
Unified Graph Augmentations for Generalized
Contrastive Learning on Graphs

Jiaming Zhuo1, Yintong Lu1, Hui Ning1, Kun Fu1, Bingxin Niu1, Dongxiao He2,
Chuan Wang3, Yuanfang Guo4, Zhen Wang5, Xiaochun Cao6, Liang Yang1∗

1Hebei Province Key Laboratory of Big Data Calculation,
School of Artificial Intelligence, Hebei University of Technology, Tianjin, China

2College of Intelligence and Computing, Tianjin University, Tianjin, China
3School of Computer Science and Technology, Beijing JiaoTong University, Beijing, China

4School of Computer Science and Engineering, Beihang University, Beijing, China
5School of Artificial Intelligence, OPtics and ElectroNics (iOPEN),

School of Cybersecurity, Northwestern Polytechnical University, Xi’an, China
6School of Cyber Science and Technology,

Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
jiaming.zhuo@outlook.com, 202332803037@stu.hebut.edu.cn,

ninghui048@163.com, fukun@hebut.edu.cn, niubingxin666@163.com,
hedongxiao@tju.edu.cn, wangchuan@iie.ac.cn, andyguo@buaa.edu.cn,

w-zhen@nwpu.edu.cn, caoxiaochun@mail.sysu.edu.cn, yangliang@vip.qq.com

Abstract

In real-world scenarios, networks (graphs) and their tasks possess unique character-
istics, requiring the development of a versatile graph augmentation (GA) to meet
the varied demands of network analysis. Unfortunately, most Graph Contrastive
Learning (GCL) frameworks are hampered by the specificity, complexity, and in-
completeness of their GA techniques. Firstly, GAs designed for specific scenarios
may compromise the universality of models if mishandled. Secondly, the process
of identifying and generating optimal augmentations generally involves substantial
computational overhead. Thirdly, the effectiveness of the GCL, even the learnable
ones, is constrained by the finite selection of GAs available. To overcome the above
limitations, this paper introduces a novel unified GA module dubbed UGA after
reinterpreting the mechanism of GAs in GCLs from a message-passing perspective.
Theoretically, this module is capable of unifying any explicit GAs, including node,
edge, attribute, and subgraph augmentations. Based on the proposed UGA, a novel
generalized GCL framework dubbed Graph cOntrastive UnifieD Augmentations
(GOUDA) is proposed. It seamlessly integrates widely adopted contrastive losses
and an introduced independence loss to fulfill the common requirements of consis-
tency and diversity of augmentation across diverse scenarios. Evaluations across
various datasets and tasks demonstrate the generality and efficiency of the proposed
GOUDA over existing state-of-the-art GCLs.

1 Introduction

Owing to their effectiveness and efficiency, Graph Neural Networks (GNNs) have become a standard
toolkit for processing various graph tasks such as node classification and graph classification [17, 34,
41, 40]. They typically follow a message-passing paradigm [10], where the representation of each
node is updated by aggregating the representations of its adjacent nodes and subsequently combining
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the aggregated representations with itself. In general, to produce discriminative representations, GNNs
need to resort to the task-relevant labels (i.e., supervised information) to guide the network training,
which limits their applicability in the label scarcity scenarios [24, 37, 43]. To overcome this limitation,
Graph Contrastive Learning (GCL), a typical graph self-supervised learning architecture, has been
developed to provide training guidance by capturing the self-supervised information contained in the
graph [53, 32, 50, 2, 21, 39, 20].

Inspired by the design philosophy of contrastive learning in Computer Vision (CV) [4, 12], GCLs
adopt the same architecture, which consists of three components: augmentation, encoder, and con-
trastive loss [53, 32]. Thus, GCLs inherit the merit of enabling learning representations invariant to
augmentation, which is achieved by maximizing the agreement between embeddings from different
perturbations of the same graph [51, 52]. To further improve the representation capacity of GCLs,
great endeavors have been made to design augmentations for the original graph, i.e., Graph Augmen-
tations (GAs), which target nodes, edges, attributes, and subgraphs. Based on how information is
processed, GAs can be divided into two categories: heuristic [53, 35, 32, 14] and learnable methods
[47, 31, 21, 56]. The heuristic GAs modify graphs through the combination of fixed, random rules,
such as attribute masking [53], edge removing [32, 2], and graph diffusion [14]. They tend to neglect
the subsequent steps, namely encoding and contrastive optimization, hence leading to suboptimal
performances. In contrast, learnable GAs leverage prior knowledge and feedback during training to
refine augmentations, already surpassing base augmentations on many tasks. Notable contributions
include GAs based on spectral methods [21], and adversarial training [31].

Given their inherent and distinct characteristics, various networks and tasks require the meticulous
selection of optimal GAs to improve model performance pivotally. However, most GCLs face several
limitations regarding the selection: (1) Specificity. GCLs are typically tailored with specific GAs to
meet the needs of particular scenarios, resulting in a lack of generality across diverse scenarios. For
instance, node dropping (specifically, removing nodes and their associated edges), widely applied in
graph-level tasks [47, 48], could significantly compromise the integrity of graphs [36], rendering it
less suitable for node-level tasks. (2) High complexity. Either way, identifying and generating the
scene-specific GAs impose a considerable computational burden on the models. For example, the set
sampling method necessitates a validation of all combinations [45, 38]. Furthermore, the adversarial
attack method [47, 31] entails recalculating contrastive losses, which takes a quadratic complexity
of O(n2). Besides, the spectral method requires Laplacian matrix decomposition [5], which has a
cubic complexity of O(n3). (3) Incompleteness. Despite the promise of existing learnable GAs in
optimizing for specific scenarios, their efficacy is limited by the finite range of GAs at their disposal.

This paper seeks to break these limitations by proposing a unified GA module for GCLs. Toward this
end, the mechanisms of existing GAs in GCLs are systemically investigated and reinterpreted from
a message-passing perspective [10]. The conclusion is that, from the message-passing perspective,
GAs uniformly induce attribute modifications within the neighborhoods of nodes, even though they
appear diverse from the spatial perspective, as depicted in Fig. 1. Therefore, the essence of GCLs is
to learn node representations invariant to such local augmentation. Drawing from this insight, a novel
Unified GA (UGA) module with a simple yet effective design is presented. It strategically interpolates
an appropriate amount of Augmentation-Centric (AC) vectors in a graph-structured manner [55, 8],
where AC vectors are treated as another type of node, as illustrated in Fig. 2. In theory, UGA is able
to simulate the impact of the above four explicit GAs on target nodes by aggregating features from
the AC vectors that capture the attribute variations within the neighborhood of these nodes.

Building upon the proposed UGA module, a generalized GCL framework dubbed Graph cOntrastive
UnifieD Augmentations (GOUDA) is presented to overcome the above challenges in existing GCLs.
This framework adopts a typical dual-channel architecture [4, 49, 53], corresponding to two distinct
augmented graphs (views) with their respective AC matrices, as shown in Fig. 2. To realize general
utility, GOUDA proposes to capture the consistency and diversity across augmentations (defined in
Section 3.3), which are essential and shared goals for GCLs to be applicable across diverse scenarios.
To be specific, the objective function of GOUDA is twofold: (1) maximizing Mutual Information
(MI) between representations from these distinct views. (2) maximizing the distributional difference
between the AC matrices. The former is a fundamental principle behind classic contrastive losses
and inherently ensures consistency, while the latter is a constraint to modulate diversity. In practice,
GOUDA is instantiated by leveraging widely employed contrastive losses alongside a Hilbert-Schmidt
Independence Criterion (HSIC)-based distributional independence loss. This design makes GOUDA
more effective and efficient than GCLs with learnable GAs.
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The main contributions of this work are summarized as follows:

• We investigate the mechanism of GAs in GCLs through the lens of message-passing.

• We propose a lightweight GA module named UGA to simulate the impacts of GAs on nodes.

• We introduce GOUDA, an efficient and generalized GCL framework, which captures both
consistency and diversity across augmentations.

• Extensive experiments and in-depth analysis demonstrate that GOUDA outperforms state-
of-the-art GCLs across various public benchmark datasets and tasks.

2 Preliminaries

This section briefly introduces the notations utilized throughout the paper. Subsequently, it outlines
the essential components of the Graph Contrastive Learning (GCL) framework.

2.1 Notations

Matrices (e.g., Q) are in bold capital letters, vectors (e.g., qi,:, which denotes the i-th row of Q) are
in bold lowercase letters, scalars (e.g., qi,j , which represents the entry of Q at the i-th row and the
j-th column) are in lowercase letters, and sets (e.g., N ) are in calligraphic letters.

For a general-purpose description, this paper considers an undirected attribute graph G(V, E), where V
stands for the node-set containing n node instances {(xv,yv)}v∈V . And X ∈ Rn×f and Y ∈ Rn×c

denote the attribute matrix and label matrix of node v, respectively, where f and c is the numbers
of attirbutes and labels, respectively. Also, E = {ei}m−1

i=0 terms the edge set containing m edges.
In general, the adjacency matrix A ∈ Rn×n is employed to describe the graph topology, such that
the matrix form of the graph can be expressed as G(A,X). Moreover, H ∈ Rn×d terms the graph
representation, where d terms the dimension of the representation.

