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Abstract

Many problems in physical sciences are characterized by the prediction of space-
time sequences. Such problems range from weather prediction to the analysis of
disease propagation and video prediction. Modern techniques for the solution of
these problems typically combine Convolution Neural Networks (CNN) architec-
ture with a time prediction mechanism. However, oftentimes, such approaches
underperform in the long-range propagation of information and lack explainability.
In this work, we introduce a physically inspired architecture for the solution of
such problems. Namely, we propose to augment CNNs with advection by design-
ing a novel semi-Lagrangian push operator. We show that the proposed operator
allows for the non-local transformation of information compared with standard
convolutional kernels. We then complement it with Reaction and Diffusion neural
components to form a network that mimics the Reaction-Advection-Diffusion
equation, in high dimensions. We demonstrate the effectiveness of our network on
a number of spatio-temporal datasets that show their merit. Our code is available at
https://github.com/Siddharth-Rout/deepADRnet.

1 Introduction and Motivation

Convolution Neural Networks (CNNs) have long been established as one of the most fundamental
and powerful family of algorithms for image and video processing tasks, in applications that range
from image classification [27, 21], denoising [5] and reconstruction [26], to generative models [17].
More examples of the impact of CNNs on various fields and applications can be found in [40, 18, 32]
and references within.

At the core of CNNs, stands the convolution operation – a simple linear operation that is local and
spatially rotation and translation equivariant. The locality of the convolution, coupled with nonlinear
activation functions and deep architectures have been the force driving CNN architectures to the
forefront of machine learning and artificial intelligence research [50, 21]. One way to understand
the success of CNNs and attempt to generate an explainable framework for them is to view CNNs
from a Partial Differential Equation (PDE) point of view [43, 7]. In this framework, the convolution
is viewed as a mix of discretized differential operators of varying order. The layers of the network
are then associated with time. Hence, the deep network can be thought of as a discretization of a
nonlinear time-dependent PDE. Such observations have motivated parabolic network design that
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(A) Source image (B) Target image (C) Convergence

Figure 1: A simple task of moving information from one side of the image to the other. The source
image in A is moved to the target image in B. The convergence of a simple ResNet and an ADRnet
proposed in this work is in (C).

smooth and denoise images [44] as well as to networks that are based on hyperbolic equation [28]
and semi-implicit architectures [20].

However, it is known from the literature [34], and is also demonstrated in our experiments, that
CNN architectures tend to under-perform in tasks that require rapid transportation (also known as
advection) of information from one side of an image to the other. In particular, in this paper, we focus
on the prediction of the spatio-temporal behavior of image features, where significant transportation
is present in the data. Examples of such data include the prediction of weather, traffic flow, and crowd
movement.

Related work: In recent years, significant research was devoted to addressing spatio-temporal
problems. Most of the works known to us are built on a combination of CNN to capture spatial
dependencies and Recurrent Neural Networks (RNN) to capture temporal dependencies. A sample
of papers that address this problem and the related problem of video prediction can be found in
[4, 53, 46, 31, 22, 35, 13] and reference within. See also [65] and [39] for a recent comparison
between different methods. Such methods typically behave as black boxes, in the sense that while
they offer strong downstream performance, they often times lack a profound understanding of the
learned underlying dynamics from the data. In addition, networks that try to predict the optical flow
in videos [9, 64, 48] were proposed to estimate the flow in the original image domain. However,
predictions on the image domain may be limited and not capture hidden dynamics. Another type of
work that is designed for scientific datasets is [51], which uses Fourier-based methods to build the
operators. See also [3] for a review on the topic.

Motivation: Notably, while a CNN is a versatile tool that allows learning spatial dependencies, it can
have significant challenges in learning simple operations that require transportation. As an example,
let us consider the problem of predicting the motion in the simple case that the input data is an image,
where all pixels take the value of 0 except for a pixel on the bottom left (marked in gray), and the
output is an image where the value is transported to a pixel on the top right. This example is illustrated
in Figure 1. Clearly, no local operation, for example, a convolution of say, 3× 3 or even 7× 7 can
be used to move the information from the bottom left of the image to the top right. Therefore, the
architecture to achieve this task requires either many convolutions layers, or, downsampling the image
via pooling, where the operations are local, performing convolutions on the downsampled image, and
then upsampling the image via unpooling, followed by additional convolutions to "clean" coarsening
and interpolation artifacts, as is typical in UNets [42, 8]. To demonstrate, we attempt to fit the data
with a simple convolution residual network and with a residual network that has an advection block,
as discussed in this paper. The convergence history for the two methods is plotted in Figure 1. We
see that while a residual network is incapable of fitting the data, adding an advection block allows it
to fit the data to machine precision.

This set of problems, as well as the relatively poor performance it offers on data that contains
advection as in simple task in Figure 1 sets the motivation for our work. Our aim is to extend the
set of tools that is available in CNNs beyond simple and local convolutions. For time-dependent
PDEs, it is well known that it is possible to model most phenomena by a set of advection-diffusion-
reaction equations (see, e.g., [12, 11] and references within). Motivated by the connection between
the discretization of PDEs and deep network [43, 7], and our observations on the shortcomings
of existing operations in CNNs, we propose reformulating CNNs into three different components.
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Namely, (i) a pointwise term, also known as a reaction term, where channels interact locally. (ii) A
diffusion term, where features are exchanged between neighboring pixels in a smooth manner. And,
(iii) an advection term, where features are passed from pixels to other pixels, potentially not only
among neighboring pixels, while preserving feature mass or color loss2. As we discuss in Section 3,
the combination of diffusion and reaction is equivalent to a standard CNN. However, there is no CNN
mechanism that is equivalent to the advection term. Introducing this new term equips the network
with flexibility in cases where information is carried directly.

