
A Consciousness-Inspired Planning Agent for
Model-Based Reinforcement Learning

Mingde Zhao1,4,∗, Zhen Liu2,4,∗, Sitao Luan1,4,∗, Shuyuan Zhang1,4,∗

Doina Precup1,3,4,5†, Yoshua Bengio2,4,5†
1McGill University; 2Université de Montréal; 3DeepMind; 4Mila; 5 CIFAR AI Chair

∗: Equal Contribution, †: Equal Supervision

Abstract

We present an end-to-end, model-based deep reinforcement learning agent
which dynamically attends to relevant parts of its state during planning. The
agent uses a bottleneck mechanism over a set-based representation to force
the number of entities towhich the agent attends duringplanning to be small.
In experiments, we investigate the bottleneck mechanism with several sets
of customized environments featuring different challenges. We consistently
observe that the design allows theplanning agents to generalize their learned
task-solving abilities in compatible unseen environments by attending to
the relevant objects, leading to better out-of-distribution generalization
performance. Check project page https://github.com/PwnerHarry/CP.

1 Introduction

Whether when planning our paths home from the office or from a hotel to an airport
in an unfamiliar city, we typically focus on a small subset of relevant variables, e.g. the
change in position or the presence of traffic. An interesting hypothesis of how this path
planning skill generalizes across scenarios is that it is due to computation associated with
the conscious processing of information [2, 3, 14]. Conscious attention focuses on a few
necessary environment elements, with the help of an internal abstract representation of
the world [43, 14]. This pattern, also known as consciousness in the first sense (C1) [14],
has been theorized to enable humans’ exceptional adaptability and learning efficiency
[2, 3, 14, 43, 7, 15]. A central characterization of conscious processing is that it involves
a bottleneck, which forces one to handle dependencies between very few environmental
characteristics at a time [14, 7, 15]. Though focusing on a subset of the available information
may seem limiting, it facilitates Out-Of-Distribution (OOD) and systematic generalization to
other situations where the ignored variables are different and yet still irrelevant [7, 15].
In this paper, we encode some of these ideas into reinforcement learning agents. Rein-
forcement learning (RL) is an approach for learning behaviors from agent-environment
interactions [41]. However, most of the big successes of RL have been obtained by deep,
model-free agents [30, 37, 38]. While Model-Based RL (MBRL) has generated significant
research due to the potentials of using an extra model [31], its empirical performance has
typically lagged behind, with some recent notable exceptions [36, 24, 17].
Our proposal is to take inspiration from human consciousness to build an architecture
which learns a useful state space and in which attention can be focused on a small set of
variables at any time, where the aspect of “partial planning”1 is enabled by modern deep

1Partial planning is interpreted in different ways. For example, concurrent work [26] focuses on
modelling “affordable” temporally extended actions, s.t. an “intent” could be achievedmore efficiently.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/PwnerHarry/CP

RL techniques [42, 26]. Specifically, we propose an end-to-end latent-space MBRL agent
which does not require reconstructing the observations, as in most existing works, and uses
Model Predictive Control (MPC) framework for decision-time planning [34, 35]. From an
observation, the agent encodes a set of objects as a state, with a selective attention bottleneck
mechanism to plan over selected subsets of the state (Sec. 4). Our experiments show that the
inductive biases improve a specific form of OOD generalization, where consistent dynamics
are preserved across seemingly different environment settings (Sec. 5).

2 Background & Context

We consider an agent interacting with its environment at discrete timesteps. At time C,
the agent receives observation >C and takes action 0C , receiving a reward AC+1 and new
observation >C+1. The interaction is episodic. The agent is also building a latent-space
transition model,ℳ, which can be used to sample a next state, B̂C+1, a reward ÂC+1 and a
binary signal $̂C+1 which indicates if the model predicts termination after the transition. We
will now compare and contrast our approach with some existing methods from the MBRL
literature, explaining the rationale for our design choices.
Observation Level Planning and Reconstruction vs Latent Space Planning
Many MBRL methods plan in the observation space or rely on reconstruction-based losses
to obtain state representations [24, 36, 17, 48]. Appropriate as these methods may be for
some robotic tasks with few sensory inputs, e.g. continuous control with joint states, they
are arguably difficult with high-dimensional inputs like images, since they may focus on
predictable yet useless aspects of the raw observations [31]. Besides suffering from the need
to reconstruct noise or irrelevant parts of the signal, it is not clear if representations built by
a reconstruction loss (e.g. !2 in the observation space) are effective for an MBRL agent to
plan or predict the desired signals [39, 17, 18], e.g. values (in the RL sense), rewards, etc..
In this work, we use an approach similar to those in [39, 36, 17], building a latent space
representation that is jointly shaped by all the relevant RL signals (to serve value estimation
and planning) without using reconstruction.
Staged Training vs End-to-End Training
Some MBRL agents based on a world model [16, 24, 31] use two explicit stages of training:
(1) an inner representation of the world is trained using exploration (usually with random
trajectories); (2) the representation is fixed and used for planning and MBRL. Despite the
advantages of being more stable and easier to train, this procedure relies on having an
environment where the initial exploration provides transitions that are sufficiently similar
to those observed under improved policies, which is not the case in many environments.
Furthermore, the learned representation may not be effective for value estimation, if these
transitions do not contain reward information that can be used to update the input-to-
representation encoder. End-to-end MBRL agents, e.g. [39, 36], are able to learn the
representation online, simultaneously with the value function, hence adapting better to
non-stationarity in the transition distribution and rewards.
Type of planning
MBRL agents can use the model in different ways. Dyna [40] learns a model to generate
“imaginary” transitions, which contribute to the training of the value estimator [40], in
addition to the real observations, thus boosting sample efficiency. However, if the model
is inaccurate, the transitions it generates may be “delusional", which may alter the value
estimator and negatively impact performance. Moreover, Dyna is typically used to generate
extra transitions from the states visited in a trajectory, and updates the model based on
the observed transitions as well. This means Dyna is focused on the data distribution
encountered by the agent and may have trouble generalizing OOD. In contrast, simulation-
based model-predictive control (MPC) and its variants [34, 35, 18] only update the value
estimator based on real data, using the model simply to perform lookahead at decision-time.
Hence, model inaccuracies impact less, with more favorable OOD generalization capabilities.
Hence, MPC is adopted in our approach.
Vectorized vs Set Representations for RL
Most Deep Reinforcement Learning (DRL) work focus on learning vectorized state rep-

