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Abstract

Many real-world problems that require making optimal sequences of decisions
under uncertainty involve costs when the agent wishes to obtain information about
its environment. We design and analyze algorithms for reinforcement learning (RL)
in Action-Contingent Noiselessly Observable MDPs (ACNO-MDPs), a special
class of POMDPs in which the agent can choose to either (1) fully observe the state
at a cost and then act; or (2) act without any immediate observation information,
relying on past observations to infer the underlying state. ACNO-MDPs arise
frequently in important real-world application domains like healthcare, in which
clinicians must balance the value of information gleaned from medical tests (e.g.,
blood-based biomarkers) with the costs of gathering that information (e.g., the
costs of labor and materials required to administer such tests). We develop a
Probably Approximately Correct (PAC) RL algorithm for tabular ACNO-MDPs that
provides substantially tighter bounds compared to generic POMDP-RL algorithms,
on the total number of episodes exhibiting worse than near-optimal performance.
For continuous-state ACNO-MDPs, we propose a novel method of incorporating
observation information that, when coupled with modern RL algorithms, yields
significantly faster learning compared to other POMDP-RL algorithms in several
simulated environments.

1 Introduction

Reinforcement learning (RL), which involves learning to make sequences of good decisions in
stochastic environments, has had many impressive successes over the past decade [60, 68]. While
many of the more visible successes have occurred in simulated environments, such as Atari video
games [44, 58], reinforcement learning has increasingly been used to solve real-world problems
[10, 46, 36, 41, 75, 47, 37, 51, 42, 34]. One key difference between reinforcement learning in simu-
lated vs. real-world environments is that, in most simulated environments, the agent can fully observe
the underlying state at each time step with no additional observation costs. In contrast, real-world
environments frequently entail state observations that are noisy and/or costly, but optional. Environ-
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ments in which state information at each time step can be noisy or missing are more appropriately
modeled as partially observable Markov decision processes (POMDPs) rather than MDPs [29].

In this paper, we provide theory and algorithms for a special class of POMDPs in which state
information is complete/noiseless when observed, but may be missing at any given time step if the
agent chooses not to observe the state. We call this class of POMDPs Action-Contingent Noiselessly
Observable MDPs (ACNO-MDPs), which can be useful for capturing a number of important real-
world settings, such as:

ACNO-MDPs in healthcare. Clinicians in Intensive Care Units (ICUs) frequently have to make
sequences of treatment decisions under uncertainty for patients at risk. While accurate laboratory
tests can inform such decisions, administration of these tests carry a significant cost for the patient
and the health system [25]. These costs, together with the fact that frequent testing may be redundant
and wasteful [12, 78], appropriately lead clinicians to refrain from constantly observing the patient
state (i.e., ordering laboratory tests) [1, 17]. Similarly, other settings – such as glucose monitoring
to assist in insulin dosing recommendations [18], or white blood cell count monitoring to assist in
anti-HIV drug dosing [15] – have modern tools for accurate observations of biomarkers and could be
appropriately modeled by our ACNO-MDP framework.

ACNO-MDPs for user-adaptive experiences. Applications on mobile phones and other personal
devices can collect information on the user’s status, such as location, motion, inter-user contact, and
background noise, in order to adaptively suggest features that enhance the user’s experience [69, 70].
While these sensors can in theory always be kept active, battery consumption due to constant sensing
would make such applications less desirable to the user. Modeling this problem as an ACNO-MDP
could enable a policy that balances battery usage with personalizing the user’s experience. 1

Our contributions. Our main contributions are:

• Proposing a Probably Approximately Correct “Observe-then-Plan” algorithm for tabular
ACNO-MDPs that fully observes while exploring, then employs POMDP planning using
learned models. The resulting policy can select when to observe to achieve high expected
reward in environments with state observations that are costly but optional.

• Providing a finite sample guarantee for the above algorithm in environments with discrete
states and actions, such that the number of episodes exhibiting worse than near-optimal be-
havior is no larger than O(S

5A2H5Rmax
3◆4

✏3 ) with ◆ = O(ln (SAH/�✏)) with high probability.
This improves over prior work targeted towards more general POMDP problems (Table 4).

• Developing an algorithm that extends these ideas to ACNO-MDPs with continuous state
and action spaces. We introduce a novel belief state encoder that can be coupled with many
modern deep RL algorithms to solve problems with observation costs, which we demonstrate
with several simulation experiments.

2 Related work

Learning in POMDPs without a known model of the environment (i.e., with neither a model of
state-to-state transition dynamics nor a model of observations conditioned on states) is significantly
more difficult than learning in MDPs [49]. Thus while there is a rich literature on planning in
POMDPs with a known environment model [3, 7, 13, 23, 35, 39, 40, 50, 53, 54, 57, 59, 62, 67, 77],
including in Mixed Observability MDPs (MOMDPs) [61], active perception frameworks [19, 63],
and Non-Observable MDPs (NOMDPs) [38], fewer approaches exist for RL in POMDPs (POMDP-
RL). One key difficulty in general POMDP-RL is that, without a known observation model, the
agent can never know with certainty which states were actually visited. Approximating a transition
model for use in subsequent planning thus becomes infeasible without additional assumptions on
the observation model. Many approaches in POMDP-RL, such as the Bayes-Adaptive POMDP (BA-
POMDP) [52, 56] and its variants [31, 32], assume access to an informative prior distribution over the
observation model and maintain posterior distributions over the environment model parameters. These
algorithms plan using belief distributions over states rather than the states themselves. More recent

1While some of the POMDP-RL methods proposed in this paper may not be energy efficient, recent
approaches for compiling and compressing policies into approximately equivalent finite-state controllers could
enable energy efficient user-adaptive applications that both sense and change behaviors adaptively [20].
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approaches like Deep Recurrent Q-Networks (DRQN) [22, 79] and Deep Variational Reinforcement
Learning (DVRL) [43] use neural network-based sequence models to learn a condensed representation
of the agent’s action and observation history and apply modern RL algorithms (e.g., DQN [44], A2C
[72]) on this learned representation. These approaches show promising empirical performance but
lack theoretical guarantees and do not leverage the specific structure of ACNO-MDPs.

