inadequate numerical reason-313

ing as one of the challenges faced by LLMs. Inves-314

tigating techniques to bolster numerical reasoning315

in these models could lead to significant improve-316

ments in their performance.317

Developing Advanced Methods While our318

structure-aware instruction tuning method showed319

promising results, more sophisticated techniques320

could be developed. For instance, future work321

could explore ways of incorporating more explicit322

structural information into the model or developing323

methods that allow the model to learn structural324

patterns more effectively.325

Exploring Multimodal LLMs As LLMs con-326

tinue to evolve, there are opportunities to explore327

multimodal models that can process and generate328

both text and other forms of data, such as sound329

or images (Kamigaito et al., 2023), in a structured330

manner.331
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman422
Castagné, Alexandra Sasha Luccioni, François Yvon,423
Matthias Gallé, et al. 2022. Bloom: A 176b-424
parameter open-access multilingual language model.425
arXiv preprint arXiv:2211.05100.426

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier427
Martinet, Marie-Anne Lachaux, Timothée Lacroix,428
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal429
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard430
Grave, and Guillaume Lample. 2023. Llama: Open431
and efficient foundation language models.432

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai433
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.434
2023a. Large language models are not fair evaluators.435

Yiming Wang, Zhuosheng Zhang, and Rui Wang. 2023b.436
Element-aware summarization with large language437
models: Expert-aligned evaluation and chain-of-438
thought method. arXiv preprint arXiv:2305.13412.439

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten440
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and441
Denny Zhou. 2023. Chain-of-thought prompting elic-442
its reasoning in large language models.443

Chenxi Whitehouse, Clara Vania, Alham Fikri Aji,444
Christos Christodoulopoulos, and Andrea Pierleoni.445
2023. Webie: Faithful and robust information extrac-446
tion on the web. arXiv preprint arXiv:2305.14293.447

Sam Wiseman, Stuart M Shieber, and Alexander M 448
Rush. 2017. Challenges in data-to-document genera- 449
tion. arXiv preprint arXiv:1707.08052. 450

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text- 451
to-table: A new way of information extraction. In 452
Proceedings of the 60th Annual Meeting of the As- 453
sociation for Computational Linguistics (Volume 1: 454
Long Papers), pages 2518–2533, Dublin, Ireland. As- 455
sociation for Computational Linguistics. 456

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi 457
Huang, Saisai Yang, Jing Yuan, Changbao Su, Xiang 458
Li, Aofeng Su, et al. 2023. Tablegpt: Towards unify- 459
ing tables, nature language and commands into one 460
gpt. arXiv preprint arXiv:2307.08674. 461

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 462
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 463
Zhang, Junjie Zhang, Zican Dong, et al. 2023a. A 464
survey of large language models. arXiv preprint 465
arXiv:2303.18223. 466

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan, 467
Xiangru Tang, and Arman Cohan. 2023b. Large lan- 468
guage models are effective table-to-text generators, 469
evaluators, and feedback providers. arXiv preprint 470
arXiv:2305.14987. 471

Yilun Zhao, Chen Zhao, Linyong Nan, Zhenting 472
Qi, Wenlin Zhang, Xiangru Tang, Boyu Mi, and 473
Dragomir Radev. 2023c. Robut: A system- 474
atic study of table qa robustness against human- 475
annotated adversarial perturbations. arXiv preprint 476
arXiv:2306.14321. 477

Zexuan Zhong and Danqi Chen. 2020. A frustrat- 478
ingly easy approach for entity and relation extraction. 479
arXiv preprint arXiv:2010.12812. 480

