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Abstract: Increasingly large imitation learning datasets are being collected with the1

goal of training foundation models for robotics. However, despite the fact that data2

selection has been of utmost importance in vision and natural language processing,3

little work in robotics has questioned what data such models should actually be trained4

on. In this work we investigate how to weigh different subsets or “domains” of robotics5

datasets for robot foundation model pre-training. Concretely, we use distributionally6

robust optimization (DRO) to maximize worst-case performance across all downstream7

domains. Our method, Re-Mix, addresses the wide range of challenges that arise when8

applying DRO to robotics datasets including variability in action spaces and dynamics9

across different datasets. Re-Mix employs early stopping, action normalization, and10

discretization to counteract these issues. Through extensive experimentation on the11

largest open-source robot manipulation dataset, the Open X-Embodiment dataset, we12

demonstrate that data curation can have an outsized impact on downstream performance.13

Specifically, domain weights learned by Re-Mix outperform uniform weights by 38%14

on average and outperform human-selected weights by 32% on datasets used to train15

existing generalist robot policies, specifically the RT-X models.16

Keywords: Data Curation, Data Quality, Robot Imitation Learning17

1 Introduction18

Many breakthroughs in machine learning can be attributed to “Internet-scale” datasets, from the19

development of vision models like CLIP [1] to recent advancements in transformer-based language20

modeling powered by the Common Crawl dataset [2]. Seeking to capitalize on this trend, several recent21

efforts in robotics focus on collecting [3–6] or pooling [7] large scale robotics datasets with the goal of22

training more performant imitation learning policies. Learning from this data, however, is particularly23

challenging: robotics datasets are collected with different robots, environments, state spaces, action spaces,24

and dynamics [8]. For example, the commonly used Bridge V2 Dataset [4] uses a third person camera25

on a small WidowX robot and a cartesian delta control space, while many datasets [9–12] collected on26

the popular and much larger Franka Panda robot use wrist cameras [3] or joint-space actions [13]. While27

embracing such heterogeneity quickly scales the amount of available training data [7], it amplifies the28

importance of a fundamental question: how do we curate these raw, heterogeneous data sources into29

effective training datasets for generalist robot policies?30

While early vision and language models were trained on highly-curated academic datasets such as ImageNet31

[14], questions surrounding data selection have shaped modern training pipelines that use Internet-scale data32

[15–17]. For example, the training of large language models involves numerous stages of data filtering [18].33

Similarly large vision datasets, e.g., LAION [19], assess the quality of each data point using pre-trained34

models such as CLIP [1]. Thus as scaling of robot datasets continues, we can expect robotics data curation to35

become equally critical. Unfortunately, simple filtering techniques are often inadequate in robotics; we can-36

not apply n-gram filters, and visual embeddings do not capture the sequential nature of episodic robot data.37

Even though aspects of demonstration data such as action quality [20] and visual diversity [3, 4, 21] have38

been shown to be of paramount importance to downstream performance, approaches for robotics data39
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curation remain limited. In imitation learning, the data selection problem has only been characterized40

theoretically [22, 23] or in simple small-scale settings [24]. Thus in practice we are left with ad hoc41

solutions. For example, though the Open-X-Embodiment dataset (OpenX) [7] is comprised of more42

than 60 individual datasets totalling over 2M robot trajectories, the RT-X models released alongside it43

were trained on a mixture of only 12 datasets, weighted based on expert intuition. The recently released44

Octo [25] and OpenVLA [26] generalist policies were similarly trained on a subset of OpenX, where45

the authors chose which datasets to include at what sampling weight based on a subjective notion of46

“interestingness”. While the resulting data mixes are shown to work well in practice, their curation requires47

extensive domain knowledge and manual data inspection. Such ad hoc selection strategies are unlikely48

to scale to the rapidly growing datasets used to train robot policies [3, 5, 27].49

In this work, we ask: how can we automatically curate large-scale robotics datasets to maximize perfor-50

mance of generalist imitation learning policies across domains? Though many filtering techniques are not51

directly applicable to robotics, we can borrow ideas from language modeling that systematically optimize52

training data mixtures based on the model’s performance. Specifically, DoReMi [28] uses group distribu-53

tionally robust optimization [29] to maximize the performance of a policy across all “domains” in a given54

dataset. In the context of robotics, such “domains” can correspond to different scenes within a single dataset,55

e.g., different toy kitchens when considering a data mixture from the Bridge V2 dataset [4], or can refer to56

full robot datasets in the case of multi-dataset mixtures such as the OpenX dataset. However, due to the het-57

erogeneity of robotics datasets we find that naively applying such techniques does not work. Distributionally58

robust optimization approaches minimize worst-case loss. Differences in action spaces and their distribu-59

tions can cause loss magnitudes to be imbalanced across domains, leading some domains to be weighed60

more heavily than they should be. Moreover, the smaller size of robotics datasets makes overfitting easy.61

Both of these issues result in poor estimates of model performance, and consequently bad mixture weights.62

To address these problems, we propose Re-weighing Robotic Dataset Mixtures with Minimax Optimization63

