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Abstract: Simulation parameter settings such as contact models and object geometry ap-1

proximations are critical to training robust manipulation policies capable of transferring2

from simulation to real-world deployment. There is often an irreducible gap between3

simulation and reality: attempting to match the dynamics between simulation and reality4

may be infeasible and may not lead to policies that perform well in reality for a specific5

task. We propose AdaptSim, a new task-driven adaptation framework for sim-to-real6

transfer that aims to optimize task performance in target (real) environments. First, we7

meta-learn an adaptation policy in simulation using reinforcement learning for adjusting8

the simulation parameter distribution based on the current policy’s performance in a9

target environment. We then perform iterative real-world adaptation by inferring new10

simulation parameter distributions for policy training. Our extensive simulation and11

hardware experiments demonstrate AdaptSim achieving 1-3x asymptotic performance12

and ∼2x real data efficiency when adapting to different environments, compared to13

methods based on Sys-ID and directly training the task policy in target environments.14

1 Introduction15

Learning robust and generalizable policies for real-world manipulation tasks typically requires a substantial16

amount of training data. Since using real data exclusively can be very expensive or even infeasible, we often17

resort to training mostly in simulation. This raises the question: how should we specify simulation parame-18

ters to maximize performance in the real world while minimizing the amount of real-world data we require?19

Figure 1: AdaptSim iteratively improves task
performance in dynamic scooping task under
“irreducible” sim-to-real gap.

A popular method is to perform domain randomization20

[1, 2, 3, 4]: train a policy using a wide range of different21

simulation parameters in the hope that the policy can thus han-22

dle possible real-world variations in dynamics or observations.23

However, the trained policy may achieve good average per-24

formance, but perform poorly in a particular real environment.25

There has been work in performing system identification26

(Sys-ID) for providing a point or a distributional estimate of27

parameters that best matches the robot or environment dy-28

namics exhibited in real-world data. This estimation can be29

performed using either a single iteration [5] or multiple ones30

[6]. These adaptive domain randomization techniques allow31

training policies suited to specific target environments.32

While simple objects such as a box and its properties like the33

inertia can be well-modeled, there is a substantial amount of34

“irreducible” sim-to-real gap in many settings such as contact-rich manipulation tasks. Consider the task35

of using a cooking spatula to dynamically scoop up small pieces of food from a table (Fig. 1). The exact36

geometry of the pieces and spatula is difficult to specify, deformations such as the spatula bending against37

the table are not yet maturely implemented in simulators, and contact models such as point contact have38

been known to poorly approximate the complex real-world contact behavior [7] in these settings. In this39
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case, real environments are out-of-domain (OOD) from simulation, and performing Sys-ID of simulation40

parameters might fail to train a useful policy for the real world due to this inherent irreducible gap.41

Contributions. In this work we take a task-driven approach: instead of trying to align the simulation with42

real-world dynamics, we focus on finding simulation parameters such that the resulting policy optimizes43

task performance. Such an approach can lead to policies that achieve high reward in the real world even44

with an irreducible sim-to-real gap. We consider settings where the robot has access to a simulator between45

iterations of real-world interactions, allowing it to observe real-world dynamics and adapt the simulator46

accordingly with the goal of improving task performance in reality. We propose AdaptSim — a two-phase47

framework where (i) an adaptation policy that updates simulation parameters is first meta-trained using48

reinforcement learning in simulation, and (ii) then deployed on the real environment iteratively. Training49

the adaptation policy to maximize task reward enhances the efficiency of real data usage by identifying only50

task-relevant simulation parameters and helps trained policies better generalize to OOD (real) environments.51

We demonstrate our approach achieving 1-3x asymptotic performance and ∼2x real data efficiency in52

OOD environments in three robotic tasks including two that involve contact-rich manipulation, compared53

to methods based on Sys-ID and directly training the task policy in target environments.54

2 Related Work55

Sim-to-real transfer in robotics has been primarily addressed using Domain Randomization (DR) techniques56

[1, 8, 9, 10, 11, 12, 13] that inject noise in simulation parameters related to visuals, dynamics, and actuations.57

Below we summarize techniques that better adapt to real environments.58

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line59

of work identifying simulation parameters that match the robot and environment dynamics in the real60

environment. BayesSim [6] and follow-up work [16, 17] apply Bayesian inference to iteratively search61

for a posterior distribution of the simulation parameters based on simulation and real-world trajectories.62

However, these methods consider relatively well-modeled environment parameterizations such as object63

mass or friction coefficient during planar contact; Sys-ID approaches can be brittle when the simulation64

does not closely approximate the real world [13, 18].65

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find66

simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply67

Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping68

coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only69

[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target70

environments (e.g., 150 in [19]), which is very time-consuming for many tasks requiring human reset.71

AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference72

(e.g., 20 in our pushing experiments).73

3 Problem Formulation74

Environment. In simulation, we consider a space Ω that parameterizes quantities such as friction coeffi-75

cients and dimensions of geometric primitives. Let E denote a distribution of sim parameters with support76

on Ω. Denote a single sim environment E∈Ω and a real environment Er.77

Task Policy and Trajectory. We denote a task policy π∈Π:O→A that maps the robot’s observation ot to78

action at. Running it in an environment results in a state-action trajectory τ(π;E):[0,T ]×Π×E→S×A79

with time horizon T . The trajectory is also subject to an initial state distribution. We specify tasks for80

the robot using a reward function (e.g., pushing some object to a specific location on the table), and let81

R(τ)∈ [0,1] denote the normalized cumulative reward accrued by a trajectory. We let R(π;E) denote the82

reward of running the task policy π in the environment E, in expectation over the initial state distribution.83

Goal. Our eventual goal is to find a task policy that maximizes the task performance in a real environment84