2.2 Graph Contrastive Learning

Graph Augmentations. Drawing on the successful experience of image augmentation in Computer
Vision (CV) [4, 15], Graph Augmentation (GA) [51] is introduced in graph learning to address the chal-
lenge of data scarcity. In the typical GCL frameworks, the input graph G(A,X) is processed through
two separate perturbations (GA procedures), formulated as ti(G) : G(A,X) → Gi(A(i),X(i)), to
generate its two views (augmented graphs), denoted as G1(A(1),X(1)) and G2(A(2),X(2)). Based
on the perturbed information, GAs can be broadly classified into four main categories: node aug-
mentation [47, 48], edge augmentation [53, 54, 32, 31], attribute augmentation [19, 53, 44], and
subgraph augmentation [47, 13]. An overview of GAs can be found in Section B.

Graph Encoders. For efficient processing and analysis, the graph encoders are leveraged to transform
raw topology and attribute information of the input graph into low-dimensional vector representations.
Most graph encoders in GCLs follow a message-passing paradigm [10], which typically involves two
primary processes: aggregation and combination. During these steps, each node iteratively updates
its representations by aggregating and combining the node features from its neighborhoods, that is

h̊l
v ≜ Aggregationl

(
{hl−1

u |u ∈ Nv}
)
, hl

v ≜ Combinationl
(
hl−1
v , h̊l

v

)
, (1)

where hl
v terms the representations of node v in the l-th layer and Nv denotes the set of neighboring

nodes of node v. In prevalent GCLs like GRACE [53], a two-layer GCN [17] is adopted, where the
Aggregation(·) and Combination(·) functions are implemented via average function. Thus, there is

H = GCN2 (G (A,X)) = σ
(
D̂− 1

2 ÂD̂− 1
2 σ

(
D̂− 1

2 ÂD̂− 1
2XW0

)
W1

)
, (2)

where σ(·) denotes the nonlinear activation functions, such as ReLU(·), and Â = A+ In stands for
the adjacentcy matrix with self-loops, and D̂ is the corresponding degree matrix, and Wl represents
the parameter matrix for the l-th layer. Therefore, for the two augmented graphs, their representations
can be obtained by computing H(1) = GCN2(G1(A(1),X(1))) and H(2) = GCN2(G2(A(2),X(2))).
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(a) Node Augmentation.     (b) Edge Augmentation.     (c) Attribute Augmentation.     (d) Subgraph Augmentation.

Figure 1: Motivation to unify Graph Augmentations (GAs). A two-hop subgraph example, where the
target node is highlighted in red, and the perturbed information is marked in brown. (a) Node augmen-
tation by dropping nodes. (b) Edge augmentation by removing edges. (c) Attribute augmentation by
masking attributes. (d) Subgraph augmentation by cropping subgraphs. Existing GAs, typically seen
as various forms of global augmentations from the spatial perspective, can be uniformly interpreted
as local attribute modifications (i.e., local augmentations) from the message-passing perspective.

Contrastive losses. In line with the InfoMax principle [22], various contrastive losses are incorporated
in GCLs, guiding the training of graph encoders by maximizing the Mutual Information (MI) between
the encoded representations on two augmented graphs. Specifically, given two representations H(1)

and H(2) obtained from a shared encoder gΘ, the general objective of GCL is expressed as

GCL: argmax
Θ

I(H(1);H(2)), where H(1) = gΘ(G1), H(2) = gΘ(G2), (3)

where I(X;Y ) represents the MI between X and Y . In general, the MI can be approximated using a
lower bound estimator, i.e., the InfoNCE loss [33], in the GCLs [53, 20]. This loss can be classified
as a sample-level loss because it operates on the sample dimension of the representation matrix. In
contrast, Barlow Twins loss [49], another widely employed loss, is designed to remove redundancies
among features and hence can be categorized as a feature-level loss. Both losses are used to implement
the proposed framework. Section C provides detailed descriptions of these losses.

3 Methodology

3.1 Motivations

As previously mentioned, Contrastive Learning (CL) seeks to learn image representations invariant to
augmentations by encouraging the agreement between embedding vectors from the different image
distortions. Due to the employment of identical loss functions, typical Graph Contrastive Learning
(GCL) inherits the above representation capabilities from CL. Nonetheless, GCLs should emphasize
the local invariance owing to the application of graph encoders.

The essence of the graph encoder is to explore the locality of graphs. To be specific, graph encoders in
GCLs (generally a 2-layer GCN) follow the message-passing paradigm where node representations are
updated in a local aggregation and combination manner, as detailed in Section 2. Given the localizing
property of the graph encoder, GAs (i.e., node, edge, attribute, and subgraph augmentations), which
are typically viewed as global operations in various forms, can be uniformly reinterpreted as attribute
modifications in the neighborhoods of nodes, namely, local augmentations, as illustrated in Fig. 1.

1) Edge augmentation involves adding and removing perturbed edges in graphs, equivalent to inserting
or masking the attributes of nodes connected by these edges in the neighborhood of impacted nodes.
For example, the shown edge removing results in the complete attribute masking of partial 2-hop
neighbors (nodes 1, 4, 7, and 8) of the target node 0 during message passing. 2) Attribute augmentation
essentially replaces the attributes of perturbed nodes in the graph with new ones, which can be viewed
as perturbing the neighborhoods of nodes that contain these perturbed nodes. The attribute masking
example shows that during the aggregation phase, the attributes of neighbors (nodes 1, 3, 4, 5, 6, 7,
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and 8) on the 2-hop computation graphs of node 0 are masked. 3) Subgraph augmentation is to modify
the specific subsets of the graph (including its edges and attributes), which also can be seen as the
attribute perturbation in the neighborhoods of target nodes. For node 0, the shown subgraph cropping
causes removing nodes 2, 4, 6, and 8 from the 2-hop neighborhood during the message-passing phase.
Note that node augmentation is a specific case of subgraph augmentation, where the subset size is
one. Thus, the above conclusion regarding subgraph augmentation applies to it.

In short, the mechanism of GAs in GCLs is to induce attribute modification in the neighborhoods of
nodes. Thus, the essence of GCLs is to learn representations invariant to such local augmentations.

3.2 Unified Graph Augmentation Module

Motivated by the above insights, a unified graph augmentation module dubbed UGA is introduced
to implement augmentation efficiently and flexibly. The primary idea is to introduce a collection of
Augmentation-Centric (AC) vectors for nodes to simulate and exert the impact of GAs on these nodes,
namely, attribute variations in the neighborhood of these nodes. A straightforward implementation of
UGA is to align AC vectors one-to-one with nodes, match the size of their features, and then perform
feature summation to achieve the desired augmentation.

Given the input graph G, the above implementation can be formulated as

UGA: G∗ = t(G,Q), where t(G,Q) : G(A,X)→ G(A,X+Q), (4)

where G∗ denotes an augmented graph derived from the UGA funtion t(G,Q), and Q ∈ Rn×f terms
the matrix of AC vectors qv ∈ R1×f , i.e., AC matrix, and f is the dimension of node attributes.

Fig. 2(a) provides an illustrative example and explains the equivalence between the proposed UGA
module and an explicit GA (edge removing). From this, it can be concluded that the UGA module can
effectively substitute GAs as long as the combined AC vectors are the representations of cumulative
attribute variations within the neighborhoods of nodes induced by these GAs.

Theorem 3.1. Assuming any augmented graph G∗(A(∗),X(∗)), where A(∗) ∈ A and X(∗) ∈ X, with
A and X represent the candidate spaces for the augmented adjacency matrix and attribute matrix,
respectively, in the proposed implementation of UGA (Eq. 4), there exists an AC matrix Q that meets

gΘ(A,X+Q) = gΘ(A
(∗),X(∗)), (5)

where gΘ stands for the graph encoder.

This theorem suggests that the proposed UGA module can be equivalent to any existing GA (including
node, edge, attribute, and subgraph operations), thereby demonstrating its unifying capability to GAs.
Proofs for this theorem are presented in Section D.1. Furthermore, the UGA module possesses an
attractive characteristic: adaptability, since the AC vectors are capable of dynamically capturing task-
relevant perturbation information throughout the training process. Nonetheless, this implementation
introduces numerous parameters proportional to the network size, resulting in a significant increase in
complexity and the risk of overfitting. To address this limitation, the proposed UGA is reimplemented
in a graph-structured manner, where a modest parameter set is utilized, as shown in Fig. 2(b).

Shared AC vectors. In graphs, long-range dependencies signify the beyond-local interactions among
nodes, represented by similar node attributes and neighborhood patterns [23, 40, 46]. Therefore, it is
reasonable to assume that a group of interdependent nodes would benefit from the same optimal GAs.
Thus, a shared AC matrix Q = [qi,:]

k−1
i=0 is introduced, where k ≪ n.