(Re-Mix for short), which instantiates the data curation problem as a min-max optimization, where a64

policy minimizes its excess behavior cloning loss over a reference model subject to learned domain mixture65

weights that try to maximize it. Intuitively, the excess loss measures how much room the policy has to66

improve on a given domain, and the data mixture is optimized to maximize such improvement potential.67

Crucially, we carefully control the loss magnitudes between domains via domain-independent action68

normalization and discretization, even if the final policies we train are continuous diffusion models [30, 31].69

Moreover, we find that selecting a reference model that has not overfit to any domain prevents drastic70

skewing of the downstream domain weights.71

We empirically evaluate Re-Mix by using it to automatically optimize the training data mixture for the72

Bridge V2 dataset [4] and the OpenX-based dataset used to train RT-X [7]. We show that policies trained73

with our data mix improve performance by 38% and 32% respectively over naı̈ve data balancing and74

human-expert-curated data mixtures in evaluations using WidowX and Franka robot arms. Additionally,75

we show that weights from Re-Mix can effectively sub-sample both datasets, achieving competitive76

performance when using only 25% of the original data, while using uniform or human curated weights77

significantly reduces performance.78

2 Related Work79

In congruence with the rise of deep learning in various fields, data selection has become of increasing80

interest. Here we review the most relevant works, organized by area.81

The Data Problem in Robotics. Several recent works in robotics have focused on collecting large demon-82

stration datasets for imitation learning in simulation [20, 32, 33] and the real world [3, 7, 34–38] to train83

large-scale robot policies [6, 25, 39, 40]. Generally, these works along with others that study the influence84

of data collection on compositional generalization [21, 41, 42] show that aspects of dataset construction85

such as scene and task diversity have a direct impact on downstream policy generalization. Though several86

studies focus on how data should be collected via specific hardware [43], collection procedures [11, 21, 44],87

or provide theoretic insights about data collection [22], little work in robotics addresses the post-hoc dataset88

selection and analysis problem. This is particularly important as the number and diversity of robot datasets89

are increasing with less clear conclusions about how to train a policy that effectively consumes all the col-90
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lected data [3, 7, 25]. Baker et al. [45] train a classifier to predict data quality, but require human annotations91

which are impractical to scale. Perhaps most related are retrieval-based methods that subset datasets [12, 46],92

but do so based on a priori target task specifications and are thus inapplicable to training generalist policies.93

Data Curation in Computer Vision. Computer vision datasets were originally hand-crafted and manually94

labeled [14, 47]. However, scaling datasets to beyond what is possible to curate by hand, while retaining95

quality, has been critical to increasing performance [1, 48]. Notably, filtering techniques based on96

metadata-count balancing [49], embeddings [19], optical flow [50], and clustering [51] have shown to97

greatly improve downstream performance despite filtering out large amounts of data. Though learning98

from demonstrations involves vision, at its core is action prediction and such techniques can only filter99

trajectories in an action-agnostic manner.100

Data Curation in Natural Language Processing. When training on large real-world sources of text,101

language modeling pipelines employ a number of text-specific preprocessing steps [16, 18, 52, 53]. Other102

methods sub-set data to maximize downstream performance, but use techniques such as k-means clustering103

over embedded text [54, 55]. While such clustering techniques can potentially be visually informative in104

robotics they do not provide information about actions. Mixture techniques, such as Domain Reweighting105

with Minimax Optimization (DoReMi) [28] balance text domains using robust optimization and build106

upon ideas from prioritized training [56–58]. Our work is inspired by DoReMi as such robust optimization107

approaches can be applied to imitation learning as well. In this work, we discuss the challenges of applying108

these techniques in robotics, and propose a solution that addresses their limitations for effective dataset109

curation for imitation learning.110

3 Re-weighing Robotic Dataset Mixtures with Minimax Optimization111

In this section, we first formalize the problem of re-weighting robotics data mixtures for imitation learning.112

We then discuss our approach which uses distributionally robust optimization for selecting domain weights113

and sub-setting large robotics datasets.114

Problem Setup. We consider the general imitation learning problem, where we are given a dataset of115

demonstrations D={τ1,...,τn} consisting of state-action trajectories τ=(s1,a1,...,sTi
,aTi

). Our goal is116

to learn a parameterized policy πθ that learns a mapping from states to actions πθ :S→A. In practice, this117

is often done through standard imitation learning algorithms such as behavior cloning (BC) by minimizing118

the expected negative log-likelihood of the actions under the policy:119

LBC(πθ,D)=E(s,a)∼D[−logπθ(a|s)] (1)

However, datasets often contain more information than just state action pairs. We assume that the overall120

dataset D can be split into k heterogeneous domains D1,...,Dk. This is a general assumption: while121

these domains could be larger groups, like different datasets from the Open X-Embodiment dataset [7]122

with different embodiments, they could also be as small as single trajectories. Moreover, each of the k123

domains can differ in state space S, action space A, transition dynamics, or their distributions. In fact124

when learning large behavior models, such heterogeneity becomes necessary to access more sources of125

diverse data. In this work, we use the Bridge dataset [4] – with different environments as the domains,126

and the Open-X-Embodiment dataset [7] – with different robot embodiments as the differing domains.127