Er. Instead of directly searching for the policy, we search for the best sim parameter distribution E for85

training π in the following bi-level optimization objective:86

sup
E

R(π∗
E ;E

r), where π∗
E := sup

π
E

E∼E
[R(π;E)], (1)
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Figure 2: AdaptSim consists of two phases: (1) meta-training an adaptation policy in sim by maximizing task reward
on randomly sampled simulated target environments; (2) iteratively adapting simulation parameter distributions based
on real trajectories. The upper-right illustration shows that using only a few real trajectories, the task policy is adapted
to push the bottle closer to the target location (yellow cross).

the optimal task policy for E. Performing the outer level of (1) requires interactions with Er (the real87

world); we allow a small budget of such interactions. We emphasize that the objective above identifies88

the optimal distribution of simulation parameters for maximizing task performance, unlike objectives that89

attempt to match the dynamics between simulation and reality.90

4 Approach91

One way to solve (1) is to perform blackbox optimization on E by evaluating R(π∗
E ;E

r) [19], which92

requires a large budget of real trajectories (see results in Sec. 6). AdaptSim instead amortizes the expensive93

outer loop to simulation: it solves (1) for many simulated environments, learns the mapping to the solutions,94

and then infers the solution for Er. There are two phases (Fig. 2):95

1) Meta-learn the adaptation policy in sim: randomly sample target environments Es∈Ω in sim, and96

then train an “adaptation” policy f :(E,τ) 7→∆E using RL to maximize task reward in Es, by updating97

the sim parameter distribution (and the corresponding task policies) in iterations.98

2) Iteratively adapt sim parameters with real data: given a real environment Er, iteratively infer better99

sim parameter distributions using the trained f and a few real trajectories; the task policy is iteratively100

fine-tuned in sim to improve task reward with the updated parameter distribution.101

4.1 Phase 1: meta-learning the adaptation policy in sim102

In order to correctly infer simulation parameters for an unseen real environment at test time, we first train103

the adaptation policy to infer better parameters for many simulated target environments. This phase happens104

entirely in simulation. Formally, we model the problem as a partially-observable contextual bandit [23].105

Definition 1 A Simulation-Adaptation Contextual Bandit (SA-CB) is specified by a tuple (Ω,T ,P,R):106

• Ω is the space of contexts. Each context corresponds to a simulated target environment Es; the context is107

not directly observable.108

• T is the space of partial observations of the context. Each observation corresponds to a trajectory109

observed by running the task policy in a given context.110

• P is the space of actions. An action corresponds to choosing a sim parameter distribution E.111

• R is the reward associated with choosing an action in a particular context (i.e., the reward R(π∗
E ;E

s) of112

the task policy π∗
E trained with E when deployed in the target environment Es).113

It may be difficult to infer the optimal E ∈ P using a single iteration of interactions with the target114

environment — if the current task policy fails badly in the target environment, the interaction may reveal115

little information. Thus, we iteratively apply incremental changes to E, with the parameter distribution116

initialized as Ei=0. Solving the SA-CB (using techniques that we detail below), we meta-learn an adaptation117
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policy f(E,τ) to maximize:118

E
Es∼UΩ

E
E0∼UP

I∑
i=0

γiR(π∗
Ei
;Es), (2)

where Ei+1=Ei+∆Ei
,∆Ei

=f
(
Ei,τ(π∗

Ei
;Es)

)
,

and UΩ and UP are uniform distributions over Ω and P respectively, and γ<1 is the discount factor. This119

is the expected discounted sum of task rewards over multiple interactions from i=0 to the adaptation120

horizon I, over random sampling of simulated target environment and initial sim parameter distribution.121

Figure 3: Task-policy trajectories better reveal task-relevant
information such as scooping dynamics under fast contact.

Sim parameter distribution space. We choose122

the space P of possible simulation parameter distri-123

butions to be Gaussian with mean bounded within124

Ω and a fixed variance. We also use a fixed step125

size δ for adapting each simulation parameter, rang-126

ing from 10% to 15% of the parameter range de-127

pending on the dimension of Ω — thus the set of128

possible ∆E along each dimension is {δ,−δ,0}.129

Algorithm 1 Meta-learning the adaptation pol-
icy in sim

Require: (Ω,T ,P,R), SA-CB
Require: Sf =∅, replay buffer
Require: SE = ∅, set of all simulation parameter

distributions (and their task policies) used
1: Initialize ϵ←1
2: for k←0 to K do
3: Sample target Es∼UΩ and Ei=0∼UP
4: for i←0 to I do
5: Train task policy π∗

Ei (Sec.A2.2)
6: Collect τ(π∗

Ei ;E
s) and R(π∗

Ei ;E
s)

7: Sample random ∆Ei or infer ∆Ei =
f(Ei,τ(·;·))

8: Update Ei+1←Ei+∆Ei
9: Add

(
Ei,∆Ei ,τ(·;·),R(·;·)

)
to Sf

10: Add Ei (and π∗
Ei) to SE

11: end for
12: Train f using Double Q-Learning and Sf

13: Anneal ϵ towards 0
14: end for
15: return f , SE

Task-policy trajectory as observation. We have chosen130

the task policy π∗
E to generate the trajectory observations131

used by the adaptation policy. Our intuition is that,132

compared to arbitrary policies or ones that generate the133

most “informative” trajectories in terms of dynamics134

[24], π∗
E better reveal the task-relevant information of135

the target environment . In the scooping task, the robot136

needs to attempt to scoop up the pieces so it can learn137

about the effect of the environment on the task (e.g., a138

piece with a flat bottom is generally harder to scoop).139

Simply pushing the pieces around does not exhibit the140

behavior of the pieces under fast contact (Fig. 3).141

Training the adaptation policy using RL. The adap-142

tation policy f is parameterized using a Branching Du-143

eling Q-Network [25], which outputs the state-action144

value of choosing any of the {δ,−δ,0} along each action145

dimension. It takes in (1) the vector of the mean of cur-146

rent simulation parameter distribution and (2) trajectory147

observation. We apply reinforcement learning (RL) to148

train f to maximize Eq. (2). In simulation, we collect K “adaptation trajectories”; each trajectory is a set149

{
(
Ei,∆Ei

, R(π∗
Ei
;Es), τ(π∗

Ei
;Es)

