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ABSTRACT

Extensive-form games (EFGs) provide a powerful framework for modeling sequen-
tial decision making, capturing strategic interaction under imperfect information,
chance events, and temporal structure. Most positive algorithmic and theoretical
results for EFGs assume perfect recall, where players remember all past informa-
tion and actions. We study the increasingly relevant setting of imperfect-recall
EFGs (IREFGs), where players may forget parts of their history or previously
acquired information, and where equilibrium computation is provably hard. We
propose sum-of-squares (SOS) hierarchies for computing ex-ante optimal strategies
in single-player IREFGs and Nash equilibria in multi-player IREFGs, working
over behavioral strategies. Our theoretical results show that (i) these hierarchies
converge asymptotically, (ii) under genericity assumptions, the convergence is
finite, and (iii) in single-player non-absentminded IREFGs, convergence occurs at
a finite level determined by the number of information sets. Finally, we introduce
the new classes of (SOS)-concave and (SOS)-monotone IREFGs, and show that in
the single-player setting the SOS hierarchy converges at the first level, enabling
equilibrium computation with a single semidefinite program (SDP).

1 INTRODUCTION

Extensive-form games (EFGs) are a central framework for modelling sequential decision-making
under imperfect information, with important applications in economics, operations research, and
artificial intelligence (Osborne & Rubinstein, 1994} Fudenberg & Tirole, |1991). An EFG represents
interactions on a tree in which players (or chance) take turns choosing actions. Each sequence of
actions defines a history that either terminates at a leaf with associated payoffs or leads to another
decision point. This representation is also able to capture imperfect information, where players cannot
distinguish between different nodes. EFGs have been used extensively in modern Al, particularly in
solving large-scale imperfect information games (Brown & Sandholm, 2018; Bowling et al., [2015}
Moravcik et al., [2017; Bakhtin et al., [2022).

A key distinction between classes of EFGs is the ability of players to retain memory. In perfect-recall
EFGs, players remember all past information sets and actions, whereas in imperfect-recall EFGs
(IREFGs) some information may be lost, such as forgetting which action was taken or even whether a
state has been visited before. Recent work has increasingly focused on IREFGs, since they capture a
more realistic model of decision-making. IREFGs are used to abstractify large games, letting agents
ignore strategically unimportant details (Waugh et al.,[2009; |Ganzfried & Sandholm| [2014} Brown
et al., [2015; [Cermdk et al.,[2017a). They also provide a natural representation for bounded rationality
(Lambert et al., 2019)), for describing teams of cooperating agents as a single imperfect-recall decision
maker (Von Stengel & Koller, [1997; |Celli & Gatti, 2018 [Zhang et al., [2022), and for designing
privacy-preserving or data-restricted agents (Conitzer, |2019; |(Conitzer & Oesterheld, 2023)).

EFGs admit two principal strategy formalisms: mixed strategies, defined as distributions over pure
strategies that select an action everywhere in the game tree, and behavioral strategies, which randomize
between actions independently at each information set. The canonical solution concept is a Nash
equilibrium (NE), a strategy profile from which no player can unilaterally deviate. Perfect recall plays
a crucial role in the theoretical guarantees of EFGs: by Kuhn’s theorem (Kuhnl [1953), mixed and
behavioral strategies are equivalent in perfect recall EFGs, implying the existence of behavioral NEs
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and enabling efficient algorithms, such as polynomial-time methods for solving two-player zero-sum
EFGs (Koller & Megiddo, |1992).

The imperfect-recall setting is far more challenging. The equivalence between mixed and behavioral
strategies breaks down, and mixed NE still exist but may be unimplementable since they require
players to have perfect memory of the game states. Though behavioral NE are a more natural
solution concept, they might not exist, even in two-player zero-sum IREFGs (Wichardt, |2008)).
Computationally, solving two-player zero-sum IREFGs is NP-hard (Koller & Megiddol [1992]),
deciding whether a single-player IREFG achieves a target value is hard (Gimbert et al., [2020; [Tewolde
et al.| [2023), even relaxed equilibrium notions such as EDT and CDT equilibria are hard to compute
(Tewolde et al.,|2023), and deciding whether a behavioral NE exists is hard (Tewolde et al.| [2024).

Many recent hardness results for IREFGs (Gimbert et al., 20205 Tewolde et al.| {2023 2024) rely on
the folklore observation that any IREFG over behavioral strategies can be expressed as a polynomial
game over a product of simplices (Piccione & Rubinstein, [1997). Importantly, the transformation
from an EFG to its polynomial game representation can be carried out in polynomial time. Polynomial
games form a key subclass of continuous games, originally studied by Dresher et al.| (1950), in which
each player’s utility is a polynomial in the decision variables of all players.

On the other hand, there exists well-developed machinery for handling single- and multi-player
optimization problems where utilities are polynomial and strategy sets are semi-algebraic. In the
single-player case, the Moment-SOS hierarchy (Lasserre, [2001} |Parrilo} 2000) applies to polynomial
optimization problems of the form max f(x) subject to x € X, where f is a polynomial and X’ is
defined by polynomial equalities and inequalities. Although such problems are NP-hard in general
(Motzkin & Straus, [1965), the hierarchy produces a sequence of semidefinite relaxations whose
optimal values converge to the true optimum under mild assumptions. At relaxation level d, it seeks
the smallest scalar ¢ such that t — f(x) admits a sum-of-squares (SOS) certificate of nonnegativity
on X, a condition expressible as a semidefinite program (SDP) of polynomial size. Extensions of
the Moment-SOS hierarchy have also been developed for the multi-player polynomial optimization
setting, applied to polynomially representable supersets of the equilibrium set (Nie & Tang| 2024).

Thus far, the link between IREFGs and polynomial optimization has mostly served to prove hardness
results, but we instead use it as a foundation for positive algorithmic results. Specifically, we ask:

What guarantees does the Moment-SOS hierarchy provide for solving IREFGs?
Are there structured subclasses of IREFGs where it enables tractable computation?

Contributions. By bringing these tools to imperfect-recall games, we obtain a general, provably
convergent framework for computing behavioral equilibria in IREFGs. Moreover, we identify
structural conditions under which convergence occurs at finite or low levels of the hierarchy, leading
to efficient algorithms for broad and natural subclasses. Specifically, our main contributions are:

* For single-player IREFGs, the Moment-SOS hierarchy converges asymptotically to the ex-ante
optimal value. Under a genericity assumption, we show that convergence is instead finite for
almost all games. Moreover, in non-absentminded IREFGs (NAM-IREFGs), we show that exact
convergence occurs at a level of the hierarchy depending on the number of infosets in the game.

* For multi-player IREFGs, we adapt an approach proposed in recent work by |[Nie & Tang|(2024).
The method requires multiple instantiations of the Moment-SOS hierarchy and converges asymp-
totically to a behavioral NE, certifying non-existence otherwise. As with the single-player case,
for almost all games the convergence is finite. In NAM-IREFGs, we show that a variant of the
method generically converges in finite time, requiring only a single instantiation of the hierarchy.

* We define the tractable subclasses of concave and monotone IREFGs, and SOS-certifiable
counterparts thereof. In single-player SOS-concave/SOS-monotone IREFGs, we show that the
Moment-SOS hierarchy converges at the first level, enabling computation of ex-ante optima with
a single SDP.

Related work in IREFGs. Existing positive results for IREFGs typically rely on restrictions
that admit tractable perfect-recall refinements. A-loss recall games (Kaneko & Kline, |1995; Kline,
2002) limit forgetting to past actions, enabling sufficient conditions for behavioral NE to exist and
approximation methods in the two-player zero-sum case (Cermék, [2018). NAM-IREFGs, wherein
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players always remember previously encountered decision points, can be transformed into equivalent
(though exponentially larger) A-loss recall games (Gimbert et al., 2025)). Finally, chance-relaxed
skew well-formed games are a subclass of IREFGs where counterfactual regret minimization still
provably minimizes regret (Lanctot et al.| 2012} Kroer & Sandholm, [2016).

2 PRELIMINARIES

2.1 IMPERFECT RECALL EXTENSIVE-FORM GAMES (IREFGS)

We first define extensive-form games of imperfect recall. For a more thorough review of standard
concepts in EFGs, the reader is referred to |[Fudenberg & Tirole| (1991));/Osborne & Rubinstein| (1994).

An n-player extensive form game ¢ is a tuple & := (H, A, Z, p, Z) where:

» The set H denotes the states of the game which are decision points for the players. The states
m € H form a tree rooted at an initial state » € 7. We denote terminal nodes in H by Z. Each
nonterminal state 7 € H \ Z is associated with a set of available actions A;.

* Given N = {1,...,n}, the set N'U{c} denotes the n + 1 players of the game. Each state w7 € H
admits a label Label(r) € N U {c} which denotes the acting player at state 7. The letter ¢
denotes a chance player, representing exogenous stochasticity. H; C ‘H denotes the states 7 € H
with Label(7) = i. Each chance node m € H,. is associated with a fixed distribution P.(-|7) over
A, denoting the distribution over actions chosen by the chance player at each node.

e For each i € N, payoff function p; : Z — R specifies the payoff that player 7 receives if the
game ends at terminal state z € Z.

* The game states H are partitioned into information sets (also called infosets) ascribed to each
player, namely Z; € (Z1,...,Z,). Each information set I € Z; encodes groups of nodes that the
acting player 4 cannot distinguish between, so if 71, 72 € I, then A, = A,,. We let A; denote
the shared action set of infoset /.

* For notational convenience, we ascribe a singleton information set to each chance node and define
T. as the collection of these chance node infosets. For each non-terminal node m € H \ Z, we
thus define I¢(z, ..., 7, )uz. to be the infoset it belongs to.