Our goal is to learn a weighting vector α∈∆k that specifies a probability distribution over all domains128

such that any model, when trained on a domain mixture weighted according to α, attains maximum129

performance across all domains. We note that unlike the data retrieval problem, which aims to curate data130

for a particular target task, our goal is to curate datasets for effective pre-training or co-training without131

any a priori knowledge of a target task.132

Distributionally Robust Optimization. When pre-training on large amounts of robot data we want133

policies to generalize to new settings and tasks, not master a specific target task. With that in mind,134

we want to optimize for a data mixture that results in models that i) can perform as well as possible on135

each domain, but ii) do not overfit to any one domain at the expense of another. Distributionally robust136

optimization (DRO) techniques aim to solve the same problem: learn models that minimize the worst-case137

training loss [29] – BC loss in the case of imitation learning – across domains D1 ...Dk. Specifically,138
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naı̈vely applying group robust optimization techniques in robotics would result in the following objective:139

minθmaxα∈∆k

∑︁k
i=1αiLBC(πθ,Di). (2)

With this objective, α up-weights domains that have a higher loss value, emphasizing the hardest domains.140

However, in practice we might not be interested in just fitting the domains with higher losses. For example,141

a robotics dataset with complex multi-modal rotation movements for bottle-cap unscrewing might always142

have higher BC loss than simple pick-place datasets. Thus, standard robust optimization techniques could143

end up ignoring the latter domain. Instead, as in prior work [28, 59, 60], we consider the difference in loss144

between our learned policy πθ and a reference policy πref which is trained to convergence on an initial guess145

of the domain weights, usually assumed to be proportional to the size of each domain, i.e. uniform sampling146

of the data. In Eq. (2) this equates to replacing LBC with LBC(πθ,Di)−LBC(πref,Di). We refer to this147

difference as the excess loss, and use it for robust optimization. Like before, this will down-weight domains148

that the policy fits well, as it can achieve a loss similar to that of the reference model. However, it crucially149

also down-weights domains which are difficult to fit (i.e. they have a high policy loss and a high reference150

loss) due to the relative nature of the excess loss. As an example, this can happen in the presence of151

sub-optimal actions. Therefore, only domains that have a high excess loss, meaning the policy can improve152

to match the reference model, will be up-weighted as α is chosen to maximize the excess overall loss.153

Unfortunately, models learned directly using robust optimization often exhibit worse overall performance154

[61, 62], as they focus on minimizing worst-case loss instead of average loss. Alternatively, we can use155

the learned α vector for downstream training as in Xie et al. [28]. This gives us a set of reusable weights156

that can be used to train different policies without the need for robust optimization.157

3.1 The Challenges of Applying Robust Optimization in Robotics158

While Group DRO has been applied in language modeling [28], robust optimization techniques face159

unique challenges in robotics which we highlight here. We then detail how we adapt a distributionally160

robust optimization pipeline to select domain weights for robotics datasets.161

αnoise αbridge
Bounds 0.943 0.057
Gaussian 0.158 0.842

Table 1: Learned α from toy set-
ting in Section 3.1

Unbalanced Losses. Large robotics datasets are often highly hetero-162

geneous: many are collected across different embodiments, controllers,163

and frequencies. Even within the same dataset, different scenes or tasks164

require vastly different ranges and speeds of motion. As a result, some165

datasets may have an outsized effect on robust optimization. To address166

this issue, one needs to align action losses across domains. In our case, we apply Gaussian normalization167

to each domain individually. We note that bounds normalization [30] applied to each domain, would be168

insufficient as it would not align the moments of the action distributions.169

To underline the importance of aligning actions to a common distribution, we construct a simple experiment170

by training a policy with Group DRO [29] (Eq. (2)) when the action distributions match versus when they171

differ. Specifically, we construct a noise domain where a subset of the Bridge V2 dataset [4] is assigned172

random Gaussian actions and a normal bridge domain which uses the original actions, either normalized173

to also be unit gaussian or rescaled between -1 and 1 using “bounds” normalization. When Gaussian174

normalization is applied to the bridge domain, the action distribution matches the random noise. When175

bounds normalization is applied, they do not. We show the learned domain weights α for each scheme176

in Table 1. While one might expect that α would correctly assign majority weight to the bridge domain177

since the noise domain is impossible for both the policy and reference model to fit, this is actually only true178

in the “Gaussian” case when the action distributions of both domains are aligned. When using “Bounds”179

normalization, the average action magnitude of the bridge domain is lower, and thus its losses are dwarfed180

by those of the noise domain.181

Continuous Losses. Robust optimization has largely been applied in discrete classification problems182

with cross-entropy losses, for example in language modeling [60]. Popular policy learning approaches,183

however, often predict continuous actions and use L1 or L2 loss functions [20, 30, 63, 64]. Applying184

robust optimization in these settings can be problematic for two reasons. First, action distributions can185

be multi-modal, and expressive continuous policy classes such as diffusion models only optimize an186
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upper bound on the true loss. DRO techniques depend on estimating the true loss of each domain to187

weight different domains, and upper-bounds may not uniformly converge across domains resulting in188

inaccurate domain weights. Moreover, computing diffusion policy’s upper bound is expensive as it requires189

losses at every time-step in the diffusion process. However, without the expressiveness to fit multi-modal190

distributions, both the reference policy and DRO would be unable to effectively minimize BC loss on191

domains with multi-modal actions. Second, compared to language datasets, robot datasets often have a192

large number of action outliers which can heavily sway the value of continuous action losses. With L1 or193