Theoretical guarantees on a POMDP-RL algorithm’s performance can be beneficial when gathering
samples under a suboptimal policy is costly. Though recent works have been able to provide
theoretical guarantees in surprisingly broad classes of POMDPs, these works either provide regret
guarantees (not sample complexity guarantees) [24, 66], or make assumptions about the structure of
the observation matrix which do not hold in ACNO-MDPs (e.g., that the observation matrix is full
rank [21, 2] or its singular value is bounded away from 0 [27]). To the best of our knowledge, our
work therefore provides sample complexity guarantees for a subclass of POMDPs in which no such
prior guarantees existed.

Closely related to our work, Klima et al. [33] consider RL in environments where the state is fully
observed, but only intermittently. However, whereas Klima et al. [33] consider environments in
which the agent cannot control state observation frequency, we address RL in environments where
the agent can decide when to observe, albeit at a cost. Similarly, Yoon et al. [74] and Chang et al.
[8] use RL methods to learn policies for active sensing/dynamic measurement scheduling. In these
works, however, the reward is directly tied to prediction accuracy and agents have no influence on the
underlying state beyond observation whereas we focus on agents that can influence the state.

Since acceptance, it has come to our attention that earlier work by Zubek and Dietterich [80], Zubek
et al. [81], and Bellinger et al. [4] proposed RL approaches for learning optimal policies that both
modify and observe the state at each time step, as in our problem setup. However, these prior
works only provide algorithms for tabular environments and do not provide any theoretical analysis
bounding the sample complexity. Related contemporaneous works by Yin et al. [73] and Bellinger
et al. [5] tackle the problem of RL with observation costs in continuous-state POMDPs and MDPs,
respectively: Yin et al. [73] considers a setting where individual elements of the state vector can be
observed at each point in time and Bellinger et al. [5] performs a more in-depth qualitative analysis
of agents’ measurement patterns throughout training.

3 Problem setting

Action-contingent noiselessly observable Markov decision processes (ACNO-MDPs). A
discounted, finite-horizon ACNO-MDP is an environment defined by a tuple M =
hS,A,O, p, �, r, b,Hi, where S and A are state and action spaces with cardinalities S and A,
respectively. The action space A consists of tuples {control actions} ⇥ {observe, not observe}. As in
POMDPs, the observation space, O, has cardinality O, and is related to S by the observation/emission
function p(o|s0a), which defines the probability of observing o if the agent has taken action a and
is now in s0. In ACNO-MDPs, however, the observation space is specifically constrained to be
O = S [ {missingness}, where the “missingness” observation provides no information whatsoever
about the underlying state. The “action-contingent noiselessly observable” aspect of ACNO-MDPs
derives from the fact that p(o|s0, aobserve) = 1 if and only if o = s0, while p(o0|s0, aobserve) = 0 for all
other observations o0 6= s0. Similarly, p(o|s0, anot observe) = 1 if and only if o = “missingness”.

While observations in ACNO-MDPs are deterministic, transition dynamics may be stochastic. The
probability of transitioning to state s0 after taking action a from state s is given by p(s0|s, a). We let
b represent a belief distribution over possible states, subscript t the time step within the episode, and
H the episode length. We denote the number of times the state-action pair (s, a) is visited across
episodes as n(s, a).

At each time step, the agent receives expected reward r(s, a), which includes the control-associated
reward from executing action a in state s plus an observation cost c(s, a)  0. If the state is
not observed, c(s, a) = 0. Thus, for any action a, r(s, aobserve) = r(s, anot observe) + c(s, aobserve).
Observation costs are assumed to be known in advance. Without loss of generality, we assume
0  r(s, a)  Rmax for all states s and actions a. We assume stationary dynamics, observations,
and rewards, but allow for nonstationary policies in light of the fixed horizon length. A t-step
policy, ⇡t(·), is a function that maps belief state distributions to distributions over actions. We
let V ⇡t(b0) = E(si,ai)⇠⇡t

Pt�1
i=0 �

i
P

s2S
bi(s)r(s, ai) represent the expected return obtained from
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starting in b0 and following t-step policy, ⇡t, with discount factor � 2 [0, 1]. An optimal policy,
⇡⇤, is a policy for which V ⇡⇤

(b) = max⇡ V ⇡(b) for all beliefs b in the belief space. The goal of
ACNO-MDP learning is to find the policy ⇡ that maximizes V ⇡(b0). We evaluate our algorithms
using the notion of sample complexity [30, 65], a measure of how much data is needed to learn a
near-optimal policy. An algorithm is Probably Approximately Correct (PAC) if its sample complexity
is polynomial in relevant quantities (e.g., S, A, H) with high probability [65].

Leveraging the specific observation structure of ACNO-MDPs can improve data efficiency in two
ways: (1) when the agent observes during exploration, it can more rapidly learn an accurate approxi-
mate transition model; and (2) this improved transition model can be used for better state estimation
during POMDP planning, as the underlying state transitions for observed and unobserved states
are identical. Faster convergence to an accurate model of the environment and subsequently better
planning reduce sample complexity bounds, as we demonstrate both theoretically and empirically.

4 Algorithms

We propose two high-level frameworks for finding a near-optimal policy in ACNO-MDP settings.
The first is “Observe before planning" (Algorithm 1), which initially spends a fixed number of
timesteps always observing states in order to learn accurate models of the transition dynamics and
rewards, as if in a MDP, then switches to computing a near-optimal POMDP policy using these
models. The second is “Observe while planning", which incorporates the known ACNO-MDP
observation structure (i.e., that observation emissions are identical to underlying states following a
choice to observe) into an existing POMDP-RL algorithm.

