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ABSTRACT

Uncovering rationales behind predictions of graph neural networks (GNNs) has
received increasing attention over the years. Existing literature mainly focus on
selecting a subgraph, through combinatorial optimization, to provide faithful ex-
planations. However, the exponential size of candidate subgraphs limits the ap-
plicability of state-of-the-art methods to large-scale GNNs. We enhance on this
through a different approach: by proposing a generative structure – GFlowNets-
based GNN Explainer (GFlowExplainer), we turn the optimization problem into
a step-by-step generative problem. Our GFlowExplainer aims to learn a policy
that generates a distribution of subgraphs for which the probability of a subgraph
is proportional to its’ reward. The proposed approach eliminates the influence of
node sequence and thus does not need any pre-training strategies. We also propose
a new cut vertex matrix to efficiently explore parent states for GFlowNets struc-
ture, thus making our approach applicable in a large-scale setting. We conduct
extensive experiments on both synthetic and real datasets, and both qualitative
and quantitative results show the superiority of our GFlowExplainer.

1 INTRODUCTION

Graph Neural Networks (GNNs) have received widespread attention due to the springing up
of graph-structured data in real-world applications, such as social networks and chemical
molecules Zhang et al. (2020). Various graph related task are widely studied including node classi-
fication Henaff et al. (2015); Liu et al. (2020) and graph classification Zhang et al. (2018). However,
uncovering rationales behind predictions of graph neural networks (GNNs) is relatively less ex-
plored. Recently, some explanation approaches for GNNs have gradually stepped into the public
eye. There are two major branches of them: instance-level explanations and model-level explana-
tions Yuan et al. (2022). In this paper, we mainly focus on instance-level explanations.

Instance-level approaches explain models by identifying the most critical input features for their
predictions. They have four sub-branches: Gradients/Features-based Zhou et al. (2016); Baldassarre
& Azizpour (2019); Pope et al. (2019), Perturbation-based Ying et al. (2019); Luo et al. (2020);
Schlichtkrull et al. (2020); Wang et al. (2020), Decompose-based Baldassarre & Azizpour (2019);
Schnake et al. (2020); Feng et al. (2021) and Surrogate-based Vu & Thai (2020); Huang et al. (2022);
Yuan et al. (2022). Some works such as XGNN Yuan et al. (2020) and RGExplainer Shan et al.
(2021) apply reinforcement learning (RL) to model-level and instance-level explanations. However,
the pioneering works have some drawbacks. Perturbation-based approaches return the discrete edges
for explanations, which are not as intuitive as graph generation-based approach, which could provide
connected graphs. However, the task of searching connected subgraphs is a combinatorial problem,
and the potential candidates increase exponentially, making most current approaches inefficient and
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intractable in large-scale settings. In addition, current research consider Monte-Carlo tree search,
which has high variance and ignores the fact that graph is an unordered set. This could lead to a
loss of sampling efficiency and effectiveness, i.e., the approaches fail to consolidate information of
sampled trajectories that form the same subgraph with different sequences.

To address the above issues, we take advantage of the strong generation property of Generative
Flow Networks (GFlowNets) Bengio et al. (2021b) and cast the combinatorial optimization problem
as a generation problem. Unlike the previous work, which focus on the maximization of mutual
information, our insight is to learn a generative policy that generates a distribution of connected
subgraphs with probabilities proportional to their mutual information. We called this approach
GFlowExplainer, which could overcome the current predicament for the following reasons.
First, it has a stronger exploration ability due to its flow matching condition, helping us to avoid the
trap of suboptimal solutions. Second, in contrast to previous tree search or node sequence modeling,
GFlowExplainer consolidate information from sampled trajectories generating the same subgraph
with different sequences. This critical difference could largely increase the utilization of generated
samples, and hence improve the performance. Moreover, by introducing a cut vertex matrix, GFlow-
Explainer could be applied in large-scale settings and achieve better performance with fewer training
epochs. We summarize the main contributions as follows.

Main Contributions: 1) We propose a new hand-crafted method for GNN explanation via
GFlowNet frameworks to sample from a target distribution with the energy proportional to the
predefined score function; 2) We take advantage of the DAG structure in GFlowNets to connect
the trajectories of outputting the same graph but different node sequences. Therefore, without any
pre-training strategies, we can significantly improve the effectiveness of our GNN explanations; 3)
Considering relatively cumbersome valid parent state explorations in GFlowNets because of the con-
nectivity constraint of the graph, we introduce the concept of cut vertex and propose a more efficient
cut vertex criteria for dynamic graphs, thus speeding up the whole process; 4) We conduct extensive
experiments to show that GFlowExplainer can outperform current state-of-the-art approaches.

2 RELATED WORK

Graph Neural Networks: Graph neural networks (GNNs) are developing rapidly in recent years
and have been adopted to leverage the structure and properties of graphs Scarselli et al. (2008);
Sanchez-Lengeling et al. (2021). Most GNN variants can be summarized with the message passing
scheme, which is composed of pattern extraction and interaction modeling within each layer Gilmer
et al. (2017). These approaches aggregate the information from neighbors with different functions,
such as mean/max/LSTM-pooling in GCN Welling & Kipf (2016), GrpahSAGE Hamilton et al.
(2017), sum-pooling in GIN Xu et al. (2018), attention mechanisms in GAT Velickovic et al. (2017).
SGC Wu et al. (2019) observes that the superior performance of GNNs is mainly due to the neighbor
aggregation rather than feature transformation and nonlinearity, and proposed a simple and fast GNN
model. APPNP Klicpera et al. (2018) shares the similar idea by decoupling feature transformation
and neighbor aggregation.

Generative Flow Networks: Generative flow networks Bengio et al. (2021a;b) aim to train gen-
erative policies that could sample compositional objects x ∈ D by discrete action sequences with
probability proportional to a given reward function. This network could sample trajectories accord-
ing to a distribution proportional to the rewards, and this feature becomes particularly important
when exploration is important. The approach also differs from RL, which aims to maximize the
expected return and only generates a single sequence of actions with the highest reward. GFlowNets
has been applied in molecule generation Bengio et al. (2021a); Jain et al. (2022), discrete probabilis-
tic modeling Zhang et al. (2022), bayesian structure learning Deleu et al. (2022), causal discovery Li
et al. (2022) and continuous control tasks Li et al. (2023).

Instance-level GNN Explanation: Instance-level approaches explain models by identifying the
most critical input features for their predictions. Gradients/Features-based approaches, e.g., Zhou
et al. (2016); Baldassarre & Azizpour (2019); Pope et al. (2019), compute the gradients or map the
features to the input to explain the important terms while the scores sometimes could not reflect
the contributions intuitively. As for the perturbation-based approaches, GNNExplainer Ying et al.
(2019) is the first specific design for explanation of GNNs, which formulates an optimization task
to maximize the mutual information between the GNN predictions and the distribution of poten-
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tial subgraphs. Unfortunately, GNNExplainer and Causal Screening Wang et al. (2020) may lack
a global view of explanations and be stuck at local optima. Even though PGExplainer Luo et al.
(2020) and GraphMask Schlichtkrull et al. (2020) could provide some global insights, they require
a reparameterization trick and could not guarantee that the outputs of the subgraph are connected,
which lacks explanations for the message passing scheme in GNNs. Shapley-value based approaches
SubgraphX Yuan et al. (2021) and GraphSVX Duval & Malliaros (2021) are computationally ex-
pensive especially for exploring different subgraphs with the MCTS algorithm. Decomposed-based
approaches, for example, LRP Baldassarre & Azizpour (2019), GNN-LRP Schnake et al. (2020) and
DEGREE Feng et al. (2021), evaluate the importance of input features by decomposing the model
predictions into several terms , at the price of raising the difficulty of applying the method to com-
plex and structured graph datasets. Surrogate-based approaches PGMExplainer Vu & Thai (2020)
and GraphLime Huang et al. (2022) sample a data set from the neighbors of a given example and
then fit an interpretable model for that data set. However, this approach requires a careful definition
of neighboring areas, making the generalization to other problem settings highly non-trivial. As an
another attempt, XGNN Yuan et al. (2020) and RGExplainer Shan et al. (2021) apply reinforce-
ment learning to model-level and instance-level explanations respectively, while the latter requires
inefficient pre-training strategies and has high variances for sampling.