)
}Ii=0 and saved in a replay buffer Sf . Since each step involves training150

the corresponding task policy π∗
Ei

, which can be expensive, we apply off-policy Double Q-Learning [26] for151

sample efficiency. Using this, the adaptation policy outputs the greedy action of a parameterized Q function,152

f(E,τ)=argmax∆E
Q(E,τ ;∆E). We use ϵ-greedy exploration with ϵ initialized at 1 and annealed to 0.153

This constitutes the first phase of AdaptSim. Algorithm 1 details the steps for collecting adaptation154

trajectories in the inner loop (Line 4-15) and meta-learning the adaptation policy. We save all distributions155

(and their corresponding task policies, omitted in notations for convenience) in a set SE , which are used156

again in the second phase. Training the task policy for each E is the most computationally heavy component157

of Algorithm 1; in Sec. A2.2 we explain the heuristics applied to allow re-using task policies between E in158

order to improve computational efficiency.159

4.2 Phase 2: iteratively adapt sim parameters with real data160

After meta-training the adaptation policy to find good task policies for a diverse set of target environments in161

simulation, we can apply it for inference and perform adaptation for the real environment Er. Algorithm 2162

details the iterative process. We apply the same adaptation process as the inner loop of Algorithm 1 for Ir163

iterations: train the task policy in simulation, evaluate it in the real environment, and infer the change of164

simulation parameters based on real trajectories. We always apply the greedy action from f(E,τ) (ϵ=0).165
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Algorithm 2 Iteratively adapt sim parameters
with real data
Require: Er, real environment
Require: (Ω,T ,P,R), SA-CB
Require: f , adaptation policy trained in Phase 1
Require: Sf , set of sim parameter distributions (and

corresponding task policies) from Phase 1
1: Sample S′

f from Sf

2: for i←0 to Ir do
3: for Ei∈S′

f do
4: Train or fine-tune the task policy π∗

Ei in
sim

5: Collect τ(π∗
Ei ;E

r) and R(π∗
Ei ;E

r) in
real

6: Update Ei+1←Ei+f
(
Ei,τ(·;·)

)
7: end for
8: end for
9: return π∗

Ei with the highest R(·;Er)

Since we have sampled a large set SE of parameter dis-166

tributions and trained their task policies in Phase 1, we167

may re-use them here. At the beginning of Phase 2, we168

sample S′
E , a set of N distributions saved in SE , as the169

initial distributions to be adapted independently. Usually170

we pick N=2 considering the trade-off between num-171

ber of real trajectories needed and convergence of task172

performance (see Appendix A5 for analysis).173

5 Tasks174

Next we detail the three robotic tasks for evaluating175

AdaptSim and baselines. We choose these tasks and176

design the environments to highlight the irreducible gap177

between training and test domains.178

5.1 Swing-up of a linearized double pendulum179

This is a classic control task where the goal is to swing up a simple double pendulum with two actuated180

joints at one end of the two links. We consider the dynamics linearized around the state with the pendulum181

at the top, and thus the optimal policy can be solved exactly using Linear Quadratic Regulator (LQR) [27]182

for a particular set of simulation parameters (i.e., a Dirac delta distribution). The task cost (reward) function183

is defined with the standard quadratic state error and actuation penalty. The trajectory observation is evenly184

spaced points along trajectory of the two joints.185

Simulation setup. The environment is parameterized with four parameters: m1 and m2∈ [1,2], point mass186

of the two joints, and b1 and b2∈ [1,2], damping coefficients of the two joints. The dynamics is simulated187

with numerical integration without a dedicated physics simulator.188

5.2 Dynamic table-top pushing of a bottle189

The robot needs to dynamically push a bottle to a particular target location on the table (Fig. 4). Since the190

target can be outside the workspace of the robot, the robot must push objects with high velocity — causing191

them to slide after a short period of contact. The task policy is parameterized with a neural network that192

maps the desired target location to action including (1) planar pushing angle and (2) robot end-effector193

speed (see Appendix A4 for visualization) and the predicted reward. The network then acts as a state-value194

(Q) function and is trained off-policy while simulated trajectories are saved in a replay buffer. The task195

cost (reward) is defined as the distance between the target location and the final location of the bottle. The196

trajectory observation is either (1) the final 2D position of the bottle only, or (2) evenly spaced points along197

the 2D trajectory — we consider both representations in the experiments.198

Notation Description Range

µ table friction coefficient [0.05,0.2]
e hydroelastic modulus [7] [1e4,1e6]
µp patch friction coefficient [0.20,0.80]
yp patch lateral location [−0.10,0.10]

Table 1: Sim setup for the pushing task.

Simulation setup. We employ the Drake physics sim-199

ulator [28] for its accurate contact mechanics. In this200

simulated environment, a small patch of the table is sim-201

ulated with different physics properties, simulating a wet202

or sticky area on the work surface. Parameter settings203

for this task are shown in Table 1. The hydroelastic mod-204

ulus is a parameter of the hydroelastic contact model [7]205

implemented in Drake — it roughly simulates how “soft” the contact is between the objects, with lower206

values being softer.207

Real setup. Two 3D-printed bottles (Fig. 4, Heavy and Light) with the same dimensions but different208

materials and masses are used. With an idealized model, the sliding distance should only depend on the209

contact surface but not the mass — which is the case in simulation — but in real experiments, we find the210

two bottles consistently travel different distances. Additionally, Heavy tends to rotate slightly despite being211

pushed straight due to a slightly uneven bottom surface. This type of unmodeled effect exemplifies the212

irreducible sim-to-real gap. We also adhere a small piece of high-friction Neoprene rubber to the table,213

which decelerates the bottle and further complicate the task dynamics.214
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Figure 4: Setup of the dynamic pushing and dynamic scooping tasks in both simulation and reality.