2

extract
features

to set ...

feature position

unorder

extract
features

state vector

vectorized
representation

set-based
representationobservation

Figure 1: Set-based state encoder compared to classical vectorized state encoders: the feature map
extracted by some feature extractor, e.g. a CNN, is “chopped” into feature vectors and concatenated
with positional information. All of the resulting concatenations are treated as objects in a set, capturing
the features of observed entities. The permutation-invariance of set computations forces the learner to
be robust to small changes in the set (e.g. one of the elements being different or missing).

resentations, where the agents’ observation is transformed into a feature vector of fixed
dimensionality [30, 19]. Instead, set-based encoders, a.k.a. object-oriented architectures, are
designed to extract a set of unordered vectors from which to predict the desired signals
via permutation-invariant computations [50], as illustrated in Fig. 1. Recent works in RL
have shown the promise of set-based representations in capturing environmental states, in
terms of generalization, as well as their similarities to human perception [13, 47, 32, 46, 29].
Additionally in this work, we utilize the compositionality of set representations to enable
the discovery of sparse interactions among objects, i.e. underlying dynamics, as well as to
facilitate the bottleneck mechanism, analogous to C1 selection. The set-based representation
coupled with the bottleneck provides an inductive bias consistent with selecting only the
relevant aspects of a situation on-the-fly through an attention mechanism. The small size of
the working memory bottleneck also enforces sparsity of the dependencies [7, 15] captured
by the learned dynamics model: each transition can only relate a few objects together, no
more than the size of the bottleneck.

3 MBRL with Set Representations

We present an end-to-end baseline MBRL agent that uses a set-based representation and
carries out latent space planning, but without a consciousness-inspired small bottleneck.
This agent serves as a baseline to investigate the OOD generalization capabilities brought by
the bottleneck, which is to be introduced later in Sec. 4.
The mapping from observations to values is a combination of an encoder and a value estimator.
The encoder maps an observation vector to a set of objects, which constitutes the latent state.
The value estimator is a permutation-invariant set-to-vector architecture that maps the latent
state to a value estimate. Note that the same state set is used for all the agents’ predictions,
including future states, rewards etc., as we will discuss later.
Encoder. For image-based observations, we use the features at each position of the CNN
output feature map to characterize the feature of an object, similar to [9], as shown in Figure
1. To recover positional information lost during the process, we concatenate each object
feature vector with a positional embedding to form a complete object embedding. Such
approach is different from the common practice of mixing positional information by addition
[45]. This is for the compatibility with our dynamics model training procedure, discussed
below.
(State-Action) Value Estimator takes the form & : S → R|A| , where S is the learned state
space by the set-based encoder (hoping to capture the real underlying state space of the
MDP) and A is a discrete action set. We use an improved architecture upon DeepSets
[50], depicted in Figure 2. The architecture performs reasoning on a set of encoded objects,
resembling pervasive usage in natural language processing, where the objects are typically
word tokens [33].

3

...feature

position

SA FC ...

FC
summary Q values

m
ean

intermediate set

Figure 2: Value estimator & and a generic set-to-vector architecture: we modify the design of
DeepSets [50] by replacing the MLP before pooling with transformer layers (multi-head Self-Attention
(SA) + object-wise Fully Connected (FC)) [45]. We found this change to be helpful for performance.
After applying the transformer layers, the intermediate set (colored gray) entangles features and
positions. Please check the Appendix for more details on the self-attention operations involved.