Our proposal for “Observe before planning" follows the structure of EEPORL [21], which devotes a
fixed number of episodes to exploration in order to accurately estimate models of transition dynamics,
rewards, and the function mapping states to observations. We highlight three key differences between
EEPORL and our approach: (1) our “Observe before planning” framework only needs to learn models
of the transition dynamics and reward function, since the observation model is known and every
transition can be exactly identified if the agent chooses to observe; (2) our method can track exactly
which state-action pairs are observed during the initial full observability-episodes in which the setting
is effectively an MDP; and (3) our method does not require EEPORL’s assumptions about state
transition probabilities, observations, and rewards (their Assumptions 2 & 3), whereas EEPORL
depends on these to guarantee that the outcomes of every action are uniquely identified.

The motivation for “Observe while planning" is that any POMDP-RL algorithm can be simplified in
ACNO-MDP settings by leveraging the known ANCO-MDP observation function, which gives the
true underlying state if the agent chooses to observe, and an uninformative state otherwise.

The purpose of both frameworks is to improve sample efficiency by leveraging the known observation
structure in ACNO-MDP settings, empirically and/or theoretically.

Algorithm 1 Observe before planning
1: Set dataset D  ;
2: for episode = 1 to N do . N is # of episodes spent exploring (e.g., Thm1 gives one example of N)
3: Reset to initial state s0
4: for step = 1 to H do
5: Pay to observe every (s, a, s0, r) and store into D
6: end for
7: end for
8: Calculate maximum likelihood estimates of transitions p̂(s, a, s0) and rewards r̂(s, a) using D
9: Return policy ⇡̂ from POMDP planning under p̂, r̂

In our experiments, we instantiate these frameworks into specific algorithms and compare them against
MDP-RL methods, which learn an always-observing policy regardless of the cost of observation, as
well as state-of-the-art POMDP-RL algorithms (e.g., DRQN [22] and DVRL [43]), which do not
leverage any knowledge about the ACNO-MDP observation function. A summary of all algorithms
used for comparison is shown in Table 1 and training details are provided in the Appendix.
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Table 1: Summary of our algorithms and baseline approaches.

Framework Algorithm name Setting

Observe before planning Observe-then-Plan (Ours) Tabular
Observe while planning ACNO-POMCP (Ours) Tabular
Generic POMDP-RL DRQN [22] Tabular
MDP-RL EULER-VI [76] Tabular
Observe while planning ACNO-A2C (Ours) Continuous States/Actions
Generic POMDP-RL DVRL [43] Continuous States/Actions
MDP-RL A2C [45, 72] Continuous states/Actions

4.1 Observe-then-Plan algorithm for tabular ACNO-MDPs (“Observe before Planning”)

For tabular ACNO-MDP domains, we provide the Observe-then-Plan algorithm as an instantiation of
the “Observe before planning” framework. Observe-then-Plan decouples exploration from planning,
following prior work on EEPORL [21] and reward-free exploration [28]. In contrast to this prior
work, which addresses non-stationary domains, we focus on domains with stationary dynamics and
rewards in a finite episodic setting. The first key algorithmic step in Observe-then-Plan is to visit all
relevant state-action pairs sufficiently many times, while observing at every time step, so as to learn
accurate models of the transition dynamics and rewards. For the purposes of our theoretical analysis,
we employ EULER [76] in this exploration phase, as it provides state-of-the-art algorithm cumulative
regret guarantees for episodic MDPs. We note, however, that any MDP-RL algorithm can be used for
this step. The second key algorithmic step in Observe-then-Plan is to use the models of transitions
and rewards estimated from exploration data for POMDP planning. While in our analysis we leverage
algorithms that guarantee ✏-optimal performance in POMDP planning [56, 16], these approaches
quickly become computationally challenging or intractable for any reasonably-sized POMDP [49].
In our experiments we therefore use POMCP, a popular and fast POMDP planning algorithm [59].

4.2 ACNO-POMCP/ACNO-A2C algorithms (“Observe while Planning”)

Although our theoretical guarantee (Theorem 1) requires the agent to initially spend a fixed number
of episodes exploring while observing at every time step, this extensive exploration and observation
may be unnecessary for obtaining near-optimal performance in practice. This motivates our second
framework “Observe while planning," under which we incorporate the known observation structure
into an existing state-of-the-art POMDP-RL method.

For tabular settings, we instantiate the “Observe while planning” framework with the ACNO-POMCP
algorithm. ACNO-POMCP simultaneously (1) uses online POMCP to plan optimal trajectories based
on simulated rollouts with the models learned so far, and (2) updates the approximate reward and
transition models used in these simulations every time a new sample (s, a, s0, r) is observed from the
true environment. Note the observation function does not need to be learned because the algorithm
leverages the fact that p(o|aobserve, s0) = 1 if and only if o = s0 and p(o|anot observe, s0) = 1 if and only
if o = “missingness”. Thus model estimation in ACNO-POMCP reduces to MDP model estimation,
but the algorithm does not quantify the policy’s degree of sub-optimality because when and how
often to observe are determined by the online RL agent.

For ACNO-MDPs with continuous state spaces, we instantiate the “Observe while Planning” frame-
work with the ACNO-A2C algorithm by modifying DVRL, a state-of-the-art POMDP-RL algorithm
for continuous state space settings. As in the DVRL algorithm, ACNO-A2C relies on (1) a belief
encoder model (a Gated Recurrent Unit-Recurrent Neural Network, or GRU-RNN [9]) for encod-
ing histories of past actions, observations, and inferred states; (2) a belief updating model (also a
GRU-RNN) that updates the encoded history based on the current observation, inferred state, and
prior history; (3) a stochastic transition model, p✓(zt|ht�1, at�1), representing the probability of
visiting underlying state zt given encoded history ht�1 and action at�1, which is instantiated as a
multivariate normal distribution whose mean and diagonal variance are governed by a neural network;
and (4) A2C for policy learning [43].