Contributions: The contributions of this paper are three-fold. First, we form the spatio-temporal
dynamics in high dimensions as an advection-diffusion-reaction process, which is novel and has
not been studied in CNNs prior to our work. Second, we propose the use of the semi-Lagrangian
approach for its solution, introducing a new type of a learnable linear layer, that is sparse yet non-
local. This is in contrast to standard convolutional layers, which act locally. In contrast to advection,
other mechanisms for non-local interactions, require dense interactions, which are computationally
expensive [57]. Specifically, our use of semi-Lagrangian methods offers a bridge between particle-
based methods and convolutions [29]. Thus, we present a new operation in the context of CNNs,
that we call the push operator to implement the advection term. This operator allows us to transport
features anywhere on the image in a single step – an operation that cannot be modeled with small
local convolution kernels. It is thus a simple yet efficient replacement to the standard techniques
that are used to move information on an image. Third, we propose a methodology to learn these
layers based on the splitting operator approach, and show that they can successfully model advective
processes that appear in different datasets.

Limitations: The advection diffusion reaction model is optimal when applied to the prediction
of images where the information for the prediction is somehow present in the given images. Such
scenarios are often present in scientific applications. For example, for the prediction of the propagation
of fluids or gasses, all we need to know is the state of the fluid now (and in some cases, in a few
earlier time frames). A more complex scenario is the prediction of video. In this case, the next frame
may have new features that were not present in previous frames. To this end, the prediction of video
requires some generative power. While we show that our network can be used for video prediction
and even obtain close to the state-of-the-art results, we observe that it performs best for scientific
datasets.

2 Model Formulation

Notations and assumptions. We consider a spatio-temporal vector function of the form q(t,x) =
[q1(t,x), . . . ,qm(t,x)] ∈ Q, where Q is the space vector function with m channels. The function q
is defined over the domain x ∈ Ω ⊆ Rd, and time interval [0, tj ]. Our goal is to predict the function
at time tk for some tk > tj , given the inputs up to time j. For the problem we consider here, the time
is sampled on a uniform grid with equal spacing. Below, we define the advection-diffusion-reaction
system that renders the blueprint of the method proposed in this paper to achieve our goal.

Reaction-Advection-Diffusion System. Given the input function q, we first embed it in a higher
dimensional space. We denote the embedding function by I :∈ I, defined as

I(t,x) = MIn(q(t,x),θIn) (1)

where MIn : Rm → Rc is a multi-layer preceptron (MLP) that embeds the function q from m to
c > m channels with trainable parameters θIn.

To represent the evolution of q we evolve I in the hidden dimension, c, and then project it back into
the space Q. One useful way to represent the evolution of a spatio-temporal process is by combining
three different processes, as follows:

• Reaction: A pointwise process where channels interact pointwise (sometimes referred to as
1× 1 convolutions)

• Diffusion: A process where features are being communicated and diffused locally.

2That is the sum of the features is constant.
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Advection: tk → tk+1/3 Diffusion: tk+1/3 → tk+2/3 Reaction: tk+2/3 → tk+1

Figure 2: An illustration of the advection-diffusion reaction process. In the first step, Column A
(advection), a pixel on the lower left of the image is transported into the middle of the mesh. In the
second step, Column B (diffusion), the information is diffused to its neighbors, and finally, in the last
step, Column C (reaction), each pixel interacts locally to change its value.

• Advection: A process where information transports along mediums.

These three processes are also illustrated in Figure 2, and their composition defines the advection-
diffusion-reaction differential equation on the embedded vector I.

The equation can be written as

∂I(t,x)

∂t
= κ∆I(t,x) +∇ · (UI(t,x)) +R(I(t,x),θ), (2)

I(t = 0,x) = M(q(t = 0,x)). (3)

Here ∆ is the Laplacian, and ∇ is the divergence operator, as classically defined in PDEs [12]. The
equation is equipped with an initial condition and some boundary conditions. Here, for simplicity of
implementation, we choose the Neumann boundary conditions, but other boundary conditions can
also be chosen. The diffusivity coefficient κ, velocity field U, and the parameters that control the
reaction term R are trainable and are discussed in Section 3.

The equation is integrated on some interval [0, T ] and finally one obtains q(T,x) by applying a
second MLP, that projects the hidden features in I(t = T,x) to the desired output dimension, which
in our case is the same as the input dimension, i.e., m:

q(T,x) = MOut(I(T,x),θOut), (4)

where θout are trainable parameters for the projection MLP.

Remark (Equation 2 Reformulation). The discretization of Equation 2 can be challenging due to
conservation properties of the term∇ · (UI(t,x)). An alternative equation, which may be easier to
discretize in our context, can be obtained by noting that

∂I(t,x)

∂t
+∇ · (UI) =

∂I(t,x)

∂t
+U · ∇I+ I∇ ·U. (5)

The operator on the left-hand side in Equation 5 is the continuity equation [12], where the mass of I
is conserved. The first two terms on the right hand side, namely, It +U · ∇I are sometimes refer
to as the color equation [12] as they conserve the intensity of I. For divergent free velocity fields,
that is, when ∇ ·U = 0, these are equivalent, however, for non-divergent fields, the term I∇ ·U is
a pointwise operator on I, that is, it is a reaction term. When training a model, one can use either
Equation 2 in its continuity form or replace the term with Equation 5 and learn the term I∇ ·U as a
part of the reaction term, R. We discuss this in discretization of our model in Section 3.3.
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3 From a Partial Differential Equation to a Neural Network

To formulate a neural network from the differential equation in Equation 2 needs to be discretized in
time and space. In this work, we assume data that resides on a regular, structured mesh grid, such
as 2D images, and the spatial operators to discretize Equation 2 are described below. To discretize
Equation 2 in time, we turn to Operator Splitting methods [1] that are common for the discretization
of equations with similar structures, and were shown to be effective in deep learning frameworks [11].
As we see next, such discretization leads to a neural a network that has three types of layers that are
composed of each other, resulting in an effectively deeper neural network.