Memory. There are two key distinctions regarding players’ memory. A game has perfect recall it
no player ever forgets their past history, namely, the sequence of information sets visited, actions
taken within those information sets, and any information acquired along the way. Formally, for any
information set I € Z; and any two nodes 71, 2 € I, the sequence of Player ¢’s actions from the
root r to 7; must coincide with the sequence from r to my; otherwise, the player could distinguish
between the two nodes. A game is said to have perfect recall if this property holds for all players;
otherwise, it is said to have the imperfect recall property.

Strategy formalism. A pure strategy specifies a deterministic action at every information set
of a player. A mixed strategy is a probability distribution over pure strategies. However, mixed
strategies require players to coordinate their actions across information sets, which implicitly assumes
memory and therefore conflicts with the imperfect-recall setting. For this reason, IREFGs are
most naturally analyzed using behavioral strategies, which specify independent randomizations at
each information set. Formally, for any information set I € Z;, let A(.A;) denote the simplex of
probability distributions over the available actions .4;. A behavioral strategy for player 7 is a mapping
wi i — Urer, A(Ar), assigning to each information set [ a distribution y; (- [ 1) € A(Ar). The
joint behavioral strategy profile for all players is denoted by p := (1;)ien-

Kuhn’s theorem (Kuhn, |1953) establishes that, in games with perfect recall, behavioral and mixed
strategies are outcome-equivalent—that is, they induce the same probability distribution over terminal
histories. This equivalence no longer holds in the imperfect-recall setting, making behavioral
strategies the canonical choice for IREFGs.

Going forward, we establish some additional notational conventions regarding behavioral strategies.
We use (14, f4—;) to describe the influence of player 7 on u, where p—; collects all components except
player i. Let ¢; denote the number of infosets of player ¢, i.e. ¢; := |Z;|, and m{ denote the number
of actions in a given infoset I f € 7, of player i, i.e. mf = |A;;|. The strategy set of player i over all
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. . . L 2 P 1
their infosets can be written as a Cartesian product of simplices: S; == ><j21 A™i—1, Finally, the

strategy set over all players is S = X?:l S;. In the single-player case, we set n = 1 and drop the
player index ¢ for clarity.

Solution concepts. The expected utility of player ¢ € N following (joint) behavioral strategy p is
wi(p) =, cz P(z|u,r) - pi(2), where P(z|u,r) is the probability that leaf z € Z is reached from
root r following joint behavioral strategy w. In a single-player IREFG ¢, a behavioral strategy p* is
said to be ex-ante optimal if it is a solution to the following optimization problem:

max, u(pu) st peS. (1)
In these games, S is compact and u is continuous, so arg maxg u # () (i.e. ex-ante optima always

exist). In a multi-player IREFG ¥, a joint behavioral strategy u* € S is a (behavioral) Nash
equilibrium if for every player ¢ € N, we have that:

ui(/j/*) Z ul(uu/’diz)’ V/’Ll € Si7 (2)

i.e., no player can profitably deviate from p* to any other behavioral strategy. Importantly, behav-
ioral Nash equilibria need not exist in IREFGs; a counterexample is given in [Wichardt (2008) (cf.
Figure[2.1] (a)). Moreover, even deciding whether one exists is hard (Tewolde et al., 2024).

P1 P1

1 -1 -5 -5-5 -5 -1 1 1 4

Figure 2.1: (a) A two-player zero-sum IREFG with no NE; (b) the single-player absentminded taxi
driver IREFG. Dotted lines denote infosets. In (b), P1 cannot distinguish between nodes in the same
history, so behavioral strategies (e.g., Left w.p. , Right w.p. 1 — z) yield expected utility
u(x) = 22 + 42(1 — x), a polynomial in the behavioral strategy space.

2.2 THE MOMENT/SUM-OF-SQUARES HIERARCHY

We will utilize ideas from the polynomial optimization literature to solve IREFGs. We direct the
reader to Lasserre| (2009b)); [Laurent| (2009) for more thorough discussions of these techniques. Here
we give only a brief overview of the Moment-SOS hierarchy tailored to our purposes; a step-by-step
derivation in our setting is provided in Appendix

We now introduce the Moment-SOS hierarchy. Consider the polynomial optimization problem:

f* = max, {f(z): x € X}, 3)
where the feasible region is a basic semi-algebraic set X := {x € R™ : gj(z) > 0,5 €
[mgl, hi(z) = 0,k € [mp]} for two families of polynomials g1,..., gm,, h1,- .., hm, € R[z].
Let o := (a1, ..., ) € N™ be a multi-index, and write z* := [[*, z, |a| := 31", ;. For
two multi-indices «, (3, the sum « + 3 is taken componentwise, i.e., (a + 3); = «; + ;. Denote
by R[z] the ring of real polynomials in the variables = := (z1,..., %), and by R[z],4 the vector
space of polynomials of degree at most d (whose dimension is s(m) := (m;:d)). A sequence

Y = (Ya)aenn C R defines a Riesz linear functional L, : R[z] = R, Ly(2%) = y,. Given a
sequence y and an integer d > 0, the degree-d moment matrix My(y) is the symmetric matrix with
rows and columns indexed by all multi-indices «, 8 satisfying ||, |3| < d, and whose entry is
Ma(y)a,s = Ya+s- For any polynomial g(z) = > g, 27, the degree-d localizing matrix of y with

respect to g is Md(g*y)aﬁ = Ly (g(z)z*P) = > Gy Yat st lal,|B] < d — [deg(g)/2].

Denote by S[z] := {0 € R[z] : o(z) = S5, a1(x)?, qr € R[z]} the set of SOS polynomials and
by X[z]4 the set of SOS polynomials of degree at most 2d. The quadratic module of X is Q(X) :=
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{o0+ X272 05 95 + Y02y pr hi = 00,05 € X[z], pr. € R[] }. Tts truncation at degree d, denoted
Q4(X), consists of those elements for which deg(og) < 2d, deg(o; g;) < 2d, deg(px hi) < 2d.
Note that simplex action sets (as are standard in IREFGs) are basic semi-algebraic sets.

Let dy = [deg(f)/2], = max;[deg(g;)/2], dn = maxy|deg(hy)/2], and dX =
max{d,,dy}, then dy := max{d r,dx}. For d > dy, the degree -d SOS relaxation of Equation (3)) is
fa® = b oy o1 (001 ¢
st. t— f(x) € Qa(X).
Its dual is the degree-d moment relaxation:

d " = sup, Ly(f)
st. yo=1, Mqa(y) =0, My_q,(g;*y) =0, Vj (5

Ly(hq) =0, Vk, Yq € Rlz], deg(hrq) < 2d.

“

It is immediate that f;*°™ < f5°° for all d, and both sequences { f5°°} and { f7*°™ } are nonincreasing
in d. Moreover, the hierarchy converges asymptotically under mild assumptions on the description of
the semi-algebraic set, e.g., see Lasserre| (2001). In addition to approximating the optimal value, the
moment relaxation also allows one to extract maximizers under appropriate assumptions. It is well
known that if, at some order d, the flatness condition rank M, (y4) = rank M,_4, (y4) holds for
some s < d, then the relaxation is exact and an optimal strategy can be extracted from M;(y4); see
[Henrion & Lasserre| (2005) and Appendix for details about the extraction procedure.

Computational considerations. The degree-d moment relaxation in Equation (3) is an SDP
with (m+2d) moment variables y,, 1 + m, PSD constraints where M,;(y) has size (mjd) and
M. (gj*y) has size (m+d 4 N, 1430 (m;;_d; did’“) linear equality constraints (normalization
and the hj-constraints). The dual degree-d SOS relaxation Equation (d) is an SDP with on the order

of 1 + (m+2d) + Z (m+2(d_di)) + (m+2 (d— d‘)) scalar variables (for ¢, the coefficients

2(d—d;) 2(d—dy)
of 09,0, and pg), 1 + mgyz PSD constraints for the Gram matrices of 0q, 0, of sizes (’”jd) and
(7"’;11_]‘1J) respectively, (m“d) linear equality constraints from coefficient matching.

The SDP size can grow quickly with m and d, which constrains the Moment-SOS hierarchy to
polynomial optimization problems of modest dimension. Since computational efficiency is not
a focus of our work, we briefly mention that several recent works have aimed to improve the
scalability of SDP solving. For instance, DSOS/SDSOS relaxations trade off solution quality for
better computational performance (Ahmadi & Majumdar} 2019), and recent low-rank SDP methods
reduce memory and runtime by exploiting approximate low-rank structure (Monteiro et al.| 2024} [Han|
et al} 2024} 2025} [Aguirre et all 2025)). Our polynomial IREFG formulation fits into this framework,
so these techniques could be combined with our degree bounds to handle larger imperfect-recall
benchmarks. Exploring these scalable SDP solvers is a key direction for future work.

3 THE LINK BETWEEN IREFGS AND POLYNOMIAL OPTIMIZATION

We begin this section the with a folklore result that bridges the study of IREFGs with polynomial

optimization, originating in |Piccione & Rubinstein| (1997) and expanded further in [Tewolde et al.
(2023} [2024). A thorough exposition of this connection is given in Appendix [B]

Theorem 3.1 (Folklore). In any IREFG, the expected utility of a player i € N under a joint
behavioral strategy p is a polynomial in the entries of u. As a consequence:

(i) In the single-player case, computing an ex-ante optimal behavioral strategy reduces to a
polynomial optimization problem over products of simplices.

(ii) In the multi-player case, computing a behavioral Nash equilibrium p* € S reduces to solving
coupled polynomial optimization problems over products of simplices, i.e.,

wut € argmax u;(p;, p*;), VieN.
Hi€S;



Under review as a conference paper at ICLR 2026

Moreover, these reductions can be carried out in polynomial time.

In view of this, while the Moment-SOS hierarchy applies directly in the single-player case, this is not
the case for the multi-player setting. We next introduce two modifications that extend its applicability
to the multi-player case and provide stronger convergence guarantees.