6

http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180


A Analysis with Examples481

A.1 Example Table A482

The main difference between the reference tables483

and the tables generated by GPT-3.5 and GPT4484

is in the completeness and precision of the data485

provided.486

In the reference tables, all relevant data is fully487

represented: For the teams (Table 1), each team has488

a precise number or percentage for every statistic.489

Similarly, for the players (Table 2), each player490

has a definite number for every statistic, including491

minutes played in the format “mm:ss”.492

Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 - - - - - 18 5

Courtney 
Lee

- 5 4 14 9 - 22 -

Mike Conley 11 4 3 14 9 - 24 -

Markieff 
Morris

- - - - - - 20 5

Goran 
Dragic

- - - - - 26 6 -

Eric Bledsoe 4 - - 12 9 - 23 5

Isaiah 
Thomas 2 - - - - - 15 -

Team
Number of 
team assists

Percentage 
of field goals Losses Total points

Points in 3rd 
quarter

Points in 4th 
quarter Rebounds Wins

Suns 13 - 2 91 19 20 35 3

Grizzlies 25 50 - 102 30 26 37 -

Team
Number of team 
assists

Percentage of 
field goals Losses Total points

Points in 3rd 
quarter

Points in 4th 
quarter Rebounds Wins

Suns 13 47.7% 2 91 19 20 35 0

Grizzlies 25 50.0% 0 102 30 26 37 1

Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 0 0 12 8 35:00 18 5

Courtney Lee 1 5 4 14 9 34:00 22 2

Mike Conley 11 4 3 14 9 36:00 24 0

Markieff 
Morris 1 5 2 14 8 34:00 20 5

Goran Dragic 4 2 1 12 9 26:00 6 5

Eric Bledsoe 4 3 1 12 9 34:00 23 5

Isaiah Thomas 2 5 2 11 5 26:00 15 0

Reference

Reference

ChatGPT

GPT4

ChatGPT

GPT4

Table 1: Team 
Summary

Table 2: Player 
Statistics

The Grizzlies (50) used a strong second half to outlast the Suns (3 - 2) 102 - 91 in Phoenix on Wednesday night. Memphis found itself behind six at halftime but outscored Phoenix 30 - 19 in the third quarter and 26 - 20 in the
final period. The Grizzlies shot 50 percent from the field, led by strong performances from Courtney Lee and Mike Conley. Lee scored 22 points (9 - 14 FG, 4 - 5 3Pt), while Conley led all scorers with 24 (9 - 14 FG, 3 - 4 3Pt)
and 11 assists. Marc Gasol added 18 points, six assists, and five rebounds. The Suns, who beat the Lakers 112 - 106 on Tuesday, were paced by 23 points (9 - 12 FG), five rebounds and four assists from Eric Bledsoe. It was a quiet
night for Goran Dragic, who scored just six points in 26 minutes. The third member of the backcourt trio, Isaiah Thomas, had 15 points and two assists off the bench, while Markieff Morris added 20 points and five rebounds.
The Grizzlies out - rebounded Phoenix 37 - 35 and outscored the Suns in the paint 46 - 32. Memphis also registered 25 assists compared to only 13 - on 32 field goals - for the Suns. Memphis now heads to Oklahoma City to take
on the Thunder on Friday. Phoenix, meanwhile, hosts the Kings on Friday.

Team
Number of 
team assists

Percentage of 
field goals Losses Total points

Points in 3rd 
quarter

Points in 4th 
quarter Rebounds Wins

points in the 
paint 

Grizzlies 25 50.0% - 102 30 26 37 50 46

Suns 13 - 2 91 19 20 35 3 32

Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 - - - - - 18 5

Courtney 
Lee

- 5 4 14 9 - 22 -

Mike Conley 11 4 3 14 9 - 24 -

Markieff 
Morris

- - - - - - 20 5

Goran 
Dragic - - - - - 26 6 -

Eric Bledsoe 4 - - 12 9 - 23 5

Isaiah 
Thomas 2 - - - - - 15 -

Figure 4: Using GPT-3.5 and GPT-4 to generate a table
based on the input text, the generated results contain
a large number of errors, including format errors and
content errors.