3 GFLOWEXPLAINER

3.1 PROBLEM FORMULATION

Let G = (V, E) denote a graph on nodes V and edges E with d-dimensional node features X =
{x1, ..., xn}, xi ∈ Rd. The adjacency matrix A describes the edge relationships of G, i.e., Aii = 1

for all i ∈ V and Aij = 1 for all {vi, vj} ∈ E . Â is the symmetrical adjacency matrix computed
by Â = D̃−1/2AD̃−1/2 where D̃ is the diagonal degree matrix of A. Let Φ denote a trained GNN
model, which is optimized on all instances in the training set and is then used for predictions. Given
an instance, i.e. a node v or a graph G, the goal of GNN Explanation is to identify a subgraph
Gs = (Vs, Es) and the associated features Xs = {xj |vj ∈ Gs} that are important for the GNN
prediction Yi = Φ(vi) or Ygi = Φ(Gi) where gi is a graph instance. The previous works formulate
this task as an optimization problem and the objective is to maximize the mutual information

max
Gs

MI(Y,Gs) = H(Y )−H(Y |Gs) ⇐⇒ min
Gs

H(Y |Gs), (1)

where MI(·) is the mutual information function, H(·) is the entropy function, ŷ is the prediction of
Φ with Gs as the input and H(Y |Gs) = −EY |Gs

[logPΦ(Y |Gs)]. Since H(Y ) is fixed in the expla-
nation state, the objective can be rewritten as minGs

H(Y |Gs), which is to minimize the uncertainty
of Φ when the GNN computation is limited to Gs.

From the graph generation perspective, since there are exponential candidates for explaining for ŷ, it
is not trivial to direct solve such combinatorial optimization problem. Thus we turn this optimization
problem into a step-by-step generative problem (see Figure 1). We propose our generative structure
as GFlowNets-based GNN Explainer, abbreviated as GFlowExplainer, which consists of a tuple
(S,A) where S is a finite set of states, and A is the action set consisting transitions at : st → st+1.
The insight comes from that we could consider Gs as a compositional object. Starting from an empty
graph, we can train our policy network to generate such Gs by sequentially adding one neighbor
node at each step t to ensure the connectivity of an explanation graph, in which Gs(st) refers to a
subgraph at state st, and adding one node refers to an action at making a state transition st → st+1.
Different from traditional optimization problems maxmizing the mutual information our objective
is to construct a TD-like flow matching condition, to obtain a generative forward policy π(at|st) so
that P(Y,Gs) ∝ r(Y,Gs), where r(Y,Gs) is a predefined reward function based on MI(Y,Gs).

The rest of the section is organised as follows: we first introduce the flow modeling of GFlowNets
in Section 3.2. The crucial elements of GFlowExplainer structure are defined in Sections 3.3 and
3.4. We propose a new framework to address the connectivity problem for an effective exploration
of parent states in GFlowExplainer in 3.5.
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Figure 1: Structure of GFlowExplainer: Sampling from a starting node v0 (pink), for each state
st, the combined features of subgraph (pink and black) and neighbor nodes (orange) are fed into
the policy network to sample an allowed action at : {v2}+ ∼ π(a | st) and obtain st+1. Then cut
vertices are updated based on st+1 to find valid parents set Sp for calculating inflows F (Sp → st+1).
Either outflows F (st+1 → Sc) or reward r(sf ) is calculated based on the stopping criteria.

3.2 FLOW MODELING

Flows and Probability Measures: Following Bengio et al. (2021b), Consider a direct acyclic graph
(DAG) G = (S,A), where S is a finite set of states and A is a subset of S ×S representing directed
edges, and each element of A corresponds to the state transition at : st → st+1. The complete
trajectory is a sequence of states τ = (s0, ..., sn, sf ) ∈ T where s0 is an initial state, sf is a
terminal state and T is a set containing all complete trajectories. In order to measure the proba-
bilities associated with states s, a non-negative function F (·) corresponding “flow” is introduced.
F (st, at) = F (st → st+1) corresponds to an edge flow or action flow. F (τ) corresponds to the
trajectory flow and the state flow is the sum of all trajectory flows passing though that state, denoted
as F (s) =

∑
s∈τ F (τ). If we fix the total flow of the DAG as Z flowing into terminal states sf to

the given value r(sf ), and consider the DAG as a water pipe, in which water enters in s0 and flows
out through all sf , we can obtain Z = F (s0) =

∑
F (sf ) =

∑
r(sf ).

Based on this flow network, the stochastic policy π associated with the normalized flow probability
P is defined as follows,

π(at | st) = PF (st+1 | st) = P(st → st+1 | st) =
F (st → st+1)

F (st)
, (2)

where PF (st+1 | st) is called the forward transition probability. Then we can obtain PF (τ) =∏t=f−1
t=0 PF (st+1 | st), which yields

PF (s) =
∑
τ :s∈τ

PF (τ) =

∑
τ∈T Is∈τF (τ)∑

τ∈T F (τ)
=

F (s)

Z
. (3)

Our goal is to obtain PF (sf ) =
∑

τ :sf∈τ PF (τ) ∝ r(sf ).

State-Conditional Flow Network Following Bengio et al. (2021b), consider a flow network based
on a DAG G = (S,A) and a non-negative flow function F (·). For each state s ∈ S, the subgraph Gs

consists of all s′ such that s′ ≥ s, where ≥ follows the partial order. Then the state-conditional flow
network is based on the family {Gs, s ∈ S} with a conditional flow function F : S × T → R+, in
which T = ∪s∈STs and Ts is the set of trajectories in Gs containing all {τ = (s, ..., sf )} such that
∀sn, sm ∈ τ

Fs(sn → sm) = F (sn → sm). (4)

Based on this definition, we have the initial flow of the state-conditional flow network refers to
marginalize the terminating flows F (s′ → sf ), i.e., for any terminating state s′ ≥ s we have Bengio
et al. (2021b)

Fs(s0 | s) := Fs(s) =
∑

s′:s′≥s

F (s′ → sf ). (5)
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Then, we can obtain the corresponding probability measures as the following

Ps(s
′ | s) = Fs(s

′ → sf )

Fs(s)
, ∀s′ ≥ s. (6)

The flow F (s) through state s in the original flow network could not provide the marginalization over
the downstream terminating flows, we thus introduce this state-conditional flow network satisfying
the desired marginalization property. In our task, considering the message passing scheme, we
set to start sampling the trajectory based on a chosen starting node v0, thus the transition from an
empty graph to that node v0 is ignored here. We can consider that each trajectory is sampled from
the subgraph family {Gs0}, where s0 = v0. Then similar to the way to estimate the flow of a flow
network using GFlowNet, based on the conditional state flow network, we could still train a policy to
obtain Ps0(sf ) ∝ r(sf ). Based on equation 4, we can omit this subscript in the following sections.

3.3 STATES AND ACTIONS

In this subsection, we give the following definitions on states and actions, and also node neighbours
and graph neighbors for following valid action set A and valid parent states in Section 3.5.

Definition 1 (State) A state st ∈ S in GFlowExplainer refers to a subgragh Gs(st) consists of
several nodes. The initial state s0 contains a starting point v0 and a final state sf is a subgraph
attaining the stop criteria.

Since we need to guarantee the connectivity of the generated subgraph Gs, for every step we can
only select an node from the boundary of the current subgraph Gs(st).

Definition 2 (Neighbours) There are two types of neighbors: node neighbors and graph neighbors.
∀vi, vj ∈ Gs, if {vi, vj} ∈ E , then we define vi as a neighbor of node vj , denoted as vi ∈ N (vj),
and vice versa; ∀vi ̸∈ Gs, if ∃vj ∈ Gs, such that {vi, vj} ∈ E , then we define vi as a neighbor of
graph Gs(st), denoted as vi ∈ N (st).

Simply to say, graph neighbours contain boundary nodes that have yet been selected into the sub-
graph. Node neighbours represent the connect relationships of each pair of nodes in the subgraph.

Definition 3 (Action) An action at : st → st+1 ∈ A in GFlowExplainer is to add a node from
N (st), denoted as at : {vi}+ ∼ N (st). Thus making a state transition st+1 = st ∪ {vi}.

Since we need to combine the features of all nodes in N (st) and Gs(st) as the input to calculate
the action distribution, for each node vi ∈ N (st) ∪Gs(st), we concatenate two indicator functions
with its original feature vector xi, to distinguish the initial node v0 and all nodes in the subgraph
Gs(st). The insights behind are: 1) for the node classification task, the generated same subgraph
should have different scores for the specific node to be explained; 2) the allowed action is to select a
node in N (st) instead of Gs(st), which will introduce cycles for our DAG structure. Therefore, the
initial feature representation X ′

t is obtained by follows,

x′
i = [xi,1vi=v0 ,1{vi∈Gs(st)}], X ′

t = [x′
i]∀vi∈Gs(st)∪N (st). (7)

Considering the associations among nodes in graph structured data, for each node vi, it is crucial
to combine information from its neighbours. To achieve this, we apply APPNP, a GNN method
proposed by Klicpera et al. (2018), which separates the non-linear transformation and information
propagation. We have the following update equation,

H
(0)
t = Θ1X

′
t, H

(l+1)
t = (1− α)ÂH

(l)
t + αH

(0)
t , (8)

where Θ1 is the trainable weight matrix, α is a hyper-parameter used to control weight. After L−
layer updates, we obtain the node representations HL

t , and then feed them into a MLP to improve
the representation ability:

H̄t(vi) = MLP(HL
t (vi); Θ2), vi ∈ Gs(st) ∪N (st), (9)

where Θ2 is the learnable parameters in the MLP.
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3.4 REWARD, STARTING NODE AND STOP CRITERIA

Similarly to Luo et al. (2020), we use the cross-entropy function to replace the conditional entropy
function H(Y | sf ) with N given instances, and define the reward function as follows:

r(sf , Y ) = exp(−L(sf , Y )) = exp(− 1

N

N∑
n=1

C∑
c=1

P (Y = c) logP (ŷ = c)), (10)

where L is the prediction loss; sf is the generated explanatory subgraph for an instance; C is the
number possible predicted labels; P (ŷ = c) is the probability that the original prediction of the
trained GNN Φ is c; and P (Y = c) is the probability that the label prediction of Φ on the subgraph
sf is c. We use the exponential term here is to avoid negative reward.