KKT-based Moment-SOS hierarchy. In the multi-player case, the reduction yields a polynomial
game over a product of simplices. However, it is unclear how to use this, since the set of NEs admits
no explicit semi-algebraic description. To apply the Moment/SOS hierarchy in this setting, we follow
(Nie & Tang,|2024). At a high level, their approach defines a semi-algebraic superset of the Nash
equilibria and then applies the Moment/SOS hierarchy to this larger set. This set is obtained by
concatenating the KKT conditions of each individual player’s optimization problem. These conditions
are already polynomial in the primal and dual variables, but under appropriate conditions it is possible
to reduce variables by expressing the dual multipliers as polynomials of the primal variables.

To explain this approach, we introduce some additional notation. The action space of each player 1 is
a product of simplices over its information sets, which admits a simple semi-algebraic description

Sio= {mi + hl(p) =0, gl/(u) >0, Vj}, where hl(p) = 1Tyl — 1, g/ ,(n) = pl, Va,
gg = (91{1’ RPN gg mj)T. For each player ¢ and information set j, we define the block gradient

wl(p) =V L ui(p) € R™:. Denote by v/ € Rand X € Rgé the Lagrange multipliers associated

with the constraints hf () =0 and g{ (1) > 0, respectively. The KKT stationarity condition at an
optimizer requires that w; (1) —v) 1— X! = 0 for all j. Taking the inner product with g7 (), and using

both feasibility hf (1) = 0 and complementary slackness gg (,u)T/\g = 0, yields the following explicit

(polynomial) expressions for the multipliers: v (1) = g7 (1) Tw? (1) and M (1) = w? () — 7 ()1.

Hence, all Lagrange multipliers are polynomials in .

Furthermore, in our setting (i.e., product of simplices), linear independence constraint qualification
(LICQ) holds at every feasible point, and hence the KKT conditions are necessary for optimality.
Indeed, at any infoset block the constraints are 1"y = 1 and j1,, > 0. Thus, the gradients of the active
constraints are 1 and e, for all @ with p, = 0. Since Za e = 1 implies at least one u, > 0, not
all e,, can be active, so {1} U {e, : 1, = 0} is linearly independent and LICQ holds. Consequently,
every NE must satisfy the joint KKT system of polynomial equations:

{Wf(u) — v} ()1 =N(w) =0, X(u) =0,

, . , . Vi€ [n], j €[], acml]. (KKT)

gi (1) >0, hi(pw) =0, gi, (), (1) =0,
Summarizing, in the multi-player case, and following |Nie & Tang|(2024), a behavioral NE can be
computed by applying the Moment-SOS hierarchy to the semi-algebraic set defined by the collection
of all coupled conditions. We refer to the resulting hierarchy as the KKT-based hierarchy.

An important feature of this hierarchy is that it exhibits finite convergence, in contrast to the standard
asymptotic convergence guarantee. This is achieved under canonical genericity assumptions: a
property is called generic if it holds for all inputs outside a Lebesgue-measure-zero set in the
coefficient space. For a fixed (multi-)degree, a polynomial is generic if its coefficient vector is
generic. Nie & Tang| (2024, Theorem A.1) show that for a polynomial game with generic utilities
and constraints, the KKT equations admit only finitely many complex solutions. Consequently, the
corresponding complex variety is finite, and existing results (Laurent, [2008 |[Lasserre et al., 2008)
imply finite convergence of the hierarchy. However, applying this result directly in our setting requires
care, since our constraints are not generic but correspond to simplices. Nevertheless, as shown earlier
the constraints satisfy LICQ, which turns out to be the only property required in the proof of Nie &
Tang| (2024, Theorem A.1) (i.e., genericity is used there only to imply LICQ).

Vertex-restricted Moment-SOS hierarchy. An important structural feature of IREFGs is absent-
mindedness. Absentmindedness refers to the situation where a player cannot distinguish between
two nodes that lie along the same history. Formally, a player is absentminded if there exist nodes
my, T € I with m; # mo such that 71 lies on the unique path from r to mo—that is, multiple nodes
along the same history belong to the same information set (cf. Figure [2.1](b)). Whether a player is
absentminded has important implications for the corresponding polynomial utility.



Under review as a conference paper at ICLR 2026

Proposition 3.2. In non-absentminded IREFGs (NAM-IREFGs), each player’s utility u; (1) is multi-
affine in the blocks {u! = (uia)gﬁl}g":l, i.e., for any player i and infoset j, the map i — w;(p) is
affine when all other blocks {ug,,}(i,7j,)¢(i,j) are held fixed.

The proof is given in Appendix [F.I] Proposition[3.2]has an interesting consequence for the Moment-
SOS hierarchy in NAM-IREFG case. Indeed, since u; is affine in each block ,ul-, and the feasible
region is a product of simplices, every blockw1se maximization attains its value at an extreme point.
More precisely, fixing all variables except ] (denote this by p~(3)), the map wl o= wi(p) is

affine, hence its maximum over A™! is achieved at a vertex e] .. Starting from any feasible profile,

successively replacing each block ul by a maximizing vertex w1th respect to the current .~ (»7) never
decreases the objective. After finitely many replacements we obtain a global maximizer whose blocks
are all vertices. Defining b) (1) := i , (1] , — 1), we see that instead of working with the product
of simplices, we can equ1valently run the hiérarchy over the semi-algebraic vertex-restricted set

Sive = {pi : () =03, bl (1) =0Vj,a}, (6)

since max,, s, u; (1) = maxy,es, ., ui(p). We refer to the resulting construction as the vertex-
restricted hierarchy. In subsequent sections, we explore how this construction enables finite conver-
gence guarantees in the single-player case, and yields computational savings in the multi-player case.

4 SINGLE-PLAYER IREFGS

In this section, we focus on single-player IREFGs. As explained in the previous section, this setting
corresponds to a polynomial optimization problem over a product of simplices, to which the Moment-
SOS hierarchy readily applies. We summarize our results for the single-player case below. In addition,
Appendix [C|provides a summary of known complexity results, together with a new hardness result
that leverages the connection to POPs.

Theorem 4.1. Consider a single-player IREFG ¢ with utility function u. Let { be the number of in-
fosets, dy == max; .{[deg(u)/2], [deg(g2)/2], [deg(h?)/2]}, and u* be the ex-ante optimal value

of 4. Denote by us™, uzos’kk ,uy ™" the values obtained from the SOS-Moment hierarchies applied
respectively to the vanilla product-of-simplices, KKT-based , and vertex-restricted formulations.
Similarly, we use the superscript mom to denote the moment hierarchy. Then we have the following:

(1) limg_ oo ul® = limg_, o0 ugy ™ = u™.
(ii) If u is generic, there exists d > do with u "™ kkt _ uzos’kkt = u*.

(iii) If ¥ is non-absentminded, the degree-({+1) moment relaxation of the vertex-restricted problem
is exact: uyy ;" = u*.

Proof sketch. (i) follows from the standard convergence result for Lasserre’s hierarchy; see, e.g.,
Putinar| (1993); Lasserre| (2001); [Laurent (2009); [ILasserre| (2024). (ii) uses that, if w is generic, the
KKT system has finitely many solutions, so the feasible set of the augmented problem is a finite real
variety. On such finite varieties the Lasserre hierarchy is finitely exact (Laurent, [2008; Lasserre et al.,
2008)). (iii) relies on the key observation that the ranks of the moment matrices stabilize once the
degree exceeds the number of infosets ¢ (cf. Lemma [FI); by the flat extension theorem (Curto &
Fialkow}, 2000)), this rank stabilization at degree ¢ + 1 implies exactness at that level.

This result capitilizes on the connection between polynomial optimization and IREFGs. While
convergence is asymptotic in general, for almost all single-player IREFGs, convergence is instead
finite. Moreover, in the special case of NAM-IREFGs, we obtain finite convergence at an explicit
level of the hierarchy which depends on the number of infosets in the game. The full version of the
proof for this result is deferred to Appendix [F2]

Crucially, we can also extract ex-ante optima from the Moment-SOS hierarchies (the full procedure
is given in Appendix [D.4). In the NAM setting, flatness occurs at a fixed order determined by the
number of infosets (??), so extraction is guaranteed at level £ 4+ 1. Under genericity, the KKT-based
formulation allows one to extract a solution once finite convergence occurs.
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5 MULTI-PLAYER IREFGS

In this section, we turn our attention to the computation of behavioral NE in multi-player IREFGs.
Unlike the single-player case, NE are not guaranteed to exist (Wichardt, [2008)), and indeed even
deciding if one exists is hard (Tewolde et al.,[2024)). We therefore adopt the select-verify-cut (SVC)
framework of Nie & Tang|(2024])), which searches for an NE (or certifies nonexistence) by solving a
sequence of polynomial subproblems with Moment-SOS relaxations. Specifically, the SVC method
searches for an NE by iterating over three steps:

(1) Select: Solve a selector program over the joint (KKT) system (plus any accumulated cuts) to
pick an NE candidate.

(ii) Verify: For each player, fix opponent behavior at the candidate NE and solve a unilateral best-
response problem. If no player can improve, the candidate is an NE; otherwise, extract a violated
valid inequality from a deviator’s best response.

(iii) Cut: Add new valid inequalities to the selector and re-solve. Each cut removes the non-NE
candidate while preserving all NEs.

The method is iterated until a candidate passes verification (NE found) or the selector becomes
infeasible (nonexistence certified). A full description of the method is given in Appendix[E] Every
subproblem in the SVC loop is a polynomial optimization problem, so we can solve them using the
Moment-SOS hierarchy. See alsoNie & Tang| (2024} Section 4) for more details.