In contrast, the generated tables show data that493

is incomplete and imprecise. For GPT-3.5 gener-494

ated one, the team statistics table has some statis-495

tics missing, as represented by empty cells, and496

some are not presented as percentages. The player497

statistics table also has missing data in a similar498

fashion, and it lacks the "minutes played" statis-499

tics entirely. For instance, in the ’team’ table, the500

"Percentage of field goals" column for the Suns501

is missing. Similarly, in the ‘player’ table, many502

key statistics such as "3-pointers attempted", "3-503

pointers made", "Field goals attempted", "Field504

goals made", and "Minutes played" are missing for505

various players. Regarding the format, we observe506

a lot of format errors. For example, the ‘Percentage507

of field goals’ column for Grizzlies is represented 508

as "50" instead of "50.0%". Moreover, the ‘Wins’ 509

column for the Suns is represented as "3" instead of 510

"0". This misrepresentation can lead to significant 511

misunderstanding of the data. The ‘Player’ table 512

also has format errors. For instance, the ‘Minutes 513

played’ column is missing the time format (i.e., 514

“00:00”). On the other hand, the reference tables 515

adhere to a standard format. Percentage data is rep- 516

resented with a ‘%’ sign, time data uses the ‘00:00’ 517

format, and numeric data correctly represents each 518

statistic. 519
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Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 - - - - - 18 5

Courtney 
Lee - 5 4 14 9 - 22 -

Mike Conley 11 4 3 14 9 - 24 -

Markieff 
Morris

- - - - - - 20 5

Goran 
Dragic

- - - - - 26 6 -

Eric Bledsoe 4 - - 12 9 - 23 5

Isaiah 
Thomas

2 - - - - - 15 -

Team

Number of 
team 
assists

Percentag
e of field 
goals Losses

Total 
points

Points in 
3rd 
quarter

Points in 
4th 
quarter Rebounds Wins

Suns 13 - 2 91 19 20 35 3

Grizzlies 25 50 - 102 30 26 37 -

Team
Number of 
team assists

Percentage of 
field goals Losses Total points

Points in 3rd 
quarter

Points in 4th 
quarter Rebounds Wins

Suns 13 - 3 91 19 20 35 5

Grizzlies 25 50.0% - 102 30 26 37 7

Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 - - 14 9 32 18 5

Courtney Lee - 4 5 14 9 32 22 -

Mike Conley 11 3 4 14 9 32 24 -

Markieff 
Morris - 2 1 12 6 26 20 5

Goran Dragic - 2 0 12 6 26 6 -

Eric Bledsoe - 1 1 12 9 26 23 5

Isaiah 
Thomas

- 1 0 8 4 18 15 2

Reference

Reference

Vicuna-13B

LLaMA2-7B

Vicuna-13B

LLaMA2-7B

Table 1: Team 
Summary

Table 2: Player 
Statistics

The Grizzlies (50) used a strong second half to outlast the Suns (3 - 2) 102 - 91 in Phoenix on Wednesday night. Memphis found itself behind six at halftime but outscored Phoenix 30 - 19 in the third quarter and 26 - 20 in
the final period. The Grizzlies shot 50 percent from the field, led by strong performances from Courtney Lee and Mike Conley. Lee scored 22 points (9 - 14 FG, 4 - 5 3Pt), while Conley led all scorers with 24 (9 - 14 FG, 3 - 4
3Pt) and 11 assists. Marc Gasol added 18 points, six assists, and five rebounds. The Suns, who beat the Lakers 112 - 106 on Tuesday, were paced by 23 points (9 - 12 FG), five rebounds and four assists from Eric Bledsoe. It was a
quiet night for Goran Dragic, who scored just six points in 26 minutes. The third member of the backcourt trio, Isaiah Thomas, had 15 points and two assists off the bench, while Markieff Morris added 20 points and five
rebounds. The Grizzlies out - rebounded Phoenix 37 - 35 and outscored the Suns in the paint 46 - 32. Memphis also registered 25 assists compared to only 13 - on 32 field goals - for the Suns. Memphis now heads to Oklahoma
City to take on the Thunder on Friday. Phoenix, meanwhile, hosts the Kings on Friday.

Team
Number of 
team assists

Percentage of 
field goals Losses Total points

Points in 3rd 
quarter

Points in 4th 
quarter Rebounds Wins

Suns 13 40.6% 2 91 19 20 35 0

Grizzlies 25 50.0% 1 102 30 26 37 1

Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 3 1 9 4 34 18 5

Courtney Lee 3 5 4 14 9 36 22 3

Mike Conley 11 4 3 14 9 36 24 3

Markieff 
Morris 2 2 0 12 5 31 20 5

Goran Dragic 4 3 1 12 6 26 6 2

Eric Bledsoe 5 2 1 12 7 35 23 4

Isaiah 
Thomas

2 2 1 11 4 23 15 2

Figure 5: Using Vicuna-13B and LLaMA2-7B to gener-
ate a table based on the input text, the generated results
contain a large number of errors, including format errors
and content errors.