Transition Model. The transition model maps from BC , 0C to B̂C+1, ÂC and $̂C+1. We separate
this into: 1) the dynamics model, in charge of simulating how the state would change with
the input of 0C and 2) the reward-termination estimator which maps BC , 0C to ÂC and $̂C+1.
While designing reward-termination estimator is straightforward (a two-headed augmented
architecture similar to the value estimator), the dynamics model requires regression on
unordered sets of objects (set-to-set). A common approach is to use matching methods, e.g.
Chamfer matching or Hausdorff distance, However, they are computationally demanding
and subject to local optima [5, 8, 28]. Targeting this, our feature-position separated set
encoding not only makes the permutation-invariant computations position-aware, but also
allows simple end-to-end training over the dynamics. By forcing the positional tails to be
immutable during the computational pass, we can use them to solve the matching trivially:
objects “labeled” with the same positional tail in the prediction B̂C+1 (output of the dynamics
model) and the training sample BC+1 (state obtained from the next observation) are aligned,
forming pairs of objects with changes only in the feature, as shown in Figure 3.
Tree Search MPC. The agent employs a tree-search based behavior policy (with &-greedy
exploration). During planning, each tree search call maintains a priority queue of branches
to simulate with the model. When a designated budget (e.g. number of steps of simulation)
is spent, the agent greedily picks the immediate action that leads to the most promising path.
We present the pseudocode of the Q-value based prioritized tree-search MPC in Appendix.
Equivalence could be drawn from this planning approach to Monte-Carlo Tree Search
(MCTS) [37, 38]. While this method is far more simplistic and require fewer simulations for
each planning call (see example in Appendix).
Training. The proposed agent is trained from sampled transitions with the following losses:

• Temporal Difference (TD) ℒTD: regresses the current value estimate to the update target,
e.g. calculated according to DQN or Double DQN (DDQN) [30, 44]. In experiments, a
distributional output is used for both value and reward estimation, making this loss a
KL-divergence [6].

• Dynamics Consistency ℒdyn: A !2 penalty established between the aligned B̂C+1 and BC+1,
where B̂C+1 is the imagined next (latent) state given >C , 0C and BC+1 is the true next (latent)
state encoded from >C+1.

• Reward Estimation ℒA : the KL-divergence between the imagined reward ÂC+1 predicted
by the model and the true reward AC+1 of the observed transition.

• Termination Estimation ℒ$: the binary cross-entropy loss from the imagined termination
$̂C+1 to the ground truth $C+1, obtained from environment feedback.

4

0

copy original tails

...
...feature

position

action

...

st

dow
nscale

FCSA FC

imagined
feature

position

xN

Figure 3: Dynamicsmodel: for FC sub-layers of the transformer layers, we inject an action embedding
s.t. the transformer computations are now action conditioned. After getting the intermediate set, we
downscale each of the objects, leaving the positions untouched and directly copied from the input BC .
FC downscale is a linear transformation which downscales the dimensionality of the intermediate
objects to that of the features part of objects (before the layernorm). In this way, after concatenating
the positional tails the objects have consistent dimensionality. Intuitively, each object slot recovers its
positional tail at the output. Though the objects in the sets (input-intermediate-output) are aligned,
within each set they are still unordered, i.e. permutation-invariant.

The resulting total loss for end-to-end training of this set-based MBRL agent is thus2:

ℒ = ℒTD + ℒdyn + ℒA + ℒ$

Jointly shaping the states avoids the representation collapsing to trivial solutions and makes
the representation useful for all signal predictions of interest.

4 Consciousness-Inspired Bottleneck

In this section, we introduce an inductive bias which facilitates C1-capable planning. In a
nutshell, the planning is expected to focus on the parts of the world that matter for the plan.
Simulations and predictions are all expected to be performed on a (small) bottleneck set,
which contains all the important transition-related information. As illustrated in Figure 4,
the model performs 1) selection of the bottleneck set from the full state-set, 2) dynamics
simulation on the bottleneck set and 3) integration of predicted bottleneck set to form the
predicted next state.
Conditional State Selection We select a bottleneck set 2C of = objects from the potentially
large state set BC of < � = objects. Then we only model the transition for the selected objects
in 2C . To make this selection, we use a key-query-value attention mechanism, where the key
and the value for each object in BC are obtained from that object, and the query is a function
of some learned dedicated set of vectors and of the action considered (see Appendix for
details). Inspired by the work on self-attention for memory access [25], we use a semi-hard
top-: attention mechanism to facilitate the selection of the bottleneck set. That is, after the
query, the top-: attention weights are kept, all others are set to 0, and then the attention
weights are renormalized. This semi-hard attention technique limits the influence of the
ill-matched objects on the bottleneck set 2C while allowing for a gradient to propagate on the
assignment of relative weight to different objects. With purely soft attention, weights for
irrelevant objects are never 0 and learning to disentangle objects may be more difficult.
Dynamics / Reward-Termination Prediction on Bottleneck Sets. We use the same archi-
tecture as described in Sec. 3, but taking the bottleneck objects as input rather than the full
state set. Details of the architecture are in the Appendix.
Change Integration. An integration operation, intuitively the inverse operation of selection,
is implemented to ‘soft paste-back’ the changes of the bottleneck state onto the state set BC ,

2In our experiments, no re-weighting is used for each term of the total loss. This is possible for the
fact that they are in similar magnitudes. In our experimental implementation, no recurrent mechanism
is used however the same training procedure is naturally extendable.