In general, SVC needs to iterate: each round solves one selector Moment-SOS relaxation and up to
n verification relaxations (one per player). By contrast, in NAM-IREFGs we can dispense with the
verify/cut phases and solve a single vertex-restricted Moment-SOS relaxation to compute an NE or
certify nonexistence, yielding substantial computational savings. Indeed, since w;(+, t—;) is linear in
w; (Proposition[3.2)), the “no profitable deviation by player ¢ NE condition is equivalent to the family
of vertex inequalities w;(f;, p—;) > w;(vi, pu—;) for all v; € S; . Embedding these inequalities
directly into the Select step gives the one-shot vertex-restricted program:

min ga() = T e st {* e G G
n wi(fhis p—i) — i (i, p—i) > 0, Y € S; vr, Vi,

where [u]; = (1,4")T and © = 0 is generic. Feasibility of Equation (7) is equivalent to the
existence of a behavioral NE; any feasible point is an NE, and the objective po merely selects one
among multiple solutions (if any). For instance, replacing pe with max,, > ., u;(x) under the same
constraints yields a welfare-maximizing NE. Therefore, in the NAM setting, the verify and cut phases
are unnecessary.

Theorem 5.1. Let & be a multi-player IREFG with utility functions u; for each player i. Throughout,
subproblems are solved by the KKT-based hierarchies of increasing order. Then, we have the
following:

(i) The SVC procedure is asymptotically exact: as the relaxation order and number of iterations
grows, it returns a behavioral NE when one exists, and otherwise a certificate of nonexistence.

(ii) If u; are all generic, the KKT-based hierarchy has finite convergence for all SVC subproblems,
and the SVC loop terminates in finitely many iterations.

(iii) If 9 is non-absentminded, the Verify/Cut phases in SVC are unnecessary: a single vertex-
restricted Select (Equation (7)) suffices to compute an NE or certify nonexistence. Its Moment-
SOS hierarchy is asymptotically exact; if u; are generic, it attains exactness at a finite order.

Proof sketch. (i) combines the standard asymptotic convergence of Lasserre’s hierarchy with the
SVC steps: each loop either eliminates a non-NE candidate via a violated deviation inequality or
certifies NE (or non-existence via selector infeasibility) (Nie & Tang| 2024). (ii) then follows from
the fact that, under generic utilities, the KKT system has finitely many solutions, so only finitely
many candidates can appear in SVC, and on such finite KKT sets the KKT-based SOS hierarchy is
known to converge in finite order. (iii) uses the fact that in the non-absentminded case, “no profitable
deviation” is equivalent to “no profitable vertex deviation”, so a single vertex-restricted Select already
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encodes the NE conditions. Its Moment—SOS hierarchy is asymptotically exact, and under generic
utilities, finite exact.

The full version of proof for the above result is deferred to Appendix [F3] In analogy to the single-
player case, Theorem [5.1] shows that finite convergence guarantees can be obtained for almost
all IREFGs. NAM-IREFGs enjoy further computational improvements, needing only a single
Moment-SOS hierarchy per iteration. Unlike the single-player case, explicit convergence at a fixed
game-dependent level is not guaranteed, further highlighting the challenging nature of multi-player
IREFGs.

6 (SOS)-CONCAVE AND (SOS)-MONOTONE IREFGS

In this section, we focus on defining tractable subclasses of IREFGs, and show how our methods
obtain improved convergence guarantees in these subclasses. In the study of continuous games, the
seminal work of |Rosen| (1965) introduced concave and monotone games, which exhibit desirable
properties—in concave games, NE always exist, and in strictly monotone games, a unique NE
exists. Leveraging the connection between IREFGs and polynomials, the following definitions are
immediate:

An IREFG ¥ is concave if, for every i € N, the map p; — w;(p;, i—;) is concave on S; for every
fixed p—; € S_;. Since ¥ is polynomial, this is equivalent to the block Hessians being negative
semidefinite: H,, (1) := V2 u;(p) <0, Vu € S, Vie N.

Following Rosen| (1965), we collect the block partial derivatives into the pseudo-gradient: v(u) :=
(V5 ui(p), -, V;nun(ﬂ))T. Let J(u) := Vo(u) denote its Jacobian, and define the symmetrized
Jacobian SJ(p1) := 1(J(u)+ J(u)"). Then, an IREFG ¥ is monotone if (v(p) — v(v), p— v) <

0, Yu,v € S. Since ¢ is polynomial, monotonicity holds if and only if the symmetrized Jacobian of
v is negative semidefinite (Rockafellar & Wets,|1998): SJ(u) <0, Vu € S.

While monotonicity immediately implies concavity, the converse does not hold. Moreover, we can
define strict notions of concavity and monotonicity where the block Hessians and symmetrized
Jacobian of a game are negative definite, respectively. With these notions in place, we recall the
classical existence/uniqueness guarantees (Rosenl [1965| Theorems 1 and 2) tailored to our setting.

Proposition 6.1. Let S be nonempty, convex, and compact, and let each u; be continuous.
(i) If the IREFG ¥ is concave, then a behavioral Nash equilibrium exists.
(ii) If the IREFG ¥ is strictly monotone, then the behavioral Nash equilibrium is unique.

With respect to the SVC method utilized in Section[5] when an IREFG is concave, a joint profile y is
a Nash equilibrium if and only if it is a point. Since the strategy set S is nonempty, convex,
and compact, Proposition guarantees existence, so the Select step is always feasible and returns
an NE without any cuts.

Corollary 6.2. Ifthe IREFG ¥ is concave, then any feasible point of the Select step (without any
cuts) is an NE. Furthermore, if 4 is strictly monotone, the NE is unique and the Select step returns
that unique equilibrium.

While concavity and monotonicity are widely studied, it is in general hard to verify these proper-
ties (Ahmadi et al., [2013} |Leon et al.} 2025). Towards improving the tractability of these classes, Hel;
ton & Nie (2010) introduced ‘effective’ SOS-variants thereof, which are verifiable using a single
SDP. In particular, we call an IREFG ¢ SOS-concave if, for every i € N, the negative block Hes-
sian is an SOS-matrix polynomial on S, i.e., there exists a real matrix polynomial F; (1) such that
~H,,(n) = Fi(u)Fi(p) ", Yu € S, Vi € N Furthermore, we call & SOS-monotone if its negative
symmetrized Jacobian is an SOS-matrix polynomial, i.e., there exists a real matrix polynomial F'(u)
such that —SJ(p) = F(u)F ()T, Yu € S.

These are subclasses of concave and monotone IREFGs respectively, so SOS-concavity implies
concavity and SOS-monotonicity implies monotonicity. However, the converse does not hold
since there exist polynomials which are convex but not SOS-convex (Ahmadi & Parrilol [2012)).
Going forward, we explore how these notions can be used to further improve the convergence
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guarantees of our methods in single-player IREFGs. We note that the definitions of concavity and
monotonicity coincide in the single-player case (cf. Proposition [F2)). We show that for strict and
SOS-concave/monotone single-player IREFGs, our proposed methods obtain stronger convergence
guarantees:

Theorem 6.3. Consider a single-player IREFG % with utility function u. Let dy :=
max; o{[deg(u)/2], [deg(g?)/2], [deg(h?)/2]}. Then, the following holds:

i) If 9 is strictly concave/monotone, then the Moment-SOS hierarchy has finite convergence: there
Y y .
exists d > do such that u® = uj°™ = u*.

(i) If 9 is SOS-concave/SOS-monotone, the degree-dy Moment-SOS relaxations are exact: uf}(‘)"m =

ug® = u*, i.e., the Moment-SOS hierarchy converges at the first level.
The proof follows the same overall line of argument as (Lasserre} |2009a, Theorems 3.3 and 3.4),
but adapted to our IREFG setting; full details are given in Appendix [F.4] In the case of strictly
concave/monotone single-player IREFGs, we obtain a sharper, finite-time guarantee of convergence
to the unique behavioral NE without needing to modify the vanilla Moment-SOS hierarchy. Moreover,
in SOS-concave/SOS-monotone single-player IREFGs, we show that convergence is possible at
the first level of the hierarchy, requiring only a single SDP. Furthermore, by leveraging known
results (Laurent, |2008}; |[Lasserre, |2009a)), once relaxation is exact, optimal solutions can be obtained
directly from the first moments. In particular, for any optimal moment vector y*, pu* = (y:] )ia-
Thus, the extraction procedure as outlined in Appendix is no longer necessary, enabling efficient
extraction of ex-ante optima.

7 DISCUSSION AND FUTURE WORK

In this paper, we applied Moment-SOS hierarchies to compute ex-ante optima in single-player
IREFGs, and Nash equilibria in multi-player IREFGs. We showed that almost all IREFGs enjoy finite
convergence. Moreover, in the case of NAM-IREFGs, the convergence is finite and dependent on
the number of infosets in the game. We also propose tractable subclasses of IREFGs, and efficiently
certifiable SOS-variants thereof. This leads to a subclass of SOS-concave/SOS-monotone single-
player IREFGs which can be solved with a single SDP. Our results constitute an initial step towards
better understanding the tractability of equilibrium computation in IREFGs, bringing together ideas
from both extensive-form game theory and polynomial optimization.

Future work includes finding and analyzing other tractable subclasses of IREFGs, and designing
faster algorithms that incorporate decentralized methods to compute KKT points. Moreover, while
Statement (i) of Theorem [6.3]holds for the Moment-SOS approach, first-order decentralized methods
are known to efficiently solve strictly monotone games (see e.g.|Cai & Zheng| (2023); Ba et al.|(2025)
and references therein). A natural question is how these approaches compare, both theoretically
and empirically. Finally, while we have implemented our methods on some simple examples in Ap-
pendix [G implementing more tractable SDP solvers to improve scalability (Ahmadi & Majumdar]
2019; Monteiro et al., 2024} |Han et al.| 2025) remains a crucial direction to explore.