Propagation mode. AC vectors propagate their features to nodes via a general attention mechanism,
in which structural features (e.g., positional/structure encodings [1, 7]) are employed to calculate the
attention scores. Formally, the proposed UGA module can be reformulated as

x̂v,: = xv,: +

k−1∑
i=0

bv,i × qi,:, bv,i =
exp

(
f([xv,:||ev,:]) · q⊤

i,:

)∑k
t=0 exp

(
f([xv,:||ev,:]) · q⊤

t,:

) , (6)

where bv,i stands for the propagation weight from i-th AC vector to node v within matrix B ∈ Rn×k,
and f([xv||ev]) ∈ R1×f terms an integrated representation of node v, which concatenates the node
attributes xv and structural features ev ∈ Rt. This paper adopts t-steps random-walk encodings [7]
as the structure features. f(·) : Rf+t → Rf denotes a projection layer.
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(a) The proposed GA module UGA.                              (b) The proposed GCL framework GOUDA.
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Shared g!(, )

Figure 2: Illustration of the proposed unified module UGA and generalized framework GOUDA. (a)
An intuitive example of the equivalence between GAs (e.g., edge removing) and the aggregation of
Augmentation-Centric (AC) vectors, which capture the local attribute variations caused by these GAs.
(b) The proposed generalized GCL framework GOUDA. The independence loss, which is directly
computed on AC vectors, is designed to ensure diversity across different augmentations.

Processing. Keeping a subset of the salient connections facilitates propagation and enhances compu-
tational efficiency. Thus, propagation weights below a predefined threshold are zeroed out, namely

bv,i =

{
bv,i, bv,i > ε

0, otherwise,
(7)

where ε terms a threshold value. Then, the obtained weight B is applied in propagation, per Eq.6.

3.3 Generalized Graph Contrastive Learning Framework

Building upon the UGA module, a novel GCL framework named Graph cOntrastive UnifieD Aug-
mentations (GOUDA) is proposed to achieve generality across diverse tasks and graphs. It utilizes
the standard two-channel architecture (in Eq. 3), with each channel generating an augmented graph
through the UGA module and its AC matrix, as depicted in Fig. 2. Unlike traditional GCLs, GOUDA
introduces a term to constrain the two AC matrices (denoted as Q and P).

Specifically, GOUDA optimizes the following objective function:

GOUDA: argmax
Θ

I (gΘ (G1) ; gΘ (G2)) +D (Q,P) , (8)

where I(X;Y ) stands for the Mutual Information (MI) between X and Y , and gΘ denotes a graph
encoder shared between two views (or channels). G1 = t (G,Q) and G2 = t (G,P) represent two
augmented graphs, and D (Q,P) denotes the constraint between Q and P.

Definition 3.2. (Consistency across augmentations). Let H(i) and H(j) denote the representations of
graphs Gi,Gj ∼ Gω , respectively, where j ̸= i, and Gω denotes the family of graphs derived from a
series of parametric graph augmentations. Consistency across augmentations for node v is defined as

Cv = S
(
h(i)
v ,h(j)

v

)
, (9)

where S(X,Y ) terms the distributional similarity between X and Y .

This consistency implies that augmentation should minimally impact the similarity between repre-
sentations from different augmented graphs for the same nodes to preserve the intrinsic semantic
integrity of the nodes. Note that the first term in the objective function of GOUDA, namely the MI
maximization, essentially is a constraint for semantic consistency. Thus, the augmentation learned by
the UGA module is capable of ensuring the desired property.

Definition 3.3. (Diversity across augmentations). Given two augmented graphs Gi(A(i),X(i)) and
Gj(A(j),X(j)) ∼ Gω , where j ̸= i, letN k

v represents the k-hop subgraph centered at node v, and let
D(, ) stands for the measure of distributional difference. Diversity across augmentations is defined as

Dv = D
(
COM(X

(i)

Nk
v
),COM(X

(j)

Nk
v
)
)
, (10)
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where X
(i)

Nk
v
∈ Rnv×f stands for the attribute matrix of nodes in the k-hop subgraph of node v, and

nv is the number of neighbors for node v. COM(·) terms a combination function, such as sum(·).

This definition is based on the conclusion in Section 3.1, namely, the mechanism of GAs in GCLs is
to modify attributes within the node neighborhoods. Accordingly, another objective for augmentation
is the minimization of the local attribute overlap between augmented graphs, ensuring the model does
not overfocus on the specific features of a single distribution.

In the proposed GOUDA framework, local attribute variations for each node are represented by AC
vectors, e.g., qv and pv, with the augmentation being generated by aggregating features from these
vectors. Therefore, the diversity across augmentations can be quantified using two AC matrices (Q
and P) corresponding to two distinct views, which is supported by the following analysis.
Theorem 3.4. LetD(X,Y ) = ∥X−Y ∥2F stands for the distributional difference, and let COM(·) =
sum(·) terms the combination function. In GOUDA (in Eq. 8), the diversity across augmentations (in
Eq. 10) can be approximated by the distributional difference between AC matrices Q and P, that is

Dv = ∥
∑

t∈Nv∪v

(x
(1)
t,: + q̂t,:)−

∑
t∈Nv∪v

(x
(2)
t,: + p̂t,:)∥2F ≈ ∥Q−P∥2F , (11)

where q̂t,: = bq
t,:Q denote the features propagated from AC matrices Q to node t.

Theorem 3.4 shows that the diversity across augmentations can be controlled by imposing constraints
on the AC matrices, particularly through the second term in the objective function of GOUDA. Refer
to Section D.2 for the proofs. In brief, maintaining a balance between consistency and diversity across
augmentations is crucial for the effectiveness of GCLs. Specifically, diversity encourages exploring
and exploiting the local attribute variations while consistency anchors the learned representations to
the original semantics.

3.4 Instantiation of GOUDA

This subsection introduces a practical implementation of the proposed GOUDA framework (Eq.8).
The overview of this framework is depicted in Fig. 2, while the step-by-step procedure is detailed in
Algorithm 1. The objective of GOUDA is to learn the discriminative and robust representations. To
achieve this, it seeks to train the graph encoder gΘ to maximize the Mutual Information (MI) between
representations from two augmented graphs G1 = t(G,Q) and G2 = t(G,P), while simultaneously
maintaining consistency and diversity in the augmentation process.

Estimation of Mutual Information (MI). The first term of GOUDA is implemented utilizing the
sample-level InfoNCE loss (in Eq. 22), which serves as a lower bound estimator for MI, and the
feature-level Barlow Twins loss (in Eq. 24). This term is denoted as contrastive loss Lcontrast. Owing
to limited space, the above losses are introduced in Section C.

Distributional independence loss. A distributional independence loss is introduced to instantiate the
second term of GOUDA. Specifically, the Hilbert-Schmidt Independence Criterion (HSIC) [11] is
adopted to measure the statistical dependence between two augmentation distributions. Furthermore,
the Gram matrices derived from HSIC are constrained to minimize their off-diagonal elements. To be
concrete, the independence loss is formulated as

Lindep = 1/(n− 1)2 trace (KRLR)︸ ︷︷ ︸
HSIC

+β1

∑
i

∑
j ̸=i

ki,j + β2

∑
i

∑
j ̸=i

li,j , (12)

where K and L stand for the Gram matrices of Q and P, respectively, defined by ki,j = κ(qi,:,qj,:)
and li,j = κ(pi,:,pj,:). In practice, the kernel function κ(·) is defined as the linear kernel, specifically
ki,j = qi,:q

T
j,:. Additionally, R = In − 1

n11
⊤ represents the centering matrix, where I ∈ Rn×n and

1n ∈ Rn×1 denote the identity matrix and all-one column vector, respectively. β1 and β2 represent
two hyper-parameters. Minimizing this term serves two purposes: on the one hand, it enhances the
diversity across augmentations by amplifying the differences between two distributions, and on the
other hand, it avoids trivial solutions by increasing the differences among the augmentation elements
(qi,:) within each distribution.

Objective. The overall objective function of GOUDA is a weighted sum of these two terms, that is
L = Lcontrast + γLindep, (13)

where γ denotes a hyperparameter used to trade off two terms.
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Table 1: Comparison of time complexity in the augmentation Phase. n denotes the size of the graph.

Model Time Complexity Description

SPAN [21] O(n2tk) Eigendecomposition-based edge augmentation.
JOAO [47] O(n2d) Min-max optimization-based augmentation.
AD-GCL [31] O(n2d) Adversarial-training-based edge augmentation.

GOUDA (Ours) O(nkf) Consistency-diversity balanced augmentation.

Table 2: Accuracy in percentage (mean±std) over ten trials of node classification across seven graphs.
Best and runner-up models are highlighted in bolded and underlined, respectively.