For node classification tasks, the starting node is the node instance to be interpreted. In contrast,
for graph classification tasks, any node could be the potential starting node and the choice of it
determines the explanation performance. Therefore, we construct a locator L to identify the most
influential node in the graph similarly to Shan et al. (2021). Given N graph instances gn, the
prediction loss of the classification can be rewritten with the locator L as ŷ = Φ(π(sf |L(gn))). We
train a three-layer MLP to model the influence of a node vi,n on the label of the graph instance gn:

ωi,n = MLP([zgn , zvi,n ]), (11)

where zgn and zvi,n are respectively the feature representations of the graph gn and the node vi,n
after 3-GCN layers based on the trained model Φ(·). We train this neural network based on some
sampling graph instances with the Kullback-Leibler divergence loss

KLDivLoss(ωi,n,−L(π(sf | vi,n), Ygn)),

so that the distribution between estimated value ωi,n is closed to −L(π(sf | vi,n), Ygn) asymptoti-
cally, and the softmax layers are used to transform these two values into their distributions.

To obtain a compact explanation and avoid generating large subgraphs, we impose a constraint
|sf | ≤ KM so that sf has at most KM nodes. We also introduce a self-attention mechanism
similarly to Shan et al. (2021), which could aggregate the feature representations:

γt(vi) =
exp(θT1 H̄t(vi))∑

vj∈N (st)
exp(θT1 H̄t(vj))

, vi ∈ N (st), (12)

H̄t(STOP) =
∑

vi∈Gs(st)∪N (st)
γt(vi)H̄t(vi), (13)

where the parameter θ1 learns the attention γt(vi) for each node vi. We can concatenate H̄t(STOP)
into feature representations in equation 9. We should note that all learnable parameters above are
the components in our policy network.

3.5 EFFICIENT PARENT STATE EXPLORATIONS

Flow matching condition is a crucial element in flow modeling. For current state st, we need to
explore all its direct parent states and corresponding one-step actions, i.e. s, a : T (s, a) = st, which
refers all sets (s, a) that could attain st. However, the connectivity constraint makes exploring valid
parents non-trivial since we need to guarantee that the graph is always connected. We consider this
task a cut vertex exploration problem, which aims to find all vertices that will break the connectivity
of a graph for each st. If a node is a cut vertex, we can not find a valid parent state by deleting it.
By taking advantage of the step-by-step generative process, we can update and store the cut vertex
without repeatedly checking. Based on Definitions 4 and 5, in the following Theorem 1 we show
how to update cut vertices for each step, which is proved in Appendix A.2.

Definition 4 (Cut vertex matrix) A cut vertex matrix of a state st is a dynamic matrix Z ∈ Rt×t,
where Zi,i = 0 and if ∃Zi,j(st) ̸= 0, then we say vi is a cut vertex at st.

Definition 5 (Connectivity vector) Suppose an action at = {vj}+, a connectivity vector of state st
is a binary vector z ∈ {0, 1}t×1, ∀vi ∈ Gs(st), zi(st) = 1 if {vi, vj} ∈ E .
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Lemma 1 Suppose an action at = {vj}+, vi ∈ Gs(st). If vi is not a cut vertex at st, vi becomes a
cut vertex from st+1 iff |N (at)| = 1 and {vi, vj} ∈ E , where t > 1. If vi is a cut vertex at st, vi is
not a cut vertex from st+1 iff |N (at)| > 1 and at connects to all “child groups” of the vi.

Theorem 1 Staring from Z(st) = [0]2×2, for any action at = {vj}+ ∈ A, t ≥ 2, the connectivity
vector of state st is constructed by

zk(at) = Aj,k,∀vk ∈ Gs(st), (14)

then we update cut vertex matrix Z(st+1) by

Z(st+1) =

[
Z ′(st) z′(at)

0 0

]
, (15)

where Z ′(st), z′(st) are constructed based on the following equations:
1. If |N (at)| = 1, vk ∈ Gs(st), {vk, vj} ∈ E : ∀vm ∈ Gs(st){

Z ′(st) = (1− It×t) ∧ {Z(st) + IZk(st)[1−z(at)]=0 z(at) · [1]1×t}
z′(at) = Z ′(st) · z(at) + z(at) ∧ [max{Z ′

m(st)}+ 1]t×1
(16)

2. If |N (at)| > 1, k = 0, ..., t : ∀vm ∈ Gs(st){
Z ′

m,k(st) = Iset [Iset2 max{Zm(st) ∧ zT (at)}+ (1− Iset2)Zm,k(st)]

z′m(at) = Isum [max{Z ′
m(st) ∧ zT (at)}]

(17)

where Iset = 1 iif set(Zm(st) ∧ zT (st)) ̸= set(Zm(st)), Isum = 1 iff
∑

Z ′
m(st)z(at) ̸= 0. Iset2 = 1

iff Zm,k(st) ∈ set(Zm(st) ∧ zT (at)). set(·) corresponds to distinct value (except 0) in a vector.
Then based on Lemma 1,we have the following criteria to ensure the valid parent exploration in
GFlowNets: for t ≥ 2, vi is a cut vertex at st iff ∃Zi,j(st) ̸= 0.

Theorem 1 shows how we utilize dynamic graphs to efficiently update the cut vertex and thus guar-
antee valid parent explorations. This approach is a kind of “amortized” checking since we only need
to consider additional edges from at instead of all edges and nodes in the Gs(st), thus having lower
complexity than previous approaches. We will show the theoretical analysis in Appendix D.3.

3.6 TRAINING PROCEDURE

Starting from the starting node, GFlowExplainer draws complete trajectories τ = (s0, s1, ..., sf ) ∈
T by iteratively sampling {vi}+ ∼ π(at | st), until the stopping criteria is attained. After sampling
a buffer, to train the policy π(st | at) which satisfies P(sf , Y ) ∝ r(sf , Y ), we minimize the loss
over the flow matching condition as follows

L(τ) =
∑

st+1∈τ

 ∑
T (st,at)=st+1

F (st, at)− Ist+1=sf r(sf , Y )− Ist+1 ̸=sf

∑
at+1∈A

F (st+1, at+1)

2

,

(18)
where

∑
T (st,at)=st+1

F (st, at) denotes the inflows of a state st+1,
∑

at+1∈A F (st+1, at+1) denotes
the outflows of st+1, and r(sf , Y ) denotes the reward of the final state, which is computed by
equation 10. For interior states, we only calculate outflows based on action distributions. For final
states, there are no outgoing flows and we only calculate their rewards. We summarize algorithms
for both node classification task and graph classification task in Appendix C.

4 EXPERIMENTS

In this section, we first introduce our experimental setup. Then we compare GFlowExplainer with
a few state-of-the-art baselines GNNExplainer Ying et al. (2019), PGExplainer Luo et al. (2020),
DEGREE Feng et al. (2021) and RG-Explainer Shan et al. (2021) in both qualitative and quantitative
evaluations. Further, we evaluate the performance of our approach in the inductive setting as well as
ablation experiments in Section 4.4 and Appendix D.
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4.1 EXPERIMENTAL SETUP

Datasets We use six datasets, in which four synthetic datasets (BA-shapes,BA-Community,Tree-
Cycles and Tree-Grid) are used for the node classification task and two datasets (BA-2motifs and
Mutagenicity) are used for the graph generation task. These datasets are composed of motifs and
bases. Motifs are small substructures in a graph, which have been shown to play a crucial role in
predicting the label of node/graph instances. Bases are the remaining parts of a graph which are
randomly generated. Motifs are taken as the ground-truth and the goal of explainers is to find them.
Details of these datasets are described in Appendix E.3 and the visualizations are shown in Figure 9.