ETHICS STATEMENT

While our results are primarily theoretical, we acknowledge that there could be potential societal and
ethical consequences of our work, none of which we feel must be specifically highlighted.
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A ADDITIONAL RELATED WORK

Sum-of-Squares in Polynomial Games. Outside of the works cited in the introduction, few other
works have studied IREFGs from the perspective of polynomial optimization. However, games with
polynomial utility functions have been proposed and studied in the pastDresher et al.| (1950). |Parrilo
(2006); |Laraki & Lasserre| (2012) used semidefinite programming methods to find the value of two-
player zero-sum polynomial games, and Stein et al.|(2008) applied similar techniques to separable
games (where utilities take a sum-of-products form). Recently, Nie & Tang| (2023} 2024) also used
semidefinite programming techniques to solve for Nash equilibria in n-player polynomial games under
certain genericity assumptions, or otherwise detect the nonexistence of equilibria. Moreover, Bach
(2025)) studied sum-of-squares relaxations for min-max problems, deriving convergence results of
their proposed hierarchies. Finally, Leon et al.| (2025) used sum-of-squares hierarchies to certify
concavity and monotonicity in polynomial games.

Equilibrium Computation in IREFGs. Despite the hardness of computing equilibria in IREFGs,
some work has studied the special case of two-player, zero-sum IREFGs and derived approximate
algorithms to solve them. In particular, [Bosansky et al.|(2016); Cermak et al. (2017b)) used MILP
techniques to solve for minmax-optimal strategies. In the case of non-absentminded two-player
zero-sum IREFGs, Cermik et al. (2018)) also used MILP-based methods to obtain scalable algorithms
that can approximate minmax strategies. In the case where the IREFGs are timeable and two-
player zero-sum (a subclass of non-absentminded two-player zero-sum games), Zhang & Sandholm
(2022)); Zhang et al.| (2023) utilized tree-decomposition based methods to obtain LP/CFR bounds for
computing team-correlated (mixed) equilibria.

B FRrROM IREFGS TO POLYNOMIALS AND BACK

The equivalence between IREFGs and polynomial optimization is crucial to our proposed methods.
In particular, the translation from IREFGs to polynomials is classical (Piccione & Rubinstein, |1997),
and we give a full description here for clarity. First, let P(h’|u, h) denote the realization probability
of reaching h’ given that players using strategy p are at state h. Note that if h ¢ hist(h') (i.e., if
b’ is not reachable from h) then the probability is 0. Intuitively, the realization probability given a
behavioral strategy is just the product of choice probabilities along the path from A to &’. In order to
formally define P(Rh'|u, h), we will need some additional notation. First, any node h € H uniquely
corresponds to a history hist(h) from root r to h.

* Function §(h) : H — N denotes the depth of the game tree starting from node h € H.
* Function v(h,d) : H x N — # identifies the node ancestor at depth d < § from node h.

* Function a(h,d) : H x N = Upep A(h) identifies the action ancestor at depth d < ¢ from
node h.

Together, the sequence (v(h,0),v(h,1),...,v(h,d(h))) uniquely identifies the history of nodes
from r to h. Likewise, the sequence («(h,0), a(h,1),...,a(h,d(h) — 1)) uniquely identifies the
history of actions taken from 7 to h. Then, the realization probability of node b’ from h if the players
use joint strategy profile o is given by:

Definition B.1 (Realization Probability).
5(h)—1

P |uh) = T wla,j)lgwy) if h € hist(R).
J=8(n")

Definition B.2 (Expected Utility for Player i). For player i at node h € H \ Z, if strategy profile
w is played, their expected utility is given by u;(p|h) = > .z (P(z|p, h) - ps(2)). In its complete
form, we can write the expected utility for each player as follows:

8(z)—1
ui(lu’) = Z H :u Z 2 J |Iu(z j)) i(2)
z€EZ 7=0
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With some abuse of notation, we can write P(h|u) = P(h|u,r) where r is the root node, and
similarly w;(u) = w;(p|r). Notice that by definition, the expected utility of each player is a
polynomial function. In particular, P(z|u, h) - p;(2) is a monomial in ¢ multiplied by a scalar.

Tewolde et al.|(2023)) also recently established that any polynomial can be transformed into a single-
player IREFG. Subsequently, [Tewolde et al.| (2024) extended this result to a set of polynomials,
and multi-player IREFGs. We report the single-player variant of the theorem below, and provide a
concrete example to aid readability.

Theorem B.3. Given a polynomial p : Xﬁ:l R R, we can construct a single-player extensive-
form game with imperfect recall 4 such that the expected utility function of ¢ satisfies u(u) = p(u),
with | € Xf‘:1 A™ =1 Moreover, the construction can be done in polynomial time.

Proof. The proof follows the analysis of [Tewolde et al|(2023)), with minor modifications to notation.
Let d,, = deg(p) and write

£,m7

pix)= > Ap ] @)=,
DeMB(d,m) Jra=1

£

where m := (mj)jzl, Ap are rational, and

¢ ) L m’ _
MB(d,, m) := {D = (Di)jae XNy 33" Di< dp}.
Jj=1 j=1a=1

Let supp(p) := {D € MB(dp,m) : Ap # 0} and [D := 3", Di. For each D, define the multiset
supp(D)™s that contains D?, copies of the pair (j,a) when DJ > 0. Then | supp(D)™*| = |D|. The
input encoding of p consists of ¢, (m? )gzl, and the rational coefficients (Ap) pesupp(p)-

Given such a polynomial function, we build a single-player extensive-form game ¢ with imperfect
recall whose information sets are I7 (j € [¢]), each with action set A;; = {71,..., 7, }. The game
¢ has a chance root and depth at most dj, + 1. The chance node k¢ has one outgoing edge to a node
hp for each D € supp(p), and chance selects each hp with probability 1/| supp(p)].

Fix a deterministic ordering < of the multiset supp(D)™* (e.g., lexicographic on pairs (j, a), repeated
DJ times). Initialize the current edge as the chance edge from hg into hp.

 If D = 0 (the zero multi-index), make hp terminal with payoff u(hp) = Ao - | supp(p)|-

* Otherwise, for each next element (j, a) of supp(D)™® (in order <), do:

Insert a nonterminal decision node i on the current edge and assign h to the information
set 17,

Create m/ outgoing edges from h, one for each actionin A = {71,..., T }.

For every edge labeled 7,/ with o’ # a, attach a terminal node with utility 0.
Update the current edge to be the unique edge labeled 7.

After all elements of supp (D)™ have been processed, terminate the current edge with a terminal
node zp and set its utility to w(zp) = Ap - |supp(p)|. This procedure yields a subtree 75 of depth

| supp(D)™*| =3, , D} = |D|.

In this reduction, any point z = (21),, € ><§=1 A" ~1 induces a behavioral strategy 1 in & by
w(aj | I7) = 23 for all j,a. Let zp denote the terminal node associated with monomial index D
(including D = 0). At the chance root, P(hp | 1) = 1/| supp(p)| for each D € supp(p). If D = 0,
then zp is reached immediately, so P(zp | u) = 1/|supp(p)|. If D # 0, the loop that builds T
creates exactly | D| decision nodes along the designated branch. At each visit to information set 17,
the unique continuing edge is labeled 7, and is chosen with probability xJ. Since (j, a) appears D?
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times in supp(D)™*, we obtain

£m

1 i

Pip 1) = ——— [] )"
ol ISupp(p)ija_l(

All sibling edges terminate with utility 0 and do not contribute.

Therefore the expected utility is

u(w)= > Plp|p)-plep)

Desupp(p)
1 ) .
= D (mn(xé)’ji)%u\supp(p)\
Desupp(p) J,a
= > o e
Desupp(p) J,a
= p(z).

This extends to u(u) = p(u) forall u € X§=1 AM -1,

For each D € supp(p), Tp contributes a path of length |D| < d, where, at each depth, at most
max; m/ leaves are created. Hence the total number of nodes and edges is

O( Z (|D\+|D|~mjaxmj)> C O(\supp(p)\'dp-mjaxmj).

Desupp(p)

All payoffs are rationals of the form Ap - | supp(p)|, and the chance probabilities are 1/| supp(p)|, so
labels are computable with bit complexity polynomial in the input size. Thus the game ¢ is produced
in polynomial time in the Turing model. O

Clearly, this construction is not unique. Choosing a different total order on the multiset supp(D)™®
yields a (potentially) different game tree. All such variants are payoff-equivalent, since the reach
probability of zp depends only on the multiplicities (D7), hence u(u) = p(p) in every case. For
concreteness we fix the lexicographic order. Moreover, we provide a concrete example constructing a
(single-player) IREFG from a polynomial.

Example B.4. In this example, we index by (infoset, action) using subscripts to avoid ambiguity:
the first subscript denotes the infoset and the second denotes the action (e.g., x12). Let £ = 2 with
my = Mme = 2, and write x11, x12 for 11 and x21, x99 for Is. Consider

p(x) =2+ 3211201 — 5a12wan + 423

Then deg(p) = 2. Fix the variable order x11 < x12 < x21 < X2o and use the induced lexicographic
order on multi-indices D = (D11, D12, D21, Dag) € N&. For each D, order the multiset supp(D)™®
by listing the pairs (j, a) in lexicographic order with multiplicity. With this convention,

supp(p) = {D¥ =0, DY = (1,0,1,0), D® = (0,1,0,1), D® = (0,0,2,0)}
so | supp(p)| = 4 and the lexicographic order is D(©) < D) < D) < D®),

Then, we construct the game tree as follows:

Root (chance). Create a chance node hy with four equiprobable edges (1/4 each) to hpw), t =
0,1,2,3.

Subtree Ty (constant term). Make h 0y terminal with payoff p = Apo) - | supp(p)| = 2-4 = 8.

Subtree T, for 211221, Here supp(DM)™ = {(1,1),(2,1)}. Process in order: (1) insert a
node hy € I, create two edges labeled x11,x12; attach 0 to the x15 edge; move along x11. (2)
insert a node ho € Is; create two edges labeled x21, X229, attach 0 to the x4 edge; move along ;.
Terminate with z1y and payoff p(zp)) = Apw -4 = 12.
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Subtree T2 for xop. Here supp(D?)™ = {(1,2),(2,2)}. Process in order: (1) insert hs € I;
create x11, T12, attach 0 to x11; move along x12. (2) insert hy € Iy, create xo1, Tos,; attach 0 to a1,
move along xos. Terminate with zp 2y and payoff p(zpe)) = Ape) -4 = —20.