5

st
①

②
r

ω
at reward-term

estimator

dynamics
model

select integrate

st

①

②

r

ω

③

③
at

reward-term
estimator

ct

dynamics
model

with bottleneck
no bottleneck

Figure 4: Bottleneck stages (operations colored in purple are conditioned on a chosen action): 1) a
bottleneck set 2C is soft-selected from the whole state (object set) BC through semi-hard multi-head
attention; 2) dynamics are applied to the bottleneck set 2C to form 2̂C+1; 3) the reward and termination
signals are predicted from 2C , 2̂C+1 and 0C . Then, the changes introduced in 2̂C+1 are integrated with BC
to obtain B̂C+1, the imagined next state, with the help of attention. Note that the two computational
flows in stage 3 are naturally parallelizable.

yielding the imagined next state set B̂C+1. This is also achieved by attention operations, more
specifically querying 2̂C+1 with BC , conditioned on the action 0C . Please check the Appendix
for more details.
Discussion. The bottleneck described in this section is a natural complement to the MBRL
model with set representations discussed previously. In particular, planning and training
are carried out the same way as discussed in Sec. 3.
We expect the Conscious Planning (CP) agent to demonstrate the following advantages:

• Higher Quality Representation: the interplay between the set representation and the
selection / integration forces the representation to bemore disentangled andmore capable
of capturing the locally sparse dynamics.

• MoreEffectiveGeneralization: only essential objects for thepurpose of planningparticipate
in the transition, thus generalization should be improved both in-distribution and OOD,
because the transition does not depend on the parts of the state ignored by the bottleneck.

• Lower Computational Complexity: directly employing transformers to simulate the full
state dynamics results in a complexity of O(|BC |23), where 3 is the length of the objects,
due to the use of Self-Attention (SA), while the bottleneck lowers it to O(|BC | |2C |3).

(a) In-dist, diff 0.35 (b) OOD, diff 0.25 (c) OOD, diff 0.35 (d) OOD, diff 0.45 (e) OOD, diff 0.55

Figure 5: Non-Static RL Setting, with in-distribution and OOD tasks: (a) example of training
environments (b - e) examples of OOD environments (rotated 90 degrees, changing the distribution
of grid elements). For OOD testing, we evaluate different levels of difficulty (b - e). The agent (red
triangle) points in the forward movement direction. The goal is marked in green. For each episode
(training or OOD), we randomly generate a new world from a sampling distribution. Note that the
training environments and the OOD testing environments have no intersecting observations.

6

5 Experiments

We present our experimental settings and ablation studies of our CP agent against baselines
to investigate the OOD generalization capabilities enabled by the C1-inspired bottleneck
mechanism. To clarify, the OOD generalization we refer to specifically is the agents’ ability to
generalize its learned task skills across seemingly different tasks with common underlying dynamics.
Take the set of experiments in this section for example, we want the agent to be able to
generalize its navigation skills in unseen environments.

5.1 Environment / Task Description

We use environments based on the MiniGrid-BabyAI framework [11, 10, 21], which can
be customized for generating OOD generalization tests with varying difficulties. To make
sure we assess the agents as clearly as possible, the customized environments feature clear
object definitions, with well-understood underlying dynamics based on object interactions.
Furthermore, the environments are solvable by Dynamic Programming (DP) and can be
easily tuned to generate OOD evaluation tasks. These characteristics are crucial for the
experimental insights we are seeking.
In this section, the experiments are carried out on 8 × 8 gridworlds3, as shown in Figure
5. The agent (red triangle) needs to navigate (by turning left, right or stepping forward) to
the goal while dodging the lava cells along the way4. If the agent steps into lava (orange
square), the episode terminates immediately with no reward. If the agent successfully
reaches the goal (green square), it receives a reward of +1 and the episode terminates. For
better generalization, the agent needs to understand how to avoid lava in general (and not at
specific locations, since their placement changes) and to reach the goal as quickly as possible5.
The environments provide grid-based observations that are ready to be interpreted as set
representations: each cell of the observation array is an object, thus resulting in a set of 64
objects in BC for each observation.
For the agent to be able to understand the environment dynamics instead of memorizing
specific task layouts, we generate a new environment for each training or evaluation episode.
In each training episode, the agent starts at a random position on the leftmost or rightmost
edge and the goal is placed randomly somewhere along the opposite edge. In between
the two edges, the lava cells are randomly generated according to a difficulty parameter
which controls the probability of placing a lava cell at each valid position. The difficulty
parameter controls partially how seemingly different the OOD evaluation tasks are to the
in-distribution training tasks, though we know the underlying dynamics of all these tasks
are the same. For training episodes, the difficulty is fixed to 0.35. We note that most usual
RL benchmarks contain fixed environments, where the agent is expected to acquire a specific
optimal policy. These environments are ill-suited for our purpose.
For OOD evaluation, the agent is expected to adapt in new tasks with the same underlying
dynamics in a 0-shot fashion, i.e. with the agent’s parameters fixed. The OOD tasks
are crafted to include changes both in the support (orientation) and in the distribution
(difficulty): the agent is deployed in transposed layouts6 with varying levels of difficulty
({0.25, 0.35, 0.45, 0.55}). The differences of in-distribution (training) and OOD (evaluation)
environments are illustrated in Figure 5.