Model Input Cora CiteSeer PubMed Wiki-CS Photo Computers Physics

GCN A, X, Y 82.32±1.79 72.13±1.17 84.90±0.38 76.89±0.37 92.35±0.25 86.34±0.48 95.65±0.16

GAT A, X, Y 83.34±1.57 72.44±1.42 85.21±0.36 77.42±0.19 92.35±0.25 87.06±0.35 95.47±0.15

DGI A, X 82.60±0.40 71.49±0.14 86.00±0.14 75.73±0.13 91.49±0.25 84.09±0.39 94.51±0.52

GMI A, X 82.51±1.47 71.56±0.56 84.83±0.90 75.06±0.13 90.72±0.33 81.76±0.52 94.10±0.61

MVGRL A, X 83.03±0.27 72.75±0.46 85.63±0.38 77.97±0.18 92.01±0.13 87.09±0.27 95.33±0.03

GRACE A, X 83.30±0.40 71.41±0.38 86.51±0.34 79.16±0.36 92.65±0.32 87.21±0.44 95.26±0.02

GCA A, X 83.90±0.41 72.21±0.24 86.01±0.75 79.35±0.12 92.78±0.17 87.84±0.27 95.68±0.05

BGRL A, X 83.77±0.75 71.99±0.42 84.94±0.17 78.74±0.22 93.24±0.29 88.92±0.33 95.63±0.04

GBT A, X 83.89±0.66 72.57±0.61 85.71±0.32 76.65±0.62 92.63±0.44 88.14±0.33 95.07±0.17

CCA-SSG A, X 84.39±0.68 73.81±0.38 86.21±0.67 78.94±0.17 93.14±0.14 88.74±0.28 95.38±0.06

SPAN A, X 85.09±0.28 73.68±0.53 85.35±0.29 79.01±0.51 92.68±0.31 89.68±0.19 95.12±0.15

DSSL A, X 84.52±0.71 73.93±0.89 85.59±0.28 79.98±0.67 93.08±0.38 89.06±0.49 95.29±0.29

HomoGCL A, X 84.89±0.71 73.78±0.63 86.37±0.49 79.29±0.32 92.92±0.18 88.46±0.20 95.18±0.09

GOUDA-IF A, X 86.11±0.55 74.55±0.97 87.55±0.10 80.61±0.28 93.69±0.32 89.21±0.17 96.09±0.14
GOUDA-BT A, X 85.99±0.31 74.47±1.05 87.59±0.02 80.37±0.30 93.82±0.19 89.55±0.11 96.19±0.21

3.5 Complexity Analysis

This subsection evaluates the complexity of the proposed GOUDA framework in comparison to the
baseline GCLs configured with learnable GAs, including SPAN, JOAO, and AD-GCL. As illustrated
in Tab. 1, GOUDA introduces lighter computational overhead compared to these baselines. For a
detailed description of the complexity, refer to Section E.4.

4 Experiments

This section evaluates the effectiveness and generality of the proposed GOUDA through a compre-
hensive comparison against multiple baselines across tasks at both the node-level (node classification
and node clustering) and the graph-level (graph classification) tasks. Furthermore, it conducts several
additional experiments to deepen the understanding of this framework. For an exhaustive account of
datasets, baselines, configurations, and hyper-parameters, refer to Section E.

Datasets. The experiment utilizes ten benchmark datasets, namely: Cora [28], CiteSeer [28], PubMed
[28], Wiki-CS [25], Photo [29], Computers [29], and Physics [29] for node-level tasks, and IMDB-B
[42], IMDB-M [42], and COLLAB [42] for graph-level tasks. See Section E.1 for dataset descriptions.

Baselines. The baseline models comprise two supervised graph neural networks (GCN [17], GAT
[34]) and eleven self-supervised graph learning models (DGI [35], GMI [26], MVGRL [14], GRACE
[53], GCA [54], BGRL [32], CCA-SSG [50], GBT [2], SPAN [21], DSSL [39], HomoGCL [20]) for
node-level tasks. Four self-supervised learning models are compared (InfoGraph [30], GraphCL [48],
JOAO [47], AD-GCL [31]) for graph-level tasks. Refer to Section E.3 for model introductions.

4.1 Experimental Results

Node Classification. It can be observed from Tab. 2, which exhibits the results of node classifica-
tion tasks, that the proposed GOUDA outperforms the unsupervised baselines in six of the seven
datasets. This demonstrates the superiority of GOUDA. Furthermore, on the CiteSeer dataset, notable
performance improvements are observed with both models, GOUDA-IF and GOUDA-BT, surpassing
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the baselines GRACE and GBT. Specifically, the accuracy of GOUDA-IF surpasses that of GRACE
by 3.14%, and similarly, the accuracy of GOUDA-BT exceeds that of GBT by 1.90%. Note that
the baselines GRACE and GBT adopt identical encoders and contrastive losses as GOUDA-IF and
GOUDA-BT, respectively. Therefore, the observed performance improvement can be attributed to
the adaptive modeling capacity for augmentations of the proposed GOUDA.

Node Clustering. One can draw two conclusions
from the observations in Tab. 3. Firstly, it is evi-
dent that GOUDA consistently surpasses all base-
lines (e.g., GRACE, and GBT) across all datasets,
which illustrates the superior representation capac-
ity of GOUDA. This can be attributed to the self-
adaptive learning ability of the proposed module
UGA. Secondly, GOUDA-IF consistently outper-
forms GOUDA-BT, suggesting that within the pro-
posed GOUDA framework, the InfoNCE loss more
effectively captures local information for cluster-
ing than the BarlowTwins loss.

Table 3: Performances on node clustering: NMI
& ARI Scores in percentage (mean).

Cora CiteSeer PubMed

NMI ARI NMI ARI NMI ARI

DGI 52.75 47.78 40.43 41.84 30.03 29.78
MVGRL 54.21 49.04 43.26 42.73 30.75 30.42
GRACE 54.59 48.31 43.02 42.32 31.11 30.37
GBT 55.32 48.91 44.01 42.61 31.33 30.64
CCA-SSG 56.38 50.62 43.98 42.79 32.06 31.15

GOUDA-IF 57.92 52.41 45.11 43.82 33.17 31.98
GOUDA-BT 57.35 51.84 44.93 43.46 33.14 31.73

Graph Classification. The results of this experiment are presented in Tab. 4 and Fig. 3. Firstly, it can
be observed from Tab. 4 that GOUDA outperforms the baselines regarding classification performance,
which illustrates the general validity of GOUDA. In particular, GOUDA-IF and GOUDA-BT surpass
the second-place MVGRL by 1.02% and 2.6%, respectively, on the IMDB-B dataset, which highlights
the superiority of GOUDA. Moreover, GOUDA exceeds the GCLs employing learnable GAs, i.e.,
JOAO, and AD-GCL. This can be due to the unified ability of UGA to integrate diverse GAs, which
provides GOUDA with broader augmentation options than the baseline. Secondly, as illustrated in Fig.
3, GOUDA achieves superior performance and consumes less time than the baselines. Specifically,
two triangles, indicating the proposed GOUDA, are superior left and above the other shape in the
figure. This implies GOUDA is lightweight, aligning with conclusions in Section 3.5. Besides, UGA
introduces modest memory usage, which promises the scalability of GOUDA.

Table 4: Performances on graph classification:
accuracy in percentage (mean±std).

Model IMDB-B IMDB-M COLLAB

Infograph 73.03±0.87 49.69±0.53 82.00±0.29

GraphCL 71.14±0.44 48.58±0.67 71.36±1.15

JOAO 71.60±0.86 49.20±0.77 70.40±2.21

AD-GCL 71.49±0.90 50.36±0.74 74.89±0.90

MVGRL 74.20±0.70 51.20±0.50 73.10±0.60

GOUDA-IF 75.22±0.94 52.43±0.83 85.70±2.33

GOUDA-BT 76.80±0.98 53.05±0.72 85.15±2.17

(a) IMDB-B                                   (b) IMDB-M

Figure 3: Comparisons in terms of performance,
running time, and GPU memory usage. The marker
size indicates memory usage.

4.2 Additional Experiments

Robustness Analysis. This experiment aims to evaluate the robustness of GOUDA against topology
attacks (adding edges) and attribute attacks (flipping attributes). According to results in Fig. 4 and Fig.
5, several conclusions can be derived. Firstly, compared to the baselines using the same contrastive
losses, GOUDA consistently achieves performance gains at all perturbation rates. It demonstrates the
robustness of GOUDA against both topology and attribute attacks. This is attributed to the greater
adaptability of the UGA module, stemming from its integration of augmentation and contrastive
updating over random GAs. Secondly, attribute attacks cause more severe performance degradation
than topology attacks, even for our proposed GOUDA. This could be because the node attributes,
rich with class-discriminative information, are erased essential identification info during attacks.

Ablation Study. This experiment aims to evaluate the contribution of individual components. To be
specific, it introduces two variants: one without the structure features (in Eq. 6) and another without
the independence loss (in Eq. 13). From Fig. 6, it is observable that the performance declined in both
model variants compared to the complete model, which illustrates that the efficacy of GOUDA stems
from the collective contribution of all components. Besides lacking Independence loss, GOUDA-IF
performs inferior to GOUDA-BT, implying that InfoNCE might drive the model toward excessive
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Figure 4: Topology attack effects on GCLs. Figure 5: Attribute attack effects on GCLs.

consistency, diminishing its discriminative power. This highlights the critical role of independence
loss in preserving diversity across augmentations.

Figure 6: Contribution of individual components. Figure 7: Impact of the number of AC vectors.

Parameter Sensitivity Analysis. These experiments are performed to offer an intuitive understanding
of hyper-parameter selection. Firstly, as depicted in Fig. 7, which illustrates performance variance
for varying k, GOUDA achieves consistently stable performances across {5, 10, 20}. Notably, the
performance variation on these datasets remains minimal, staying within a 2% margin. Thus, GOUDA
has low sensitivity to parameter k. Moreover, this parameter requires no significant value for GOUDA
to perform well; a setting as low as 5 suffices. However, a value of 1 is inadequate due to the absence
of augmentation diversity. The analysis of other hyper-parameters is given in Section E.6.