Model We use the trained GNN model in Holdijk et al. (2021), whose architecture is given in Luo
et al. (2020); Ying et al. (2019). Specially, for node classification, we use the model which consists
of three consecutive graph convolution layers connected with a fully connected layer. For graph
classification, the model includes three consecutive graph convolution layers fed into two max and
mean pooling layers. The two pooling layer output embeddings are then concatenated to generate
the input for a fully connected layer.

Metrics The motifs in each dataset are the ground-truth explanations. The edges in the motif are
positive and other edges are negative. GNNExplainer and PGExplainer return a mask matrix to rep-
resent the importance of each edge in the instance. RGExplainer and ours generate a subgraph. The
explanation problem can be formalized as a binary classification task, where edges in the ground-
truth motif are taken as prediction labels and the weights of edges are viewed as prediction scores.
With the explanatory subgraph provided by explainers, the AUC score can be computed to measure
the accuracy for quantitative evaluation.

4.2 QUALITATIVE ANALYSIS

We evaluate the single-instance explanations for the topology-based prediction task without node
features in Figure 2, in which the dots in green are our predicted nodes in motif, representing the
critical nodes for GNN predictions. In contrast, the dots in orange are predicted nodes not in motif,
referring to the irrelevant nodes for GNN predictions. The pink dot is the node to be interpreted,
also included in the subgraph. For a fair comparison, we choose the same node for each algorithm
and output their generated subgraphs. As illustrated in the figure, house, cycle, and tree motifs are
identified by GFlowExplainer and have relatively fewer irrelevant nodes and edges. However, in the
BA-Community dataset, RGExplainer fails to find the motif. For graph classifications, we visualize
the explanation result for the BA-2motif dataset, and both approaches could find the five-node cycle
motif for label 1.

Figure 2: Qualitative Analysis for RGExplainer and GFlowExplainer

4.3 QUANTITATIVE ANALYSIS

We next show the quantitative results in Table 1. We run 10 different seeds for each approach and
compute the average AUC scores and their standard deviations. From the table, we can find that
our GFlowExplainer performs the best on five datasets. The difference between GFlowExplainer
and the runner-up algorithm is not particularly noticeable on the BA-Shapes and MUTAG datasets.
However, on the Tree-Cycles and BA-2motif datasets, GFlowExplainer improves the performance
and shows its superiority to other graph generation and perturbation approaches. We should notice
that without pre-training, the AUC scores of the RGExplainer on Tree-Cycles and Tree-Grid are
always 0.5, while GFlowExplainer does not need any pre-training process and could access the
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Table 1: Explanation AUC (Quantitative Evaluation)
Node Classification Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

GNNExp 0.742±0.006 0.708±0.004 0.540±0.017 0.714±0.002 0.499±0.001 0.498±0.003
PGExp 0.974±0.005 0.884±0.020 0.574±0.021 0.673±0.004 0.133±0.045 0.843±0.084

DEGREE 0.993±0.005 0.957±0.010 0.902±0.022 0.925±0.040 0.755± 0.135 0.773±0.029
RGExp

(NoPretrain) 0.983±0.021 0.684±0.012 0.500±0.000 0.500±0.000 0.503±0.011 0.623±0.021

RGExp 0.985±0.013 0.858±0.021 0.787±0.099 0.927±0.030 0.615±0.029 0.832±0.046
Ours 0.999±0.000 0.938±0.019 0.964±0.028 0.982±0.011 0.854±0.016 0.882±0.024

Improve 1.4% -2.0% 6.8% 5.9% 13.1% 4.6%

Figure 3: Comparison among GFlow-Squence, GFlowExplainer, RG-NoPretrain and RGExplainer
in the inductive setting for synthetic datasets. GFlowExplainer has better generalizations.

ground-truth motif better. Even though on BA-Community datasets, GFlowExplainer is a runner-up
algorithm, it is not far away from DEGREE.

4.4 INDUCTIVE SETTING WITH ABLATION EXPERIMENTS

To further show the effectiveness of our proposed theorem and the generalization ability of GFlow-
Explainer, we conduct the ablation experiments with various cases and test the performance of
GFlowExplainer in the inductive setting. We compare GFlowExplainer with GFlow-Sequence, a
GFlowNets-based approach with the same state encoding, action space, reward function, and ob-
jective function. The difference lies in that the state is considered as a sequence and for each state
st, there is only one parent state st−1 = st/{vi}, where at−1 = {vi}+, which is similar to RGEx-
plainer. We also compare our GFlowExplainer with RGExplainer-Nopretrain and RGExplainer.

Specifically, we vary the training set sized from {10%, 30%, 50%, 70%, 90%} and take the remain-
ing instances for testing. For each dataset, we run the experiments 5 times and compute the average
AUC scores. For fairness, we set the same parameters for each method. The comparison results
are shown in Figure 3. As for BA-Shapes and Tree-Cycles, since they already have enough training
samples for GFlowexplainer when the ratio is 10%, the performances of it are always good enough
and fall in certain intervals. We also note that in some seeds, RGExplainer dropped sharply from the
initial AUC of 0.77 to 0.5. We conjecture that the policy gradient and Monte Carlo estimation may
suffer from high variances and be unstable, which may not be able to generate an explanation con-
sistently. In contrast, GFlowExplainer does not need any pre-training strategies and could provide
more consistent explanations. Finally, we discuss more the properties of DAG and why it becomes
the critical ingredient of best performance in our work in Appendix B.1.

5 CONCLUSION

In this work, we present GFlowExplainer to provide the instance-level explanations for GNNs. The
DAG structure in our method eliminates the influence of node sequence and thus without any pre-
training strategies, we could provide faithful and consistent explanations with the ensurance of the
message passing nature of GNNs. We also propose a specific approach for checking cut vertices in
dynamic graphs, thus accelerating the process of direct parents exploration during the training pro-
cess. Extensive experiments confirm the efficiency and strong generative ability of GFlowExplainer.
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A PROOF OF MAIN RESULTS

A.1 PROOF OF LEMMA 1

Definition 6 A node vi is a cut vertex iif ∃va, vb ∈ G, such that there is no node sequence v⃗ =
(va, ..., vb) along edges if vi ̸∈ v⃗, which means va could not attain vb without passing through vi,
and vise versa.

First we should note since t > 1, there are at least 2 nodes in Gs(st). Suppose vi is not a cut vertex
at st, then based on Definition 6, ∀va, vb ∈ Gs(st) such that ∃v⃗ = (va, ..., vb) in which vi ̸∈ v⃗.
Suppose at = {vj}+. Since there is no node deleted, we have ∀va, vb ∈ Gs(st+1)/{vi, vj},∃v⃗ =
(va, ..., vb) in which vi ̸∈ v⃗ based on the connectivity of Gs(st). If vi becomes a cut vertex at st+1,
we could have ∀va ∈ Gs(st+1), va ̸= vi, va ̸= vj such that ̸ ∃v⃗ = (va, ..., vj) where vi ̸∈ v⃗. Thus
we have {vi, vj} ∈ E . If |N (at)| > 1, it means ∃vk ∈ Gs(st+1), vk ̸= vi, {vk, vj} ∈ E , it is easy
to consider there is a vertex sequence v⃗ = (va, ..., vk, vj) where vi ̸∈ v⃗, thus vi is not a cut vertex
based on Definition 6. Thus if vi becomes a cut vertex at st+1, we have {vi, vj} ∈ E , |N (at)| = 1.

If {vi, vj} ∈ E and |N (at)| = 1, then ∀va ∈ Gs(st+1), va ̸= vi, va ̸= vj , we have {va, vj} ̸∈ E .
Therefore, there is no sequence like v⃗ = (va, ..., vj) without vi. Then based on Definition 6 above,
we have vi is a cut vertex.

Then we complete the proof that if vi is not a cut vertex at st, vi becomes a cut vertex from st+1 iff
|N (at)| = 1 and {vi, vj} ∈ E , where t > 1. Based on this, we can get the following Corollary 1.

Corollary 1 Suppose an action at = {vi}+, there are no cut vertex at st. If |N (at)| > 1, then there
are no cut vertex at st+1.

Next we prove that if vi is a cut vertex at st, vi is not a cut vertex from st+1 iff |N (at)| > 1 and at
connects to all “child groups” of the vi.

We can consider if vi is a cut vertex at st, it looks like a parent node in a tree and there are some
children of vi. Then if |N (at)| = 1, {vi, vj} ∈ E , vj becomes a new child of vi in a tree, and thus
there is a new “child group” of the vi. Thus if an action at = {vk}+ could connect all “child groups”
of the vi, then these nodes could attain each other with passing through vk instead of vi, and thus vi
becomes a non-cut vertex from st+1.

A.2 PROOF OF THEOREM 1

Next we prove the Theorem 1 by mathematical induction.

1) We first prove that t = 2, vi is a cut vertex at st+1 iff ∃Zi,j(st+1) ̸= 0.