L2 loss, these outliers can significantly increase the loss of a given domain, causing DRO to believe it can194

still make progress on the domain, causing it to be up-weighted. To resolve these problems, when applying195

robust optimization in the robotics domain, we discretize each action dimension via binning.196

Overfitting. Datasets in language modeling often contain billions of tokens. As a result, robust197

optimization techniques like Xie et al. [28] do not experience overfitting when applied to these large scale198

datasets. On the other hand, large robot datasets are comparatively small (∼10-100k demonstrations).199

Moreover, individual datasets in mixtures like the Open X-Embodiment dataset [7] can be as small200

as 100 demonstrations. This is problematic when using the excess loss for robust optimization: if the201

reference model can achieve near-zero training loss on every data point within a domain, the excess loss is202

equivalent to the regular loss (since the reference loss is always ≃0) and α no longer reflects the potential203

for improvement on each domain. To counteract this problem, we employ aggressive early stopping on204

both the reference model and robust optimization. Specifically, we select the latest checkpoint from the205

reference model that has not overfit to any of the domains D1,...,Dk as measured by the difference in206

loss values between the training dataset and a held-out validation dataset for the respective domain.207

3.2 Re-weighing Robotic Dataset Mixtures with Minimax Optimization208

Our approach, Re-Mix, uses group distributional robustness to determine the weights of a data mixture209

[28] that could then be used for policy training and incorporates the key design considerations from the210

previous section, addressing issues around unbalanced losses, continuous losses, and overfitting. We note211

that Re-Mix only returns the weights of the data mixture α, as opposed to the final policy. This is to212

decouple the data curation problem from the policy training problem. After running Re-Mix, the resulting213

weights can be used for learning policies of a different type (i.e. diffusion) or at a larger scale.214

Stage 1: Action Preprocessing. Following Section 3.1, we apply Gaussian normalization separately to215

every domain Dk with different action spaces and dynamics, and then discretize actions via binning.216

Stage 2: Reference Model Training. Next, we train a discrete reference model πref on the uniform mixture217

of domains D1,...,Dk, where each domain is weighted in proportion to its size. We select the final reference218

model checkpoint by validation loss per Section 3.1, and use it to estimate the excess loss per domain.219

Stage 3: Group Distributionally Robust Optimization. We learn the domain weights α via the following220

robust optimization with a discrete policy πθ:221

min
θ

max
α∈∆k

k∑︂
i=1

αi

⎡⎣ 1

|Di|
∑︂

(s,a)∈Di

(−logπθ(a|s)+logπref(a|s))

⎤⎦, (3)

which minimizes the worst case excess BC loss of the learned policy −logπθ(a|s)+logπref(a|s) over222

all possible weightings of the domains α∈∆k. To update α, following [29], we perform one step of223

exponentiated gradient ascent on α followed by domain-weighted gradient descent on θ at each training224

step. Our resulting values of α upweight domains that we can still improve on, while downweighting225

domains that are trivial or impossible to fit. This means that Re-Mix directly filters data based on actions,226

unlike other techniques in vision and language that solely filter based on embeddings [55, 65]. We227

optimized Eq. (3) for the same number of steps as the reference model.228

Stage 4: Data Weighting for Policy Training. After our robust optimization stage over the excess loss, we229

take the average value of α over the course of training, which we denote by ᾱ. We can then use this value230

of ᾱ to re-weight different domains, or even subset datasets. In practice, this means that we can re-use231

the weights for several training runs with different configurations. For example, Re-Mix uses discrete232

actions, but we train final policies with diffusion which has shown to perform well empirically [25, 30].233
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4 Experiments234

We aim to answer the following questions: (1) Does Re-Mix effectively curate large robot datasets for down-235

stream policy learning? (2) Can we use Re-Mix to heavily sub-sample robot datasets while retaining good236

performance? (3) Which design decisions matter for effective automatic curation of large robot datasets?237

4.1 Experimental Setup238

Datasets. We test Re-Mix curation on two widely-used, large-scale robot datasets: (1) the Bridge V2239

Dataset [4], consisting of 50k diverse teleoperated demonstrations of single-arm manipulation tasks with a240

WidowX 6 DoF robot arm, and (2) the datasets from the Open X-Embodiment dataset used to train RT-1-X241

and RT-2-X models [7] which have third-person cameras, consisting of a total of 350k demonstrations242

which span disparate embodiments and environments. We use “RT-X” to refer to this set of datasets. We243

partition the Bridge V2 dataset into 32 domains based on the scenes the data was collected in. For OpenX,244

we use each of the 11 datasets in the RT-X training set as domains. For a detailed list of all datasets and245

partitions, see Appendix B. For simulation experiments in RoboMimic, see Appendix A.246
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Figure 1: On Bridge V2 [4] there
is no notable difference between
uniform sampling vs. Re-Mix
when training on the full dataset.