5 Conclusions

In this paper, we present UGA, a unified Graph Augmentation (GA) module that addresses the
issues in existing GAs, including specificity, complexity, and incompleteness. Motivated by the local
attribute-modifying characteristics of GAs, UGA introduces a moderate number of Augmentation-
Centric (AC) vectors to simulate GA impact on nodes. We further propose GOUDA, a generalized
Graph Contrastive Learning (GCL) framework built on UGA. GOUDA promotes both consistency and
diversity across augmentations by employing a contrastive loss and an independence loss, respectively.
Extensive evaluations demonstrate the generality and efficiency of GOUDA. However, the robustness
analysis suggests a scope for enhancement in its robustness against attribute attacks. Future research
could explore multi-modal learning methods that fuse diverse structural features into node attributes,
aiming to better preserve discriminative information and thus enhance robustness.
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A Algorithm Description

To demonstrate the broad applicability of the proposed framework GOUDA, this paper implements
two models, namely GOUDA-IF and GOUDA-BT. Specifically, GOUDA-IF employs a prevalent
node-level contrastive loss ( i.e., InfoNCE), while GOUDA-BT utilizes a feature-level contrastive
loss (i.e., BarlowTwins). GOUDA-IF is illustrated as an example to describe the entire algorithm, as
presented in Algorithm 1. Accordingly, GOUDA-BT can be described by substituting the contrastive
loss Lcontrast(, ) in line 3 of this algorithm.

Algorithm 1: GOUDA-IF
Input: graph G(A,X), hyperparameters γ, β1, β2 and τ .
Output: node representations H(1) ∈ Rn×d and H(2) ∈ Rn×d.
Initialization: graph encoder gΘ(, ), projection heads g(·), and the matrices of
Augmentation-Centric (AC) vectors Q ∈ Rk×f and P ∈ Rk×f .

while not converged do
% Augmentation %
1. G1 ← t(G,Q) and G2 ← t(G,P) via Eq. 6 and Eq. 7;
% Encoding %
2. H(1) ← gΘ(G1) and H(2) ← gΘ(G2) via Eq. 2;
% Calculating loss %
3. L ← Lcontrast(H

(1),H(2)) + γLindep(Q,P) via Eq. 13;
% Optimizing %
4. Θ← Adam(L,Θ);

end
return H(1) ∈ Rn×d, H(2) ∈ Rn×d and gΘ(, );

B Introduction of Graph Augmenations

Categorized by the type of graph information they manipulate, Graph Augmentations (GAs) can be
broadly divided into four categories: node augmentation, edge augmentation, attribute augmentation,
and subgraph augmentation. The detailed introduction and examples are given below.

Node Augmentation. This augmentation generally creates the new graph by dropping or adding
the perturbated nodes and the edges that connect to these perturbated nodes of the input graph, as
shown in Fig. 1(a). Employing the adjacent matrix to formally represent the graph topology, the edge
augmentation can be denoted by Gn(A(∗),X(∗)). Therefore, these can be formulated as

Node Dropping : A(∗), X(∗) ← {V/V̄, E/Ē}, X/X̄ (14)

Node Adding : A(∗), X(∗) ← {V ∪ V̄, E ∪ Ē}, X||X̄, (15)
where V̄ denotes the perturbated node set, X̄ stands for the attributes of these nodes, and Ē terms the
set of edges connected to these nodes. The operator is widely used on graph classification [48, 47].

Edge Augmentation. Unlike node augmentation, the edge augmentation, denoted by Ge(A(∗),X),
exclusively operate on edges. It involves either removing perturbated edges from or adding perturbated
edges to the input graph, as indicated in Fig. 1(b). These can be expressed as

Edge Removing : A(∗) ← {E/Ē} (16)

Edge Adding : A(∗) ← {E ∪ Ē}, (17)
where Ē represents the set of perturbated edges, which is randomly determined [53, 54, 32, 20] or
adaptively learned [31] during each training epoch.

Attribute Augmentation. Typically, the attribute augmentation (expressed by Ga(A,X(∗))) gener-
ates the new graph by masking (in Fig. 1(c)) or corrupting the raw node attributes. These can be
described as

Attribute Masking : X(∗) = X⊙M (18)

Attribute Corrupting : x
(∗)
v = xv + δv, (19)
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where M ∈ Rn×f stands for the mask matrix and δv terms the noise vector for node v, which is
updated iteratively by adversarial training [19, 44].

Subgraph Augmentation. As typical graph-level operators, the subgraph augmentation crops out
subgraphs (in Fig. 1(d)) or inserts additional subgraphs to create new graphs, as follows

Subgraph Cropping : Gs(A(∗),X(∗))← G ∪ Ḡ(Ā, X̄) (20)

Subgraph Inserting : Gs(A(∗),X(∗))← G/Ḡ(Ā, X̄), (21)

where Ḡ(Ā, X̄) stands for the perturbated subgraph. The subgraph augmentation is mostly used for
graph-level tasks [47, 13].

C Introduction of Graph Contrastive Losses

The contrastive loss serves as a crucial technique that enhances data representation through discrimi-
nation. Generally, it operates on two levels of representation matrices: the sample level [4, 53], where
it aligns the representations of positive samples and uniformly distributes all representations, and the
feature level [49, 2], where it targets reducing redundancy between features.

Sample-level contrastive losses. In the nascent stages of research, the designs of contrastive losses
were inspired by the success of contrastive learning (CL) in computer vision (CV) [4]. To be specific,
this type of contrastive loss aims to minimize the distance between the anchor sample and positive
samples while maximizing the distance between the anchor sample and negative samples [33]. As
a typically sample-level contrastive loss, InfoNCE loss [33] classifies the embeddings of the same
node from different views as positive samples while treating the embeddings from all other nodes as
negative samples. This loss can be formulated as

LInfoNCE =
1

2n

∑
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(
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where Φ(hv,hu) = s (g(hv), g(hu)) stands for the feature similarity function, and g(·) represents
the projection heads [4], and s(·) terms the consine similarity. τ denotes the temperature coefficient.

Feature-level contrastive losses. This type of loss is designed to directly optimize contrastive losses
in the feature space, bypassing the need for defining explicit positive and negative samples, thus
overcoming sample selection challenges. Barlow Twins (BT) [49] and CCA-SSG [50] are two notable
approaches aimed at improving feature representation learning by minimizing redundancy between
feature dimensions. BT enforces the mutual information matrix computed on the features from two
different views to approximate the identity matrix, ensuring that the learned representations are free
from redundant information. This can be formulated as

LBarlowTwins =

f−1∑
i=0

(1−ci,i)+λ

f−1∑
i=0

f−1∑
j=0
j ̸=i

(ci,j)
2, ci,j =

∑
v∈V hv,i × hv,j√∑

v∈V (hv,i)
2 ×

√∑
v∈V(h̃v,j)2

, (24)

where λ denotes a hyperparameter to tradeoff two terms.

CCA-SSG not only pushes the covariance matrices from each view to approach an identity matrix but
also enhances feature consistency across views to learn informative representations of both unique
and shared data characteristics.

D Theoretical analysis

D.1 Proofs for Theorem 3.1

For the sake of clarity, let us briefly describe the whole process. Firstly, the proof proceeds from the
premise of a one-layer graph encoder without activation functions. For node-level tasks, the graph
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encoder gΘ(, ) is configured as a one-layer GCN. For graph-level tasks, gΘ(, ) is set as a one-layer
GIN with a sum pooling sum(·). Subsequently, the obtained conclusions are generalized to the case
of multi-layer encoders.

Specifically, for the one-layer graph encoders, the encoding process for node representations (H) and
graph representations (h) can be expressed as

Node representations: H = GCN(A,X) = Ã ·X ·W (25)
Graph representations: h = sum(GIN(A,X)) = sum ((A+ (1 + ϵ)I) ·X ·W) , (26)

where Ã = D̂− 1
2 ÂD̂− 1

2 denotes the normalized adjacency matrix and ϵ terms an learnable parameter.

In the proposed UGA implementation, both node and graph representations can be decoupled into
two terms: the original representations (represented as H and h), which can be regarded as directly
calculated from Eq. 25 and Eq. 26, respectively, and the augmented representations (denoted as△Hq

and△hq). To be specific, two terms of the node representations can be expressed as

Hq = GCN(A,X+Q)

= Ã · (X+Q) ·W
= Ã ·X ·W + Ã ·Q ·W
= H + △Hq.

(27)

Similarly, two terms of the graph representations can be described as

hq = sum (GIN (A,X+Q))

= sum ((A+ (1 + ϵ)I) · (X+Q) ·W)

= sum ((A+ (1 + ϵ)I) ·X ·W) + sum ((A+ (1 + ϵ)I) ·Q ·W)

= h + △hq.

(28)

Next, to establish Theorem 3.1, Lemma D.1 is introduced.
Lemma D.1. For any GA t(·) applied to the input graph G(A,X), it can be decoupled to a series of
three augmentations: attribute augmentation (ta(X)), edge augmentation (te(A)), and subgraph
augmentation (ts(A,X)) containing node augmentation [8].