3.1 Operator Splitting

The idea behind operator splitting is to split the integration of the ODE into parts [30]. Specifically,
consider a linear differential equation of the form

∂I(t,x)

∂t
= AI(t,x) +DI(t,x) +RI(t,x), (6)

where A,D and R are matrices. The solution to this system at time t is well known [12] and reads

I(t,x) = exp (tA+ tD+ tR))I(0,x), (7)

where exp denotes the matrix exponentiation operation. It is also possible to approximate the exact
solution presented in Equation 7 as follows

exp (tA+ tD+ tR))I(0,x) ≈ exp(tA) ((exp(tD)(exp(tR)I(0,x))) (8)

The approximation is of order t, and it stems from the fact that the eigenvalues of the matrices A,D
and R do not commute (see [1] for a thorough discussion). Equation 8 can also be interpreted in
the following way. The solution, for a short time integration time t, can be approximated by first
solving the system ∂I(t,x)

∂t = RI(t,x), I0 = I(0,x) obtaining a solution IR(t,x), followed by the
solution of the system ∂I(t,x)

∂t = DIR(t,x), I0 = IR obtaining the solution IRD(t,x) and finally
solving the system ∂I(t,x)

∂t = AIRD(t,x), I0 = IRD. The advantage of this approach is that it allows
the use of different techniques for the solution of different problems. The derivation of the approach
employed in this work is presented in Appendix A.4, which also provides a detailed explanation of
the invariance to the order of splitting.

LetR be the solution operator that advances I(tj ,x) to IR(tj+1,x). Similarly, let D be the solution
operator that advances IR(tj+1,x) to IRD(tj+1,x) and lastly, let A be the solution of the advection
problem that advances IRD(tj+1,x) to I(tj+1,x). Then, a layer in the system can be written as the
composite of three-layer

L I(tj ,x) = A ◦ D ◦ R I(tj ,x). (9)

That is, the resulting discretization in time yields a neural network architecture of a layer that is
composed of three distinct parts. We now discuss each part separately.

3.2 Advection

The innovative part of our network is advection. The advection approximately solves the equation

∂I

∂t
= ∇ · (U(I,x, t)I) , (10)

for a general velocity field U. For the solution of this equation, we now introduce a linear operation
that we use to enhance the performance of our network. Our goal is to allow for information to pass
over large distances. To this end, consider a displacement field U = (U1,U2) and consider the
push operation, A(U)I as the operation that takes every pixel in I and displaces it from point x to
xu = x+U. Since the point xu does not necessarily reside on a grid point, the information from xu

is spread over four grid points neighbors, in weights that are proportional to the distance from these
points. A sketch of this process is plotted in Figure 3 (a). The operator discussed above conserves
that mass of the features. A different implementation, as discussed in Remark 1, is to discretize
the color equation. This is done by looking backward and using the interpolated value as shown in
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Figure 3: Discretization of the push operator. (a) Left: Semi-Lagrangian mass preserving transport,
discretizing the continuity. (b) Right: Semi-Lagrangian color-preserving transport.

Figure 3(b). It is possible to show [14] that these linear operators are transposed of each other. Here,
for each implementation, we chose to use the color equation. We show in ablation studies that the
results when using either formulation are equivalent.

The process allows for a different displacement vector u for every grid point. The displacement field
U in has 2c channels and can vary in space and time. To model the displacement field, we propose to
use the data at times,

Qk = [q(tk−j ,x),q(tk−j+1,x), . . . ,q(tk,x)], (11)

where j is the length of history used to learn the displacements.

Using Qk, the displacement field is computed by a simple residual convolution network, which we
formally write as

Uk = RN(Qk,η), (12)

where RN is the residual network parameterized by η.

3.3 Reaction

The reaction term is a nonlinear 1× 1 convolution. This yields a residual network of the form

Ij+1 = Ij + hM(Ij ,θj) = Rj(θj) Ij , (13)

where M is a standard, double-layer MLP with parameters θj and h is a step size that is a hyper-
parameter. We may choose to have more than a single reaction step per iteration.

3.4 Diffusion

For the diffusion step, we need to discretize the Laplacian on the image. We use the standard 5-point
Laplacian [16] that can also be expressed as 2D group convolution [37]. Let ∆h be the discrete
Laplacian. The diffusion equation reads

Ij+1 − Ij = hκ∆hIk.

If we choose k = j we obtain an explicit scheme

Ij+1 = Ij + hκ∆hIj . (14)

Note that the diffusion layer can be thought of as a group convolution where each channel is convolved
with the same convolution and then scaled with a different κ. The forward Euler method for the
diffusion requires hκ to be small if we want to retain stability. By choosing k = j + 1 we obtain the
backward Euler method, which is unconditionally stable

Ij+1 = (I− hκ∆h)
−1Ij = D(κ)Ij . (15)

To invert the matrix we use the cosine transform [25] which yields an n log n complexity for this step.
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Table 1: Datasets statistics. Training and testing splits, image sequences, and resolutions

Dataset Ntrain Ntest (C,H,W ) History Prediction

PDEBench-SWE 900 100 (1, 128, 128) 10 1
CloudCast 5241 1741 (1, 128, 128) 4 4, 8, 12, 16
Moving MNIST 10000 10000 (1, 64, 64) 10 10
KITTI 2042 1983 (3, 154, 512) 2 1, 3

Combining Diffusion and Reaction to a Single Layer. In the above network the diffusion is
handled by an implicit method (that is a matrix inversion) and the reaction is handled by an explicit
method. For datasets where the diffusion is significant, this may be important; however, in many
datasets where the diffusion is very small, it is possible to use an explicit method for the diffusion.
Furthermore, since both the diffusion and reaction are computed by convolutions, it is possible to
combine them into a 3× 3 convolution (see [43] and [20] for additional discussions). This yields a
structure that is very similar to a classical Convolutional Residual Network that replaces the diffusion
and reaction steps. For the datasets used in this paper, we noted that this modest architecture was
sufficient to obtain results that were close to state-of-the-art.