Training and Evaluation Details. We aim to assess the quality of247

various curated pre-training data mixtures for downstream policy learn-248

ing. To that end, we co-train generalist goal-conditioned policies on the249

curated datasets. As we do not have access to the robot setups used250

to collect the datasets we train on, we construct our own WidowX and251

Franka robot evaluation setups. Unfortunately, policies trained on only the252

pre-training data failed to zero-shot generalize to our out-of-distribution253

setups. To address this, we follow prior works [3, 12, 46, 66] and co-train254

our policies on a small amount of in-domain data (25 demonstrations255

each for 3 representative tasks), added to the final training mixture at a256

small weight of 5%. We then evaluate policies on tasks that are out-of-257

distribution with respect to the co-training data to test generalization. As a258

result of co-training, all policies achieve non-zero success rate. However,259

we note that the in-domain dataset is small enough that the quality of the260

pre-training data mix still has significant impact on the evaluation result, providing a good test bed for data261

curation approaches. All models are evaluated in the real world with 10 trials per task totaling over 500262

real-world trials cumulatively. For all policies we use a ResNet 50 image encoder [67]. For the Re-Mix263

reference model and Group DRO optimization, we use a discrete MLP action head. For all final policies264

we use the diffusion head from [4, 25, 68] and train all models for 400,000 gradient steps.265

Comparisons. We compare the quality of Re-Mix’s curated data mixes to a naı̈ve baseline: sampling266

uniformly from each domain according to the total number of state-action pairs (Uniform). For evaluations267

on the OpenX datasets, we additionally compare to a human-expert-curated data mix, using the hand-crafted268

weights from RT-X [7]. For Bridge there is no expert-curated data mix — uniform sampling is the norm.269

4.2 How do Re-Mix weights impact performance?270

In Fig. 2, we show results for weighing datasets from the RT-X mix according to different methods. For271

the WidowX robot, we consider four tasks that test generalization to 1) unseen objects: “Carrot to Rack”,272

“OOD Cup”, 2) unseen initial conditions: “Fork to Rack”, and 3) distractors at the goal location “Cube to273

Plate”. Similarly, for the Franka Panda robot we consider two tasks that test generalization to 1) unseen274

initial conditions “Pen in Cup” and 2) motions not seen in the RT-X data “Flip Bowl”. Additionally, our275

Panda robot uses a Robotiq 2F-85 gripper, which was not present in any of the RT-X-datasets. Note that for276

the RT-X mix, we co-train the same model on both the WidowX and Franka data. As expected, we find277

that the domain weights selected by human experts for the RT-X models outperform the naı̈ve uniform278

sampling baseline by 6% on average. More interestingly, we find that weighting datasets according to279

Re-Mix outperforms uniform weighting by 38% on average, and surprisingly outperforms the human280

curated weights by 32% on average. Fig. 1 shows results using Re-Mix weights versus uniform weighting281

over scenes in the Bridge dataset. We find that performance in this setting is similar across both models.282
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Figure 2: Results for curating the RT-X training mix. We test policies trained on different weightings of the data
mixture used by RT-X across two WidowX (left) and two Franka (right) tabletop manipulation tasks. We find that
the policy trained on the data mix curated with Re-Mix achieves strongest performance, even outperforming the
human-expert-curated data mix from RT-X [7]. Mean ± StdErr across 4 tasks, 10 evaluations each.

Method αUR5 αCable Routing αBridge αJaco αKuka αRoboTurk αRT1 αTaco Play αTaco Extra αToto αViola
Uniform 1.01% 0.43% 22.7% 0.81% 24.9% 1.94% 40.9% 0.60% 2.46% 3.42% 0.80%
Human 1.22% 1.56% 27.5% 1.95% 25.1% 2.35% 26.8% 1.46% 5.94% 4.13% 1.90%
Re-Mix 2.37% 0.20% 19.9% 0.39% 12.1% 1.14% 42.5% 0.63% 3.04% 16.3% 1.51%

Table 2: Dataset mixture weights by different methods on the RT-X dataset mix [4, 6, 9, 10, 37, 69–72]. We color
relative increases of more than 25% from uniform green and relative decreases of more than 25% red.
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Figure 3: Results sub-setting datasets via different strategies until they reach 25% of their original size. We again use
10 evaluations per task, and show the Mean ± StdErr.

We posit that in the presence of the full Bridge dataset, selecting weightings is less important as the model283

is able to fit every scene well.284

4.3 Analyzing Re-Mix Weights285

Table 2 shows the weights produced by different methods on the RT-X dataset mix in comparison to the uni-286

form mixture, which corresponds to sampling each datapoint with equal probability or equivalently weight-287

ing each domain by its total size (as fraction of the total number of datapoints). The human-expert-designed288

weights largely down-weight RT-1 [6], while up-weighting some of the smaller datasets like Routing [69],289

and Taco [9], perhaps to ensure they were sampled often enough to not be ignored. On the other hand, Re-290

Mix largely down-weights the Kuka dataset [72]. This dataset was autonomously collected and then filtered291

by success, making it of potentially lower action quality. Re-Mix also down-weights some smaller domains292

that are easy to fit; for example, Cable Routing has no gripper actions and Jaco [70] only has three possible293

actions. Surprisingly, Re-Mix up-weights the Toto dataset [73] by more than 4x. We posit that this is because294