Suppose t = 2, then Z(st) = [0]2×2. Since there are only two nodes va, vb in Gs(st), without loss
of generality, we define a0 = {va}+ and a1 = {vb}+. Suppose at = {vi}+.

If |N (at)| = 1, for example, {va, vi} ∈ E (vb is symmetrical), then va becomes a cut vertex
according to Lemma 1. Based on equation 14, equation 16 we have z(at) = [1 0]T and

Z ′(st) = (1− I2×2) ∧ {Z(st) + z(at) · [1]1×2} =

[
0 1
0 0

]
z′(at) = Z ′(st) · z(at) + z(at) ∧

[
2
1

]
=

[
2
0

]

Combine these two parts based on equation 15, we have Z(st+1) =

[
0 1 2
0 0 0
0 0 0

]
Since ∃Z0(st+1) ̸= [0]1×(t+1), we have va becomes a cut vertex, and va has two “child groups”.
Next we prove this by contradiction. Suppose |N (at)| = 1, {va, vi} ∈ E and Z0(st+1) =
[0]1×(t+1). Then based on equations above, we have Z ′

0(st) = [0]1×2 and z′0(at) = 0.
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If Z ′
0(st) = [0]1×2, since (1 − I2×2) =

[
0 1
1 0

]
, Z(st) =

[
0 0
0 0

]
, we have z(at) · [1]1×t =[

0 0
0 0

]
, thus z(at) = [0 0]T , which contradicts to our statement that z(at) = [1 0]T . Thus we

prove that t = 2, if |N (at)| = 1, then vi is a cut vertex at st+1 iff ∃Zi,j(st+1) ̸= 0.

If |N (at)| > 1, since there are only 2 nodes in Gs(st), thus we have |N (at)| = 2, {va, vi} ∈
E and {vb, vi} ∈ E . Then based on Corollary 1, there are no cut vertices in st+1. Based on
equation 14,equation 16 we have z(at) = [1 1]T and

Z ′(st) =

[
0 0
0 0

]
, z′(at) =

[
0
0

]
,

where Iset = 0 for both Z0(st) and Z1(st), since set(Z0(st) ∧ [1 1]) = set(Z0(st)) = [0],
set(Z1(st) ∧ [1 1]) = set(Z1(st)) = [0]. Isum = 0 since

∑
Z ′(st)z(at) = 0.

Combine these two parts based on equation 15, we have Z(st+1) =

[
0 0 0
0 0 0
0 0 0

]
.

Next we prove this by contradiction. Suppose |N (at)| = 2, {va, vi} ∈ E , {vb, vi} ∈ E and
∃Z0,j(st+1) ̸= 0, j = 0, 1, 2, then we have three cases as follows,

• If Z ′
0,0(st) ̸= 0, which contradicts to equation 16 since (1− I2×2) =

[
0 1
1 0

]
.

• If Z ′
0,1(st) ̸= 0, then we have Iset = 1, which corresponds to set(Z0(st) ∧ zT (at)) ̸=

set(Z0(st)). However, set(Z0(st) ∧ zT (at)) = set(Z0(st)) = [0] since Z0 = [0]1×2,
thus it contradicts to the statement.

• If z′0(at) ̸= 0, then we have Isum = 1, which means
∑

Z ′
0(st)z(at) ̸= 0, since z(at) =

[1 1]T , then we should have Z ′
0(st) ̸= [0]1×2, which contradicts to the cases above.

Thus we prove that t = 2, if |N (at)| > 1, then vi is a cut vertex at st+1 iff ∃Zi,j(st+1) ̸= 0.

Above all, for t = 2, we have proved that vi is a cut vertex at st+1 iff ∃Zi,j(st+1) ̸= 0.

2) Next we consider t > 2, suppose at st, we have vi is a cut vertex at st iff ∃Zi,k(st) ̸= 0, k ̸= i.
Suppose at = {vj}+. We need to prove that vi is a cut vertex at st+1 iff ∃Zi,k(st+1) ̸= 0, k ̸= i.

If |N (at)| = 1, without loss of generality, we consider {vi, vj} ∈ E , vi ∈ Gs(st), then based on
equation 14, we have z(at) = [0 · · · 1 · · · 0]T , where zi(at) = 1, zk(at) = 0,∀k ̸= i.

If vi is not a cut vertex, we have Zi(st) = [0]1×t. If vi is a cut vertex, we have Zi,k(st) ̸= 0,∀k ̸= i.
Zi(st) is the row corresponding to vi.
Then based on equation 16, we have

Z ′
i(st) = (1− It×t)i ∧ {Z(st) + IZi(st)[1−z(at)]=0 z(at) · [1]1×t}i.

We should check IZi(st)[1−z(at)]=0 and there two different cases. Before giving the proof, we intro-
duce Lemma 2 as follows,

Lemma 2 Suppose at = {vj}+, N (at) = 1, vi ∈ Gs(st). If Zi(st)[1− z(at)] ̸= 0, vj connects to
a cut vertex vi , and if Zi(st)[1− z(at)] = 0, vj connects to a non-cut vertex vi.

a) If Zi(st)[1− z(at)] = 0, which means vj connects to a non-cut vertex based on Lemma 2. If vi
is not a cut vertex at st, we have Zi(st) = [0]1×t and

Z ′
i(st) = [1− It×t]i ∧ {Zi(st) + [z(at) · [1]1×t]i} = [1 · · · 0 · · · 1].

where Z ′
i,i(st) = 0,Z ′

i,k(st) = 1,∀k ̸= i. And we have

z′i(at) = [Z ′(st) · z(at)]i + zi(at) ∧ [max{Z ′
i(st)}+ 1] = 2

Combine these two parts based on equation 15, we have Zi(st+1) = [1 · · · 0 · · · 1 2], where
Zi,i(st+1) = 0,Zi,k(st+1) = 1, k ̸= i, k ≤ t − 1,Zi,t(st+1) = 2. Therefore we have
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∃Zi,k(st+1) ̸= 0, k = 0, ..., t. Since vi is not a cut vertex, |N (at)| = 1, {vi, vj} ∈ E , based
on Lemma 1 we know vi is a cut vertex at st+1.

b) If Zi(st)[1− z(at)] ̸= 0, which means there are some some cut vertices at st, and vj connects to
a cut vertex based on Lemma 2. In this case, it is easy to consider vi will still be a cut vertex at state
st+1 since ∀vk ∈ Gs(st+1), vk ̸= vj , vk ̸= vi, vk can not attain vj along edges without passing
through vi based on |N (at)| = 1, and vice versa.
Without loss of generality, suppose Zi,i(st) = 0,Zi,k(st) = 1, k < t, k ̸= i,Zi,t(st) = 2. This
assumption is the case that at−1 = {va}+, |N (at−1)| = 1, vi becomes a cut vertex at st. Then
based on equation 16, we have

Z ′
i(st) = (1− It×t)i ∧ Zi(st) = Zi(st)

z′i(at) = Z ′
i(st) · z(at) + zi(at) ∧ [max{Z ′

i(st)}+ 1] = 3

Combine these two parts based on equation 15, we have Zj(st+1) = [1 · · · 0 · · · 2 3]1×(t+1). It is
easy to see vj could divide Gs(st+1) into 3 parts.
Thus we have shown that if |N (at)| = 1, vi is a cut vertex iff ∃Zi,k(st) ̸= 0, k ̸= i.

If |N (at)| > 1, without loss of generality, we can suppose |N (at)| = k, k ≥ 2, then we have k
non-zero positions in z(at). Before giving the proof, we propose Lemma 3 as follows,

Lemma 3 Suppose at = {vj}+, vi is a cut vertex at st, then vi becomes a non-cut vertex at st+1 iif
set(Zi(st) ∧ z(at)) = set(Zi(st)).

Suppose vi is a cut vertex in st, which means ∀k ̸= i,Zi,k(st) ̸= 0, Zi(st) has t − 1 non-zero
positions. We need to check whether vj connects to all “child groups” of vi, then vi may not be a
cut vertex after adding vj . Then there are following two cases:

a) If set(Zi(st) ∧ z(at)) = set(Zi(st)) ̸= [0], then based on Lemma 3 we have vi becomes a
non-cut vertex at st+1. Based on equation 17 we have

Z ′
i(st) = [0]1×t z′i(at) = 0

Then based on equation 16 we have Zj(st+1) = [0]1×(t+1)

b) set(Zi(st) ∧ z(at)) ̸= set(Zi(st)), then based on Lemma 3 we have vi is still a cut vertex at
st+1. Based on equation 17 we have

Z ′
i,k(st) = Iset2 max{set(Zi(st) ∧ zT (at))}+ (1− Iset2)Zi,k(st)

Since vi is a cut vertex in st, thus Zi,k(st) ̸= 0,∀i ̸= k. Since |N (at)| > 1, we have Zi(st) ∧
z(at) ̸= [0]1×t. Therefore, it is easy to know ∃Z ′

i,k(st) ̸= 0. Then based on equation 16 we have
∃Zi,k(st+1) ̸= 0, k ̸= i.