In our work, we modify the DVRL belief encoder model to incorporate the known observation
structure as follows: The original DVRL belief encoder maintains a (weighted) set of belief particles,
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each of which represents an encoding of the agent’s state and action history based on past observations
and actions. When a new state observation is received, each particle is updated with a latent state
sampled from a stochastic transition model conditioned on the past history and current observation.
Each particle is then assigned a weight proportional to both the likelihood of the agent being in the
sampled state and the likelihood of that particle emitting the received observation from that state. In
ACNO-MDPs, we split this updating process into two cases. First, if the agent chooses to observe,
then there is no uncertainty in the underlying state; every belief particle is updated with the same,
observed state and the weights for these particles are distributed uniformly. On the other hand, if the
agent chooses not to observe, underlying states are stochastically sampled from a learned transition
model, as in DVRL, but in this case the learned transition model does not incorporate information
about the observation because it will always be the “missingness” state following a non-observing
action. Weights assigned to each particle following a no-observation action are proportional to the
probability of reaching the sampled state given the encoded history and action chosen in the previous
time step. The belief encoder model is only updated after each observing action, in which case the
model loss is the negative log likelihood of visiting the observed state under the transition model.

Algorithm 2 ACNO-A2C belief encoder

Input Previous belief set b̂t�1, observation ot, action at�1.
Output b̂t, and belief encoder loss Lenc

t .
1: Unpack w1:K

t�1 , z
1:K
t�1 , h

1:K
t�1, ĥt�1  b̂t�1

2: for every particle k = 1, . . . ,K do
3: Resample previous context hk

t�1 ⇠ h1:K
t�1 based on weights

4: if at�1 = observe then
5: zkt = ot, wk

t = 1
K

6: L
enc
t  L

enc
t � log p✓(ot|hk

t�1, at�1) . Approx. density, stochastic transition model
7: else
8: Sample zkt ⇠ p✓(zkt |h

k
t�1, at�1). . Sample from the stochastic transition model

9: wk
t  p✓(zkt |h

k
t�1, at�1) . Estimate density under stochastic transition model

10: end if
11: hk

t  GRU(hk
t�1, z

k
t , ot, at�1) . Belief updating model

12: end for
13: ĥt  GRU(Concat(wk

t , z
k
t , h

k
t )

K
k=1) . Belief encoder model

14: Pack b̂t  (w1:K
t , z1:Kt , h1:K

t , ĥt) and include L
enc
t if at�1 = observe.

5 Analysis

Observe-then-Plan outperforms state-of-the-art PAC POMDP-RL sample complexity bounds (OOM-
UCB [26], Table 4) by a factor of A2SO3 in ACNO-MDP settings, while increasing these bounds
by a factor of HR3

max
✏ and logarithmic quantities. We note, however, that prior state-of-the-art PAC

POMDP-RL algorithms make assumptions on the structure of the observation matrix that do not hold
in ACNO-MDPs, thus limiting the utility of direct comparisons. Specifically, when an agent chooses
not to observe in the tabular ACNO-MDP setting, the observation matrix O 2 R

(S+1)⇥S has a single
row with values 1 corresponding to the “missingness” observation and all other rows are zero (since
each column vector represents P (o|s0, a) for a given (s0, a) and anot observe deterministically returns
o = “missingness”.) This leads to rank deficiency in the observation matrix, violating assumptions
made in Guo et al. [21], and �min(O) = 0, violating the assumptions made in Jin et al. [26]. Thus, to
the best of our knowledge, our results provide sample complexity guarantees for a class of POMDPs
not covered by prior POMDP-RL work. These guarantees hold for ACNO-MDPs with arbitrary state
dynamics and hard-to-reach states.

Theorem 1. Let M be any ACNO-MDP with observation cost c(s, aobserve) < 0 for all (s, a) 2
S ⇥ A, and reward bounded between [0, Rmax]. Let b0 be the initial belief, and let ✏ and � be
two positive real numbers. Following Observe-then-Plan will achieve an expected episodic reward
of V (b0) � V ⇤(b0) � ✏ after a number of episodes that is bounded by O(S

5A2H5R3
max◆

4

✏3 ), where
◆ = O(ln (SAH/�✏)), with probability at least 1� �.
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Table 2: Sample complexity comparisons

Algorithm Setting Transition Sample Complexity

OOM-UCB [26] POMDP non-stationary Õ
⇣

H4S6A4O3

�min(O)8✏2

⌘

EEPORL [21] POMDP stationary Õ
⇣

H4V 2
maxA

12R4O4S12

Cd,d,d(
�
3
2)�a(Ta)6�a(Ra)8�a(Oa)8✏2

⌘

Observe-then-Plan ACNO-MDP stationary Õ
⇣

H5S5A2R3
max

✏3

⌘

Proof sketch. (Full proofs provided in the Appendix). First, we note that prior work on POMDP-RL
provides guarantees on expected performance, i.e. V (b0) � V ⇤(b0)� ✏, provided that value function
estimates are sufficiently close to the true value function [21]. With sufficiently accurate estimates
of the ACNO-MDP transition and rewards models, we can bound the error of the value function
estimates computed under those models (following the EEPORL analysis) [16, 21, 55]. Prior work
on Model-based Interval Estimation [64, 71] allows us to bound model estimate errors (i.e., ||p̂� p||1
and |r̂ � r|) in terms of the number of visits, n(s, a). Using this, we can find the number of times
each state-action pair must be visited in order to guarantee sufficiently accurate ACNO-MDP model
estimates. Call this number m. Reward-free exploration [28] with EULER [76] guarantees that, with
high probability, the agent will visit each state-action pair at least m times after a certain number of
episodes, N . We show that this number N is O(S

5A2H5R3
max◆

4

✏3 ); in other words, after N episodes of
EULER for exploration, the agent has visited sufficiently many state-action pairs, (s, a), to learn a
near-optimal policy that trades off between observing and not observing.

Only the exploration phase of Observe-then-Plan contributes to its sample complexity, as planning
requires no additional sample collection. In generic POMDP settings where the true underlying
states are inaccessible, bounding the estimated model errors is difficult because the number of times
each state-action pair is visited cannot be measured. In ACNO-MDP settings, transition and reward
models can be estimated via simple MLE if the agent is willing to initially pay the cost of observation.
Note that in ACNO-MDP settings, each control action has two versions: an observed version and
an unobserved version. In both versions, the influence of the action on the state is identical (i.e.,
p(s0|s, aobserve) = p(s0|s, anot observe)), and the cost of observation is assumed to be known. Therefore
the learned dynamics and reward models from the observed version of an action can also be used for
its unobserved counterpart, and when planning an optimal action sequence, the agent can determine
whether the value of deterministically observing the true state, instead of relying on the estimated
state transition model, outweighs the cost of observation.