Toto has a particularly multi-modal action distribution which deviates far from a standard Gaussian even after295

normalization and thus may be more challenging to fit. See Appendix A for a plot of its action distribution.296

4.4 How well does Re-Mix subset datasets?297

Though co-training on diverse data is important for performance [3, 66], doing so is often expensive given298

that modern robot datasets like the Open X-Embodiment dataset encompass TBs of data. In this section, we299
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Figure 4: Ablations for design choices in Re-Mix. We ablate the effects of left: reference model overfitting by selecting
a checkpoint once validation loss starts increasing at 150K steps and right: using continuous actions for Re-Mix. For
ablations, we remove the “Flip Bowl” and ‘Cube to Plate” tasks as all Re-Mix variants achieved 100% success.

evaluate how well Re-Mix can be used to subset datasets. The key idea: if Re-Mix weights are proportional300

to the importance of the data in each domain, we can use them to effectively sub-set the dataset by removing301

data from domains that Re-Mix assigns low weight. We subset the base datasets according to Re-Mix and302

baselines by first computing the target size of the entire data mix after sub-setting, in our case 25% of |D|.303

Then, we remove datapoints according to the mixture weights ᾱ.304

Here, we compare performance of Re-Mix to using naı̈ve uniform sampling for subsetting, and to subsetting305

based on the human expert weights. For Bridge, where no expert weighting exists, we additionally compare306

to a vision and language subsetting method called “Self-Supervised Prototypes” (SSP) [65] which runs307

k-means on image embeddings and discards data closest to each centroid to encourage diversity. We308

average CLIP embeddings across each trajectory to obtain the embeddings for k-means and use k=32309

to match the number of domains used by Re-Mix. To provide a more extensive evaluation on Bridge,310

we add two additional tasks. “Cube in Cup” requires a different motion and a more precise place and311

“Carrot to Right”, which requires the robot to move the unseen carrot object to the right evaluates a motion312

unseen in the co-training data.313

Our subsetting results can be found in Fig. 3. Overall, we find that subsetting exacerbates the difference314

between methods, as the weights now directly affect dataset composition. On the four evaluation tasks used315

for subsetting, Re-Mix, human, and uniform weighting had an average success rate of 82.5%, 52.5%, and316

37.5% on the four evaluation tasks used for subsetting. On the RT-X datasets (Fig. 3 top row) with only317

25% of the data Re-Mix retains performance, losing only 2.5% success rate while human weights drop318

over 10%. This is likely because as shown in Table 2 Re-Mix places higher weights on some of the smaller319

datasets and down-weights some of the larger datasets such as the Kuka dataset from [40]. On Bridge320

(Fig. 3 bottom row), Re-Mix also outperforms baseline methods. Overall SSP performs poorly, likely since321

robot trajectories may be out-of-distribution for vision models such as CLIP, causing the k-means clustering322

to be uncorrelated with data diversity.323

4.5 What matters in Re-Mix?324

In this section, we ablate several design choices used in Re-Mix (see Section 3.1), including action325

discretization and early stopping. We run all ablations in the 25% subset setting (see Section 4.4), since326

subsetting further amplifies the effects of the domain weights. In Fig. 4, we first analyze the effects of327

choosing a reference model checkpoint for Group DRO that is overfit to the training dataset. Empirically,328

we find that choosing a checkpoint just 50K steps after early stopping decreases performance by over329

15% on average, likely because the reference model baseline used to determine the domain weights is330

less meaningful once it overfits. On the right half of Fig. 4, we show performance on Bridge when using331

continuous (Cont.) actions in Re-Mix instead of discrete for estimating α. We find that continuous actions332

lead to significantly worse performance, as their loss functions fail to fit outliers or multi-modal actions.333

5 Conclusion334

In this work we present Re-Mix, a method for automatically curating robotics datasets using distributionally335

robust optimization. We find that Re-Mix can generate dataset mixes that outperform both uniform and336

human-curated weights on the challenging RT-X data mix, even when subsetting datasets to 25% of their337

original scale.338

8



References339

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,340

J. Clark, et al. Learning transferable visual models from natural language supervision. In International341

conference on machine learning, pages 8748–8763. PMLR, 2021.342

[2] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott,343

L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation learning at scale. arXiv344

preprint arXiv:1911.02116, 2019.345

[3] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.346

Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.347

arXiv preprint arXiv:2403.12945, 2024.348

[4] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch, Q. Vuong,349

A. He, V. Myers, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset for robot learning at350

scale. In Conference on Robot Learning (CoRL), 2023.351

[5] H.-S. Fang, H. Fang, Z. Tang, J. Liu, J. Wang, H. Zhu, and C. Lu. Rh20t: A robotic dataset for352

learning diverse skills in one-shot. In RSS 2023 Workshop on Learning for Task and Motion Planning,353

2023.354

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,355

A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Julian,356

D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath, I. Mordatch,357

O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao, M. Ryoo, G. Salazar,358

P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran, V. Vanhoucke, S. Vega,359

Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1: Robotics transformer for360

real-world control at scale. In arXiv preprint arXiv:2212.06817, 2022.361

[7] Open X-Embodiment Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan,362

A. Khazatsky, A. Rai, A. Singh, A. Brohan, A. Raffin, A. Wahid, B. Burgess-Limerick, B. Kim,363

B. Schölkopf, B. Ichter, C. Lu, C. Xu, C. Finn, C. Xu, C. Chi, C. Huang, C. Chan, C. Pan, C. Fu,364
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A Additional Results574

A.1 10% Bridge Sub-setting575

Here we include results for 10% subsetting of the bridge dataset as described in Section 4.4. In the576

supplemental material we include videos of rollouts from our experiments.577
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Figure 5: Bridge 10% subsetting.