For Vicuna-13B results, although it has the cor-520

rect format for both tables, there are still many521

element errors. For instance, the ’team’ table has522

wrong statistics such as “Losses" and “Wins" for523

the Suns. Besides, in the ’player’ table, many524

cells shouldn’t have data. However, they actually525

have, which is obviously a mistake. Some cells526

like Isaiah Thomas’s and Eric Bledsoe’s ’Assists’527

should be 2 and 4, but they are none in Vicuna-13B528

’player’ table. Similarly, LLaMA2-7B results, have529

the same element errors in the ’team’ table and530

worse errors in the ’player’ table. It fills all cells,531

many of which should be none. As for some cells532

that should have data, their data are wrongly filled533

in like Eric Bledsoe’s ’Assists’ and ’Field goals534

made’.535
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A.2 Error Type536

Structure Errors: These errors pertain to the537

structural integrity of the generated tables. Specifi-538

cally, they include instances where there are excess539

or missing rows or columns in comparison to the540

correct table structure. For instance, in figure 6541

GPT4 generated result has missing columns like542

“Wins" and “Losses" in ‘team’ table.543

Structure Naming Errors: This category cap-544

tures errors related to the naming conventions used545

for rows or columns. Any discrepancies in a row546

or column names between the generated and cor-547

rect table are flagged as structure naming errors.548

For instance, in figure 6 GPT4 generated result has549

wrong column names like "Half-Time Score" in the550

’team’ table.551

Element Errors: These are inaccuracies ob-552

served at the element level within the generated553

table. Element errors encompass incorrect num-554

bers, values, or inappropriately empty cells, reflect-555

ing discrepancies in individual table entries relative556

to the correct table. In figure 4 and figure 5, most557

errors are element errors.558

Player Assists
3-pointers 
attempted

3-pointers 
made

Field goals 
attempted

Field goals 
made

Minutes 
played Points

Total 
rebounds

Marc Gasol 6 - - - - - 18 5

Courtney 
Lee - 5 4 14 9 - 22 -

Mike Conley 11 4 3 14 9 - 24 -

Markieff 
Morris - - - - - - 20 5

Goran Dragic - - - - - 26 6 -

Eric Bledsoe 4 - - 12 9 - 23 5

Isaiah 
Thomas 2 - - - - - 15 -

Team
Number of 
team assists

Percentage 
of field 
goals Losses Total points

Points in 
3rd quarter

Points in 
4th quarter Rebounds Wins

Suns 13 - 2 91 19 20 35 3

Grizzlies 25 50 - 102 30 26 37 -

Team
Half-Time 
Score Final Score

Field Goals 
(%) 3Pt (%) Rebounds Assists

Points in 
the Paint

Grizzlies 46 102 50 N/A 37 25 46

Suns 52 91 N/A N/A 35 13 32

Player Team Points Assists Rebounds
Field Goals 
(FG)

Three-Points 
(3Pt)

Courtney Lee Grizzlies 22 N/A N/A 9 - 14 4 - 5

Mike Conley Grizzlies 24 11 N/A 9 - 14 3 - 4

Marc Gasol Grizzlies 18 6 5 N/A N/A

Eric Bledsoe Suns 23 4 5 9 - 12 N/A

Goran Dragic Suns 6 N/A N/A N/A N/A

Isaiah Thomas Suns 15 2 N/A N/A N/A

Markieff 
Morris Suns 20 N/A 5 N/A N/A

Reference

Reference

GPT4

GPT4

Table 1: Team 
Summary

Table 2: Player 
Statistics

The Grizzlies (50) used a strong second half to outlast the Suns (3 - 2) 102 - 91 in Phoenix on Wednesday night. Memphis found itself behind six at halftime but outscored Phoenix 30 - 19 in the third quarter and 26 - 20 in