3.5 Implementing the ADR Network

Implementing the diffusion and reaction terms, either jointly or combined, we use a standard
Convolutional Residual Network. The advection term is implemented by using the sampleGrid
command in PyTorch [41], which uses an efficient implementation to interpolate the images.
While the network can be used as described above, we found that better results can be obtained by
denoising the output of the network. To this end, we have used a standard UNet and applied it to the
output. As we show in our numerical experiments, this allows us to further improve downstream
performance. The complete network is summarized in Algorithm 1.

Algorithm 1 The ADR network
Set I0 ←M(qk,θo), Qk as in equation 11.
for j = 0, 1, ...m− 1 do

Diffusion-Reaction IDR ← Dκj
Rθj

Ij
Compute displacement Uj = RN(IDR,ηj) as in equation 12
Push the image Ij+1 = A(Uj)IDR

end for
Set qk+ℓ = M(Im,θT )
(Optional) Denoise qk+ℓ = UNet(qk+ℓ)

4 Experiments

Our goal is to develop architectures that perform well for scientific-related datasets that require
advection. In our experiments, we use two such datasets, CloudCast [70], and the Shallow Water
Equation in PDEbench [51]. However, our ADRNet can also be used for the solution of video
prediction. While such problems behave differently than scientific datasets, we show that our
ADRNet can perform reasonably well for those applications as well. Below, we elaborate on the
utilized datasets. We run our codes using a single NVIDIA RTX-A6000 GPU with 48GB of memory.
Besides the experimental results reported in this Section, we provide additional results, from ablations
to visualizations and measured runtimes in Appendix A.

4.1 Datasets

We now describe the datasets considered in our experiments, which are categorized below.

Scientific Datasets: We consider the following datasets which arise from scientific problems and
communities: (1) SWE. The shallow-water equations are derived from the compressible Navier-
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Stokes equations. The data is comprised of 900 sets of 101 images, each of which is a time step. (2)
CloudCast. The CloudCast dataset comprises 70,080 satellite images captured every 15 minutes and
has a resolution of 3712× 3712 pixels, covering the entire disk of Earth.

Video Prediction Datasets: These datasets are mainly from the Computer Vision community, where
the goal is to predict future frames in videos. The datasets are as follows: (1) Moving MNIST. The
Moving MNIST dataset is a synthetic video dataset designed to test sequence prediction models. It
features 20-frame sequences where two MNIST digits move with random trajectories. (2) KITTI.
The KITTI is a widely recognized dataset extensively used in mobile robotics and autonomous
driving, and it also serves as a benchmark for computer vision algorithms.

The statistics of the datasets are summarized in Table 1, and in Appendix A, we provide results on
additional datasets, namely TaxiBJ [70] and KTH [45].

4.2 Evaluation

Ranking of Methods. Throughout all experiments where other methods are considered, we rank
the top 3 methods using the color scheme of First, Second, and Third.

Performance on Scientific Datasets. We start our comparisons with the SWE and CloudCast
datasets. These datasets fit the description of our ADRNet as future images depend on the history
alone (that is, the history should be sufficient to recover the future). Indeed, Table 2 and Table 3 show
that our ADRNet performs much better than other networks for these goals. Additional experiments
on the Navier-Stokes dataset are provided in Appendix A.3

Table 2: Results on PDEBench SWE Dataset.

Method NRMSE ↓
UNet [52] 8.3e-2
PINN [52] 1.7e-2
MPP-AVIT-TI [36] 6.6e-3
ORCA-SWIN-B [47] 6.0e-3
FNO [52] 4.4e-3
MPP-AVIT-B [36] 2.4e-3
MPP-AVIT-L [36] 2.2e-3

ADRNet 1.3e-4

Table 3: Results on CloudCast dataset.

Method SSIM (↑) PSNR (↑)

AE-ConvLSTM [70] 0.66 8.06
MD-GAN [67] 0.60 7.83
TVL1 [56] 0.58 7.50
Persistent [70] 0.55 7.41

ADRNet 0.83 38.17

Ground-Truth Prediction Error

Figure 4: Prediction and error for the SWE problem using our ADRNet.

Examples of the predictions of the SWE dataset and the CloudCast datasets are plotted in Figure 4
and Figure 6. For the SWE dataset, the errors are very small and close to machine precision. For
CloudCast, the data is noisy, and it is not clear how well it should fit. Predicting a single-time step,
while useful, has limited applicability. Our goal is to push the prediction for longer, hence providing
an alternative to expensive numerical integration. The results with SWE for long-time prediction
(i.e. using the same 10 timesteps from history to predict 5, 10, 20, 50 timesteps in the future) are
presented in Table 4, together with a comparison of the celebrated state of the art FNO method [33]
where we see that our model performs well even for long-time prediction. As summarized in Table 4,
ADRNet outperforms other models on long-range predictions for the SWE dataset. This is further
illustrated in Figure 5, which shows the prediction accuracy of ADRNet at future time steps of 10, 20,
and 50, demonstrating its ability to capture extended dependencies effectively.
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Figure 5: Predictions on the SWE dataset at future time steps 10,20,50 (left to right). Our results
demonstrate the large receptive field learned by ADRNet.

Table 4: Comparison of ADRNet and FNO on long range-predictions. We consider the prediction
of different numbers of steps given different numbers of input steps. For example, the setting of 10
input steps and 5 prediction steps is denoted by 10→ 5.

Metric 10 → 5 10 → 10 10 → 20 10 → 50

ADRNet FNO ADRNet FNO ADRNet FNO ADRNet FNO

MSE ↓ 9.2e-08 4.0e-07 1.5e-07 5.8e-07 2.1e-07 6.7e-07 8.5e-07 1.4e-06
nMSE ↓ 8.5e-08 3.7e-07 1.4e-07 5.4e-07 1.9e-07 6.2e-07 7.8e-07 1.3e-06
RMSE ↓ 3.0e-04 6.3e-04 3.9e-04 7.6e-04 4.5e-04 8.1e-04 9.2e-04 1.2e-03
nRMSE ↓ 2.9e-04 6.1e-04 3.7e-04 7.3e-04 4.4e-04 7.8e-04 8.8e-04 1.1e-03
MAE ↓ 2.0e-04 2.8e-04 1.7e-04 3.7e-04 1.9e-04 3.6e-04 4.1e-04 5.7e-04
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Figure 6: Example of the forecast by ADRNet compared to the ground truth over four time steps. ’t’
denotes the forecast time in 15-minute intervals. We use four input images to predict the subsequent
four images. While changes in the CloudCast dataset in the two subsequent frames are slow, ADRNet
achieved superior results in terms of PSNR and SSIM. A quantitative comparison is shown in Table 3.