Subtree T) s for 3,. Here supp(D®)™ = {(2,1),(2,1)} (two copies). Process in order: (1)
insert hs € Iy; create xo1, x99, attach 0 to xoy; move along 1. (2) insert hg € Iy, again x2,
continues, a9 gets 0. Terminate with zp ) and payoff p(zpe)) = Ape) -4 = 16.

The constructed game tree is shown in Figure[B.])

Figure B.1: Constructed Single-Player Imperfect-Recall Game for
p(x) =24 3x11221 — Dx12T20 + 433%1.

Verification. Given z € A x Al define the behavioral strategy by j(a; |I7) = xJ. Then

P(zpo | p) =1, Plzpw | p) = Loz, Plepo | p) = 2ziaw, Plepe | 1) = 23,

Hence

M«

u(p) = > Plzpw | 1) plzpw)

t=
i . 8 =+ ixlleI <12 -+ ixlzxgg . (—20) =+ %1’12%%1 . 16

o

24 3x11T21 — Dx120T22 + 41‘31
p(x).

C ON THE COMPUTATIONAL COMPLEXITY OF SINGLE-PLAYER IREFGS

While the computational hardness of the ex-ante problem (Equation (I))) has already been established
in prior work (Tewolde et al., 2023)), we note that one can extend recent results in the polynomial
optimization literature to improve these complexity results. First, we introduce a hardness result for
finding local optima over polytopes by /Ahmadi & Zhang| (2022):

Lemma C.1 (Ahmadi & Zhang|(2022),Theorem 2.6). Unless P = N P, there is no polynomial-time
algorithm that finds a point within Euclidean distance c™ (for any constant ¢ > 0) of a local minimizer
of an n-variate quadratic function over a polytope.

Corollary C.2. Finding a local minimizer of a quadratic program over a simplex is NP-hard.
Moreover, unless P = N P, there is no FPTAS for this problem.

Proof. Specializing the argument in (Ahmadi & Zhang, 2022, Theorem 2.6, p. 7) by replacing
[3c™y/n] by 1 yields the following: unless P = N P, there is no polynomial-time algorithm that
finds an e-approximate local minimizer (for any constant € € [0, 0.5)) of a quadratic program over a
simplex. If an exact local minimizer could be computed in polynomial time, then, in particular, an
e-approximate local minimizer (take e = 0) could also be computed in polynomial time, contradicting
Lemma @ Therefore, computing an exact local minimizer over a simplex is NP-hard, and no
FPTAS exists unless P = N P. O
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Hence, corresponding to single-player IREFGs, we have:

Proposition C.3. Finding a local optimum of Equation (1) is NP-hard. Moreover, unless P = N P,
there is no FPTAS for this problem. NP-hardness and conditional inapproximability hold even if the
game instance ¢ has no chance nodes, a tree depth of 2, and only one information set.

Following this, we can improve the results from (Tewolde et al., 2023} Proposition 4):
Proposition C.4. Finding the ex-ante optimal strategy 11* of a given extensive-form game instance 4

is NP-hard. Specifically:

1. Unless P = N P, no FPTAS exists. NP-hardness and conditional inapproximability hold
even if the game has no chance nodes, a tree depth of 2, and a single information set.

2. Unless NP = Z PP, no FPTAS exists. NP-hardness and conditional inapproximability
hold even if the game has a tree depth of 3 and a single information set.

3. NP-hardness holds even without absentmindedness, with tree depth 4 and two actions per
information set.

4. NP-hardness holds even without absentmindedness, with tree depth 3 and three actions per
information set.

Proof. To prove statement 1, we note that since any global optimum is in particular a local optimum,
finding a global maximum must be at least as hard as finding a local one. Thus, the same hardness
and inapproximability from Proposition [C.3|immediately carry over to the problem of finding a global
optimum, i.e., ex-ante optimal strategy u*.

The statements 2-4 are proven in (Tewolde et al., (2023} Proposition 4). O

Following [Tewolde et al.| (2023), we compile the core correspondences between the polynomial
optimization formulation of Equation (I)) and solution concepts in single-player IREFGs, together
with the computational complexity of computing each notion, in Table [C.T]

Table C.1: Correspondence between single-player IREFGs and POPs with complexity results.

POP Optimality Notion IREFG Equilibrium Notion Rel. | Complexity

Global maximizer Ex-ante f)ptlmal stra.tegy = -
(EDT,GDH) with absentmindedness =

KKT point ’ without absentmindedness | < LS hard
' (CDT,GT) =

Remark C.5. The three equilibrium notions for single-player IREFGs form an inclusion chain
in general (Tewolde et al., 2023, Lemma 17): ex-ante optimal = (EDT,GDH)-equilibrium =
(CDT,GT)-equilibrium. In games without absentmindedness, this strengthens to an equivalence
(Tewolde et al.} 2023, Lemma 13): a strategy is (CDT, GT)-equilibrium if and only if it is (EDT,GDH)-
equilibrium. Moreover, when the game has a single information set, the blockwise argmax condition
of (Tewolde et al.| 2023, Lemma 15) reduces to a global argmax, so every (EDT,GDH)-equilibrium is
also ex-ante optimal. Since ex-ante optimization is NP-hard, it follows that computing an (EDT, GDH)-
equilibrium is already NP-hard in this one-infoset setting.

D THE MOMENT-SOS HIERARCHY

In this section, we present a thorough derivation of the Moment-SOS hierarchy which we have
specialized to single-player IREFGs.
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D.1 PROBLEM REFORMULATION
Letm = Z§:1 m?. Denote the strategy variables collectively by = (/) € R™. The feasible set is
¢ _ mio
S=XA(Ap) ={peR™: u}>0Vja, > pj=17j}. ®)
j=1 j=1

Define constraint polynomials

ghpw) = ph, B (n)=> pl— 1. ©)
j=1
By construction,
S={neR™:gi(n) > 0,5 €[l)acm’], h(n) =0, €[} (10)

Accordingly, the quadratic module of S is

e mi L
QS) = {o0n) + > D ol ghw) + >0 () W (1) : 00,04 € Dy, ' €Rpl}. (1D

An important property in our formulation is the Archimedean property, defined below:

Definition D.1 (Archimedean property). The quadratic module Q(X) is Archimedean if there exists
N > 0 such that

N —|lzl* € Q(x).
This property guarantees that X’ is compact.

For any 1 € S one has 0 < sz, < 1, hence ||ul|* = 32, ,(1d)? < 32, , 1 = S35y Sy il = L.
Therefore the quadratic polynomial go(p) := ¢ — ||u||? is nonnegative on S. Adding the redundant
inequality go () > 0 to the description of S gives S = {1 : g2 (1) > 0, R (1) = 0, go(p) > 0}, s0
that N — [|u||?> € Q(S) with N = £. Hence, the quadratic module Q(S) is Archimedean.

From Equation (IJ), the expected payoff of a single-player IREFG can be written as a polynomial
u(p). We seek

. = , 12
ut = max u(p) (12)

D.2 MOMENT-SOS RELAXATION
To approximate the nonconvex problem in Equation (I2)), we use Lasserre’s Moment-SOS hierarchy.

We derive a pair of dual hierarchies—one in the space of SOS multipliers (primal) and one in the
space of moments (dual)—which yield provable upper bounds on u*.

(a) Primal (SOS-relaxation)
Observe that

u =inf{t:t—u(p) >0 VpeSt=inf{t:t—u(p)>0 VueS} (13)

Since S = {u : gZ(n) > 0, h/(u) = 0} has Archimedean quadratic module Q(S), Putinar’s
Positivstellensatz (Putinar, [1993) gives the equivalent infinite-dimensional certificate

u* =inf{t: t—u(p) € Q(S)}. (14)

However, membership in Q(S) is still an infinite-dimensional constraint.
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Truncation to finite SDP. Let d, = [deg(u)/2] and ds =
max; .{[deg(g?)/2], [deg(h?)/2]} = 1, then dy := max{dy,ds} = d,. Fix any relax-
ation order d > dy. We truncate the sums-of-squares and polynomial multipliers to degree 2d,
obtaining:

wS = if ¢

t, 00,403 1 {p’ } (15)
st t—u(p) € Qa(S).

(b) Dual (Moment-relaxation)

We begin by expressing the original problem in the space of Borel measures ¢ supported on
S. Since any admissible ¢ must satisfy ¢ > 0 and | d¢ = 1, one has the exact infinite-dimensional
program

w= sw [ ulwds(u) (16)
PEM(S)
J dé=1

A measure ¢ is equivalently described by its full sequence of moments

%::/MWMM,VaeW% (17)

Introduce the Riesz functional Ly, : R[] — Rby Ly, (u®) = ya, Va. Expand u(p) = > ua p®,

so that
/ u(p) dg(p) = o / pedd = taya =t Ly(u). (18)

Requiring ¢ > 0 and supp(¢) C S is equivalent to the following linear matrix constraints on y:

My(y) = 0, VdeN <= /v(ﬂ)2d¢ >0, Yove€R[yl, (19)
My(gi*y) = 0, VdeN <= /gé(u) v(p)*de >0, Vv eRul, (20)
L,(Wq) =0, ¥geRl, < [Wawdo=0. VqeRL en

Yyo=1 < /1d¢: . (22)

Thus Equation (I6) can be rewritten as the (infinite-dimensional) moment program

*

u* = sup L, (u)
!

Y (23)
s.t. (D9, 20), 1), 22).