6 Experimental results

In order to analyze the empirical performance of our proposed methods in both tabular and continuous
state-action spaces, we evaluate the algorithms from Table 1 in (1) a tabular ACNO-MDP environment
designed to simulate patient care in the Intensive Care Unit; (2) a continuous-state, discrete-action
“Cart Pole” environment; and (3) a continuous-state, continuous-action “Mountain Hike” environment.

6.1 Algorithms for tabular ACNO-MDPs

Sepsis simulator Our first environment simulates a Sepsis patient and the effects of several common
treatments. Adapted from Oberst and Sontag [48], our “Sepsis simulator" defines the state space as
{heart rate, blood pressure, oxygen concentration, glucose level}, each of which can take on several
discretized state values (so in total, tabular S = 720). The action space is defined as a combination
of binary treatment options consisting of {antibiotics, vasopressors, ventillation}, each of which
can either be “on” or “off”. We augment the action space by coupling each action with options of
observing and not observing. A reward of 0 is given if the patient reaches a terminal “death” state, 1
if the patient reaches a terminal “discharge” state, and 0.25 otherwise. We provide results for each
algorithm under two different fixed observation costs, �0.1 and �0.05.

Algorithms We compare four different methods for learning an optimal policy in the Sepsis simulator.
For learning a POMDP policy, the algorithm selects the highest rewarding action from Monte-Carlo
rollouts for computational tractability instead of computing the exact policy.
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Table 3: Average discounted returns (mean ± 1 standard error) on Sepsis. Standard errors represent
the standard error of the mean return obtained from 3 separate seeds, each with rewards averaged
across 50 simulated rollouts at the end of 2000 training episodes using greedy action selection.

Observation Observe-then-Plan ACNO-POMCP DRQN EULER-VI
Cost (Observe before planning) (Observe while planning) (Generic POMDP-RL) (MDP-RL)

-0.1 0.754 ± 0.011 0.602 ± 0.029 0.593 ± 0.079 0.492 ± 0.011
-0.05 0.740 ± 0.017 0.625 ± 0.024 0.593 ± 0.036 0.638 ± 0.025

Observe-then-Plan (instantiation of “Observe before Planning”) is our originally proposed Observe-
then-Plan algorithm (Section 4.1) with a reduced number of episodes (compared to the proposed
H5S5A2/✏3 episodes) spent on exploration, in order to make the algorithm computationally tractable.

ACNO-POMCP (instantiation of “Observe while Planning”) is an adaptation of the POMCP online
planning algorithm to the learning setting based on the open-sourced POMCP codebase [14]. At each
time step, ACNO-POMCP uses Monte Carlo tree search to select actions (including observing and
non-observing actions) using an approximated model of the environment and an "-greedy exploration
strategy, with a decaying ". Whenever ACNO-POMCP chooses to observe the state twice in a row, the
observed (s, a, s0, r) tuple is used to update the parameters of its approximate transition and rewards
models. ACNO-POMCP treats emitted observations as ground truth state observations and updates
its reward and transition estimates over states. Unlike Observe-then-Plan, ACNO-POMCP does not
specify the number of necessary observations to be made prior to planning.

DRQN (Generic POMDP-RL) leverages an LSTM layer to encode sequences of one-hot-encoded
observations into a single hidden state encoding [22]2. The algorithm learns a mapping from this
hidden state to Q estimates, which are used for action selection under a decaying "-greedy strategy.

EULER-VI (Always observing MDP-RL) chooses to observe at every time step, essentially treating
the ACNO-MDP as a MDP with constant observation costs. Initially, EULER-VI uses EULER
[76] to strategically explore the state-action space. After a fixed number of “exploration” episodes,
EULER-VI computes Value Iteration under maximum likelihood estimates of the transition dynamics
and rewards models to learn an optimal five-step nonstationary policy assuming the observation cost
is applied at every step.

We evaluate the policy obtained from each method with 50 rollouts in the true environment and report
the obtained discounted returns including the observation costs (Table 3).

Results We ran each of the above methods for 2000 episodes on the Sepsis simulator domain. The
“exploration” phases of the Observe-then-Plan and EULER-VI algorithms were fixed to be 1000
episodes, at which point learning stopped. ACNO-POMCP and DRQN learned continuously for all
2000 episodes. Learning curves for each algorithm are shown in Figure 1 and performance of the
final policies (i.e., after 2000 episodes) for each algorithm are shown in Table 3.

Figure 1 shows that the algorithms without any explicit “exploration” phase (i.e., DRQN and ACNO-
POMCP) achieved higher returns during the first 1000 episodes compared to algorithms that used the
first 1000 episodes to actively explore the state-action space while always observing (i.e., Observe-
then-Plan, EULER-VI). Rewards under both the Observe-then-Plan and EULER-VI algorithms
improved dramatically after switching from “exploration” to “planning”, but EULER-VI continued
to observe at every time step and suffered in performance as a result. We note that, in the Sepsis
simulator, any policy that prevents the patient from dying or being discharged for all 5 steps achieves
a discounted return of 0.693. Observe-then-Plan is the only algorithm that outperforms this neutral
policy in expectation. The gray horizontal line indicates the average returns from POMCP planning
with the true model parameters, which suffers from reward approximation errors during planning
due to its use of Monte Carlo simulations. Despite the potential error in planning due to stochastic
rollouts, we chose POMCP as a computationally tractable POMDP planning algorithm.

2For implementation, we modified the open-sourced code at https://github.com/Bigpig4396/
PyTorch-Deep-Recurrent-Q-Learning-DRQN. Our code base is available at https://github.com/
nam630/acno_mdp
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Figure 1: Sepsis learning curves under the observation cost -0.1, with a rolling average window of
size 50. Shaded regions indicate ± 1 standard error over 3 simulated runs. The dotted vertical line at
1000 indicates the episode at which Observe-then-Plan and EULER-VI switch to planning. DRQN
and ACNO-POMCP continue learning.The x-axis shows the number of training episodes and the
y-axis shows (Left) acquired returns per episode and (Right) cumulative returns across episodes. The
gray horizontal line (Left) shows the average returns from POMCP planning with the true model
parameters. Note that approximate planning with POMCP, which was chosen over exact POMDP
planning for computational tractability, is imperfect even with a perfect model.