To evaluate the generalization capability of ADRNet, we conducted additional experiments using
pre-trained ADRNet models on different datasets. These experiments, detailed in Appendix A.6,
demonstrate the effectiveness of ADRNet in transfer learning tasks, such as adapting from the
Navier-Stokes dataset to the SWE dataset.
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Table 5: Moving MNIST.

Method MSE ↓ MAE ↓
MSPred [58] 34.4 -
MAU [6] 27.6 -
PhyDNet [19] 24.4 70.3
SimVP [53] 23.8 68.9
CrevNet [69] 22.3 -
TAU [54] 19.8 60.3
SwinLSTM [55] 17.7 -
IAM4VP [46] 15.3 49.2

ADRNet 16.1 50.3

Table 6: Results on KITTI.

Method MS-SSIM (×10−2) ↑ LPIPS (×10−2) ↓
t+ 1 t+ 3 t+ 1 t+ 3

SADM [2] 83.06 72.44 14.41 24.58
MCNET [59] 75.35 63.52 24.04 37.71
CorrWise [15] 82.00 N/A 17.20 N/A
OPT [66] 82.71 69.50 12.34 20.29
DMVFN (w/o R) [23] 88.06 76.53 10.70 19.28
DMVFN [23] 88.53 78.01 10.74 19.27

ADRNet 85.86 83.62 7.54 9.26

Video Prediction Performance. We have used a number of video datasets to test our ADRNet.
The results of two of them (Moving MNIST and KITTI) are reported in Table 5 and Table 6. We
perform additional experiments for the KTH Action and TaxiBJ datasets in the appendix A. The
moving MNIST dataset adheres to the assumptions of our ADRNet. Indeed, for this dataset, we
obtain results that are very close to state-of-the-art methods.

The KTH Action dataset is more complex as not all frames can be predicted from the previous frames
without generation power. Nonetheless, even for this dataset our ADRNet performs close to the state
of the art. This limiting aspect of video synthesis is studied through experiments in appendix A.1.

5 Conclusion

In this paper, we have presented a new network for tasks that reside on a regular mesh that can be
viewed as a multi-channel image. The method combines standard convolutions with a linear operator
that transports information from one part of the image to another. The transportation vector field is
learned from previous images (that is, history), allowing for information to pass from different parts
of the image to others without loss. We combine this information within a diffusion-reaction process
that can be coded by itself or by using a standard ResNet.
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A Ablation Studies and Additional Experiments

A.1 Limited Generative Synthesis

Two real-life video datasets are taken to predict future time frames. Their statistics can be found in
Table 7. The specific challenge posed by these datasets is due to the dissimilarity in the train and
test sets. This is evident from the notable difference in the training and validation/test losses, which
can be seen in Figure 7. The validation loss starts increasing with more epochs. For example, the
KTH Action uses the movement behavior of 16 people for training while the models are tested on the
movement behavior of 9 other people in a slightly altered scenario. So, we can say that the problem
is to learn the general logic to predict unseen scenarios. Thus generative capability of a model could
be crucial for better prediction.

KTH Action TaxiBJ

Figure 7: Bias in training and testing samples in KTH Action and TaxiBJ datasets

KTH Action The KTH dataset features 25 individuals executing six types of actions: walking,
jogging, running, boxing, hand waving, and hand clapping. Following methodologies established in
references [59, 61], we utilize individuals 1-16 for training and individuals 17-25 for testing. The
models are trained to predict the subsequent 20 frames based on the preceding 10 observations.

TaxiBJ TaxiBJ is a collection of real-world GPS spatiotemporal data of taxis recorded as frames of
32x32x2 heat maps every half an hour, quantifying traffic flow in Beijing. We split the whole dataset
into a training set and a test set as described in [70]. We train the networks to predict 4 future time
frames from 4 observations.

Results Our model is easily able to predict and outperform the state-of-the-art models in real-life
video examples as well. The results for KTH Action and TaxiBJ can be seen in 8 and 9.

Table 7: Additional Dataset Statistics: Details on Training and Testing, Image Sequences, and
Resolutions

Dataset Ntrain Ntest (C,H,W ) History Prediction

KTH Action 5200 3167 (1, 128, 128) 10 20
TaxiBJ 19627 1334 (2, 32, 32) 4 4

A.2 CloudCast

The CloudCast dataset is used for multiple long-range predictions like 4, 8, 12, and 16 timesteps. It
can be noticed that even if the MSE or the quality degrades, the degradation is noticeably minimal. It
can be seen in Table 10, the figures for predicting 16 steps in future is still better than the state of art
for 4 steps in future.
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Table 8: Comparison of Our Method for KTH Action Dataset.

Method SSIM ↑ PSNR (dB) ↑
ConvLSTM [49] 0.712 23.58
PredRNN [62] 0.839 27.55
CausalLSTM [60] 0.865 28.47
MSPred [58] 0.930 28.93
E3D-LSTM [61] 0.879 29.31
SimVP [53] 0.905 33.72
TAU [54] 0.911 34.13
SwinLSTM [55] 0.903 34.34

ADRNet 0.808 31.58

Table 9: Comparison of Our Method for TaxiBJ Dataset.