A.2 Simulation Experiments578

We additinally run simulation experiments on the Robomimic NutAssemblySquare task from images579

[20]. We chose Robomimic because it was collected using human operators like real world datasets. We580

divided the 300 multi-human demonstrations into six domains by operator, which have “better”, “okay”,581

and “worse” labels. We run Re-Mix with the same architecture as described in all other experiments, but582

train Conditional UNet Diffusion Policies [30] since they performed far better on this benchmark. We583

evaluate checkpoints for 100 episodes after 400K training steps. The results are included in Table 3 and584

learned Re-Mix weights are shown in Table 4. We can see that the Re-Mix determined weights outperform585

uniform weights at both 50% and 25% subsetting. This is likely because Re-Mix up-weights the “better”586

operators and comparatively down-weights the “worse” ones. Note that the natural or uniform domain587

weights are not even across all operators. This is because some of the operators take longer to complete the588

task than others.589

Method 50% Subsetting 25% Subsetting
ReMix 77/100 59/100

Uniform 53/100 39/100
Table 3: Performance on the RoboMimic NutAssemblySquare task, divided by operator.

Method Better 1 Better 2 Okay 1 Okay 2 Worse 1 Worse 2
ReMix 22.8% 20.0% 11.9% 14.6% 18.0% 12.7%

Uniform 9.6% 13.6% 18.7% 14.4% 20.0% 23.7%
Table 4: Domain weights used by Re-Mix in comparison to the natural uniform domain weights.

A.3 Action Distributions590

In Fig. 6 we show the action distribution for the BridgeV2 d ataset and in Fig. 7 we show the action591

distribution for the ToTo dataset, both in log-scale. The BridgeV2 dataset’s action distribution is far more592

normal and symmetric than the ToTo action distribution, which is heavily multi-modal and skew. Robust593

optimization appears to be more well-behaved on the more normally distributed datasets.594

B Dataset Details595

B.1 OpenX RTX Subset596

We use a subset of the OpenX Embodiment datast similar to that used to train the RT-X models [7]. First, we597

use the RLDS dataset modification repository (https://github.com/kpertsch/rlds_dataset_mod)598

used by Octo Model Team et al. [25] to preprocess the raw datasets downloaded from Tensor Flow599
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Domain Uniform Weight ReMix Weight
0 toykitchen2 0.18728751 0.0961817
1 datacol2 tabletop dark wood 0.094527 0.04846529
2 toykitchen1 0.069307 0.07683
3 toykitchen6 0.06940527 0.0573625
4 datacol2 toykitchen7 0.07133783 0.06905
5 datacol2 toykitchen2 0.0432927 0.03651583
6 toykitchen7 0.032803 0.03538789
7datacol2 folding table 0.038522 0.0809778049
8 datacol1 toykitchen6 0.03606622 0.037404168
9 datacol2 robot desk 0.025810027 0.034152
10 datacol2 toykitchen6 0.02394393 0.02740302
11 deepthought folding table 0.0272809 0.013906823
12 datacol2 laundry machine laundry machine 0.02582954 0.0396389
13 datacol2 toykitchen5, toykitchen5 0.0337366 0.049943
14 deepthought toykitchen2 0.0253313 0.013434348
15 deepthought robot desk 0.01978364 0.032410502
16 tabletop dark wood 0.0219985 0.024691
17 datacol2 toysink2 toysink2 bww 0.0225748 0.0198516
18 toykitchen2 room8052 0.01083554 0.0295857
19 deepthought toykitchen1, datacol1 toykitchen1 0.01868 0.04047
20 datacol2 foldtable tray, minsky foldtable tray, datacol2 toykitchen7 tray 0.037856699 0.0484
21 toysink3 bww, toysink3 0.01235829 0.014877
22 datacol2 toykitchen1 0.01155453 0.02194
23 toysink1 room8052 toysink1 0.00979455 0.01831014
24 tool chest 0.00471524 0.00878
25 toysink5 0.00405418 2.78E-05
26 whiteboard 0.006774 0.0129337
27 toykitchen4 0.00371938 0.00537445
28 toysink4 0.00289793 1.80E-05
29 toykitchen3 0.00124406 2.72E-05
30 realkitchen1 dishwasher 0.00202648 0.000541
31 tabletop light wood, tabletop white, realkitchen1 counter 0.004647549 0.005079152

Table 5: Learned weights by Re-Mix on the Bridge V2 dataset.