Accordingly, the candidate spaces (i.e., A and X) can be created through these three augmentations.
Theorem 3.1 can be proven based on this lemma by establishing the following three propositions.
Proposition D.2. From the message-passing perspective of the graph encoder gΘ(, ), the proposed
implementation of UGA, which is expressed as Eq. 4, can be equivalent to any attribute augmentation
ta(X), that is

gΘ(A,X+Q) = gΘ(A,X(∗)), (29)

where X(∗) = ta(X) stands for the augmented node attirbutes.

Proof. Firstly, let us discuss the equivalence for node representations. To establish Eq. 29, the goal is
to identify Q such that Hq = Ha. Let△X = X−X(∗) denote the variance in attributes resulting
from attribute augmentation, Ha can be decomposed into two terms: the original representations H
and the augmented representations△Ha. This decomposition can be expressed as

Ha = GCN(A,X+△X)

= Ã · (X+△X) ·W
= Ã ·X ·W + Ã · △X ·W
= H+△Ha.

(30)

Therefore, the proof shifts from establishing Hq = Ha to demonstrating ∆Hq = ∆Ha. It becomes
evident that this equivalence holds true under the condition qi,j = ∆xi,j , thus ensuring that ÃQW =

Ã∆XW.

Moreover, this derivation highlights that the conclusion remains consistent regardless of the encoder
chosen. Hence, the solution qi,j = △xi,j holds for the node representations encoded using GIN.
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Besides, the conclusions drawn at the node level, unaffected by the choice of readout functions (e.g.,
mean and sum), are equally applicable to the graph level. This insight extends our solution to graph
representations h, thereby completing the proof.

Proposition D.3. From the message-passing perspective of the graph encoder gΘ(, ), the proposed
implementation of UGA, which is expressed as Eq. 4, can be equivalent to any edge augmentation
te(A), that is

gΘ (A,X+Q) = gΘ

(
A(∗),X

)
, (31)

where A(∗) = te(A) denotes the adjacency matrix obtained from edge augmentation.

Proof. Consistent with the method adopted in the above proofs, the edge-augmented representations
(He and he) are first computed. Next, the equivalence of these representations with UGA counterparts
(Hq and hq), respectively, is demonstrated.

Let △A = A − A(∗) denotes the topology variance caused by edge augmentation, He can be
decoupled into two terms as follows.

He = GCN(A+△A,X)

=
(
Ã+△Ã

)
·X ·W

= Ã ·X ·W +△Ã ·X ·W
= H + △He.

(32)

where△Ã = Ã− Ã(∗) terms the topology variance between the adjacency matrix and its augmented
version, both of which are normalized. Therefore, this demonstration solely necessitates establishing
the equivalence between△Hq and△He, particularly

Ã ·Q ·W = △Ã ·X ·W. (33)

Through the utilization of Cayley-Hamilton theorem [6], which asserts that every matrix adheres to
its own characteristic polynomial, that is

Γ(A) = An + c1A
n−1 + c2A

n−2 + · · ·+ cnI = 0, (34)

where {ci}ni = 1 stands for the set of polynomial coefficients. Thus, the inverse of matrix Ã can be
expressed as

Ã−1 = − 1

cn
Ãn−1 − c1

cn
Ãn−2 − · · · − cn−1

cn
I. (35)

Based on it, the equivalent between the proposed UGA and edge augmentation (denoted as Eq. 33)
can be demonstrated if it holds that

qi,j = [(− 1

cn
Ãn−1 − c1

cn
Ãn−2 − · · · − cn−1

cn
I) · △Ã ·X]i,j . (36)

Furthermore, the solution derived for node representations is directly applicable to graph representa-
tions as well, with the sole modification being the substitution of Ã with A+ (1 + ϵI). In light of
the above analysis, this proposition is proven.

Proposition D.4. From the message-passing perspective of the graph encoder gΘ(, ), the proposed
implementation of UGA, which is expressed as Eq. 4, can be equivalent to any subgraph augmentation
ts(A,X), that is

gΘ(A,X+Q) = gΘ(A
(∗),X(∗)), (37)

where A(∗),X(∗) = ts(A,X) stand for the adjacency matrix and attribute matrix obtained from
subgraph augmentation.

Proof. Note that the subgraph augmentation is typically tailored for graph-level tasks. For node-level
tasks, specific subgraph augmentation (where the number of nodes remains unchanged) can be
regarded as a type of edge or attribute augmentation, such as masking all attributes of nodes in the
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perturbated subgraph. Hence, based on Proposition D.2 and Proposition D.3, it is not hard to conclude
that this proposition holds.

Recall that within our UGA, the graph representation hq ∈ R1×d is articulated as hq = h+△hq.
This can be formulated as

hq = sum (GIN (A,X+Q))

= sum ((A+ (1 + ϵ)I) ·X ·W) + sum ((A+ (1 + ϵ)I) ·Q ·W)

= h + △hq.

(38)

Furthermore, let us assume that the original graph encompasses k subgraphs. The corresponding
subgraph-augmented graph, in turn, encompasses m− 1 subgraphs, which can be formulated as

A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Am−1

 , X =


X0

X1

...
Xm−1

 , (39)

where Ai denotes the adjacency matrix of the i-th subgraph and Xi terms the corresponding attribute
matrix. Thus, for the augmented subgraphs {G(At,Xt)}m−1

i=0 , the graph representation hs can be
formulated as

hs =

m−1∑
t=0

sum((At + (1 + ϵ)I) ·Xt ·W), (40)

Let△h = hs − h denotes the representation variance caused by subgraph augmentation, there is

△h =

m−1∑
t=0

Ωt · sum((At + (1 + ϵ)I) ·Xt ·W), (41)

where Ω denotes an indicator vector. If m− 1 < k, the subgraph augmentation typically refers to the
subgraph corrupting (denoted as Eq. 20). Thus, for the t-th perturbated subgraph, there is Ωt = −1.
And if m− 1 > k, is generally understood as the subgraph inserting (formulated as Eq. 21), Ωt = 1.
Additionally, if the subgraph is not changed, Ωt = 0.

Next, we aim to identify a solution for q that satisfies the following conditions:

△hq = △h, (42)

This can be further formulated as

sum ((A+ (1 + ϵ)I) ·Q ·W) =

m−1∑
t=0

Ωt · sum ((At + (1 + ϵ)I) ·Xt ·W)

= d⊤ ·Q ·W =

m−1∑
t=0

Ωt · sum ((At + (1 + ϵ) I) ·Xt) ·W,

(43)

where d = [d0 + 1 + ϵ, . . . , dn−1 + 1 + ϵ] ∈ Rn stands for a degree vector.

In the general case, assuming the absence of isolated nodes within the graph, the degree vector d of
the input graph is devoid of zero elements. Consequently, a solution for Q can be formulated as

Q = D+H̃, (44)

where H̃ =
∑m−1

t=0 Ωt · sum((At + (1 + ϵ)I) ·Xt) and D+ = 1
dd⊤d denotes the Moore-Penrose

pseudoinverse of d. Thus, equivalence can be established if each element qi,j in AC matrix Q satisfies
the following condition:

qi,j = [D+ ·
m−1∑
t=0

sum ((At + (1 + ϵI)) ·Xt)]i,j . (45)

Therefore, the proof ends.
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Extension to multi-layer graph encoders. Following the discussion on single-layer graph encoders,
solutions for multi-layer graph encoders are identified. Initially, as discussed in [18], various GNNs
can be formulated as

H = S ·X ·W, (46)
where S denotes the diffusion matrix, exemplified by Ã for GCN and A + (1 + ϵ)I for GIN. In
addition, W represents the projection layer, such as the linear projection utilized in both GCN and
GIN. Here, the nonlinear activation function between layers is not considered. With this architecture,
the node representations at the k-th layer can be formulated as

H = glΘ(S,X) = S ·X · W, (47)

where S =
∏l

i=0 S
l terms the product of adjacency matrices. Similarly,W =

∏l
i=0 W

l represents
the product of linear projection matrices. Given that the aforementioned conclusions are independent
of the forms of these two matrices, it is not hard to prove that by substituing A and W with S andW
in Eq. 25 and Eq. 26, respectively, Proposition D.2, D.3, and D.4 still hold true.