5.3 Dynamic scooping of food pieces with a spatula215

The robot needs to use a cooking spatula to scoop up small food pieces on the table (Fig. 4). It is a216

challenging task that requires intricate planning of the scooping trajectory — we notice humans cannot217

complete the task consistently without a few trials to practice. The task policy is parameterized with218

a neural network that maps the initial positions of the food pieces to parameterization of the scooping219

trajectory: (1) initial distance of the spatula from the pieces, (2) initial pitch angle of the spatula from the220

table, and (3) the timestep to lift up the spatula (see Appendix A4 for details), and the predicted reward.221

The task reward is defined as the ratio of food pieces on the spatula at the end of the action. The trajectory222

observation is evenly spaced points along 2D trajectories of the food pieces.223

Simulation setup. We again use the Drake simulator. The parameter settings are shown in Table 2.224

Notation Description Range

µ friction coefficient [0.25,0.4]
e hydroelastic modulus [1e4,5e5]
g food piece geometry {ellipsoid,cylinder}
h food piece height [1.5cm,2.5cm]

Table 2: Sim setup for the scooping task.

Real setup. Six different kinds of food pieces are used225

(Fig. 4): (1) chocolate raisin, (2) (fake, rubber-like)226

sliced carrot, (3) (fake, rigid) sliced cucumber, (4) raw227

Brussels sprout, (5) raw sliced mushroom, and (6)228

Oreo cookie. They cover different shapes from being229

round, ellipsoidal, to roughly cylindrical, and also have230

different amounts of deformation and friction.231

6 Experiments232

Through extensive experiments below, we demonstrate that AdaptSim improves asymptotic task perfor-233

mance compared to Sys-ID and other baselines when adapting to real and OOD simulated environments,234

while also improving data efficiency. For baselines, first we consider methods that directly optimizes the235

task policy: (1) Uniform domain randomization (UDR): train a task policy to optimize the average236

task reward over environments from UΩ; (2) UDR+Target: fine-tune the task policy from UDR with real237

data; (3) LearnInTarget: directly train a task policy with data in the target environment only by fitting a238

small neural network that maps action to final reward. The policy then outputs the action with the highest239

predicted reward. With enough real data, this baseline should act as the oracle or upper bound of task240

performance, but can be inefficient. Next, we consider two that perform SysID and iteratively train the241

task policy like AdaptSim: (4) SysID-Bayes [6, 29]: iteratively infer the sim parameter distribution based242

on real trajectories to match dynamics in sim and reality, known as BayesSim; (5) SysID-Point: infer a243

point estimate of the sim parameter instead of a distributional one (we hypothesize that in some settings244

randomizing sim parameters with a distribution can negatively impact task policy training).245

6.1 AdaptSim achieves better task performance through adaptation246

Sim-to-Sim Adaptation. We perform experiments for all baselines adapting to different WD (Within-247

Domain) and OOD simulated environments. WD environments are generated by sampling all simulation248

parameters within Ω of each task, and OOD environments are generated by sampling some parameters249

outside Ω (see Appendix A5 for details). Table 3 shows the adaptation results in the target environments in250

the three tasks. While Sys-ID baselines achieve high reward in WD environments, AdaptSim outperforms251

Sys-ID baselines in almost all OOD environments.252

Sim-to-Real Adaptation. Next we perform experiments for adapting to real environments. Fig. 5 shows253

the average reward achieved at each adaptation iteration in the pushing and scooping tasks. Generally the254

performance gap between AdaptSim and Sys-ID baselines is larger in reality, with AdaptSim achieving255

better performance. In the scooping task, for example, AdaptSim is able to train a task policy for sliced256

cucumbers with decent performance (60% success rate); the pieces are very thin and difficult to scoop257

under (Fig. 8). Other baselines fail to scoop up the pieces.258
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Double Pendulum Swing-Up Bottle Pushing Food Scooping

Method WD OOD-1 OOD-2 OOD-3 OOD-4 WD OOD-1 OOD-2 OOD-3 OOD-4 WD OOD-1 OOD-2 OOD-3 OOD-4

AdaptSim 0.98 0.96 0.95 0.95 0.98 0.95 0.87 0.73 0.86 0.77 1.00 0.64 1.00 1.00 0.55

SysID-Bayes [6] 0.85 0.76 0.79 0.23 0.96 0.98 0.80 0.65 0.81 0.79 0.90 0.66 0.81 1.00 0.36
SysID-Point 0.95 0.60 0.73 0.39 0.76 0.94 0.84 0.68 0.85 0.78 0.94 0.63 0.90 1.00 0.42

UDR - - - - - 0.68 0.65 0.61 0.67 0.58 0.65 0.22 0.43 0.55 0.12
UDR+Target - - - - - 0.78 0.73 0.66 0.71 0.70 0.61 0.31 0.49 0.60 0.21
LearnInTarget - - - - - 0.91 0.75 0.66 0.74 0.71 0.03 0.00 0.25 0.26 0.03

Table 3: Sim-to-Sim Adaptation. Best average reward achieved over adaptation horizons at different WD and OOD
simulated target environment in the three tasks. For the pendulum task, the values are normalized in [0,1] using the
reward achieved by UDR (lower bound) and by using the best possible parameters within Ω (upper bound, estimated
with exhaustive sampling). For the pushing task, the values are normalized with 20cm as the maximum error, which is
the range of possible goal locations in the forward direction.

Figure 5: Sim-to-Real Adaptation. Reward achieved over adaptation iterations by all methods, in the task of pushing
(left) and scooping up (right) different real objects (see Fig. 4 for images). Results are averaged over 10 trials in the
pushing task and 5 in the scooping task.

6.2 AdaptSim improves real data efficiency259

Real data budget

Method 0 4 8 16 24 32 40 48

AdaptSim 0.30 0.69 0.80 0.83 0.84 0.84 0.82 0.83
LearnInTarget 0.05 0.04 0.63 0.69 0.76 0.80 0.84 0.83
UDR+Target 0.63 0.56 0.62 0.66 0.68 0.74 0.82 0.82

BayesOpt - - - - 0.65 0.72 0.79 0.80

Table 4: Adaptation Data Efficiency. Normalized reward
achieved using different amount of real data in the pushing
task with Heavy bottle.