Method MSE ↓ MAE ↓ SSIM ↑
ST-ResNet [70] 0.616 - -
VPN [24] 0.585 - -
ConvLSTM[49] 0.485 17.7 0.978
FRNN [38] 0.482 - -
PredRNN [62] 0.464 17.1 0.971
CausalLSTM [60] 0.448 16.9 0.977
MIM [63] 0.429 16.6 0.971
E3D-LSTM [61] 0.432 16.9 0.979
PhyDNet [19] 0.419 16.2 0.982
SimVP [53] 0.414 16.2 0.982
SwinLSTM [55] 0.390 - 0.980
IAM4VP [46] 0.372 16.4 0.983
TAU [54] 0.344 15.6 0.983

ADRNet 0.445 16.6 0.975

Table 10: Results for CloudCast dataset. Comparison of our model (ADRNet) with state of art models

ADRNet Predictive performance

Metric t + 4 t + 8 t + 12 t + 16

MSE (↓) 0.015 0.016 0.018 0.019
SSIM (↑) 0.83 0.79 0.76 0.74
PSNR (↑) 38.17 37.89 37.35 37.23

A.3 Navier-Stokes Dataset

To further demonstrate the effectiveness of our ADRNet on scientific data, we conduct experiments
on an additional dataset from PDEbench, specifically the Navier-Stokes equations. This large dataset
consists of 21,000 images, each with a resolution of 512x512. Our ADRNet ranks second among
various methods, positioning it in line with state-of-the-art approaches, as shown in Table 11 and
Figure 8. Additional metrics on this dataset obtained with UNet, FNO, and our ADRNet are reported
in Table 12.

Table 11: Comparison of methods based on normalized Mean Squared Error (nMSE). Our ADRNet
achieves competitive performance, ranking second among state-of-the-art methods.

Method UNet FNO MPP-AViT-TI MPP-AViT-S MPP-AViT-B MPP-AViT-L ADRNet (Ours)

nMSE (↓) 1.67 0.243 0.0312 0.0213 0.0172 0.0142 0.0168
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Figure 8: Visualization of ADRNet on Navier-Stokes dataset from PDEBench. Left column: ground-
truth velocity maps. Middle column: ADRNet prediction velocity maps prediction. Right Column:
Error between ground-truth and prediction.

Table 12: Comparison of different metrics on UNet, FNO, and our ADRNet, on the PDEBench
Navier-Stokes Inviscid Compressible at M = 0.1 with Turbulent Initial Condition.

Metric UNet FNO ADRNet (Ours)

RMSE 3.3× 10−1 2.8× 10−1 1.2676× 10−1

nRMSE 1.9× 10−1 1.6× 10−1 1.53× 10−2

Max Error 2.2× 100 1.8× 100 6.8378× 10−1

cRMSE 1.5× 10−2 1.2× 10−2 4.0903× 10−3

bRMSE 3.6× 10−1 2.8× 10−1 8.3314× 10−2

fRMSE (low) 6.5× 10−2 5.0× 10−2 1.4105× 10−2

fRMSE (mid) 3.2× 10−2 3.1× 10−2 2.6598× 10−2

fRMSE (high) 8.5× 10−3 6.5× 10−3 1.7822× 10−3

A.4 Order of Operator Splitting

We now show that numerically, the network computations are agnostic to the order of operator
splitting. Following that, we perform an experiment to verify our theoretical derivation.

Numerical Behavior. The following derivation demonstrates the validity of the operator split-
ting approach used, as detailed below. In numerical PDEs, for an initial value problem (IVP)
dx/dt = Ax, the solution is x(t) = exp(tA)x(0). For dx/dt = Ax + Bx, the solution is
x(t) = exp(t(A + B))x(0). If matrix exponentials were treated as scalars, the solution would
be x(t) = exp(tA) exp(tB)x(0), implying that the order of operations (reaction-diffusion and
advection) is invariant.

To analyze this, we review matrix exponentials. The matrix exponential exp(A) is defined by:

exp(A) =

∞∑
k=0

1

k!
Ak

For the sum of matrices A and B, the expansion is:
exp(t(A+B)) = I + t(A+B) + 0.5t2(A2 +B2 +AB +BA) +O(t3)

For the product of two matrix exponentials:
exp(tA) · exp(tB) = (I + tA+ 0.5t2A2 +O(t3)) · (I + tB + 0.5t2B2 +O(t3))
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Generally, for matrices A and B, AB ̸= BA unless they share eigenvectors.

Expanding Equation (2) and collecting terms, we get:

exp(tA) · exp(tB) = I + tA+ tB + 0.5t2(A2 +B2 + 2AB) +O(t3)

Comparing this with:

exp(t(A+B)) = I + tA+ tB + 0.5t2(A2 +B2 +AB +BA) +O(t3)

we find the approximation error is O(t2):

exp(tA) · exp(tB)− exp(t(A+B)) = 0.5t2(AB −BA) +O(t3)

This error depends on how AB differs from BA.

Regarding the sequence of operations, changing the order of A and B yields:

exp(t(A+B)) = exp(tA) · exp(tB) +O(t2) = exp(tB) · exp(tA) +O(t2)

Thus, the order of operations (advection vs. reaction-diffusion) does not fundamentally affect
numerical accuracy.

Advection-Diffusion-Reaction (ADR) vs. Diffusion-Reaction-Advection (DRA). To verify our
understanding of the numerical behavior of the order of splitting, we conduct an experiment that
compares two possible orders of operations: advection followed by reaction-diffusion, and vice versa,
on the Moving MNIST dataset. Figure 9 shows that the convergence plots and obtained predictions
for the two possible orderings are similar. In addition, we report the obtained test set performance on
the Moving MNIST dataset obtained with the two considered variants (ADRNet and DRANet) in
Table 13.