Truncation to finite SDP. Fix any relaxation order d > dj. In practice, we truncate Equation (23]
to the degree-d moment relaxation:

uIdIlOIl'l — Sup Ly(u)
Yy
s.t. My(y) = 0,
My_1(gl*y) =0, Vja, (24)
Ly(h q) =0, Vj, Vg € Ry, deg(h’q) < 2d,
yo = 1
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D.3 MOMENT-SOS HIERARCHY FOR NON-ABSENTMINDED GAMES

Recall that because u is multi-affine, we have the following:

* = = . 25
' = maxu(p) = max u(u) (25)

Let dff' := max{dy, ds,, } = d,, and fix any relaxation order d > d§j". The degree-d SOS relaxation
of Equation (23) is

WS = inf t 6
st - u(u) € Qd(Svr)'
The corresponding degree-d moment relaxation reads
uy "™ = sup Ly(u)
Yy
s.t. Md(y) = Oa

Ly(h q) =0 ¥j, ¥q € Ru), deg(h’q) < 2d, @7

L,(blq) =0 Vj,a, Vg € R[], deg(blq) < 2d,

yo =1

Noth that there are no localizing PSD constraints for /,Lg > (, because the binomials b{l = 0 already
enforce p, € {0,1} C [0,1].

D.4 PSEUDO-EXPECTATIONS AND EXTRACTING SOLUTIONS

A feasible point y = (ya)|a|<24 Of the truncated moment SDP in Equation li defines a linear
functional E; : R[u]oq — R via E4[u®] = y4. This functional behaves like an expectation operator

up to degree 2d: it is normalized (E4[1] = 1), positive on squares (Eq4[¢%] > 0 for all ¢ with
deg q < d), and it enforces feasibility through the linear identities induced by the constraints. Such a
functional is often called a degree-2d pseudo-expectation.

Expanding u(p) = ), ua 1%, the moment objective is Ly (u) = Y ta Yo = Eg[u(p)]. Hence the
truncated moment relaxation in Equation can be viewed as:

mom

b = sup{ Ed[u(,u)} . Eq is a degree-2d pseudo-expectation consistent with (g>0, h=0) }
In words, the primal SDP maximizes the pseudo-expected ex-ante payoff over all degree-2d “virtual
laws” that satisfy the polynomial feasibility conditions up to degree 2d.

A feasible y in Equation (24) need not come from any genuine probability measure on S, and it
generally encodes only a pseudo-expectation. A fundamental exception is the flat extension condition
(Curto & Fialkow), |1996): if for some s < d,

rank M;(y) = rank Ms_1(y), (28)

then there exist atoms p(V), ..., u(") € S with 7 = rank(M;(y)) and weights A, > 0 with >, A\ =
1 such that

Edp] = Ly®) = Y Mp(p®)  Vpe Rl
k=1

Thus a flat pseudo-expectation is the true expectation with respect to a finitely atomic probability
measure supported on S. Consequently, in the flat regime the SDP objective E;[u] = L, (u) equals

the true ex-ante payoff under optimal strategies, and the atoms {x(*)} (optimal solutions) can be
extracted from M, (y) by standard linear-algebraic procedures (e.g., multiplication matrices).
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D.4.1 EXTRACTION PROCEDURE

A standard sufficient flatness test certifying exactness and enabling solution extraction is
rank M, (y*) = rank M,_q, (y*), where dx = ds in Equation (24), and dx = ds,, in Equa-
tion (27). Note that ds = ds,, = 1, then in both cases the flatness condition specializes to
Equation (28).

Let y* be optimal for the degree-d moment SDP and assume Equation holds at some order
s <d. Setr :=rank M;(y*) = rank M,_1(y*). Then y* admits an r-atomic representing measure
D opet Mk d,, supported on the feasible set, with A\, > 0 and >, Ay = 1. Since Ly-(u) =
> Awu(u®)) equals the global optimum, every atom satisfies u(u*)) = u* and hence is a global
maximizer of w.

We now recover {u(®)}7_ directly from the optimal moment matrix Mj(y*) by the standard
multiplication-matrix routine. The extraction steps are based on Henrion & Lasserre|(2005).

Let v, (1) be the vector of all monomials in 1 of total degree < s, with length N, = ("'}*). Then
the order-s moment matrix can be represented as:

Z)"“’ ®) o, (u®) T = vev)T, (29)

where A, > 0,3, Ax = 1, and V* € RN+*" collects the columns /Ay, vs (u(¥)).

For computation, we form a rank factor of M;(y*) by retaining the r positive modes (e.g., via
eigendecomposition or a Cholesky-type factorization):

M,(y*) = VVT, V e RNsxT, (30)

By construction, span(V) = span(V*). Hence the columns of V are linear combinations of
(VA vs (™)},
To obtain an explicit monomial basis of that subspace, we reduce V' to column-echelon form by

Gauss1an e11m1nat10n with column pivoting, and rescale so that the pivot block is the identity. This

gives V= VT, VB = [.», with T € R"*" invertible and B = {f, ..., 8, } the indices of the pivot
rows (monomials). The pivot indices select a monomial “generating basis”:

w(p) = [T
The same elimination step simultaneously produces linear reduction rules for all monomials of degree
< s: each u® is written, on the support, as a linear combination of the generators { 1%+ }r_,. Stacking
these relations row-wise yields the rewriting matrix R € R™s*" of the form (identity in the pivot
rows and coefficients elsewhere)
vs(p) = Rw(p),  Ra.:

5

=1, 3D

which is exactly the coordinate change from the standard monomial vector vy to the generating basis
w on the atoms {u®}7_ .

In the basis w, multiplication by each coordinate j,, acts linearly. Forn = 1,...,m we build the
multiplication matrices N,, € R"*" defined by
Nyw(p) = pyw(p). (32)

Concretely, for the kth basis monomial ;/%*, form v = 3, + ens if v € Bset Ny(5, k) = erow(y)s
otherwise take N, (:, k) = R . from Equation .

The atoms appear as common eigenpairs of {N, }. Indeed, with ej, := w(u(*)) one has N, e, =

u,gk)ek for all . For robust computation we form a random convex combination

— iAnNn, Ay >0, A, =1,
n=1 n
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Algorithm D.1: Extraction for single-player IREFGs

Input: Optimal solution y*; order s with rank M (y*) = rank Ms_;1(y*) = r.
Output: r optimal strategies {;(®)}7_ .

1. Factor M, = VV T as in Equation (30).

2. Build R so v, = Rw as in Equation (31).

3. For each p,;, build NV,, so N, w(p) = pr, w(p) as in Equation .

4. Form N = ), A\¢N; with random \; compute N = QTQT as in Equation .

5. For each k, set MS,’” = q,Iquk for all  as in Equation .

which generically has simple spectrum and shares the same eigenvectors. The ordered real Schur
decomposition

N =Q1Q", Q=[n - q] (33)

returns orthonormal vectors ¢;, spanning the eigenvectors w((*)). The coordinates of each atom are
then read by Rayleigh quotients:

1 = gl N, q, n=1,....m, k=1,...,r. (34)

The above extraction procedure is summarized in Algorithm[D.1]

Since both S and S, are nonempty, both Equation and Equation are always feasible (take,
e.g., the Dirac measure at any o € S or Sy;). We can thus solve them using the standard procedure:

Moment-SOS loop. Recall dy = dj* = d,,. Initialize d := dp and do:

1. Solve the order-d moment SDP; obtain optimal y4 and upper bound u5°™ = L, (u).

2. For s = dy, .. .,d, test the rank condition in Equation (28)). If it holds for some s, terminate:
the relaxation is exact and one can extract the global maximizers from M;(yq) using

Algorithm

3. Otherwise, increase the relaxation order: d <— d + 1 and go back to Step 1.

For single-player NAM-IREFGs, Lemma ?? shows that rank M, (y) = rank M,(y) Vs > ¢, and
Statement (iii) of Theorem gives exactness at degree £+1: uy’ """ = uy ;" = u*. Hence the
flatness test in Step 2 necessarily succeeds at s = d = ¢+1 (indeed for all s > ¢). The loop is
therefore guaranteed to terminate at this fixed order, determined solely by the number of infosets, and

the extraction returns at least one optimal pure strategy.

For single-player IREFGs with absentmindedness, the same loop produces a monotone sequence
of upper bounds '™ | u* and terminates as soon as flatness is detected at some order s, which
certifies exactness and enables extraction. In the absence of flatness, one increases d to tighten the
bound, with asymptotic convergence to u* guaranteed. If u is generic, Statement (ii) of Theorem[4.1]
ensures finite termination of the loop, with extraction of at least one certified global maximizer for
the KKT-based problem.

E THE SELECT-VERIFY-CUT PROCEDURE

Recall the joint KKT system

{wf(u) — vl (1 =M (@) =0, XN(u) >0,

. . . , Vie[n], jelt], acml]. (35
g () =0, hi(p) =0, g, () () =0,

The following exposition is based on the method introduced in |Nie & Tang| (2024).
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(i) Select. Letng:=> . | Zj , m be the total dimension, set [11]; = (1, 7)), and choose a
generic positive definite matrix © € R("0+1)x(70+1) Then all NEs are feasible points of
. T 1 satisfies (KKT)),
= ) . 36
i poli) = [l Olulr {ui(unu—i) —ui(vi, p—i) = 0, Vu; € Ky, Vi, G0

where K is the current (finite) set of deviation profiles used as cuts (initially K; = 0). If Equation (36)
is infeasible, there is no NE. If it is feasible, a minimizer exists because the feasible set is compact
and g is continuous.

(ii) Verify. Let i € R™ be an optimizer of Equation (36). For each player i, evaluate the best-
response improvement against [i_; by solving the KKT-restricted POP (same value as the unrestricted
best-response since LICQ holds on products of simplices):
wi = max wi (s fo—i) — wi(fLi, fo—q)
stoow!(n) —v] (W1 =XN(u) =0, X(u)>0, Vi, (37)

gl 20, h () =0, gl (WA, =0, Yja.
If every w; < 0, no player can profitably deviate and / is an NE.

(iii) Cut. If some w; > 0, take one or more maximizers v; € argmax u;(f;, fi—;) — w;(fi;, fi—;)
and add the valid NE cuts
wi(pris p—i) — ui(vi, p—i) > 0 (vi € K; = K; U{vi}), (33)

which every NE satisfies but /i violates; then resolve Equation (36) with the enlarged cut set. Each
violated cut eliminates the current candidate while preserving the entire NE set. Repeat (select-verify-
cut) until an NE is certified or nonexistence is proved.