6.2 Algorithms for ACNO-MDPs with continuous state-action spaces

Explicit reward-free exploration is difficult to do in continuous state and action spaces where the
number of times an agent visits a unique state-action pair cannot be measured effectively. Our ACNO-
A2C algorithm instantiates the second framework of “Observe while Planning" to simultaneously
learn an accurate model of the environment while maximizing discounted episode returns. The
results suggest that our proposed belief state encoder based on “Observe while Planning" empirically
outperforms state-of-the-art algorithms without having to explore all of the state and action spaces.

Experimental domains
Modified CartPole simulator. We test on OpenAI gym CartPole-v0 [6] with the following modifi-
cations: (1) the action space is doubled in size to {push left, push right} ⇥ {observe, not observe};
(2) a cost of -0.4 is applied to every reward r(s, aobserve) in which the agent chooses to fully observe
the state; and (3) if a state is not observed, then the environment returns all zeros for the observation.

Mountain Hike simulator. We also test on a two-dimensional Mountain Hike environment, as
described and implemented by Maximilian et al. [43]. The goal of this task is to follow a high reward
path along a “mountain ridge”. The state space is defined by the current position, (x, y), and the
action a is defined as any possible vector (4x,4y) 2 R

2 with bounded `1-norm. The agent starts
from sampled coordinates (x0, y0) ⇠ N(�8.5I2⇥2, I2⇥2). Observations returned are exactly the
underlying state, except when the agent chooses not to observe in which case observations are a
vector of zeros. Transitions are defined as (x0, y0) = (x, y) + (4x,4y) + ", " ⇠ N (0, 0.25I2⇥2).
The reward is given by �(x, y)� 0.01||a||1 + cobs(a), where �(x, y) is the reward associated with
the agent’s proximity to the “mountain ridge” and cobs(a) is the cost of fully observing the state, such
that cobs(aobserve) = �0.5 if the agent chooses to observe and cobs(anot observe) = 0 otherwise.

Algorithms
ACNO-A2C (“Observe while Planning”) is the algorithm instantiating the belief encoder in Algorithm
2 with A2C, a well-known actor-critic reinforcement learning method [45, 72].

DVRL (Generic POMDP-RL) uses an implementation of the Deep Variational Reinforcement Learning
algorithm by Maximilian et al. [43]. As a state-of-the-art POMDP-RL approach for general POMDPs,
this algorithm does not leverage the special observation model given in ACNO-MDPs and must learn
both the transition dynamics and the observation model online.

A2C (Always observing MDP-RL) applies the actor-critic method [45, 72] directly to the state, assum-
ing the agent always chooses to observe the underlying state and incurs the associated observation
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cost. We use the A2C implementation by Maximilian et al. [43] but modified to be defined over
states, assuming every action outcome is observed at the fixed cost.

Both the ACNO-A2C and DVRL algorithms use an encoder that returns an array of aggregated belief
particles. This set of belief particles is then used for learning an A2C policy and value function.

Results Figure 2 shows the learning curves for our proposed algorithm (ACNO-A2C), the Deep
Variational Reinforcement Learning algorithm (DVRL), and the always-observing A2C algorithm.
Results are averaged over 5 random seeds. Shaded regions show ± 1 standard deviations over the 5
runs. Given an equal number of training steps, our ACNO-A2C algorithm achieved a higher-reward
final policy, in expectation, and found this high-reward policy in almost half the time that it took for
the DVRL algorithm to find its highest-reward policy. Running standard A2C while always observing
achieved high returns faster than ACNO-A2C (Mountain Hike) or about as fast as ACNO-A2C
(CartPole-v0), but achieved an inferior final policy relative to ACNO-A2C.

Figure 2: Left: CartPole-v0 with observation cost 0.4. Right: Mountain Hike with cost 0.5.

Our findings suggest that leveraging information about the structure of the observation model can
lead to improved learning efficiency (in terms of sample complexity) and higher-reward policies
compared to state-of-the-art generic POMDP-RL algorithms which make minimal assumptions about
the structure of the observation model.

7 Conclusion

We illustrated how assumptions made by many existing PAC POMDP-RL algorithms regarding the
observation function are violated in ACNO-MDPs, a special class of POMDPs. We proposed and
analysed a PAC RL Observe-then-Plan algorithm for efficient learning in such settings. We also
proposed a method for encoding belief states in ACNO-MDPs, and a meta-algorithm that can couple
this belief representation with deep RL algorithms to learn policies that balance the cost of observing
with the benefits of observing for exploration and planning.

We focused on obtaining a sample complexity result under the probably approximately correct
(PAC) framework, which has been extensively considered in MDPs, but this approach ignores
potentially significant costs incurred during the exploration phase. In contrast, the regret framework
incorporates costs incurred at all stages of learning into notions of optimality. One research direction
for constraining the cost of strategic exploration would be to develop ACNO-MDP RL algorithms
that optimize regret.

We considered the online setting in this work, but offline RL could help mitigate concerns regarding
online exploration in safety-critical domains. Exploring extensively to learn dynamics before planning
may be infeasible and/or unethical in some settings. For example, in the context of using RL in the
ICU to learn optimal policies for Sepsis management, strategic exploration may require the agent to
take actions that do not match best practices or existing clinical guidelines; leveraging our ideas to
learn optimal policies using data collected from suboptimal behavior policies could help in achieving
practical policies with limited online exploration. However, we believe that our work takes a useful
step towards characterizing the provable benefits in sample efficiency of ACNO-MDP RL compared
to generic tabular POMDP-RL. In generic continuous-state settings, sample complexity analysis and
regret analysis for POMDPs or even MDPs remain important open areas of research.
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[20] Marek Grześ, Pascal Poupart, Xiao Yang, and Jesse Hoey. Energy efficient execution of pomdp
policies. IEEE Transactions on Cybernetics, 45(11):2484–2497, 2014.