Above all, for t > 2, we have proved that vi is a cut vertex at st+1 iff ∃Zi,j(st+1) ̸= 0.

Therefore, we complete the proof that for t ≥ 2, vi is a cut vertex at st iff ∃Zi,j(st) ̸= 0.

A.3 PROOF OF LEMMA 2

If N (at) = 1 and {vj , vi} ∈ E , z(at) = [0...1...0]T , where zi(at) = 1 and zk(at) = 0, k ̸= i.

If vi is a cut vertex, we have Zi,i(st) = 0 and Zi,k(st) ̸= 0, where k ̸= i. Then based on the precise
matrix multiplication, we should have Zi(st)[1− z(at)] ̸= 0.

If vi is not a cut vertex, then Zi(st) = [0]1×t and we should have Zi(st)[1− z(at)] = 0

A.4 PROOF OF LEMMA 3

Since vi is a cut vertex at st, then set(Zi(st)) has at least 2 different values based on calculations
before, since we define set(·) contains distinct value except of 0.

If |N (at)| = 1, which means z(at) has only one non-zero position, it is easy to consider vi is still
a cut vertex at st+1. If zi(at) = 1, which means {vj , vi} ∈ E , then set(Zi(st) ∧ z(at)) = ∅ ≠
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set(Zi(st)). If zk(at) = 1, k ̸= i, then set(Zi(st) ∧ z(at)) = [Zi,k(st)] ̸= set(Zi(st)). Thus if
|N (at)| = 1, we have set(Zi(st) ∧ z(at)) ̸= set(Zi(st)) and vi is still a cut vertex at st+1.

Based on Lemma 1 we know only |N (at)| = 1 will potentially introduce a new cut vertex, or add a
new “child group” for the current cut vertex. If at connects to all “child groups” of a cut vertex vi,
then vi becomes a non-cut vertex from st+1.

If |N (at)| = m,m > 1. Since z(at) has m non-zero positions, then Zi(st) ∧ z(at) might have 0,
m− 1 or m non-zero positions as following different cases:

• If Zi(st) ∧ z(at) are all zeros, zi is not a cut vertex.
• If Zi(st) ∧ z(at) has m− 1 non-zero positions, vi is a cut vertex and {vi, vj} ∈ E .
• If Zi(st) ∧ z(at) has m non-zero positions, vi is a cut vertex and {vi, vj} ̸∈ E .

Without loss of generality, we start with the case Zi(st) = [1 · · · 0 · · · 1 2], which means at−1 =
{va}+ makes vi become a cut vertex at st. Thus Zi,k(st) = 1, k < t, k ̸= i,Zi,t(st) = 2,Zi,i(st) =
0. Then we have vi has two “child groups”, the first group consists of all nodes in Gs(st) except of
vi, the second group only has one node va. Suppose at = {vj}+ and |N (at)| = m.

• If m = 2, {va, vj} ∈ E , {vi, vj} ∈ E , then zi(at) = zt(at) = 1 and we have set(Zi(st) ∧
z(at)) = [2] while set(Zi(st)) = [1, 2]. Based on Lemma 1 we know at does not connect
two “child groups” and thus vi is a cut vertex at st+1.

• If m = 2, {va, vj} ∈ E and {vk, vj} ∈ E ,vk ̸= vi then zk(at) = zt(at) = 1, zi(at) = 0
and we have set(Zi(st) ∧ z(at)) = [1, 2] = set(Zi(st)). Based on Lemma 1 we know at
connect two “child groups” and thus vi is not a cut vertex at st+1.

• If m > 2, {va, vj} ̸∈ E , we can easily get set(Zi(st)∧ z(at)) = [1] ̸= set(Zi(st)). Based
on Lemma 1 we know at only connects va and thus vi is a cut vertex at st+1.

Above all, we complete the proof for Lemma 3.

B DISCUSSIONS

B.1 PARENT EXPLORATIONS IN DAG MATTERS

Since graph Gs(st) is generated by sequential actions, the trajectory becomes an ordered node se-
quence. However, we should note that the generated subgraph should be an unordered set, which
means it is independent of the sequence but determined by the connectivity of the nodes. For ex-
ample, for a graph consisting of three nodes, if there are pair-wise edges between these three nodes,
the generated graph will be the same regardless of the order of nodes. However, if only two edges
connect these three nodes, then the intermediate node as a bridge cannot be the last one added.
We can conclude that the sequence matters when the ordering of adding nodes will affect the
connectivity of a graph.

There may be many trajectories that lead to the same state st, while sampling a single trajectory
τ each time could not contain this information. In order to solve this problem, RGExplainer Shan
et al. (2021) applied the pre-training strategies with maximum Log-Likelihood Estimation (MLE)
over all possible generated orderings for an explanatory graph Vinyals et al. (2015). In contrast, our
GFlowExplainer is modeled based on a directed acyclic graph structure, as multiple action sequences
lead to the same graph, and the direct parent explorations for flow matching conditions “connect”
these trajectories together, which naturally eliminates the influence of orderings. Therefore, there is
no need to pretrain, and we can learn the policy to generate good enough candidate graphs.

We also conduct experiments to show the importance of connectivity constraints for loss conver-
gence in Appendix D.2.

C ALGORITHMS

We show the pseudocode of our GFlowExplainer for node classification and graph classification in
Algorithm 1 and Algorithm 2 respectively.
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For node classification tasks, given an input graph G = (V, E) and its features X , a trained GNN
model Φ and node instances I, GFlowExplainer aims to train a generative policy π(at | st) and find
the explanatory subgraph G

(i)
s for i-th node instance. Considering the prediction of a node instance

is determined by its L-hop neighborhoods based on the message passing scheme in GNNs, in which
L is the number of layers in the trained model Φ.

During each training epoch, GFlowExplainer parallel generates sf for each node vi ∈ I based on
policy π(at | st) by sequential actions. For every iteration, GFlowExplainer samples a valid action
at : {vj}+ ∼ π(a | st) s.t. vj ∈ N (st) based on the generative flow network to make a state
transition st → st+1 and explore valid parents based on the updated cut vertex matrix Z(st+1).
The terminal state sf is generated once the stopping criteria is reached. When the epoch number
E is reached, the trained policy π(at | st) based on the flow matching loss generates explanatory
subgraphs in the inference time for evaluation.

As for the graph classification task, the difference lies in the choice of starting node. Therefore
GFlowExplainer need to train an additional locator L during the training process. The final graph
representations zgn and node representations zvi,n are computed based on the trained GNN model
Φ. Then L is trained with policy π coordinately.

Algorithm 1 GFlowExplainer for node classification
Require: G = (V, E): Graph ; X : Node features ; I: Node instances ; B: batch size ; E: epoch number ; η:

learning rate ; Φ: trained GNN classification model
1: repeat
2: repeat (For each node vi ∈ I, parallel do with a batch size B)
3: Initialize s0 = {vi}, Z(s0) = I2×2

4: Construct X ′
t, H̄L

t according to equation 7, equation 8 and equation 9
5: Sample a valid action at : {vj}+ ∼ π(a|st) s.t. vj ∈ N (st)
6: Make a state transition st+1 = st ∪ {vj}
7: Update Zt+1 according to equation 14
8: Explore all valid parents with (sp, ap) based on Zt+1

9: until Attain the stopping criteria
10: Calculate r(sf , Y ) based on equation 10
11: Update the parameters {Θ1,Θ2, θ1} based on ∇L(τ) and η
12: until epoch number E is reached
Ensure: Policy π(at | st) and generated explanatory subgraph G

(i)
s during the inference phase

Algorithm 2 GFlowExplainer for graph classification
Require: G(n) ∈ I: Graph instances ; B: batch size ; E: epoch number ; η: learning rate ; Φ: trained GNN

classification model
1: repeat
2: repeat (For each node G(n) ∈ I, parallel do with a batch size B)
3: Initialize s0 = {L(G(n))}, Z(s0) = I2×2

4: Construct X ′
t, H̄L

t according to equation 7, equation 8 and equation 9
5: Sample a valid action at : {vj}+ ∼ π(a|st) s.t. vj ∈ N (st)
6: Make a state transition st+1 = st ∪ {vj}
7: Update Zt+1 according to equation 14
8: Explore all valid parents with (sp, ap) based on Zt+1

9: until Attain the stopping criteria
10: Calculate r(sf , Y ) based on equation 10
11: Update the parameters {Θ1,Θ2, θ1} based on ∇L(τ) and η
12: # Coordinate train L
13: for each sampled graph Gn ∈ I do
14: D = [π(sf | vi),−L(π(sf | vi))]
15: Update parameters in L on D
16: end for
17: until epoch number E is reached
Ensure: Policy π(sf | L(G(n))) and generated explanatory subgraph G