Pushing task. We compare AdaptSim with Learn-260

InTarget and UDR+Target with different number261

of real data budget. With enough data, LearnInTar-262

get and UDR+Target should achieve high reward263

in the target environment. We do not compare with264

Sys-ID baselines here since Sec. 6.1 shows they265

typically fail to achieve the same level of task per-266

formance in real environments. In the task of pushing Heavy bottle, Table 4 shows that AdaptSim achieves267

a similar level of task performance (∼0.83) using only 16 trials while LearnInTarget and UDR+Target268

uses 40. Fine-tuning with real data in UDR+Target is ineffective until the real budget is sufficient and269

can negatively impact the performance in the low-data regime (e.g., 4 and 8). This also exemplifies using270

simulation to amortize data requirements for policy training. We also introduce a new baseline BayesOpt271

here based on [19] that directly optimizes Eq. (1) with Bayesian Optimization. However, with 24 rollouts272

(the minimum needed to initialize the optimization) it only achieves 0.65.273

Larger improvement in scooping task. While LearnInTarget and UDR+Target achieve reasonable274

performance in the pushing task, LearnInTarget achieves low reward on all the food pieces in the scooping275

task, and UDR+Target does not improve upon the performance of UDR policies. The action space in the276

scooping task is more complex and requires significantly more data to search for or improve task policies.277

AdaptSim’s adaptation pre-training in simulation considerably amortizes the real data requirement.278

6.3 AdaptSim finds sim parameters that are different from ones from SysID279

We expect that AdaptSim finds simulation settings that achieve better task performance while not necessarily280

minimizing the full dynamics discrepancies between sim and reality. Fig. 6 shows SysID-Bayes finds281

parameters that are closer to the target in the parameter space, but for the pendulum task, such parameters282

lead to inferior task reward compared to those found by AdaptSim. Moreover, we compute the dynamics283

discrepancy, measured as the total variations between trajectories in the target environment and in the284
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Figure 7: Adaptation in Pushing Task. AdaptSim correctly learns to push the bottle swiftly and close to the target.
The task-relevant sim parameters learned by AdaptSim noticeably differ from those by SysID-Bayes which tends to
underestimate table and patch friction, resulting in a less forceful push of the bottle and worse task performance.

Figure 8: Adaptation in Scooping Task. With AdaptSim, the cucumber is successfully scooped up by lifting up the
spatula off the table late; otherwise, the piece slips off the spatula. AdaptSim infers an ellipsoidal shape (g=1, food
piece geometry), while SysID-Bayes infers a cylindrical shape.

environment with adapted parameters. The results are 17.6 vs. 12.1 for AdaptSim and SysID-Bayes in285

OOD-1 environment, 21.7 and 11.1 in OOD-2, 39.9 and 16.4 in OOD-3, 75.8 and 56.4 in OOD-4. Thus286

for all four OOD target environments, SysID-Bayes finds sim parameters whose resulting dynamics are287

closer to the target environment (lower discrepancies), but Table 3 shows the task performance is worse.288

Fig. 7 and Fig. 8 further show cases where SysID-Bayes under-performs AdaptSim and there are visible289

differences between sim parameter distributions found by the two approaches. In the pushing task, SysID-290

Bayes infers table and patch friction coefficients that are too low, and the trained task policy pushes the291

bottle with little speed. In the scooping task, interestingly, AdaptSim infers an ellipsoidal shape for the292

sliced cucumber despite it resembling a very thin cylinder, and the task policy achieves 60% success rate.293

Sys-ID infers a cylindrical shape but the task policy fails completely.294

7 Discussions295

Figure 6: Sim parameters found by AdaptSim vs. SysID-
Bayes in the OOD-1 setting of the double pendulum task.
The colors indicate the maximum possible reward at each
parameter. SysID-Bayes finds parameters closer to the
target in the parameter space (dark red star), but the task
performance is worse.

Summary. We present AdaptSim, a framework for296

efficiently adapting simulation-trained task policies297

to the real world. AdaptSim meta-learns how to adapt298

simulation parameter distributions for better perfor-299

mance in diverse simulated target environments, and300

then infers better distributions for training real-world301

task policies using a small amount of real data.302

Limitations and Future Work. In some settings303

AdaptSim does not outperform baselines (e.g., OOD-304

4 in the pushing task and scooping up Brussels sprout305

in hardware, Fig. A8). First, AdaptSim’s task-driven306

adaptation training requires the trained task policy being (nearly) optimal on the corresponding simulation307

parameter distribution — while it can be solved exactly in the double pendulum task, the task policy training308

in the two manipulation tasks can be noisy. Second, if the target environment is extremely OOD from the309

simulation domain and the adaptation policy has not been trained with similar trajectories, AdaptSim may310

not work as well. We believe the first issue can be mitigated by allowing more simulation budget for task311

policy training and better design of task policy re-use. The second issue can be addressed by designing the312

simulation parameter space Ω to better cover possible real-world behavior.313
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Appendix430

A1 Extended Related Work431

Sys-ID domain adaptation. Inspired by classical work in Sys-ID [14, 15], there has been a popular line432

of work identifying simulation parameters that match the robot and environment dynamics in the real433

environment before task policy training. BayesSim [6] and follow-up work [16, 17] applies Bayesian434

inference to iteratively search for a posterior distribution of the simulation parameters based on simulation435

and real-world trajectories. The inference problem has also been formulated using RL to minimize436

trajectory discrepancies [30]. A different approach [31, 32, 33] learns a residual model of dynamics (often437

parameterized with a neural network) to match simulation or an ideal physics model with reality. However,438

all these methods consider relatively well-modeled environment parameterizations such as object mass or439

friction coefficient during planar contact; Sys-ID approaches have been shown to fail in cases where the440

simulation does not closely approximate the real world [13, 18]. There is also work that avoids inferring441

the full dynamics but adapts with a low-dimensional latent representation online [34, 35, 36], but the442

representation is still trained with regression to match dynamics or simulation parameters. Importantly,443

the Sys-ID approaches highlighted above are all task-agnostic; this can lead to poor performance when444

trained task policies are sensitive to mismatches in dynamics between simulation and reality. Chi et al.445