Figure 9: Convergence plot comparing the order of operations: ADR vs. DRA, along with examples
of predictions made by the models (from left to right, respectively). The different order of layers in
the ADR model yields similar results, consistent with our theoretical analysis.
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A.5 Advection vs. Dilated Convolutions

Dilated convolutions are known to be a mechanism that allows a wide field of view [68], which is also
obtained by our Advection operator. To demonstrate the benefit of our advection operator, we consider
two possible uses of dilated convolutions: (i) Using dilation instead of the diffusion mechanism,
combined with our advection operator, and (ii) using dilation instead of advection. We compare
their performance Moving MNIST dataset, which requires the ability to transport information across
distant pixels. Our results are presented in Table 14, and visualized in Figure 10. As can be seen, the
performance obtained when utilizing the advection operator is significantly improved, both in terms
of training convergence and the obtained downstream performance, highlighting the importance of
advection in tasks that require long-range transportation of features.

Figure 10: Comparison of ADRNet vs. using dilated convolutions. Blue: ADRNet. Orange: Using
dilation to implement diffusion, coupled with the advection operator. Green: Using dilation in place
of advection, with standard convolutions for reaction-diffusion. ADRNet demonstrates superior
convergence.

Method MSE (↓) MAE (↓)
ADRNet 16.1 50.3
DRANet 16.2 50.3

Table 13: Moving MNIST Test set performance with ADR vs. DRA operator splitting ordering. Both
cases yield similar results.

Method MSE (↓) MAE (↓)
Dilation with Advection 16.6 51.1
Dilation without Advection 25.7 72.8

ADRNet 16.1 50.3

Table 14: A comparison of two possible uses of Dilated Convolutions vs. our ADRNet, on the
Moving MNIST test set.
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A.6 Generalization and Transferability

Our ADRNet can be classified as a physics-inspired neural network [43, 10]. Thus, it is by construc-
tion equipped with an implicit bias and mathematically-grounded behavior. It is therefore, interesting
to study whether training ADRNet on one dataset and task can be useful for a different dataset
and task. To this end, in Figure 11 illustrates the performance of ADRNet on the SWE dataset,
leveraging a pre-trained model initially trained on the Navier-Stokes dataset from PDEBench. Our
results indicate that using a pre-trained ADRNet, even with minimal fine-tuning (a single linear
adaptation layer), significantly improves predictive accuracy compared to a randomly initialized
model. This outcome highlights the adaptability of ADRNet and generalization capability across
scientific datasets, showcasing its potential for tasks requiring domain transfer.

Figure 11: Results on SWE dataset using ADRNet pre-trained on the Navier-Stokes dataset. Using a
pre-trained ADRNet is beneficial both with and without fine-tuning a single linear adaptation layer
compared with a randomly initialized ADRNet.

A.7 Illustration of the Learned Velocity Fields

In Figure 12, we illustrate the learned advection field and attention maps. The obtained velocity fields
and their application confirm the concept described in Figure 1 and Figure 2 in the paper. We note
that the advection operator works on all channels in the embedded space. For the example at hand
(Moving MNIST), we have 64 channels and 5 convolution layers, that blend 10 previous time steps
given as the input. To generate the figure, we inspect one of the channels across all layers, and plot
a quiver plot of the advection field. This quiver plot shows the direction in which the advection is
guided to solve the task in the moving MNIST dataset. In addition, we plot the absolute value of the
advection field. The absolute value of the advection field is equivalent to an attention map, because it
shows the areas in the original image that move the most to generate the final image. Including this
figure allows us to visualize which areas in the input need to be moved to obtain the desired target.
As can be seen from Figure 5, the pixels that correspond to the digits in the input images are the ones
that obtain larger values of displacement in the learned advection field – this result is in accordance
with the concept of learning advection fields, as done in our ADRNet.

A.8 Runtimes

In Table 15, we provide a runtimes comparison of ResNet and our ADRNet. The runtimes were
measured using an NVIDIA RTX-A6000 GPU, with an ADRNet and a ResNet, both with 32 hidden
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Figure 12: Top Row: 10 input time-steps to ADRNet. Middle Row: Quiver maps of the learned
advection fields. Bottom Row: Attention maps are defined by the magnitude of the advection field at
each pixel. The advection fields and attention maps are in layers 0, . . . , 3, from left to right.

dimensions, 10 input features, 1 output feature, batch size of 32, and 2 layers, on a varying image
size input. The results show that while our ADRNet requires more runtimes than standard CNNs, it
maintains a reasonable computational cost.

Image Size 32×32 64×64 128×128 256×256

ResNet 4.2 / 0.6 20.3 / 10.4 79.2 / 45.8 192.8 / 58.2
ADRNet (Ours) 12.8 / 3.7 53.3 / 19.1 175.8 / 72.8 484.3 / 179.1

Table 15: Runtimes (training/inference) comparison of ResNet and our ADRNet, in milliseconds.
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B Evaluation Metrics

Moving MNIST, KTH Action, TaxiBJ, CloudCast These specific video prediction datasets have
been using MAE (Mean Absolute Error), MSE (Mean Squared Error), SSIM (Structural Similarity)
and PSNR (Peak Signal-to-Noise Ratio). The evaluated SSIM and PSNR are averaged over each
image. The MSE and MAE have a specific way to calculate, where the pixel-wise evaluation values
are summed up for all the pixels in the image.

MSE =
1

N

N∑
i=1

H∑
h=1

W∑
w=1

C∑
c=1

(y − ŷ)2 (16)

MAE =
1

N

N∑
i=1

H∑
h=1

W∑
w=1

C∑
c=1

|y − ŷ| (17)

PSNR =
1

N

N∑
i=1

10 · log10
(

MAX2

MSE

)
(18)

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(19)

SSIM =
1

N

N∑
i=1

SSIM(x, y) (20)

where:

N is the number of images in the dataset,
H is the height of the images,
W is the width of the images,
C is the number of channels (e.g., 3 for RGB images),
y is the true pixel value at position (i, h, w, c), and
ŷ is the predicted pixel value at position (i, h, w, c).