the final period. The Grizzlies shot 50 percent from the field, led by strong performances from Courtney Lee and Mike Conley. Lee scored 22 points (9 - 14 FG, 4 - 5 3Pt), while Conley led all scorers with 24 (9 - 14 FG, 3 - 4
3Pt) and 11 assists. Marc Gasol added 18 points, six assists, and five rebounds. The Suns, who beat the Lakers 112 - 106 on Tuesday, were paced by 23 points (9 - 12 FG), five rebounds and four assists from Eric Bledsoe. It was a
quiet night for Goran Dragic, who scored just six points in 26 minutes. The third member of the backcourt trio, Isaiah Thomas, had 15 points and two assists off the bench, while Markieff Morris added 20 points and five
rebounds. The Grizzlies out - rebounded Phoenix 37 - 35 and outscored the Suns in the paint 46 - 32. Memphis also registered 25 assists compared to only 13 - on 32 field goals - for the Suns. Memphis now heads to Oklahoma
City to take on the Thunder on Friday. Phoenix, meanwhile, hosts the Kings on Friday.

Figure 6: Using GPT-4 to generate a table based on the
input text without FORMATCOT, the generated results
contain a large number of errors, including format errors
and content errors.
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B Rationale for Selecting the RotoWire559

Dataset560

Traditional data-to-text datasets include Ro-561

towire (Wiseman et al., 2017), E2E (Novikova562

et al., 2017), WikiTableText (Bao et al., 2018),563

and WikiBio (Lebret et al., 2016). Given that only564

the RotoWire dataset contains tables with more565

than 2 columns, we specifically opted to utilize this566

dataset. Furthermore, to maintain a certain level of567

complexity in our study, we filtered out tables with568

dimensions smaller than 3x3 in Rotowire.569

Dataset Train Valid Test # of tokens # of rows # of columns
E2E 42.1k 4.7k 4.7k 24.90 4.58 2.00
WikiTableText 10.0k 1.3k 2.0k 19.59 4.26 2.00
WikiBio 582.7k 72.8k 72.7k 122.30 4.20 2.00

Table 3: Statistics of E2E, WikiTableText, and WikiBio
datasets, including the number of instances in training,
validation, and test sets, number of BPE tokens per
instance, and number of rows per instance.
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C MTurk570

About the qualifications of Amazon Mechanical571

Turk (MTurk) workers, we use the following qual-572

ifications to recruit in total of 10 MTurk workers573

with good track records: HIT approval rate greater574

than or equal to 98%, number of HITs approved575

greater than or equal to 500, and located in one576

of the following English native-speaking countries:577

Australia, Canada, New Zealand, United Kingdom,578

United States. Each annotator is limited to anno-579

tating 10 examples, including both the output of580

GPT-3.5 and GPT-4.581

Annotators workers were compensated $7, cali-582

brated to equal a $42/hour pay rate. We first anno-583

tated examples in-house to determine the required584

annotation speed. A summary block usually takes585

around 10 minutes.586

To demonstrate our annotation template and fa-587

cilitate future research, we show the interface for588

annotations.589

Figure 7: Interface of Mturk.

Figure 8: Interface of Mturk.
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D Scoring590