5.2 Agent Setting

We build all the set-based MBRL agents included in the evaluation on a common model-free
baseline: a set-based variant of Double-DQN (DDQN) [44] with prioritized replay and
distributional outputs. For more details, please check the Appendix.

3We provide additional results for world sizes ranging from 6 × 6 to 10 × 10 in the Appendix. 8 × 8
is chosen as the demonstrative case.

4In the Appendix, we provide additional test settings with different dynamics, which also demon-
strates the agents’ ability to work well despite cluttering distractions.

5Please check the Appendix for extra sets of tasks with different agent actions and task objectives.
6The agent starts at the top or bottom edge and the goal is respectively on the bottom or top edge,

whereas a training environment has the agent and goal on the left or right edges

7

We compare the proposed approach, labelled CP in the figures (for Conscious Planning)
against the following methods:

• UP (for Unconscious Planning): the agent proposed in Section 3, lacking the bottleneck.
• model-free: the model-free set-based agent is the basis for the set-based model-based

agents. It consists of only the encoder and the value estimator, sharing their architectures
with CP and UP.

• Dyna: the set-based MBRL agent which includes a model-free agent and an observation-
level transition model, i.e. a transition generator. For the model, we use the CP transition
model (with the same hyperparameters as the best performing CP agent) on the original
environment features without an encoder. We also use the same hyperparameters as in
the CP model training. The agent essentially doubles the batch size of the model-free
baseline by augmenting training batches with an equal number of generated transitions.

• Dyna*: A Dyna baseline that uses the true environment model for transition generation.
This is expected to demonstrate Dyna’s performance limit.

• WM-CP: A world model CP variant that differs by following a 2-stage training procedure
[16]. First, the model (together with the encoder) is trained with 106 random transitions.
After this, the encoder and the model are fixed and RL begins.

• NOSET: A UP-counterpart with vectorized representations and no bottleneck mechanism.

Particularly, for CP and UP agents, we also test the following variants:

• CP-noplan: A CP agent that trains normally but does not plan in OOD evaluations,
i.e. carrying out model-free behavior. This baseline aims to demonstrate the impact of
planning in the training process on the OOD capability of the value estimator.

• UP-noplan: UP counterpart of CP-noplan.

Note that the compared methods share architectures as much as possible to ensure fair
comparisons. Details of the compared methods, their design and hyperparameters are
provided in the Appendix.

5.3 Performance Evaluation

5.3.1 In-Distribution

In Figure 6, we present the in-distribution evaluation curves for the different agents. For
UP, CP and the corresponding model-free baselines, the performance curves show no
significant difference, which demonstrates that these agents are effective in learning to solve
the in-distribution tasks. During the “warm-up” period of the WM baseline, the model
learns a representation that captures the underlying dynamics. After the warm-up, the
encoder and the model parameters are fixed and only the value estimator learns to predict
the state-action values based on the given representation. The increase in performance
is not only delayed due to the warm-up phase (during which rewards are not taken into
account) but also harmed, presumably because the value estimator has no ability to shape
the representation to better suit its needs. The Dyna baseline performs badly while the
Dyna* baselines perform relatively well. This is likely due to the delusional transitions
generated by the model at the early stages of training, from which the value estimator never
recovers. However, the Dyna* baseline does not achieve satisfactory OOD performance
(Figure 7), presumably because its planning only focuses on observed data, and hence only
improves the in-distribution performance, due to insufficiently strong generalization. The
NOSET baseline performs very badly even in-distribution, per Figure 6. In the Appendix,
we show that the NOSET baseline seems only able to perform well in a more classical, static
RL setting, which may indicate that it relies on memorization. We provide more results
regarding the model accuracy in the Appendix.

5.3.2 OOD Task-Solving Performance

The OOD evaluation focuses on testing the agents’ performance in a set of environments
forming a gradient of task difficulty. In Figure 7, we present the performance error bars of

8

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

CP(8)
UP
modelfree
WM
Dyna
Dyna*
NOSET

Figure 6: In-distribution task perfor-
mance: the G-axis shows the training
progress (2.5 × 106 agent-environment in-
teractions). The H-axis values are gener-
ated by agent snapshots at times corre-
sponding to the G-axis values. CP, UP,
model-free and Dyna* agents all learn to
solve the in-distribution tasks quickly. All
error bars are obtained from 20 indepen-
dent runs.

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.2

0.4

0.6

0.8

su
cc

es
s

ra
te

CP(8)

UP

(a) OOD, difficulty 0.25

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.2

0.4

0.6

0.8

su
cc

es
s

ra
te

modelfree
WM

(b) OOD, difficulty 0.35

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.2

0.4

0.6

0.8

su
cc

es
s

ra
te

Dyna

Dyna*

(c) OOD, difficulty 0.45

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.2

0.4

0.6

0.8

su
cc

es
s

ra
te

NOSET

(d) OOD, difficulty 0.55

Figure 7: OOD performance under a gradient of difficulty. The figures show a consistent pattern:
the MPC-based end-to-end agent equipped with a bottleneck (CP) performs the best. All error bars
are obtained from 20 independent runs.

the compared methods under different OOD difficulty levels. CP(8), CP with bottleneck size
= = 8, shows a clear performance advantage over UP, validating the OOD generalization
capability. The Dyna* baseline, essentially the performance upper bound of Dyna-based
planning methods, shows no significant performance gain in OOD tests compared to model-
free methods. WMmay have the potential to reach similar performance as CP, yet it needs
to warm up the encoder with a large portion of the agent-environment interaction budget, if
no free unsupervised phase is provided. We dive into this matter in the Appendix.