[18] address the issue by using simulation to predict changes to trajectories from changes in actions as446

an implicit policy, but it requires the environment to be resettable, while AdaptSim works with randomly447

initialized object states.448

Task-driven domain adaptation. AdaptSim better fits within a different line of work that aims to find449

simulation parameters that maximize the task reward in target environments. Muratore et al. [19] apply450

Bayesian Optimization (BO) to optimize parameters such as pendulum pole mass and joint damping451

coefficient in a real pendulum swing-up task. Other work focus on adapting to simulated domains only452

[20, 21, 22]. One major drawback of these methods is that they require a large number of rollouts in target453

environments (e.g., 700 in [19]), which is very time-consuming for many tasks requiring human reset.454

AdaptSim meta-learns adaptation strategies in simulation and requires only a few real rollouts for inference455

(e.g., 20 in our pushing experiments). Liang et al. [37] apply the same task-driven objective to learn an456

exploration policy in manipulation tasks, but the task policy is synthesized using estimated simulation457

parameters via Sys-ID. Jin et al. [38] applies task-drived reduced-order model for dexterous manipulation458

tasks, but again the model is identified with Sys-ID and no vision-based control is involved. Ren et al.459

[39] search for adversarial environments (e.g., objects) given the current task performance to robustify the460

policy, but unlike AdaptSim, the adversarial metric is measured in simulated domain only without real data.461

Learn to search/optimize. Our work involves learning optimization strategies through meta-learning462

across a distribution of relevant problems, allowing for customization to the specific setting and increased463

sample efficiency [40, 41]. Chen et al. [42] meta-learns an RNN optimizer for black-box optimization.464

Volpp et al. [43] meta-learns the acquisition function in BO with RL; it is able to learn new exploration465

strategies for black-box optimization and tuning controller gains in sim-to-real transfer. Meta RL trains the466

task policy directly to optimize performance in new environments [44, 45, 46] — AdaptSim applies meta467

RL to optimize simulation parameters instead.468

A2 Additional details on approach469

A2.1 Sparse adaptation reward470

In practice, we are only concerned with the reward if it reaches some minimum threshold — a bad task471

policy is not useful. Thus we use a sparse-reward version of Eq. (2),472

E
Es∼UΩ

E
E0∼UP

I∑
i=0

γi1
(
R(π∗

Ei
;Es)≥R

)
R(π∗

Ei
;Es), (A1)

where 1() is the indicator function and R is the sparse-reward threshold. Using a sparse reward also473

discourages the adaptation policy from being myopic and getting trapped at a sub-optimal solution,474

12



especially since we use a relatively small I (e.g., 5-10) in order to minimize the amount of real data, and475

use a small discount factor γ (=0.9).476

A2.2 Task policy reuse across parameter distributions477

Algorithm 1 requires training the task policy for each E, which can be expensive with the two manipulation478

tasks. Our intuition is that we can share the task policy between parameter distributions of close distance,479

with the following heuristics:480

• Record the total budget (i.e., number of trajectories), and j, the number of simulation parameter481

distributions that a task policy has been trained with.482

• Define distance between two parameter distribution D(·,·) such as L2 distance between the mean. If Ei483

is within a threshold D from a previously seen distribution, re-use the task policy. If the policy is already484

trained with Mmax budget total, do not train again; otherwise train with max(Mmin, α
j−1M) budget,485

where α<1 and M is the budget for training the policy for the first time.486

• If the nearby parameter distribution re-uses a task policy, do not re-use the same policy again. This487

prevents the same task policy being used for too many E.488

Remark 1 re-using task policies between parameter distributions makes the reward R depend on the489

adaptation history, as π∗
E depends on previous E that are used for training. We choose not to model this490

history dependency in f , as the reward should be largely dominated by the current E.491

A3 Additional details of adaptation policies492

Hyperparameters. Table A1 shows the hyperparameters used for the adaptation policy training in Phase 1,493

including those defining the heuristics for re-using task policies among simulation parameter distributions.494

We generally use smaller adaptation step δ for smaller dimensional Ω.495

Task

Parameter Pendulum Pushing Scooping

Total adaptation steps, K 1e4 1e4 1e4
Adaptation horizon, I 10 8 8
Adaptation step size, δ 0.10 0.15 0.15

Adaptation discount factor, γ 0.9 0.9 0.9
Sprase reward threshold, R 0.95 0.8 0.5

Task policy reuse threshold, D - 0.16 0.16
Task policy max budget, Mmax - 3e4 4e3
Task policy budget discount, α - 0.9 0.9

Task policy init budget, M - 1e4 1.2e3

Table A1: Hyperparameters used in adaptation policy training for the three tasks.

Trajectory observations. We detail the trajectory observation (as input to the adaptation policy) used in496

the three tasks.497

• Pendulum task: each trial is 2.5 seconds long, and we use 12 evenly spaced points along the trajectories of498

the two joints, and thus each trajectory is 24 dimensional. For AdaptSim-State, SysID-Bayes-State, and499

SysID-Bayes-Point, again 12 points are used but sampled from the last 0.5 second only. One trajectory is500

used at each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.501

• Pushing task: each trial is 1.3 seconds long, and we use 6 evenly spaced points along the X-Y trajectory502

of the bottle, and thus each trajectory is also 12 dimensional. For AdaptSim-State, SysID-Bayes-State,503

and SysID-Bayes-Point, only the final X-Y position of the bottle is used. Two trajectories are used at504

each adaptation iteration — the trajectory input to the adaptation policy is 24 dimensional.505
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• Scooping task: each trial is 1 second long, and we use X-Y position of the food piece at the time step506

[0,0.2,0.3,0.4,0.5,0.6,0.8,1.0]s (more sampling around the initial contact between the spatula and the507

piece), and thus each trajectory is 16 dimensional. Two trajectories are used at each adaptation iteration508