D.2 Proofs for Theorem 3.4

Proof. Firstly, note that two augmented graphs are from the same input graph G(A,X) without loss
of the information in this graph (especially the edges and attributes). Therefore, there is A(1) = A(2)

and X(1) = X(2). Accordingly, the diversity can be transformed into

Dv = ∥
∑

t∈Nv∪v

(x
(1)
t,: + q̂t,:)−

∑
t∈Nv∪v

(x
(2)
t,: + p̂t,:)∥2F (48)

= ∥
∑

t∈Nv∪v

q̂t,: −
∑

t∈Nv∪v

p̂t,:∥2F (49)

= ∥
∑

t∈Nv∪v

bq
t,:Q−

∑
t∈Nv∪v

bp
t,:P∥2F . (50)

Given the conditions bq
t,: = σ(x

(1)
t,: Q

⊤) where σ denotes the softmax function, we can calculate that

Dv = ∥
∑

t∈Nv∪v

bq
t,:Q−

∑
t∈Nv∪v

bp
t,:P∥2F (51)

= ∥
∑

t∈Nv∪v

σ(x
(1)
t,: Q

⊤)Q−
∑

t∈Nv∪v

σ(x
(2)
t,: P

⊤)P∥2F (52)

= ∥(
∑

t∈Nv∪v

σ(x
(1)
t,: Q

⊤))Q− (
∑

t∈Nv∪v

σ(x
(2)
t,: P

⊤))P∥2F . (53)

For clarity, xt,: is employed to represent both x
(1)
t,: and x

(2)
t,: . In light of the consistency constraint

within the GOUDA framework, the difference between Q and P is minimal, which can be interpreted
as a minor perturbation ∆, such that Q = P+∆. Therefore, Eq. 53 can be further reformulated as

Dv = ∥(
∑

t∈Nv∪v

xt,:Q
⊤)Q− (

∑
t∈Nv∪v

xt,:P
⊤)P∥2F (54)

= ∥(
∑

t∈Nv∪v

xt,:(P+∆⊤)(P+∆)− (
∑

t∈Nv∪v

xt,:P
⊤)P∥2F . (55)

Given that ∆ is considered to be small, the terms ∆2 and xt,:∆
⊤ can be neglected. Moreover, it can

be assumed that the product of xt,:∆
⊤ with P and ∆ is insignificant in comparison to the other terms.

Hence, the above formulation can be simplified as

Dv ≈ ∥(
∑

t∈Nv∪v

xt,:P
⊤)∆∥2F . (56)

Since
(∑

t∈Nv∪v xt,:P
⊤) is a constant matrix, it can be factored out, resulting in:

Dv ≈ (
∑

t∈Nv∪v

xt,:P
⊤)2∥∆∥2F

= (
∑

t∈Nv∪v

xt,:P
⊤)2∥Q−P∥2F .

(57)
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Hence, taking into account that
(∑

t∈Nv∪v xt,:P
⊤)2 serves as the proportionality constant, which

depends on the values of xt,: and P, we can deduce that

Dv ≈ ∥Q−P∥2F . (58)

Based on the above analysis, we conclude the proof.

E Experimental Details

E.1 Introduction of Datasets

Datasets for node-level tasks.

• Citation networks [28]: Cora, Citeseer, PubMed. Each node in these networks represents a
scholarly article, with edges indicating citation relationships. Nodes are defined by attributes
such as abstracts, keywords, full-text content, and derived features like TF-IDF vectors.
Labels to which nodes belong, typically corresponding to research areas or topics.

• Reference network [25]: Wiki-CS. This network represents a collection of Wikipedia articles
in computer science. Each node corresponds to an article, characterized by its text and
hyperlinks, while the edges depict hyperlinked references between articles. Node labels
denote specific subfields of computer science covered by the articles.

• Co-purchase networks [29]: Amazon Photo (Photo for short), Amazon Computers (Com-
puters for short). Nodes represent products available for purchase, with attributes such as
features, prices, and customer reviews. Node labels correspond to product types or brands,
while edges indicate co-purchase relationships, reflecting the frequency of items commonly
bought together by customers.

• Co-author network [29]: Coauthor Physics (Physics for short). Nodes represent physicists,
each described by their publication record, research interests, and affiliations. Labels indicate
distinct areas or subfields within physics. Edges between nodes stand for collaborations,
typically formed through joint publications or co-authorship of scientific papers.

Datasets for graph-level tasks.

• Collaborative movie networks [42]: IMDB-BINARY (IMDB-B for short) and IMDB-
MULTI (IMDB-M for short). Nodes denote actors or actresses, and an edge exists between
two nodes if the individuals have co-starred in the same film.

• Scholarly collaboration network [42]: COLLAB. Researchers as nodes and edges indicate
partnerships between them.

It is important to mention that node attributes are absent in the three datasets for graph-level tasks,
making one-hot encoding of the degree a typical approach.

We source these datasets from the public repository PyTorch Geometric (PyG) [9]. The datasets can
be accessed through the URLs listed below:

• Cora, CiteSeer, PubMed: https://github.com/kimiyoung/planetoid/raw/master/data.
• Wiki-CS: https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset.
• Photo, Computers: https://github.com/shchur/gnn-benchmark/raw/master/data/npz/.
• Physics: https://github.com/shchur/gnn-benchmark/raw/master/data/npz/.
• IMDB-B, IMDB-M, COLLAB: https://ls11-www.cs.tu-dortmund.de/staff/morris/graph

kerneldatasets.

E.2 Dataset Splitting

For the seven benchmark datasets utilized for node classification tasks (Cora, Citeseer, PubMed, Wiki-
CS, Computers, Photo, and Physics), the dataset is divided into training, validation, and testing sets in
the ratio of 1:1:8. For the three benchmark datasets employed for graph classification tasks, namely
IMDB-B, IMDB-M, and COLLAB, a 10-fold cross-validation approach is adopted to partition.
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Table 5: Statistics of ten graph benchmark datasets.

Node-level tasks Graph-level tasks

Cora CiteSeer PubMed Wiki-CS Computers Photo Physics IMDB-B IMDB-M COLLAB

# Graphs 1 1 1 1 1 1 1 1,000 1,500 5,000
# Nodes 2,708 3,327 19,717 11,701 13,752 7,650 34,493 19.8 13.0 74.5
# Edges 5,429 4,732 44,338 216,123 245,861 119,081 991,848 193.1 66.0 4914.4
# Features 1,433 3,703 500 300 767 745 8,451 - - -
# Classes 7 6 3 10 10 8 5 2 3 3

E.3 Introduction of Baselines

Baselines for node-level tasks. Details on the baselines for node-level tasks are outlined below.

GCN [17]: It is a representative Graph Neural Network (GNN) that utilizes spectral and spatial
strategies to perform graph convolutional operations. It makes each node aggregate information from
its neighbor nodes by integrating the graph topology and node attributes.

GAT [34]: It introduces an attention mechanism into the GNN, enabling each node to weigh the
importance of its neighbor nodes during the aggregation process.

Unsupervised baselines are detailed below.

DGI [35]: An Infomax principle-based GCL augments the graph via row-wise shuffling of the
attribute matrix and maximizes the mutual information between global and local representations.

GMI [26]: It is a variant model of DGI that maximizes a comprehensive graphical mutual information
metric, including features and edges between nodes in both the input and reconstructed output graphs.

MVGRL [14]: It is a variant model of DGI, employing contrastive learning between various structural
views of graphs, including first-order adjacency and graph diffusions.

GRACE [53]: It is a GCL model that generates node embeddings by corrupting both graph structure
(via random edge removing) and attributes (via random attribute masking) to create diverse views
and maximize their agreement.

GCA [54]: It is a variant model of GRACE, which incorporates adaptive augmentation strategies
based on node centrality, aiming to enhance the flexibility of the model.

BGRL [32]: It is a GCL model that augments the graph through random edge removing and employs
bootstrapping to update the parameters of the online encoder.

GBT [2]: A feature-level GCL model leverages the validated Barlow Twins loss for training, aiming
to reduce redundant information between two views obtained through random edge removing.

CCA-SSG [50]: It is a GCL model utilizing feature-level contrast derived from Canonical Correlation
Analysis (CCA) to learn the node representations.

SPAN [21]: It introduces a spectral augmentation scheme for topology augmentation by perturbing
the graph spectrum, and aiming to maintain spectral invariance to sensitive structures, and minimizing
graph spectrum changes.

DSSL [39]: It is a graph self-supervised model that presents an approach that disentangles the varied
neighborhood contexts of a node, aiming to model multifaceted information within the graph.

HomoGCL [20]: It is a localized variant model of GRACE, incorporating k-mean-based saliency
values to weigh the importance of neighbor nodes.

Baselines for graph-level tasks. Introductions of the baselines for graph-level tasks are given below.

InfoGraph [30]: It is a variant of DGI, which maximizes mutual information between graph-level
representations and substructures at different scales, such as nodes, edges, and triangles.

GraphCL [48]: It is a GCL framework that learns graph representations by employing various
augmentation techniques on the local subgraphs of nodes.

JOAO [47]: It is a variant of GraphCL, which utilizes the min-max optimization to automatically
select the most effective GAs during the contrastive learning process.
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AD-GCL [31]: It is a GCL framework based on adversarial training, introducing an attack process to
modify the edges.

For the baseline implementations, we utilize PyG to implement GCN and GAT. In addition, for the
self-supervised baselines, we employ their source codes. The sources are listed below:

• GCN, GAT: https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric
/nn/conv.

• DGI: https://github.com/PetarV-/DGI.
• GMI: https://github.com/zpeng27/GMI.
• MVGRL: https://github.com/kavehhassani/mvgrl.
• GRACE: https://github.com/CRIPAC-DIG/GRACE.
• GCA: https://github.com/CRIPAC-DIG/GCA/.
• BGRL: https://github.com/nerdslab/bgrl.
• GBT: https://github.com/pbielak/graph-barlow-twins.
• CCA-SSG: https://github.com/hengruizhang98/CCA-SSG.
• SPAN: https://github.com/haonan3/spgcl.
• DSSL: https://papers.nips.cc/paper_files/paper/2022/file/040c816286b3844fd78f2124eec

75f2e-Supplemental-Conference.zip.
• HomoGCL: https://github.com/wenzhilics/HomoGCL
• InfoGraph: https://github.com/sunfanyunn/InfoGraph
• GraphCL: https://github.com/Shen-Lab/GraphCL.
• JOAO: https://github.com/Shen-Lab/GraphCL_Automated.
• AD-GCL: https://github.com/susheels/adgcl.