5.3.3 Ablation

We validate design choices with ablation. Figure 8 visualizes two of these experiments.
For more ablation results, which include validation of the effectiveness of different model
choices, and further quantitative measurements, e.g. of OOD ability as a function of behavior
optimality and model accuracy, please check the Appendix.

5.4 Summary of Experimental Results

With the scope limited to our experiments, the results allow us to draw these conclusions:

• Set-based representations enable at least in-distribution generalization across different
environment instances in our non-static setting, where the agents are forced to discover
dynamics that are preserved across environments;

• Model-free methods seem to face more difficulties in solving our OOD evaluation tasks
which preserved the same environment dynamics to the corresponding in-distribution
training settings;

• MPC exhibits better performance than Dyna in the tested OOD generalization settings;
• Online joint training of the representation with all the relevant signals could bring benefits

to RL, as suggested in [22]. Please check Appendix E for more discussions of this matter;
• In accordancewith our intuition, transitionmodelswith bottlenecks tend to learndynamics

better in our tests. This is likely for they prioritize learning the relevant aspects, while
models without bottleneck may have to waste capacity on irrelevance;

9

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.1

0.2

0.3

0.4

0.5

0.6

su
cc

es
s

ra
te

CP(8)

noplan(8)

UP

noplan(UP)

modelfree

(a) Bottleneck benefits OOD capability: no-
plan(8) andnoplan(UP) correspond to theCP(8)
andUP variantswith planning disabled during
OOD tests. Comparing noplan against model-
free, we see that planning during training is
beneficial for both value estimation and repre-
sentation learning.

0 0.5 1 1.5 2 2.5

agent-env interactions 106

0

0.2

0.4

0.6

su
cc

es
s

ra
te

CP(16)-best

CP(8)-best

CP(4)-best

CP(16)

CP(8)

CP(4)

(b)Value estimators do not generalizewell in
our OOD tests: random heuristic significantly
outperforms best-first heuristic OOD.

Figure 8: Key ablation results: With diff 0.35, each error bar is obtained from 20 independent runs.

• From further experiments provided in the Appendix E, we observe that bottleneck-
equipped agents may also be less affected by larger environmental scales, possibly due to
their prioritized learning of interesting entities.

6 Conclusion & Limitations

We introduced a conscious bottleneck mechanism into MBRL, facilitated by set-based
representations, end-to-end learning and tree search MPC. In the non-static RL settings, the
bottleneck allows selecting the relevant objects for planning and hence enables significant
OOD performance.
One limitation of our work is the experimental focus on only Minigrid environments, due to
the need to validate carefully our approach. For future works, we would also like to extend
these ideas to temporally extended models, which could simplify the planning task, and are
also better suited as a conceptual model of C1. Finally, we note that the architectures we use
are involved and can require careful tuning for new types of environments.

Acknowledgements

Mingde is grateful for the financial support from the Fonds de Recherche du Québec -
Nature et Technologies (FRQNT). Yoshua acknowledges the financial support from Samsung
Electronics and IBM.
We acknowledge the computational power provided by Compute Canada. We are also
thankful for the helpful discussions with Xiru Zhu (about the design of the environment
generation procedure), David Yu-Tung Hui (about the bag-of-word representations, insights
on BabyAI as well as about the writing of the introduction section), Min Lin (about the
design of the dynamics model as well as the early stage brainstorming) and Ian Porada (for
consistently supporting the student authors).

10

https://scholar.google.com/citations?user=GwdsMdAAAAAJ&hl=en
https://dyth.github.io/
https://www.linkedin.com/in/min-lin-08a3a422/?originalSubdomain=sg
https://ianporada.github.io/

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv, 1607.06450, 2016.
http://arxiv.org/abs/1607.06450.

[2] B. J. Baars. A cognitive theory of consciousness. Cambridge University Press, 1993.

[3] B. J. Baars. The conscious access hypothesis: origins and recent evidence. Trends in
cognitive sciences, 6(1):47–52, 2002.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv, 1409.0473, 2014. https://arxiv.org/abs/1409.0473.

[5] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C.Wolf. Parametric correspondence
and Chamfer matching: 2 new techniques for image matching. Technical report, SRI
International Menlo Park CA Artificial Intelligence Center, 1977.

[6] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on re-
inforcement learning. International Conference on Machine Learning, 2017. https:
//arxiv.org/abs/1707.06887.

[7] Y. Bengio. The consciousness prior. arXiv, 1709.08568, 2017. http://arxiv.org/abs/
1709.08568.

[8] G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm.
IEEE Transactions on pattern analysis and machine intelligence, 10(6):849–865, 1988.

[9] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-
end object detection with transformers. European Conference on Computer Vision, 2020.
https://arxiv.org/abs/2005.12872.