MAX is the maximum possible pixel value of the image (e.g., 255 for an 8-bit image),
MSE is the Mean Squared Error between the original and compressed image.
µx is the average of x,
µy is the average of y,

σ2
x is the variance of x,

σ2
y is the variance of y,

σxy is the covariance of x and y,

C1 = (K1L)
2 and C2 = (K2L)

2 are two variables to stabilize the division with weak denominator,
L is the dynamic range of the pixel values (typically, this is 255 for 8-bit images),

K1 and K2 are small constants (typically, K1 = 0.01 and K2 = 0.03).

PDEBench-SWE PDEBench uses the concept of pixel-wise mean squared error (MSE) and
normalized mean squared error (nMSE) to validate scaled variables in simulated PDEs. Along
with these, we also use root mean squared error (RMSE) and normalized root mean squared error
(nRMSE).

MSE =
1

N ·H ·W · C

N∑
n=1

H∑
h=1

W∑
w=1

C∑
c=1

(x− x̂)2 (21)
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nMSE =
1

N ·H ·W · C

N∑
n=1

H∑
h=1

W∑
w=1

C∑
c=1

(x− x̂)2

x2
(22)

RMSE =
1

N

√√√√ 1

H ·W · C

N∑
n=1

H∑
h=1

W∑
w=1

C∑
c=1

(x− x̂)2 (23)

nRMSE =
1

N

√√√√ 1

H ·W · C

N∑
n=1

H∑
h=1

W∑
w=1

C∑
c=1

(x− x̂)2

x2
(24)

where:

N is the number of images in the dataset,
H is the height of the images,
W is the width of the images,
C is the number of channels (e.g., 3 for RGB images),
x is the true pixel value at position (n, h,w, c), and
x̂ is the predicted pixel value at position (n, h,w, c).

KITTI

MS-SSIM(x, y) = [lM (x, y)]
αM

M∏
j=1

[cj(x, y)]
βj [sj(x, y)]

γj (25)

MS-SSIM =
1

N

N∑
i=1

MS-SSIM(x, y) (26)

where:

N is the number of images in the dataset,
lM (x, y) is the luminance comparison at the coarsest scale M,

cj(x, y) is the contrast comparison at scale j,

sj(x, y) is the structure comparison at scale j,

αM , βj , γj are the weights applied to the luminance, contrast, and structure terms at each scale respectively,
M is the number of scales used in the comparison.

The luminance, contrast, and structure comparisons are given by:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

where:

µx, µy are the local means of x and y,

σx, σy are the local standard deviations of x and y,

σxy is the local covariance of x and y,

C1, C2, C3 are constants to stabilize the division.

LPIPS(x, x̂) =
∑
l

1

HlWl

Hl∑
h=1

Wl∑
w=1

∥wl ⊙ (ϕl(x)hw − ϕl(x̂)hw)∥22 (27)
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LPIPS =
1

N

N∑
i=1

LPIPS(x, x̂) (28)

where:

N is the number of images in the dataset,
ϕl(x) is the activation of the l-th layer of a deep network for the image x,

ϕl(x̂) is the activation of the l-th layer of a deep network for the image x̂,

wl is a learned weight vector for the l-th layer,
Hl and Wl are the height and width of the l-th layer activations,
⊙ denotes element-wise multiplication.

C Hyperparameter Settings and Computational Resources

C.1 ADRNet Training on PDEBench-SWE

Hyperparameter Symbol Value

Learning Rate η 1e− 04
Batch Size B 64
Number of Epochs N 200
Optimizer - Adam
Number of Layers - 1
Hidden Channels - 128
Activation Function - SiLU

Table 16: Neural Network Hyperparameters

C.2 ADRNet Training on Other Datasets

Hyperparameter Symbol Value

Learning Rate η 2e− 06
Batch Size B 16
Number of Epochs N 1000
Optimizer - Adam
Number of Layers - 8
Hidden Channels - 192
Activation Function - SiLU
Learning Rate Scheduler - ExponentialLR

Table 17: Neural Network Hyperparameters

C.3 Computational Resources

All our experiments are conducted using an NVIDIA RTX-A6000 GPU with 48GB of memory.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution paragraph in the introduction (Section 1) explicitly describes
the main contributions of the paper. The claims are supported by theory (Section 3) and
experiments (Section 4). The results show our ADRNet exceptionally beating state-of-the-art
methods (Section 4.2) in spatiotemporal prediction with a wide variety of datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The proposed method is very much generalizable for spatiotemporal predic-
tions. Yet, the evaluation section (Section 4) and appendix (Appendix A.1) include separate
paragraphs discussing the limiting generative synthesis with experiments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Section 3 presents our main theoretical motivation, and it contains the full set
of assumptions in devising our ADRNet. However, no theoretical result, theorem or lemma
is proposed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3 fully describes our proposed method, and Appendix A contains
experimental details to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We offer comprehensive details regarding the implementation and evalua-
tion of our ADRNet (Appendix A), and our code is available at https://github.com/
Siddharth-Rout/deepADRnet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and Appendix C.1 contains all the details, including the hyperparam-
eters and other experimental choices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the same report practice as in preceding papers in the field, which
also do not report the standard deviation of their results. To ensure fairness, we still ran our
model on 5 different seeds and reported the average result.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix C.3 describes the type of GPUs used in the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work is fundamental and not tied to any particular application. Hence,
there is no associated societal impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited the owners of the assets and the licenses in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32


	Introduction and Motivation
	Model Formulation
	From a Partial Differential Equation to a Neural Network
	Operator Splitting
	Advection
	Reaction
	Diffusion
	Implementing the ADR Network

	Experiments
	Datasets
	Evaluation

	Conclusion
	Ablation Studies and Additional Experiments
	Limited Generative Synthesis
	CloudCast
	Navier-Stokes Dataset
	Order of Operator Splitting
	Advection vs. Dilated Convolutions
	Generalization and Transferability
	Illustration of the Learned Velocity Fields
	Runtimes

	Evaluation Metrics
	Hyperparameter Settings and Computational Resources
	ADRNet Training on PDEBench-SWE
	ADRNet Training on Other Datasets
	Computational Resources