[21] Zhaohan Guo, Shayan Doroudi, and Emma Brunskill. A PAC RL algorithm for episodic pomdps.
CoRR, abs/1605.08062, 2016. URL http://arxiv.org/abs/1605.08062.

[22] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
AAAI Fall Symposium on Sequential Decision Making for Intelligent Agents, 2015.

[23] Milos Hauskrecht. Value-function approximations for partially observable markov decision
processes. Journal of artificial intelligence research, 13:33–94, 2000.

[24] Mehdi Jafarnia-Jahromi, Rahul Jain, and Ashutosh Nayyar. Online learning for unknown
partially observable mdps. arXiv preprint arXiv:2102.12661, 2021.

[25] Ashish K Jha, David C Chan, Abigail B Ridgway, Calvin Franz, and David W Bates. Improving
safety and eliminating redundant tests: cutting costs in us hospitals. Health affairs, 28(5):
1475–1484, 2009.

[26] Chi Jin, Sham Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforce-
ment learning of undercomplete pomdps. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 18530–18539. Curran Associates, Inc., 2020.

[27] Chi Jin, Sham M Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforce-
ment learning of undercomplete pomdps. arXiv preprint arXiv:2006.12484, 2020.

[28] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. 119:4870–4879, 13–18 Jul 2020. URL http://proceedings.

mlr.press/v119/jin20d.html.

[29] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[30] S. Kakade. On the sample complexity of reinforcement learning. 2003.

[31] Sammie Katt, Frans A Oliehoek, and Christopher Amato. Learning in pomdps with monte carlo
tree search. In International Conference on Machine Learning, pages 1819–1827. PMLR, 2017.

[32] Sammie Katt, Frans Oliehoek, and Christopher Amato. Bayesian reinforcement learning in
factored pomdps. arXiv preprint arXiv:1811.05612, 2018.

[33] Richard Klima, Karl Tuyls, and Frans A Oliehoek. Model-based reinforcement learning under
periodical observability. In 2018 AAAI Spring Symposium Series, 2018.

12

http://arxiv.org/abs/1605.08062
http://proceedings.mlr.press/v119/jin20d.html
http://proceedings.mlr.press/v119/jin20d.html


[34] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics:
Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

[35] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based pomdp planning
by approximating optimally reachable belief spaces. In Robotics: Science and systems, volume
2008. Citeseer, 2008.

[36] Lei Lei, Yue Tan, Kan Zheng, Shiwen Liu, Kuan Zhang, and Xuemin Shen. Deep reinforce-
ment learning for autonomous internet of things: Model, applications and challenges. IEEE
Communications Surveys & Tutorials, 22(3):1722–1760, 2020.

[37] Yuxi Li. Deep reinforcement learning. arXiv preprint arXiv:1810.06339, 2018.

[38] Zakary Littlefield, Dimitri Klimenko, Hanna Kurniawati, and Kostas E Bekris. The importance
of a suitable distance function in belief-space planning. In Robotics Research, pages 683–700.
Springer, 2018.

[39] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning policies for
partially observable environments: Scaling up. In Machine Learning Proceedings 1995, pages
362–370. Elsevier, 1995.

[40] William S Lovejoy. Computationally feasible bounds for partially observed markov decision
processes. Operations research, 39(1):162–175, 1991.

[41] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang, Ying-Chang
Liang, and Dong In Kim. Applications of deep reinforcement learning in communications and
networking: A survey. IEEE Communications Surveys & Tutorials, 21(4):3133–3174, 2019.

[42] Mufti Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano Vassanelli. Appli-
cations of deep learning and reinforcement learning to biological data. IEEE transactions on
neural networks and learning systems, 29(6):2063–2079, 2018.

[43] Igl Maximilian, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for pomdps. CoRR, abs/1806.02426, 2018. URL http:

//arxiv.org/abs/1806.02426,https://github.com/maximilianigl/DVRL.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[45] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR,
2016.

[46] Rui Nian, Jinfeng Liu, and Biao Huang. A review on reinforcement learning: Introduction and
applications in industrial process control. Computers & Chemical Engineering, page 106886,
2020.

[47] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. Deep reinforcement learn-
ing robot for search and rescue applications: Exploration in unknown cluttered environments.
IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

[48] Michael Oberst and David Sontag. Counterfactual off-policy evaluation with Gumbel-max
structural causal models. 97:4881–4890, 09–15 Jun 2019. URL http://proceedings.mlr.

press/v97/oberst19a.html,https://github.com/clinicalml/gumbel-max-scm.

[49] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

[50] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An anytime
algorithm for pomdps. In IJCAI, volume 3, pages 1025–1032. Citeseer, 2003.

[51] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning:
Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

13



[52] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive pomdps. In NIPS, pages
1225–1232, 2007.

[53] Stéphane Ross, Brahim Chaib-Draa, et al. Aems: An anytime online search algorithm for
approximate policy refinement in large pomdps. In IJCAI, pages 2592–2598, 2007.

[54] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-Draa. Online planning
algorithms for pomdps. Journal of Artificial Intelligence Research, 32:663–704, 2008.

[55] Stephane Ross, Masoumeh Izadi, Mark Mercer, and David Buckeridge. Sensitivity analy-
sis of pomdp value functions. In 2009 International Conference on Machine Learning and
Applications, pages 317–323. IEEE, 2009.

[56] Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. A bayesian approach
for learning and planning in partially observable markov decision processes. Journal of Machine
Learning Research, 12(5), 2011.

[57] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp solvers. Au-
tonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[58] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep
reinforcement learning in video games. arXiv preprint arXiv:1912.10944, 2019.

[59] David Silver and Joel Veness. Monte-carlo planning in large pomdps. Neural Information
Processing Systems, 2010.

[60] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[61] Trey Smith and Reid Simmons. Heuristic search value iteration for pomdps. arXiv preprint
arXiv:1207.4166, 2012.