— the trajectory input to the adaptation policy is 32 dimensional.509

In real experiments, we track the bottle position in the pushing task using 3D point cloud information from510

a Azure Kinect RGB-D camera, which we find accurate. In the scooping task, the food pieces are too511

small and thin to be reliably tracked with point cloud, and thus we resort to extracting the contours from512

the RGB image and then finding the corresponding depth values at the same pixels in the depth image.513

During fast contact there can be motion blur around the food piece, and thus we add Gaussian noise with514

0.2cm mean for X position and zero mean for Y position, and 0.2cm covariance for both, to the points in515

the ground-truth trajectories in simulation. We use positive mean in X since the motion blur tends to occur516

in the forward direction.517

A4 Additional details of the task setup and task policies518

Trajectory observation First, we remove the action sequence from the task-policy trajectory and keep519

the state sequence only. Since the dynamics in real environments can be OOD, in order to achieve similar520

high-reward states as in simulated environments, the robot would need to use some actions not seen during521

training (or not seen for the particular state), hindering the adaptation policy to generalize if action sequence522

were included in the task policy trajectory. We assume that the task-relevant state sequence is covered by523

T if the task policy performs reasonably well in the real environment. This choice is also present in the524

state-only inverse RL literature [47] that addresses train-test dynamics mismatch. See Fig. A4 and related525

discussions in Sec. 6.3.526

A4.1 Dynamic pushing of a bottle527

Trajectory parameterization. Here we detail the trajectory of the end-effector pusher designed for the528

task (Fig. A1). The trajectory is parameterized with two parameters: (1) planar pushing angle, which is529

the yaw orientation of the pusher relative to the forward direction that controls the direction of the bottle530

being pushed, and (2) forward speed (of the end-effector), in the direction specified by the pushing angle.531

The pushing angle varies between −0.3rad and 0.3rad, and the forward speed varies between 0.4m/s and532

0.8m/s. We find 0.8m/s roughly the upper speed limit of the Franka Panda arm used. The pusher also533

pitches upwards during the motion and the speed is fixed to 0.8rad/s. We design such trajectories to534

maximize the pushing distance at the hardware limit.535

Initial and goal states. The bottle is placed at the fixed location (x=0.56m,y=0, relative to the arm base)536

on the table before the trial starts. The goal location is sampled from a region where the X location is537

between 0.7 and 1.0m and Y location is at most 10 degrees off from the centerline (Fig. A1 top-right). The538

patch, a 10cm by 10cm square, is placed at x=0.75m with its center (lateral position is varied as one of539

the simulation parameter).540

Task policy parameterization. The task policy is parameterized using a Normalized Advantage Function541

(NAF) [48] that allows efficient Q Learning with continuous action output by restricting the Q value as542

a quadratic function of the action, and thus the action that maximizes the Q value can be found exactly543

without sampling. In this task, it maps the desired 2D goal location of the bottle to the two action parameters,544

planar pushing angle and forward speed. The policy is open-loop — the actions are determined before the545

trial starts and there is no feedback using camera observations.546

Hardware setup. A 3D-printed, plate-like pusher is mounted at the end-effector instead of the paralle-jaw547

gripper in both simulation and reality. We also wrap elastic rubber bands around the bottom of the pusher548

and contact regions of the bottle to induce more elastic collision, which we find increases the sliding549

distance of the bottle.550
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Figure A1: Visualization of the pushing trajectory and goal locations in the Drake simulator. There are two action
parameters: (1) forward speed (of the end-effector) and (2) planar pushing angle (i.e., yaw orientation of the end-
effector). The patch is not visualized.

Figure A2: Visualization of the scooping trajectory and initial positions of the food piece in the Drake simulator. There
are three action parameters: (1) initial distance (between the spatula and food piece), (2) initial pitch angle (of the
spatula from the table), and (3) pitch rate (of the end-effector at time step t=0.25).

A4.2 Dynamic scooping of food pieces551

Trajectory parameterization. Here we detail the trajectory of the end-effector with the spatula designed552

for the task (Fig. A2). The end-effector velocity trajectory is generated using cubic spline with values553

clamped at five timesteps. The trajectory only varies in the X and pitch direction (in the world frame),554

while remaining zero in the other directions. The only value defining the trajectory that the task policy555

learns is the pitch rate, which is the pitch speed at the time t=0.25s and varies between −0.2rad/s and556

0.2rad/s. A positive pitch rate means the spatula lifting off the table late, while a negative one means lifting557

off early (see the effects in Fig. 8). The other two values that the task policy outputs are the initial pitch558

angle of the spatula from the table (varying from 2 to 10 degrees), and the initial distance between the559

spatula and the food piece (varying between 0.5cm to 2cm). Generally a higher initial pitch angle can help560

scoop under food pieces with flat bottom, and a smaller angle helps scoop under ellipsoidal shapes. We561

design such trajectories after extensive testing with food pieces of diverse geometric shapes and physical562

properties in both simulation and reality.563

Initial states. The food piece is randomly placed in a box area of 8x6cm in front of the spatula; the initial564

distance is relative to the initial food piece location.565

Task policy parameterization. The task policy is parameterized using a NAF again. In this task, it maps566

the initial 2D position of the food piece to the three action parameters: pitch rate, initial pitch angle, and567

initial distance.568

Hardware setup. We use the commercially available OXO Nylon Square Turner1 as the spatula used569

for scooping. It has a relatively thin edge (about 1.2mm) that helps scoop under thin pieces. A box-like,570

3D-printed adapter with high-friction tape is mounted on the handle to help the parallel-jaw gripper grasp571

the spatula firmly. The exact 3D model of the spatula with the adapter is designed and used in the Drake572

simulator; the deformation effect as it bends against the table is not modeled in simulation.573

1link: https://www.amazon.com/OXO-11107900LOW-Grips-Square-Turner/dp/B003L0OOSU
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A5 Additional details of experiments574