[10] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen,
and Y. Bengio. Babyai: A platform to study the sample efficiency of grounded
language learning. International Conference on Learning Representations, 2018. http:
//arxiv.org/abs/1810.08272.

[11] M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalistic gridworld environment for
openai gym. GitHub repository, 2018. https://github.com/maximecb/gym-minigrid.

[12] R. C. Conant and W. Ross Ashby. Every good regulator of a system must be a model of
that system. International Journal of Systems Science, 1(2):89–97, 1970.

[13] G. Davidson and B. M. Lake. Investigating simple object representations in model-free
deep reinforcement learning. arXiv, 2002.06703, 2020. https://arxiv.org/abs/2002.
06703.

[14] S. Dehaene, H. Lau, and S. Kouider. What is consciousness, and could machines have
it? Science, 358, 2020. https://science.sciencemag.org/content/358/6362/486.

[15] A. Goyal and Y. Bengio. Inductive biases for deep learning of higher-level cognition.
arXiv, 2011.15091, 2020. https://arxiv.org/abs/2011.15091.

[16] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In
Conference on Neural Information Processing Systems, volume 31, 2018. https://papers.
nips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html.

[17] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering Atari with discrete
world models. In International Conference on Learning Representations, 2021. https:
//arxiv.org/abs/2010.02193.

[18] J. B. Hamrick, A. L. Friesen, F. Behbahani, A. Guez, F. Viola, S. Witherspoon, T. Anthony,
L. Buesing, P. Velickovic, and T. Weber. On the role of planning in model-based deep
reinforcement learning. arXiv, 2011.04021, 2020. https://arxiv.org/abs/2011.04021.

11

http://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1709.08568
http://arxiv.org/abs/1709.08568
https://arxiv.org/abs/2005.12872
http://arxiv.org/abs/1810.08272
http://arxiv.org/abs/1810.08272
https://github.com/maximecb/gym-minigrid
https://arxiv.org/abs/2002.06703
https://arxiv.org/abs/2002.06703
https://science.sciencemag.org/content/358/6362/486
https://arxiv.org/abs/2011.15091
https://papers.nips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://papers.nips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2011.04021

[19] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep
reinforcement learning. AAAI Conference on Artificial Intelligence, 2017. http://arxiv.
org/abs/1710.02298.

[20] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and
D. Silver. Distributed prioritized experience replay. International Conference on Learning
Representations, 2018. http://arxiv.org/abs/1803.00933.

[21] D. Y.-T. Hui, M. Chevalier-Boisvert, D. Bahdanau, and Y. Bengio. Babyai 1.1. arXiv,
2007.12770, 2020. http://arxiv.org/abs/2007.12770.

[22] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. Interna-
tional Conference on Representation Learning, 2017. http://arxiv.org/abs/1611.05397.

[23] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based
policy optimization. arXiv, 1906.08253, 2019. http://arxiv.org/abs/1906.08253.

[24] L. Kaiser, M. Babaeizadeh, P.Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan,
C. Finn, P. Kozakowski, S. Levine, et al. Model-based reinforcement learning for atari.
arXiv, 1903.00374, 2019. http://arxiv.org/abs/1903.00374.

[25] N. R. Ke, A. Goyal, O. Bilaniuk, J. Binas, M. C. Mozer, C. Pal, and Y. Bengio. Sparse atten-
tive backtracking: Temporal credit assignment through reminding. arXiv, 1809.03702,
2018. http://arxiv.org/abs/1809.03702.

[26] K. Khetarpal, Z. Ahmed, G. Comanici, and D. Precup. Temporally abstract partial
models. In Conference on Neural Information Processing Systems, 2021. http://arxiv.
org/abs/2108.03213.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014. http://arxiv.org/abs/1412.6980.

[28] A. R. Kosiorek, H. Kim, and D. J. Rezende. Conditional set generationwith transformers.
arXiv, 2006.16841, 2020. http://arxiv.org/abs/2006.16841.

[29] S. Löwe, K. Greff, R. Jonschkowski, A. Dosovitskiy, and T. Kipf. Learning object-centric
video models by contrasting sets. arXiv, 2011.10287, 2020. https://arxiv.org/abs/
2011.10287.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. nature, 518(7540):529–533, 2015. https://www.nature.com/
articles/nature14236.

[31] T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement learning: A
survey. arXiv, 2006.16712, 2020. http://arxiv.org/abs/2006.16712.

[32] T. Mu, J. Gu, Z. Jia, H. Tang, and H. Su. Refactoring policy for compositional gener-
alizability using self-supervised object proposals. In Conference on Neural Information
Processing Systems, volume 33, 2020. https://arxiv.org/abs/2011.00971.

[33] I. Porada, K. Suleman, A. Trischler, and J. C. K. Cheung. Modeling event plausibility
with consistent conceptual abstraction. In Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1732–1743,
2021. https://arxiv.org/abs/2104.10247.

[34] A. V. Rao. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences, 135(1):497–528, 2009.

[35] A. G. Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005. https://dspace.mit.edu/handle/1721.1/28914.