Datasets [74]. Specifically, we resize all images to 256×256, and filter the Kuka dataset [72] by an600

included success key. Note that this does warp images. We use the updated version of the Bridge dataset,601

available at https://rail.eecs.berkeley.edu/datasets/bridge_release/data/tfds/. The602

specific composition of the dataset is listed in Table 2. Note that we only train on the primary third-person603

camera in each dataset. For this reason, we omit the NYU Reacher-grabber dataset [75] which only inlcudes604

wrist cameras. We align all action spaces by converting them to delta cartesian and delta euller angle and605

binarize all gripper actions.606

B.2 Bridge V2 Dataset607

For experiments on bridge-only, we split the bridge dataset into 32 domains. First, we re-downloaded608

the raw bridge dataset and converted it to RLDS using the DLimp convertor (https://github.com/609

kvablack/dlimp/). We then partitioned the bridge dataset by domain using the file path metadata field610

that lists which setting demonstrations were collected in e.g. “toy-kitchen 1“ or “toy-sink-3”. We then611

manually group the domains into 32 categories. We omitted data that was collected by a scripted policy, as612

it did not contain the scene information in the filepath metadata. This means we ended up with around613

45,000 training trajectories, instead of the 60K used in the full bridge dataset. In Table 5 we list the614

natural weights of each of these domains and the learned weights by Re-Mix. We can see that Re-Mix615

down-weights some of the largest domains and places their weight on smaller domains.616
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B.3 Co-Training Datasets.617

Below we describe our co-training data and evaluation procedure for the real-world tasks on the WidowX618

250 and Franka Panda robots.619

WidowX Tasks We evaluate on a 6-DoF WidowX 250 robot on several new pick place tasks in a toy620

kitchen setting. Our setup is similar to Bridge V2 [4] with a fixed side camera and a blocking controller.621

Following Walke et al. [4] we use a blocking controller during evaluation. We collect teleoperated622

demonstrations using an Oculus Quest Headset for motion tracking and co-train on 25 demonstrations for623

each of the three tasks “Move Cube out of Sink”, “Move Cup into Sink”, and “Move Fork from Sink to624

Rack.”625

626

During evaluation, we examine generalization on various axes. The “Carrot to Rack” task tests generaliza-627

tion to picking up a new type of target object, “Fork to Rack” tests new unseen object positions, “OOD628

Cup” tests an object with different shape, “Cube to Plate” and “Cube to Cup” test generalization to new629

containers, and “Carrot to Right” tests generalization to both a new target object and a new motion. For630

each of these tasks, we first take a goal image and then evaluate our policies with fixed object locations for631

up to 100 seconds, stopping early if the robot or objects reach unrecoverable states. For “Carrot to Rack”632

we do five trials with the carrot facing down and five trials with it facing upwards. For “Fork to Rack” we633

use an unseen initial position to the right side of the sink and rotate the fork left 45 degrees for five episodes634

and to the right 45 degrees for the other five.635

B.4 Franka Tasks636

We evaluate on a Franka Panda robot on several pick place tasks on a tabletop. We use a fixed over the637

shoulder camera We co-train on 25 teleoperated demonstrations for each of the tasks “Pen into Cup,” where638

we put a pen into a cup from 5 different start locations, and “Flip Bowl,” where a bowl is flipped into a639

drying rack. For the “Pen into Cup” task we use a different pen than in co-training. However, because our640

franka embodiment with the Robotiq 2F-85 is not found in our pre-training datasets, we evaluate the same641

tasks as we co-trained on. We evaluate each start location of the pen twice from a new set of predifined642

positions. As in the WidowX evaluations, we take a goal image for each task and evaluate for up to 100643

seconds using a 10Hz controller without blocking control.644

C Training Details645

Architecture. We borrow our architecture from [4] with a few minor changes. Our policies takes as646

input a history of two consecutive frames and a single goal image and output a sequence of actions via647

DDPM [76].648

First, we preprocess all images to fit between -1 and 1. Then, we channel-wise concatenate both the goal649

image and a grid containing the position of each pixel in (x,y) space also normalized between -1 and 1.650

Images are then fed to a ResNet 50 encoder, which employs global average pooling on the output to obtain651

a 512 dimension representation for each image. Both image representations are then concatenated and fed652

to a diffusion action prediction head.653

Hyperparameters. We use a cosine decay learning rate schedule with an initial learning rate of 0.0002.654

We train all models for 400K steps and evaluate the final checkpoint, except for Bridge 10% subsetting,655

which we found to perform better after 200K steps. More detailed hyperparameters are found in Table 6.656

Note that there are some differences between bridge and RTX which were made for computational reasons657

– we iterated faster on the bridge dataset before scaling to RTX. We also did maintained aspect ratio for658

bridge, hence the different image input size, but did not for RTX follow Octo Model Team et al. [25]. We659

apply data augmentation to all images consistently across the time horizon and goal image (meaning that660

the goal image and all past images of each example have the same augmentation applied). We use random661

resize cropping, brightness, contrast, and hue randomization. For k-means in SSP for Bridge we set k=32,662

equal to the number of domains used for Re-Mix.663
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RTX Bridge
Batch Size 512 384
Action Chunk 4 2
Image Resolution 224×224 224×288

Table 6: Hyperparameters

Figure 6: Action distributions for Bridge.
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Figure 7: Action distributions for Toto.
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