[62] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning with
regularization. In NIPS, volume 13, pages 1772–1780, 2013.

[63] Matthijs Spaan and Pedro Lima. A decision-theoretic approach to dynamic sensor selection in
camera networks. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 19, 2009.

[64] Alexander Strehl and Michael Littman. A theoretical analysis of model-based interval estimation.
page 856–863, 2005. doi: 10.1145/1102351.1102459. URL https://doi.org/10.1145/

1102351.1102459.

[65] Alexander Strehl, Lihong Li, and Michael Littman. Reinforcement learning in finite mdps:
Pac analysis. Journal of Machine Learning Research, 10(84):2413–2444, 2009. URL http:

//jmlr.org/papers/v10/strehl09a.html.

[66] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate
information state for approximate planning and reinforcement learning in partially observed
systems. arXiv preprint arXiv:2010.08843, 2020.

[67] Zachary Sunberg and Mykel Kochenderfer. Online algorithms for pomdps with continuous state,
action, and observation spaces. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 28, 2018.

[68] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

14

https://doi.org/10.1145/1102351.1102459
https://doi.org/10.1145/1102351.1102459
http://jmlr.org/papers/v10/strehl09a.html
http://jmlr.org/papers/v10/strehl09a.html


[69] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A. Jacobson, Jason Hong, Bhaskar Krishna-
machari, and Norman Sadeh. A framework of energy efficient mobile sensing for automatic
user state recognition. In Proceedings of the 7th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’09, page 179–192, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605585666. doi: 10.1145/1555816.1555835. URL
https://doi.org/10.1145/1555816.1555835.

[70] Yi Wang, Bhaskar Krishnamachari, Qing Zhao, and Murali Annavaram. Markov-optimal sensing
policy for user state estimation in mobile devices. In Proceedings of the 9th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks, IPSN ’10, page 268–278,
New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781605589886. doi:
10.1145/1791212.1791244. URL https://doi.org/10.1145/1791212.1791244.

[71] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marco Weinberger.
Inequalities for the l1 deviation of the empirical distribution. 2003.

[72] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. arXiv preprint
arXiv:1708.05144, 2017.

[73] Haiyan Yin, Yingzhen Li, Sinno Jialin Pan, Cheng Zhang, and Sebastian Tschiatschek. Rein-
forcement learning with efficient active feature acquisition. arXiv preprint arXiv:2011.00825,
2020.

[74] Jinsung Yoon, James Jordon, and Mihaela Schaar. Asac: Active sensing using actor-critic
models. In Machine Learning for Healthcare Conference, pages 451–473. PMLR, 2019.

[75] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare: A survey.
arXiv preprint arXiv:1908.08796, 2019.

[76] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. Proceedings of the 36th
International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019,
abs/1901.00210, 2019. URL http://arxiv.org/abs/1901.00210.

[77] Nevin L Zhang and Wenju Liu. Planning in stochastic domains: Problem characteristics and
approximation. Technical report, Technical Report HKUST-CS96-31, Hong Kong University of
Science and Technology, 1996.

[78] Ming Zhi, Eric L Ding, Jesse Theisen-Toupal, Julia Whelan, and Ramy Arnaout. The landscape
of inappropriate laboratory testing: a 15-year meta-analysis. PloS one, 8(11):e78962, 2013.

[79] Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep reinforcement
learning for pomdps. arXiv preprint arXiv:1704.07978, 2017.

[80] Valentina Bayer Zubek and Thomas Dietterich. A pomdp approximation algorithm that antici-
pates the need to observe. In Pacific Rim International Conference on Artificial Intelligence,
pages 521–532. Springer, 2000.

[81] Valentina Bayer Zubek, Thomas Glen Dietterich, et al. Two heuristics for solving pomdps
having a delayed need to observe. 2004.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

15

https://doi.org/10.1145/1555816.1555835
https://doi.org/10.1145/1791212.1791244
http://arxiv.org/abs/1901.00210


• Did you include the license to the code and datasets? [Yes] All our algorithms and ex-
perimental domains are open-source (e.g., POMDPy [9], DVRL/mountain hike [33], Sep-
sis simulator [38], CartPole from OpenAI-Gym [4], DRQN is modified from https://

github.com/Bigpig4396/PyTorch-Deep-Recurrent-Q-Learning-DRQN). The link
to our codebase is included in the Appendix.

• Did you include the license to the code and datasets? [Yes] See above.
• Did you include the license to the code and datasets? [Yes] All algorithms and experimental

domains are open-source. Links are cited and our codebase will be released/linked after
review.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Limitations are discussed through-

out (e.g., sample complexity only for tabular domains), in addition to the conclusion
section.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In our
conclusion, we caution against using online algorithms to solve high-stake problems
like Sepsis, which would be infeasible and/or unethical.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] These are

included in the Appendix A. Proofs
(b) Did you include complete proofs of all theoretical results? [Yes] These are included in

the Appendix A. Proofs
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the
main experimental results (either in the supplemental material or as a URL)?
[Yes] A GitHub repo with code and instructions needed to reproduce the
main experimental results is provided in the Appendix, along with more de-
tailed pseudocodes. DRQN is based on https://github.com/Bigpig4396/

PyTorch-Deep-Recurrent-Q-Learning-DRQN.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] These are included in the Appendix B. for Sepsis, CartPole, and
Mountain Hike experiments, and associated links are cited.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All results are reported with mean and 1 standard error
over multiple runs with different random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Computation was performed
on internal university servers. Wall clock-time for the experiments is included in the
Appendix B along with other training details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Algorithms we used

in our work, including DVRL, DRQN, POMCP, etc., and environments, including
Sepsis simulator, OpenAI CartPole, and DVRL mountain hike, are all cited in our
manuscript.

(b) Did you mention the license of the assets? [N/A] All considered algorithms and
experimental domains are open-source (e.g., OpenAI-Gym, Sepsis) and require no
additional license.
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(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Code is provided via a publicly accessible GitHub link, as described above.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not use any data from human subjects.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We used simulated data only.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No human subjects data was used in this project.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] See above.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] See above.
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