12

http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/2007.12770
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1906.08253
http://arxiv.org/abs/1903.00374
http://arxiv.org/abs/1809.03702
http://arxiv.org/abs/2108.03213
http://arxiv.org/abs/2108.03213
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2006.16841
https://arxiv.org/abs/2011.10287
https://arxiv.org/abs/2011.10287
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/2006.16712
https://arxiv.org/abs/2011.00971
https://arxiv.org/abs/2104.10247
https://dspace.mit.edu/handle/1721.1/28914

[36] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et al. Mastering Atari, Go, Chess and Shogi by
planning with a learned model. Nature, 588(7839):604–609, 2020. https://arxiv.org/
abs/1911.08265.

[37] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
https://www.nature.com/articles/nature16961.

[38] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354–359, 2017. https://www.nature.com/articles/nature24270.

[39] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold,
D. P. Reichert, N. C. Rabinowitz, A. Barreto, and T. Degris. The predictron: End-
to-end learning and planning. International Conference on Machine Learning, 2016.
http://arxiv.org/abs/1612.08810.

[40] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and react-
ing. SIGART Bulletin, 2(4):160–163, 1991. https://dl.acm.org/doi/10.1145/122344.
122377.

[41] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
http://incompleteideas.net/book/the-book-2nd.html.

[42] E. Talvitie and S. Singh. Simple local models for complex dynamical sys-
tems. In Conference on Neural Information Processing Systems, volume 21,
pages 1617–1624. Citeseer, 2008. https://papers.nips.cc/paper/2008/hash/
f76a89f0cb91bc419542ce9fa43902dc-Abstract.html.

[43] R. van Gulick. Consciousness. In E. N. Zalta, editor, Stanford Encyclopedia of Philosophy.
Stanford: Metaphysics Research Lab, 2004.

[44] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. AAAI Conference on Artificial Intelligence, 2015. http://arxiv.org/abs/
1509.06461.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. International Conference on Neural Information
Processing Systems, 2017. https://arxiv.org/abs/1706.03762.

[46] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019. https:
//www.nature.com/articles/s41586-019-1724-z.

[47] T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with
graph neural networks. In International Conference on Learning Representations, 2018.
https://openreview.net/forum?id=S1sqHMZCb.

[48] X. Wang, W. Xiong, H. Wang, and W. Y. Wang. Look before you leap: Bridging model-
free and model-based reinforcement learning for planned-ahead vision-and-language
navigation. In European Conference on Computer Vision, 2018. http://arxiv.org/abs/
1803.07729.

[49] S. M. Xie and S. Ermon. Differentiable subset sampling. In International Joint Conference
on Artificial Intelligence, 2019. https://arxiv.org/abs/1901.10517.

[50] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, and A. J. Smola.
Deep sets. Conference on Neural Information Processing Systems, 2017. https://arxiv.
org/abs/1703.06114.

[51] A. Zakharov, M. Crosby, and Z. Fountas. Episodic memory for learning subjective-
timescale models. arXiv, 2010.01430, 2020. http://arxiv.org/abs/2010.01430.

13

https://arxiv.org/abs/1911.08265
https://arxiv.org/abs/1911.08265
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature24270
http://arxiv.org/abs/1612.08810
https://dl.acm.org/doi/10.1145/122344.122377
https://dl.acm.org/doi/10.1145/122344.122377
http://incompleteideas.net/book/the-book-2nd.html
https://papers.nips.cc/paper/2008/hash/f76a89f0cb91bc419542ce9fa43902dc-Abstract.html
https://papers.nips.cc/paper/2008/hash/f76a89f0cb91bc419542ce9fa43902dc-Abstract.html
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1706.03762
https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://openreview.net/forum?id=S1sqHMZCb
http://arxiv.org/abs/1803.07729
http://arxiv.org/abs/1803.07729
https://arxiv.org/abs/1901.10517
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114
http://arxiv.org/abs/2010.01430

	Introduction
	Background & Context
	MBRL with Set Representations
	Consciousness-Inspired Bottleneck
	Experiments
	Environment / Task Description
	Agent Setting
	Performance Evaluation
	In-Distribution
	OOD Task-Solving Performance
	Ablation

	Summary of Experimental Results

	Conclusion & Limitations
	Appendices
	Architecture Details
	Birdseye View of Overall Design
	Action-Conditioned Transformer Layer
	Bottleneck Dynamics
	Reward-Termination Estimator
	Bottleneck selector
	Bottleneck integrator

	Prerequisites
	Attention
	Distributional Outputs

	Experiment Insights
	Experiment Configurations
	More Experimental Analyses
	In-Distribution Model Accuracy
	More Ablation Results
	Planning Steps
	Action Regularization
	Potential of WM Baseline
	Tests on Different World Sizes
	Different Tasks
	Alternative Dynamics
	Cluttering Effect
	Key-Chest Unlocking

	Learning Capable Representation with Non-Conflicting Joint Signals

	Visualization of Selection
	Details of Compared Baseline Methods
	Staged Training (World Models)
	Dyna
	NOSET

	Tree Search MPC
	Failed Experiments
	Straight-Through Hard Subset Selection with Gumbel

	More Discussions on Limitations & Future Directions
	Potential Negative Societal Impacts