(i)
s during the inference phase
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Table 2: Inference Time
Inference Time BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG
GNNExplainer 53ms 76ms 49ms 57ms 34ms 16ms
PGExplainer 12ms 17ms 3ms 2ms 1ms 14ms
RGExplainer 8ms 2ms 7ms 6ms 5ms 9ms

Ours 7ms 3ms 8ms 11ms 6ms 7ms

Table 3: Training Time
Training Time BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

Pretrining
RGExp 102.56s 143.73s 83.36s 463.61s 1294.26s 2918.22s

Ours − − − − − −

Update
per epoch

RGExp 24s 22s 11s 5s 14s 28s

Ours 8s 10s 9s 10s 7s 12s

D ADDITIONAL RESULTS

D.1 EFFICIENCY ANALYSIS

We also compare the inference time of GNNExplainer, PGExplainer, RGExplainer, and our GFlow-
Explainer with the same environment. We compute the average inference time for explaining a
single instance for each task and report the results in Table 2. We could find that GNNExplainer
is the slowest, and the inference time of RGExplainer, PGExplainer and our GFlowExplainer are
in the same order of magnitude. Therefore, we can conclude that the GFlowNets-based framework
will not require a longer inference time.

Since the sampling procedure for a connected subgraph is similar between RGExplainer and GFlow-
Explainer. We also report the training time of our GFlowExplainer and compare it with the RGEx-
plainer, whose pre-training part is also included. The comparison results are shown in Table 3. As
we mentioned before, GFlowExplainer does not need pre-training process. However, we can find
that pre-training strategies of RGExplainer take much time and even become dominating in the total
running time. As for the time of iterative update per epoch, GFlowExplainer is overall faster than
RGExplainer, which could also show the efficiency of the proposed Theorem 1 for updating cut ver-
tices. The GFlowExplainer is more practical than other learning-based approaches for large-scale
datasets.

D.2 LOSS CONVERGENCE ANALYSIS

In this section we conduct more ablation experiments to show the role of connectivity constraints
for flow loss convergence. In the previous ablation experiments (refer to Section 4.4), we com-
pare GFlow-Sequence and GFlowExplainer on the explanation performance in the inductive setting.
In this section we consider add DAG structures without connectivity constraints, that is, there are
(|Gs(st)| − 1) direct parents ( because the node to be interpreted could not be deleted, and |Gs(st)|
corresponds to the number of nodes in the subgraph ) for state st. We call this approach is GFlow-
Graph. Based on the theoretical sense, breaking connectivity constraints while exploring parent
states will make the inconsistency between action space and trajectories in the DAG structure. We
visualize the flow matching loss of both GFlowExplainer and GFlow-Graph. We set 5 different
seeds on the BA-shape datasets, 16 batches with 80 epoches for each sampling.

Figure 4 shows the flow matching loss of GFlowExplainer and GFlow-Graph. Since the original flow
loss is small at the beginning of training, we expand the multiples of the regular items in the reward
function to make the loss relatively high. As a result, we can find that both approaches could attain
convergence, but GFlowExplainer has lower losses, which confirms our statement. Furthermore,
both approaches could converge fast because once we confirm the starting point, the allowed action
space reduces significantly due to the connectivity constraints and the stopping criteria, thus making
the flow calculation easier. We also plot convergence analysis for other datasets in Figure 5. We
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Figure 4: Flow matching loss for GFlowExplainer and GFlow-Graph
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Figure 5: Convergence Analysis

experimentally observe that GFlowExplainer could converge on all these datasets, where the x-axis
represents the training epoch, and the y-axis indicates the flow matching loss.

D.3 COMPUTATIONAL ANALYSIS OF THEOREM 1

Tarjan’s strongly connected components algorithm Tarjan (1972) need to iterate all nodes and edges
of the subgraph Gs(st). The time complexity is O(|V|+ |E|) for each state, which is inefficient for
dynamic graphs. In addition, exploring all edges and nodes is a disaster for space complexity with a
large graph and is not applicable in real-world applications. However, we can update and store the
cut vertex without repeatedly checking by taking advantage of the step-by-step generative process.
The idea is to snap to the properties of a cut vertex in dynamic graphs and identify conditions for
transformations between cut and non-cut vertices.

To show the effectiveness and efficiency of the proposed Theorem 1, in this section, we visualize the
cut vertices in dynamic graphs via a simple simulation experiment. In addition, we show the time
comparison between our proposed algorithm with other traditional cut vertices algorithms.

We construct a 10 × 10 adjacency matrix to represent an undirected connected graph, and starting
with two nodes; the subgraph adds a neighbor node sequentially. We record the time of the Tarjan’s
algorithm and our approach. For a fair comparison, the updating process time in our method is also
included. We report the accumulated time in Figure 6. We can find that with the increasing size of the
graph, the accumulated time of Tarjan’s algorithm increases sharply while our approach increases
linearly. We also visualize the cut vertices exploration process in dynamic graphs in Figure 7, in
which the black dot represents the action of adding that node, pink dots correspond to the cut vertex,
and the orange dots are regular nodes in the subgraph. It is easy to find that only the action node
will introduce a new cut vertex or delete a cut vertex. Therefore, we can only iterate the new
edges introduced by the action node and check its connectivity relationships with other nodes in
the subgraph. In contrast, Tarjan’s algorithm will iterate all nodes and edges in the subgraph after
adding the action node; thus, it makes sense that our approach has smaller time complexity.

D.4 MORE INDUCTIVE SETTING RESULTS

Due to space limit, we add some inductive experiments in this section. The Figure 8 shows the induc-
tive experiments of four algorithms on Tree-Grid and MUTAG Datasets. As for the reinforcement
learning based approches, the performance of Tree-Grid is similar to that of Tree-Cycles. Without
pre-training strategies, the AUC value of RG-NoPretrain remains at 0.5 and RGExplainer could pro-
vide better explanations with the increasing size of the training instances. The ratio change of the
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Figure 6: Time Comparison of exploring cut vertices

Figure 7: Cut vertices exploration in dynamic graphs: From left to right is the process of adding
nodes step-by-step. It is easy to find that only the action node (black) will introduce a new cut vertex
(pink) or delete a cut vertex.

training set has more significant influence on the performance of GFlow-Sequence. GFlowexplainer
can always maintain high performance, showing its strong generalization ability. In the MUTAG
dataset, both GFlowExplainer and RGExplainer perform well.

E IMPLEMENTATION DETAILS

E.1 BASELINES

• GNNExplainer Ying et al. (2019) is the first formal approach to explain trained GNNs,
which defines the problem as an optimization task to maximize the mutual information be-
tween the predicted labels and the distribution of possible subgraphs with some constraints.
Codes are available at https://github.com/RexYing/gnn-model-explainer
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Figure 8: Inductive setting with ablation experiments on Tree-Grid Dataset and MUTAG Dataset
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Table 4: Hyper-parameters

Hyper-parameters Value
Batch Size 64
Number of layers of APPNP 3
α in APPNP 0.85
Hidden dimension 64
Architecture of MLP in L 64-8-1
Learning rate 1e-2
Optimizer Adam
Number of hops 3
Maximum size of generated sequences 20
Training epochs (node tasks) {50,100}
Training epochs (graph tasks) 100
Sample ratio of graph instance to train L 0.2

• PGExplainer Luo et al. (2020) leverages the representations generated by the trained GNN
and adopts a deep neural network to learn the crucial nodes and edges. Codes are available
at https://github.com/flyingdoog/PGExplainer

• DEGREE Feng et al. (2021) proposes a decomposition-based explanation method for
graph neural networks, which directly decomposes the influence of node groups in the
forward pass. The decomposition rules are designed for GCN and GAT. Further, to ef-
ficiently select subgraph groups from all possible combinations, the authors propose a
greedy approach to search for maximally influential node sets. Codes are available at
https://github.com/Qizhang-Feng/DEGREE

• RGExplainer Shan et al. (2021) utilises the Reinforcement Learning to generate
the instance-level explanations for GNNs. The seed locator and stopping cri-
teria to find the most influential node in a graph instance and check whether
the generated explanatory graph are good enough. Codes are available at
https://openreview.net/forum?id=nUtLCcV24hL

E.2 EXPERIMENT ENVIRONMENT

All experiments were conducted on a NVIDIA Quadro RTX 6000 environment with Pytorch. The
parameters of GFlowExplainer are shown in Table 4.