D.1 P-Score591

Our approach involves prompting the model to en-592

gage in Chain-of-Thought reasoning prior to issu-593

ing its scores. Firstly, we instruct GPT on how to594

evaluate both "content similarity" and "structural595

similarity". Following this, the model is guided on596

the correct procedure to output its answer. In order597

to calculate the scores, the model is queried with598

both the predicted table and the ground truth table599

in varying sequences, after which the scores are600

averaged. We’ll illustrate this process using the P-601

Scores prompt for raw text tables as an illustrative602

example:603

“Based on the above, we wanted to determine604

if the above tables are similar. Ideally, they should605

have identical content and structure. Score the606

"content similarity" and "structural similarity" be-607

tween 0 and 10.608

- Content similarity: 10 if the contents of the609

table cells are identical, 0 if they are entirely differ-610

ent. If about 50% of the cells have the same data,611

the score should be 5.612

- Structural similarity: 10 if the tables have613

the same structure (e.g. same column and rows614

with identical ordering, same alignment, etc.) al-615

though text formatting differences can be ignored616

(e.g. colors, font).617

Output a JSON object such as the following:618

"""json619

{{620

"content_similarity": ...621

"structural_similarity": ...622

}}623

"""624

Think carefully, and then output the scores.”625

D.2 H-Score626

LATEX We use the pylatexenc library to parse a627

given LATEX table, and walk through the parse-tree628

structure in the tabular environment to identify629

the table “cells”. We score the content similarity630

based on strings within the cells, and score struc-631

tural similarity based on having the matching num-632

ber of rows and columns, the same caption, and the633

same cell alignment.634

HTML We use the beautifulsoup4 library to635

parse a given LATEX HTML snippet and walk636

through the parse-tree structure in <table>, <ul>637

or <ol> tags to identify data cells. We separately638

build a tree of white-listed HTML tags to score 639

the structural similarity, traversing an HTML doc- 640

ument tree structure, disregarding the actual con- 641

tent within the tags and simplifying it by focusing 642

only on specific HTML tags (defined in RECOG- 643

NIZED_HTML_TAGS). We score the content sim- 644

ilarity based on strings within the cells and score 645

structural similarity based on the similarity of the 646

structure tree and the total number of cells match- 647

ing. 648

White-listed HTML tags: 649

RECOGNIZED_HTML_TAGS = [ 650
"table", "tr", "th", "td", 651
"ul", "ol", "li", 652
"div", "span", "p", 653
"a", "img", "embed", "pre", 654
"h1", "h2", "h3", "h4", "h5", "h6", 655
"input", "button", 656

] 657

Raw Text Tables In our evaluated dataset, each 658

example consists of two tables (Team and Player). 659

We do a string search for "Team" and "Player" 660

headers to identify the two tables. We then parse 661

the tables according to Markdown formatting, with 662

newlines and pipes as row and column dividers 663

respectively, to identify the table cells. We score 664

the content similarity based on strings within the 665

cells, and score structural similarity based on the 666

similarity of column names and the number of rows 667

and columns matching. 668

String Similarity Measurement: Our script in- 669

cludes methods to calculate the similarity between 670

two strings. These methods can be used to com- 671

pare the structure or content of HTML, latex docu- 672

ments, or any other pair of strings. The similarity 673

is evaluated using well-established algorithms in 674

text analysis: the Levenshtein distance and the Se- 675

quenceMatcher from Python’s difflib module. 676
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E Prompt for Description Generation and677