E.4 Complexity Analysis

This subsection analyzes the complexity of GOUDA in comparison with the baseline GCL equipped
with learnable GAs (i.e., SPAN, JOAO, and AD-GCL). Note that since the updates of these GCLs can
utilize the same graph encoder (e.g., GCN) and contrastive loss (e.g., InfoNCE loss), this discussion
focuses solely on the time complexity of the augmentation phase.

To enhance clarity, let us define our terms: n represents the number of nodes corresponding to the
network size; m signifies the number of edges; f refers to the dimension of attributes; and d denotes
the dimension of the hidden layers.

SPAN [21]: The time complexity for augmentations in SPAN is O(n2tk), where t denotes the time
of iterations and k is the number of eigenvalues to be selected. Specifically, SPAN necessitates an
iterative optimization of the augmentation through eigen-decomposition, which demands a O(tn3)
complexity. Nonetheless, this complexity can be reduced to O(n2tk) by employing selective eigen-
decomposition on the k lowest- and highest-eigenvalues via the Lanczos Algorithm.

JOAO [47]: The time complexity for augmentations in JOAO is O(n2d). Specifically, JOAO employs
a min-max optimization strategy to refine the parameters that are used for selecting augmentations
from an option pool. This process involves maximizing the contrastive loss, which inherently requires
a O(n2d) complexity.

AD-GCL [31]: The time complexity for augmentations in AD-GCL is O(n2d). Similarly, AD-GCL
employs a min-max optimization strategy, but its objective is to modify edges. Therefore, this
process also entails maximizing the contrastive loss, which carries a O(n2d) complexity. In addition,
encoding edges is required, which introduces a complexity of O(md2).

GOUDA : The time complexity for augmentations in the proposed GOUDA is O(nkf). GOUDA
introduces k AC vectors to nodes and utilizes the consistency-diversity balance principle to update
these AC vectors, where k ≪ n. Firstly, nodes are updated by aggregating the features of AC vectors,
which incurs a complexity of O(nkf). Besides, GOUDA maintains consistency by minimizing the
contrastive loss, a process inherent to the training model and thus does not introduce additional
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complexity; to ensure diversity, it calculates the independence loss, which brings in a complexity of
O(k2f). Therefore, the overall complexity is O(nkf).

In summary, GOUDA presents a more computationally efficient approach than the baselines, which
is supported by the evidence presented in Section 4.

E.5 Configurations and Hyper-parameters

E.5.1 Configurations

The experiments leverage the linear evaluation method [26], where models are firstly trained in an
unsupervised manner, and then, the obtained embeddings are utilized for downstream tasks. For the
node-level tasks, the graph encoder gΘ is configured as a two-layer GCN [17], while for the graph
classification tasks, it is set as a five-layer GIN [40]. In the evaluation phase, we utilize a single-layer
linear classifier [27] for node classification [26], apply K-means [16] to node embeddings for node
clustering, and train an SVM classifier [3] for graph classification. The results for node-level tasks
are the average of ten random runs, while those for graph-level tasks are based on five runs.

E.5.2 Environment

All experiments are conducted on two Linux machines as shown in Tab. 6.

Table 6: Experimental environment servers.

Server 1 Server 2

OS Linux 5.15.0-82-generic Linux 5.15.0-100-generic

CPU Intel(R) Core(TM) i7-12700K CPU @ 3.6GHz Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz

GPU GeForce RTX 4090 GeForce RTX 3090

E.5.3 Hyper-parameter Settings

GOUDA is implemented as two models: GOUDA-IF, which utilizes InfoNCE loss, and GOUDA-
BT, which employs BarlowTwins loss. For the node-level tasks, both models are trained using an
Adam optimizer with a learning rate of 1e−3 and the weight decay rate from {0, 5e−5, 5e−4}. The
dimensions d of node embeddings are selected from {256, 512, 1024, 2048}, and their impact is
analyzed in Section 4.2. The hyperparameters β1 and β2 of independence loss are chosen from
{1e−4, 1e−3}, while the related hyperparameter γ is selected among {1e−2, 1e−1, 1, 10}. Addition-
ally, for GOUDA-IF, the temperature coefficient τ is selected from {0.2, 0.4, 0.6, 0.8}, while for
GOUDA-BT, the hyperparameter λ is set to 1

d . For the graph-level task, the configuration follows
GraphCL [48], where the hidden dimension is fixed to 128 and the penalty parameter of SVM is
selected from {1e−3, 1e−2, 1e−1, 1, 1e2, 1e3}. The choice of threshold ϵ is given in Section E.6.2.

E.6 Additional Experiment Results

E.6.1 Complete Results for Node Clustering

Tab. 7 presents the comprehensive results of the node clustering experiments. The analysis of these
results can be found in Section 4.

E.6.2 Other Hyperparameter Analysis

Embedding Dimension. This experiment aims to shed light on the selection of hyperparameter d. As
depicted in Fig. 8, the proposed GOUDA shows improved performance with an increased embedding
dimension. Notably, GOUDA-IF and GOUDA-BT exhibit reduced performance at an embedding
dimension of 256 compared to higher dimensions. This indicates that a large embedding dimension is
essential for contrastive learning models to capture robust representations. Moreover, it is observable
that there is a slight decrease in the performance of GOUDA-IF with large dimensions. This can be
due to overfitting to the self-supervised signal, which may hinder its generalization capability.

23



Table 7: Node clustering performance: NMI & ARI Scores in percentage (mean±std).

Cora CiteSeer PubMed
NMI ARI NMI ARI NMI ARI

DGI 52.75±0.94 47.78±0.65 40.43±0.81 41.84±0.62 30.03±0.50 29.78±0.28

MVGRL 54.21±0.25 49.04±0.67 43.26±0.48 42.73±0.93 30.75±0.54 30.42±0.45

GRACE 54.59±0.32 48.31±0.63 43.02±0.43 42.32±0.81 31.11±0.48 30.37±0.51

GBT 55.32±0.65 48.91±0.73 44.01±0.97 42.61±0.63 31.33±0.57 30.64±0.74

CCA-SSG 56.38±0.62 50.62±0.90 43.98±0.94 42.79±0.77 32.06±0.40 31.15±0.85

GOUDA-IF 57.92±0.49 52.41±0.58 45.11±0.79 43.82±0.65 33.17±0.45 31.98±0.46

GOUDA-BT 57.35±0.51 51.84±0.61 44.93±0.85 43.46±0.71 33.14±0.51 31.73±0.52

Figure 8: Impact of dimension d. Figure 9: Impact of hyperparameter γ.

Weight of Independence Loss. Several insights are yielded from observations in Fig. 9. Firstly,
the proposed GOUDA shows stability regardless of parameter γ changes. Secondly, the framework
maintains robust performance even at a low value of 0.01 and 0.1. However, the omission of the
proposed Independence loss does have a detrimental effect, as demonstrated by the Ablation Study
(in Section 4.2). Lastly, while the tested parameter range is {1, 10}, future research should consider
broader or more detailed ranges.

Threshold for sparsification. The performance changes resulting from varying the hyperparameter ϵ
are detailed in Tab. 8. To eliminate bias due to network size, ϵ is not freely tuned. Instead, it is set as
the output of the selection function ϵ = selection(B, s), which estimates this threshold. B denotes
the matrix of propagation weights from AC vectors to nodes, and s stands for the proportion of the
largest elements retained. The value of s is chosen from the set {0.2, 0.4, 0.6, 0.8} in the experiments.
From Tab. 8, it can be observed that the threshold does not significantly affect the model performance.
Specifically, within the range of selection, the variation in model performance does not exceed 2%.

Table 8: Impact of threshold ϵ.

GOUDA-IF GOUDA-BT

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Cora 85.29 84.71 84.19 86.11 85.07 84.56 85.88 85.99
CiteSeer 74.55 73.20 73.11 73.62 74.34 74.47 73.98 73.41
PubMed 86.96 87.25 87.55 87.05 87.59 86.94 86.76 87.11
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the contributions of our paper,
including the motivation and design of the UGA module and the GOUDA framework.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations within the Conclusion, particularly regarding
our model’s robustness to attribute attacks. We have outlined potential directions for future
research to address these concerns.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results are accompanied by clearly stated assumptions and
complete proofs, provided in the main paper and referenced appropriately.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The supplemental material contains a zip file of our model’s code, enabling
the replication of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included complete and executable code within the supplemental
material, ensuring the reproducibility of our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed descriptions of our experimental setup in Section E,
including data splits, hyperparameters, and optimizer, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported error bars representing the standard deviation of our experi-
mental results (e.g., Fig. 6).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the computational resources used for all experiments in
Section E.5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics, and we have ensured that
all aspects of our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the nature of this work, there may be no potential negative social impact
that is easily predictable.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve releasing data or models that pose a high risk for
misuse, so no specific safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have accurately credited the sources and provided URLs in Section E.1
and Section E.3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The supplemental material includes the zip file of our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects,
so this information is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects, so IRB approvals or equivalent
reviews are not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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