E.3 DETAILS ABOUT DATASET

We show the data statistics in Table 5. In this paper we consider the following five datasets:

• The BA-shapes data set consists of one Barabasi-Albert graph Barabási & Albert (1999) as
the base and 80 house-structure motifs. Each motif is randomly attached to a node in BA
graph and extra edges are added as noises;

• The BA-community dataset is comprised of two BA-shapes with different node features
generated by Gaussian distributions. The extra edges are also connect two BA-shapes;

• The Tree-cycles dataset includes a multi-level binary tree as the base and 80 six-node cycle
motifs. The cycle motifs are randomly attached to the tree.

• The BA-motifs dataset has 1000 graphs where half of them are a BA graph attached with a
house-structure motif, while the rest are a BA graph attached with a five-node cycle motif;

• The Mutagenicity dataset is a real dataset, which includes 4337 molecule graphs. They can
be classified as mutagenic or nonmutagenic depending on whether having NH2 or NO2

motifs.
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Table 5: Dataset statistics
Node Classification Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG
#graphs 1 1 1 1 1,000 4,337
#nodes 700 1,400 871 1,231 25,000 131,488
#edges 4,110 8,920 1,950 3,410 51,392 266,894
#labels 4 8 2 2 2 2

Figure 9: Base and Motif structures for each dataset Ying et al. (2019)

F ADDITIONAL EXPERIMENTS

F.1 TRAJECTORY BALANCE OBJECTIVE

In the trajectory balance loss objective, we need to parameterize the Zθ, PF (st+1|st, θ) and optional
PB(st|st+1, θ). One natural choice of PB(st|st+1) is to set it to be uniform over all the valid parents
of a state st+1, i.e., PB(·|st+1) = 1/#{st|(st → st+1 ∈ A} suggested in Malkin et al. (2022). In
our case we only parameterize the former two terms.

Previous TB suggests to parameterize Zθ with a constant since it considers the unconditional case.
Therefore, it only need approximate the total flow Z so that Z = R(x),∀x ∈ X . In contrast, our
task applies the state-conditional GFlowNets, which means there are various subgraph flows Zs we
need to approximate to get Zs = R(x|s). Simply speaking, for each Gs, the Zs should be different.

To show the complexity of trajectory balance in state-conditional GFlowNets, we have two attempts.

First, we follow the unconditional case and parameterize Zθ with a constant for initialization. This
is the same as to Malkin et al. (2022). Our objective is to learn the parameters θ of the forward
conditional policies PF (st+1|st, v0; θ) and logZθ.

Second, we consider the conditional flow approximation. Our objective is to learn the parameters
θ of the forward conditional policies PF (st+1|st, v0; θ) and function logZθ(v0). Therefore, ∀τ =
(s0, ..., sn+1 = sf ) ∈ T , we define the state-conditional trajectory balance as follows,

L(τ, v0; θ) =

(
log

Zθ(v0)
∏

st→st+1∈τ PF (st+1|st, v0; θ)
r(sf |v0)

∏
st→st+1∈τ PB(st|st+1, v0)

)2

. (19)

In our experiment, we train a three-layer MLP to model Zθ(·). The input is the node features of v0
in each trajectory and the output is the approximated flow. The learning rate for Zθ(·) is 0.1, the
hidden layer size is 128.

We plot the loss convergences for both approaches with datasets BA-Shapes in Figure 10 . The
unconditional flow could not converge at all and the AUC maintains 0.5 ∼ 0.6, the conditional flow
could converge after some fluctuations, but the AUC has high variances, shown in Table 6.

We guess the reason behind is that in our task, the loss decreases with the change of both Zθ(−)
and PF (−|−,−; θ). Even though the loss could converge, without good approximation of Zθ(−),
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Table 6: Comparisons among Flow Matching, Trajectory Balance (unconditional-Z) and Trajectory
Balance (conditional-Z) Objectives on BA-Shape Dataset.

AUC Accuracy

Flow Matching 0.99 0.99

TB (uncon-Z) 0.5∼0.6 -

TB (con-Z) 0.5∼0.8 -
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Figure 10: GFlowNets using trajectory balance. Left figure shows the different flow loss with
conditional Zθ(v0) or unconditional Zθ. Right figure shows the explanation subgraph for one simple
node with TB, which fails to find the motif. Without correct approximation to Z, GFlowExplainer
could not sample sf so that P(sf ) ∝ r(sf ).

we could not obtain correct PF (−|−,−; θ). In the graph structure data, most nodes have the same
features (especially to the synthetic dataset), thus such conditional information does not distinguish
them when feeding them into neural networks. For example, if vi and vj have the same features, we
could output same Zθ(vi) = Zθ(vj), while with high probabilities that

∑
r(sf |vi) ̸=

∑
r(sf |vj).

Thus we have bias on approximations to the flow, which could further affect the approximations to
PF (−|−,−; θ). However, using Flow matching loss, we have the following equation

logL(v0) = log

( ∑
T (st,at)=st+1

F (st, at|v0)
r(sf |v0) +

∑
at+1∈A F (st+1, at+1|v0)

)
. (20)

For future work, the neighbor nodes of each v0 could also pass message to it, thus aggregating them
with more complex graph neural networks instead of MLP is more suitable in this study.

F.2 QUALITATIVE ANALYSIS

F.2.1 GRAPH-SST2 DATASET

We add a real-data set Graph-SST2 Yuan et al. (2022), which is a sentiment graph dataset for graph
classification. It contains 70042 graphs with average 10 nodes in each graph. Each graph is labeled
by its sentiment, which is either positive or negative. The node embeddings are initializes as the
pre-trained BERT word embeddings. We train a GCN classifier with overall accuracy 88.7%.

Since the graph sizes are different and some of them just contain a few words, we choose graphs
with relatively larger size to evaluate our explainability. We should note that this dataset does not
have ground-truth structures, thus we visualize the subgraphs generated by GFlowExplainer for
qualitative analysis. In Figure 11, each sf consists of green nodes, which are identified as important
nodes for classification, the orange nodes are irrelevant nodes. Both graphs are correctly classified
as “negative”. We could find (“be failure”, “because doesn’t know to have fun”) and (“it’s frustrating
to see these guys”, “waste their talents ”) could explain these classification decisions.
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Figure 11: The subgraphs on the Graph-SST2 Dataset. The green nodes are identified as important
nodes and the orange nodes are identified as irrelevant nodes.

Figure 12: Qualitative Comparison between PGExplainer and GFlowExplainer on MUTAG dataset.

F.2.2 MUTAG DATASET

We also visualize the results on MUTAG datasets in Figure 12, to show subgraphs are more intuitive
and human-intelligible. It is known that the carbon rings and NO2 or NH2 groups are tend to be
mutagenic. Our GFlowExplainer could identify these connected important components with correct
classification. In contrast, the PGExplainer identifies discrete edges. In addition, GNNs utilize the
message passing scheme to incorporate graph structures with node features. Our GFlowExplainer
could construct the connected graphs by adding nodes from boundary of the current subgraph step-
by-step, which is consistent with message passing scheme and provides more clear explanations.

F.3 QUANTITATIVE COMPARISON

In this section, we compare GFlowExplainer with a shapley-value based approache SubgraphX Yuan
et al. (2021) and DEGREE on accuracy. And also shows the fidelity and sparsity in our algorithm.
The degree of fidelity assesses how closely related the explanations are to the model’s predictions.
It computes the difference between predictions with and without important structures. Sparsity
measures the fraction of structures that are identified as important by explanation methods. Note
that high Sparsity scores mean smaller structures are identified as important, which can affect the
Fidelity scores since smaller structures (high Sparsity) tend to be less important (low Fidelity).
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Figure 13: Sparsity and Fidelity in BA-Shape dataset

Table 7: Accuracy comparison

BA-Shape BA-Community

SubgraphX 0.99 0.93

DEGREE 0.94 0.95

Ours 0.99 0.94

sparsity =
1

N

N∑
i=1

(1− |Mi|
|GL

i |
) (21)

|Mi| denotes the number of important input features (nodes/edges/node features) identified. |GL
i |

means the total number of features in GL
i , which refers to the L-hop graph. For GFlowExplainer,

the masks can be directly determined by the obtained subgraphs.

fidelity =
1

N

N∑
i=1

(f(|GL
i |)yi

− f(|ĜL
i |)gi) (22)

Suppose k is the number of edges(nodes) inside motifs for synthetic datasets, we will show the
top−k edges(nodes) ranked by their importance weights in our graph generation process. Based on
the generation order of edges(nodes), we could assign different weights to them. In our GFlowEx-
plainer, the weights of nodes have corresponding relationships with the their orders, which means
the edges(nodes) with larger weights will be more likely to be added to the subgraph first.

As for the accuracy calculation, we follow similar setting in SubgraphX and DEGREE for fair
comparison. We choose first k nodes in each generated subgraph and check whether they are in
the motif base and show the results in Table 7. In our implementations, we found the ground-truth
indexes have some inconsistencies in each github public repository, making accuracy calculation
biased, thus we fix the these inconsistencies by ourselves.
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