Inference678

Raw Text Table Description Prompt Tradi-679

tional data-to-text datasets only have raw text for680

each table. However, it is not enough for Chatgpt681

or other LLMs to generate correct tables. As a682

result, we added some format descriptions to help683

them generate the correct tables. We use GPT-3.5684

to achieve this. We want to get detailed format in-685

formation without concrete contents in cells, so we686

explicitly include these requirements in the prompt.687

Here is our prompt: “Describe details about the688

given text. First, give the number of tables, and689

then for each table, describe its format such as the690

number of columns and rows, column names, and691

row names.”692

HTML Table Description Prompt Unlike data-693

to-text datasets, HTML datasets only have final694

outputs, so we are required to generate a detailed695

description of their format and content. For con-696

tent descriptions, we can simply ask GPT-3.5 to697

output raw text without HTML tags. For format698

descriptions, however, we need to ask GPT-3.5 to699

describe each tag, otherwise, it will leave out some700

tags and describe the table in general rather than701

detailed information. Moreover, it is necessary to702

ask it to use specific numbers instead of ‘several’ or703

‘multiple’. Here is our prompt for HTML format704

descriptions: “Describe the format of this HTML705

in detail according to each HTML tag of the follow-706

ing HTML code. Be careful and make sure don’t707

miss any HTML tags. Please use more than 300708

words to explain the format. Use specific numbers709

rather than being vague about several.”710

LaTEX Table Description Prompt Similar to711

HTML prompt generation, it is necessary to ask712

GPT-3.5 to generate both format descriptions and713

content descriptions as latex datasets only have714

final outputs. For content descriptions, we can sim-715

ply ask GPT-3.5 to describe the given latex table716

as detailed as it can and include all cells. For for-717

mat description, since the latex format is too com-718

plex, we need to give it a small example to learn.719

Then we ask GPT-3.5 to describe the detailed for-720

mat of a given latex table, including specific ques-721

tions to help it generate format descriptions. Here722

is our prompt for latex format descriptions: “De-723

scribe the detailed format of a given latex table724

according to the commands and tags with more725

than 500 words. Include: Whether there is table726

border lines? How is text alignment? What are 727

table attributes? Whether to bold? Whether to add 728

\ref? Please clearly explain whether there are hor- 729

izontal and vertical lines bordering each row and 730

column. Say anything about a special "\" format 731

token in latex if there is one. Don’t display latex 732

code directly. Use natural language. And provide 733

enough format information for me to recreate this 734

table based on your output description.” 735

Prompt for Inference When inferencing raw 736

text tables, LLMs tend to output tabular results 737

rather than raw text tables. As a result, we need to 738

give it an example output first, then tell the model 739

that the input consists of two parts, text and format 740

descriptions, and ask the model to generate the out- 741

put based on them. For HTML and Latex inference, 742

we can simply ask models to infer from the input 743

and specify the format and content sections in the 744

input, since models can generate correct syntax. 745
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F Ability Map746

Based on our automated evaluation, we selected Vi-747

cuna, ChatGPT, GPT-4, and Ours as representative748

models and conducted an in-depth analysis of the749

causes of model errors.750

We identified content accuracy, formatting, nu-751

merical reasoning, and handling of long tables as752

the main sources of these errors.753

At the fundamental level, we decompose the pro-754

cess of model-generated complex structured out-755

puts into two parts: Content Selection and Format756

Planning. Initially, the model needs to identify key757

information from a given vast amount of unstruc-758

tured input, extract this information, understand759

it, and organize it. Subsequently, it needs to plan760

how to summarize these extracted details, devise761

the format of the table to be generated, and then fill762

in the information.763

Accordingly, we can break down the model’s ca-764

pabilities into Coverage, Formatting Reasoning,765

Comprehension, Pragmatics, and Hallucination766

Control.767

Coverage entails the model’s ability to accurately768

cover the content in the input. Formatting Reason-769

ing pertains to judgment about the output format,770

assessing if the model can find the most appropriate771

and reasonable structured format.772

Comprehension reflects whether the model can773

understand the content of the input, as there are774

times when it is necessary to infer from a large775

amount of data (including performing addition or776

subtraction or comparing multiple elements).777

Pragmatics involves the ability to utilize special778

formats, such as HTML tags and specific syntax in779

LaTeX.780

Finally, Hallucination Control signifies the781

model’s ability to refrain from generating content782

not present in the input.783

We carried out manual annotations and obtained784

visualized results to demonstrate these aspects.785
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G Ablation Study for FormatCOT786