A5.1 Simulated adaptation575

Table A2 shows the simulation parameters used in different simulated target environments for the three576

tasks (results shown in Table 3).577

Setting

Task Parameter WD OOD-1 OOD-2 OOD-3 OOD-4 Range

Pendulum

m1 1.8 1.8 0.5 1.2 0.4 [1,2]
m2 1.2 0.3 1.8 1.8 2.6 [1,2]
b1 1.5 1.5 1.5 10.0 1.0 [1,2]
b2 1.5 1.5 1.5 10.0 2.0 [1,2]

Pushing

µ 0.1 0.25 0.05 0.15 0.30 [0.05,0.2]
e 1e5 5e4 1e5 5e6 1e5 [1e4,1e6]
µp 0.6 0.1 0.9 0.1 0.15 [0.2,0.8]
yp 0.05 -0.1 0.05 -0.15 0.1 [−0.1,0.1]

Scooping

µ 0.30 0.45 0.20 0.30 0.40 [0.25,0.4]
e 5e4 1e4 5e4 1e6 1e5 [1e4,5e5]
g 1 0 1 0 2 {0,1}
h 2.0 1.4 2.2 2.8 1.9 [1.5,2.5]

Table A2: Simulation parameters used in different simulated target environments for the three tasks. OOD parameters
(outside the range used in adaptation policy training) are bolded. For g in the scooping task, 0 stands for ellipsoid, 1 for
cylinder, and 2 for box.

A5.2 Real adaptation578

In Fig. A7 and Fig. A9 we demonstrate additional visualizations of the pushing and scooping results with579

AdaptSim.580

A5.3 Additional studies581

Choice of the simulation parameter space. To answer Q3, we perform a sensitivity analysis by fixing the582

target environment (OOD-1 in the double pendulum task) and varying the simulation parameter space. In583

OOD-1, the OOD parameter is m2=0.3 while the range in Ω is [1,2]. Fig. A3 shows the results of reward584

achieved after adaptation for AdaptSim and the two Sys-ID baselines, as the range shifts further away from585

m2=0.3 to [1.1,2.1], [1.2,2.2], and [1.3,2.3]. Sys-ID performance degrades rapidly, while AdaptSim is586

more robust.587

Figure A3: Adaptation results for AdaptSim and Sys-ID baselines in OOD-1 setting of the double pendulum task, with
different m2 ranges in Ω while m2=0.3 in the target environment.

Pitfalls of Sys-ID approaches. Fig. A4 demonstrates the dynamics mismatch between simulation and588

reality, which illustrates the pitfall of SysID approaches. We plot a set of bottle trajectories from randomly589

sampled simulation parameters from Ω with a fixed robot action. We also plot the trajectories of Heavy590

bottle being pushed with the same action in reality. There are segments of real trajectories that are not well591

matched by the simulated ones, and a slight mismatch can lead to diverging final states (and hence different592

task rewards).593
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Figure A4: Comparison of trajectories from the simulation domain (green, simulated with randomly sampled simulation
parameter settings) and from Heavy bottle in reality (red), with the same robot action applied. The real dynamics can
be OOD from simulation (black boxes) while the final position of the bottle can be WD.

Trade-off between real data budget and task performance convergance. In Sec. 4.2 we introduce N ,594

the number of initial simulation parameter distributions that are sampled at the beginning of Phase 2 and595

then adapt independently. There is a trade-off between the real data budget (linear to N) and convergence596

of task performance. Adapting more simulation parameter distributions simultaneously can potentially help597

the task performance converge faster but also require more real data. Fig. A5 shows the effect with the598

Light bottle in the pushing task. We vary N from 1 to 4 — each simulation parameter distribution takes 2599

trajectories at each iteration. N=1 shows slow and also worse asymptotic convergence, which shows that600

the parameter distribution can be trapped in a low-reward regime. N=2 performs the best with fastest601

convergence in terms of number of real trajectories used. Using higher N shows slower convergence. Note602

that the convergence also depends on the dimension of the simulation parameter space Ω — we expect603

N>2 is needed for the best convergence rate once the dimension increases from 4 used in the pushing604

task.605

Figure A5: Task performance convergence with respect to the number of real trajectories used with varying N , the
number of simulation parameter distributions adapting simultaneously in Phase 2 with the Light bottle in the pushing
task.

Sensitivity analysis on adaptation step size. Adaption step size δ can affect the task performance606

convergence too — δ being too low can cause slow convergence, while δ being too high can prevent607

convergence since the simulation parameter distribution can “overshoot” the optimal one by a large margin.608

Fig. A6 shows the effect of adaptation step size ranging from 0.05 to 0.20 in OOD-1 setting of the double609

pendulum task. δ = 0.10 performs the best while δ = 0.05 shows slower convergence. δ = 0.15 also610

achieves similar asymptotic performance but the reward is less unstable during adaptation, while with611

δ=0.20 the reward does not converge at all.612

Comparison of simulation runtime. Compared to Sys-ID baselines, AdaptSim requires significantly613

longer simulation runtime for training the adaptation policy in Phase 1. For example: SysID-Bayes uses614

roughly 6 hours of simulation walltime to perform 10 iterations of adaptation in the scooping task while615

AdaptSim would take 36 hours for Phase 1, and 30 minutes for Phase 2 (i.e., 3 minutes per iteration), using616

the same computation setup. However, we re-use the same adaptation policy for different food pieces in617

the scooping task, which amortizes the simulation cost.618
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Figure A6: Normalized reward at each adaptation iteration using different adaptation step size δ, in OOD-1 setting of
the pendulum task.

Figure A7: Adaptation results of the pushing task with two different target locations (yellow cross, top and bottom
rows) over iterations. The right figure shows the inferred simulation parameter distribution (mean only).

Figure A8: AdaptSim fails to synthesize a task policy for scooping up Brussels sprout. We consider such environment
extremely OOD from the simulation domain.
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Figure A9: Adaptation results of scooping up (top) chocolate raisins, (middle) mushroom slice, and (bottom) Oreo
cookie with AdaptSim.
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