G.1 Contrast between descriptions787

In this section, we conduct an ablation study to788

examine the impact of our proposed FormatCOT.789

In the generation of table descriptions sans For-790

matCOT, we simply utilize the prompt: "Provide a791

description of the following tables." The primary792

differentiation between results pivots on the extent793

of details incorporated.794

For instance, in the FormatCOT result, the de-795

scription comprises an array of detailed format796

information - encompassing row names, column797

names, and table count. The precision in these798

details proves substantial enough for models to ac-799

curately recreate the tables in question.800

Contrastingly, the outcome bereft of FormatCOT801

conveys considerably less information - providing802

incomplete column names without the accompani-803

ment of row names. This sparse degree of detail804

proves insufficient for models seeking to faithfully805

regenerate the corresponding tables.806

Team Losses Total Points Wins

Suns 38 87 39

Jazz 42 85 34

Player Assists Blocks

3-
Pointers 
Made

Field Goals 
Attempted

Minutes 
Played Points

Total 
Rebounds Steals

Gordon 
Hayward - - - 18 - 21 - -

Rudy 
Gobert

2 1 - - 38 8 15 1

Rodney 
Hood

- - - - - 17 - -

Brandan 
Wright

1 4 - - 33 14 3 3

TJ Warren - - - - - 4 - -

Gerald 
Green

- - 3 - 22 24 - -

FormatCOT
There are two tables. The first table has four columns and three rows. The
column names are "Team", "Losses", "Total points", and "Wins". The row
names are "Suns", "Jazz", and "Player". The second table has nine columns
and six rows. The column names are "Assists", "Blocks", "3-pointers made",
"Field goals attempted", "Minutes played", "Points", "Total rebounds", "Steals",
and "Gerald Green". The row names are "Gordon Hayward", "Rudy Gobert",
"Rodney Hood", "Brandan Wright", "TJ Warren", and "Gerald Green".

Without FormatCOT

The first table lists basketball teams with their number of losses, total points,
and wins. The second table lists basketball players with their number of assists,
blocks, 3-pointers made, field goals attempted, minutes played, points, total
rebounds, and steals. Some cells within the second table are empty, meaning that
data is not available for those specific categories for certain players.

Figure 9: Using FormatCOT and normal instructions
to ask GPT-3.5 to generate table descriptions based on
the input text, FormatCOT results contain more detailed
information about row names.
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G.2 Contrast between results807

In this section, we draw a comparison between808

two sets of description results. The FormatCOT re-809

sult showcases a table that stands remarkably close810

to the correct table, albeit with minor errors. It811

contains an extra row termed "Player" in the ini-812

tial table, a discrepancy potentially attributable to813

the fact that the result comprises two tables, with814

"Player" denoting the header of the subsequent ta-815

ble. We posit that this error could potentially be816

circumvented with a different method of integrating817

table names.818

Furthermore, an additional column surfaces in819

the second table, which in reality represents the820

final row of that table. Besides these minor inaccu-821

racies, the FormatCOT result accurately replicates822

the content in each cell as well as maintaining the823

overall format.824

Conversely, the alternative result contains mul-825

tiple errors that span both content and format. Ini-826

tially, an additional row is present in the first ta-827

ble, introducing an unrelated basketball team that828

bears no relevance to the game under considera-829

tion. Following this, the second table possesses an830

excessive number of player names, encompassing831

unnecessary players along with coaches who did832

not participate in the game.833

Furthermore, its content is not entirely accu-834

rate, with discrepancies present in the statistics at-835

tributed to both Gordon Hayward and Gerald Green.836

These shortcomings underscore the efficiency and837

essentiality of implementing the FormatCOT in838

order to ensure accuracy and precision.839
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Team Losses Total Points Wins

Suns 38 87 39

Jazz 42 85 34

Player

Player Assists Blocks

3-
Pointers 
Made

Field 
Goals 
Attempted

Minutes 
Played Points

Total 
Rebound
s Steals

Gerald 
Greens

Gordon 
Hayward

- - - - - 21 - -

Rudy 
Gobert

2 1 - - 38 8 15 1

Rodney 
Hood

- - 1 - - 17 - -

Brandan 
Wright

1 4 - - 33 14 3 3

TJ Warren - - - - - 4 - -

Gerald 
Green

- - 3 - 22 24 - -

FormatCOT

Team Losses Total Points Wins

Phoenix Suns 38 87 39

Utah Jazz 42 85 34

Oklahoma City 
Thunder

Player Assists Blocks

3-
Pointers 
Made

Field Goals 
Attempted

Minutes 
Played Points

Total 
Rebounds Steals

Rodney 
Hood

- - - - - - - -

Gerald 
Green

- - - - - 24 - -

Brandan 
Wright

1 4 - - 33 14 3 3

Trey Burke - - - - - - - -

T.J. 
Warren

- - - - - 4 - -

Dante 
Exum

- - - - - - - -

Joe Ingles - - - - - - - -

Gordon 
Hayward

2 1 18 21 15 1

Rudy 
Gobert

2 1 38 8 15 1

Without FormatCOT

Figure 10: Using two descriptions to regenerate table
descriptions based on the input text and descriptions,
FormatCOT result is more correct in both format and
content.
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