F OMITTED PROOFS FROM MAIN TEXT

F.1 PROOFS FROM SECTION[3]

Proposition 3.2. In non- absentminded IREFGs (NAM-IREFGs), each player’s utility ul( ) is multi-
affine in the blocks {,u (,ul a)gl 1 f 1 i.e., for any player i and infoset j, the map ] — w; () is

affine when all other blocks {,ui, Yt i) #£3,5) are held fixed.

Proof. Fix aterminal history z € Z. For each player 4, let Z;(z) C [¢;] be the set of (distinct) infosets
of player i visited on the unique path to z. By non-absentmindedness, each I; J is visited at most

once. Let a? (z) be the action taken at I/ € Z;(z), and let ¢(z) denote the product of chance move
probabilities (independent of 1). The reach probability factorizes as

P(Z | ,U = H H ‘uz’ a’ ,(z)

i'=1 jeT, (2

Hence player ¢’s expected payoff is

sz Z|‘LL - Z H l_[( )'uz/,az,(z)'
JEL; (2

z€Z z€Z /=1

In each summand, the dependence on the block 1/ is either absent (if j ¢ Z;(z)) or linear through

a single coordinate ,uZ () (if j € Z;(2)); by non-absentmindedness, no monomial contains two
coordinates from the same block. Therefore, with all other blocks {,uz,/ Yt .51y (i,5) held fixed, the

map ug > u; () is affine on the simplex A™! . Since this holds for every (4, j), u; is multi-affine in
the blocks {1} ;. O
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F.2 PROOFS FROM SECTION [4]

Theorem 4.1. Consider a single-player IREFG ¢ with utility function u. Let { be the number of in-
fosets, dy := max; ,{[deg(u)/2], [deg(g2)/2], [deg(h?)/2]}, and u* be the ex-ante optimal value

sos,kkt  sos,vr

of 9. Denote by u3®,u, suy " the values obtained from the SOS-Moment hierarchies applied
respectively to the vanilla product-of-simplices, KKT-based , and vertex-restricted formulations.
Similarly, we use the superscript mom to denote the moment hierarchy. Then we have the following:

(1) limg_oo u5® = limg_ oo ug*™ = u*.

Xkt s kkt
(ii) If w is generic, there exists d > do with u}°™" " = w7 = u*.

(iii) If ¥ is non-absentminded, the degree-({+1) moment relaxation of the vertex-restricted problem
is exact: uy " =t

Proof. To prove Statement (i), note that because Q(S) is Archimedean, the asymptotic convergence
follows from Putinar’s Positivstellensatz and Lasserre’s hierarchy (Putinar} |1993; [Lasserre, 2001}
Laurent, 2009; [Lasserrel, [2024).

To prove Statement (ii), recall from Section [3|that if u is generic (a property which holds for almost
all single-player IREFGs), the set is finite. Augmenting Equation (I) with the polynomial
system does not change the set of maximizers, but restricts feasibility to a finite real variety.
For such finite varieties, the Lasserre hierarchy has finite convergence: for some d large enough,

mom, ikt _ =u” KKt — 4% and the flat extension (rank) condition holds, allowing recovery of x*; this

d
is immediate from e.g. [Laurent| (2008, Thm. 6.15) and [Lasserre et al.| (2008, Prop. 4.6).
In order to prove Statement (iii), we first establish a key rank-stabilization lemma:
Lemma F.1. For every feasible solution y of the degree-s moment relaxation in Equation with
s > £, it holds that rank M, (y) = rank M, (y).

Proof of Lemma@] Let vs(p) collect all monomials of total degree < s and recall M;(y) =
L (vs ) Index the columns of M;(y) by monomials and write the block decomposition

=" ¢

where M, (y) is indexed by monomials of degree < ¢ and B by monomials of degree > /.

Fix a column of B indexed by m(u) = Hf.:l H;"Jl(u]) a with ), o), = degm > (. Define the
clipped monomial

mJ
() = [T [T (uyminesd,
j=la=1
so each exponent > 1 is replaced by 1.
By repeatedly using L, ((¢4)%q) = Ly (1 q) (i.e., b) = 0), for any row index monomial r (degree

< s) we obtain
Ly (m(p) r(w) = Ly (ﬁb(u) r(p)).
Hence the column of M;(y) indexed by m coincides with the column indexed by 7.

If 7 uses at most one variable per block, then deg m < ¢ and the column indexed by m is identical
to a column of M,(y). If, instead, m contains two distinct variables from the same block (say x/, and

ui, with a # a’), then m vanishes on the vertex set Syan (one-hot per block), so for all admissible

rows r, L, (mr) = 0, and the entire column indexed by m is the zero vector.

Consequently, every column of B is either zero or identical to a column of M,(y). Applying the
Mo(y)

same argument to the lower block, with A := [ BT ] and D := {g} , shows that every column of

D is either zero or identical to a column of A. Therefore the column space of M(y) is contained
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in the column space of A, hence rank M, (y) < rank A = rank M,(y). The reverse inequality is
obvious because M, (y) is a principal submatrix of Mj(y). Hence rank M (y) = rank M, (y) for all
s> 0. O

Let s := (41 and let y* be an optimal solution of the order-s moment relaxation Equation (27). By
Lemma 1] rank M, (y*) = rank M, (y*), so the flatness condition holds at order s.

Set r := rank M, (y*). By (Curto & Fialkow, 2000, Theorem 1.6), y* admits an r-atomic represent-
ing measure >, _, A; 8 (v supported on the feasible set, with Ay > 0and 7, A\x = 1. Moreover,

the equalities L« (h/q) = Ly~ (b?q) = 0 in Equation (27) enforce supp(u*) C Sy,. Therefore,

Ly (u) = 3 Awu(p™) < maxu(u) = u”.
k=1 ve

Because Equation (27) is a relaxation of the original problem, ©°™"* > u* for all s. At s = (+1,
we have
mom,vr __
u* < Upy = Ly-(u) < u*.
mom,vr

Hence u, ;" = u* and the optimum is attained at y*. O

F.3 PROOFS FROM SECTION[3]

Theorem 5.1. Let & be a multi-player IREFG with utility functions u; for each player i. Throughout,
subproblems are solved by the KKT-based hierarchies of increasing order. Then, we have the
following:

i) The SVC procedure is asymptotically exact: as the relaxation order and number of iterations
p ymp Y
grows, it returns a behavioral NE when one exists, and otherwise a certificate of nonexistence.

(ii) If u; are all generic, the KKT-based hierarchy has finite convergence for all SVC subproblems,
and the SVC loop terminates in finitely many iterations.

(iii) If 4 is non-absentminded, the Verify/Cut phases in SVC are unnecessary: a single vertex-
restricted Select (Equation (7)) suffices to compute an NE or certify nonexistence. Its Moment-
SOS hierarchy is asymptotically exact; if u; are generic, it attains exactness at a finite order.

Proof. (i) Let {y := Z?:l £; be the total number of infosets. For any feasible ;. we have, for each
J . .
infoset block, Y7, 4] , = 1and 0 < i , < 1. Hence

n_ 4 mg ) n £ mZ ] n 4
2 =333 < SO S, =Y 31 = 4,
i=1 j=1a=1

i=1 j=1a=1 i=1j=1

$0 go(p) = o — ||u[|> > 0 on S. Adding go > 0 yields an Archimedean quadratic module, and
the same holds for each verification feasible set. By standard results for Lasserre’s hierarchy on
Archimedean sets (see, e.g.,|Lasserre (2001); |Laurent (2009))), every fixed selector (with a fixed cut
set) and every verification problem is asymptotically exact: the moment optimal values converge to
the true optima as d — oo, flat truncation recovers optimizers, and infeasibility is detected at high
order.

At loop t, solve one selector and up to n verifications. If the selector becomes infeasible at some order,
nonexistence is certified and the procedure stops. Otherwise, let /1(*) be a selector optimizer recovered
once flatness occurs. If all verification values are < 0, then /i(*) is an NE and we stop. If some player
gains (> 0), extract one or more violated valid inequalities w; (ge;, f1—;) — w;(vs, pi—;) > 0 from the
deviator v; and add them to the selector. As relaxation orders increase across loops, subproblem
solutions approach their true optima; any limit point of flat selector solutions satisfies all accumulated
valid inequalities, i.e., the Nash conditions. Hence the method converges asymptotically to an NE, or
certifies nonexistence if the selector turns infeasible.

(i1) Under generic utilities, which hold for almost all IREFGs, the joint KKT set is finite (cf.|Nie &
Tang (2024))). Then the selector’s feasible set (joint KKT plus cuts) is finite. Each failed candidate is
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removed by the new valid inequalities without excluding any NE, so only finitely many candidates can
be visited before selecting an NE or proving infeasibility. On finite feasible sets, the Moment-SOS
hierarchy attains finite convergence and yields atomic solutions (see, e.g., Laurent| (2008); |Lasserre
et al.| (2008))). Therefore both the select-verify-cut loop and its SDP subproblems terminate in finitely
many steps.

(iii) In the NAM case, u;(-, 1—;) is linear in each block x] (Proposition , so “no profitable
deviation by ¢” <= w;(fi, t—i) > wi(vs, pi—i) Yv; € S; . Thus feasibility of the single vertex-
restricted selector Equation (7)) is equivalent to the existence of a behavioral NE, and the verify/cut
phases are unnecessary.

To see asymptotic exactness, note that the feasible region of Equation (/) is contained in the product
of simplices (per-player KKT equalities are imposed together with vertex deviation inequalities).
Similar to (i), adding go (1) = o — || 4||* > 0 makes the quadratic module Archimedean. By standard
results for Lasserre’s hierarchy on Archimedean sets, the Moment-SOS relaxation of Equation (7)) is
asymptotically exact; flatness yields extraction, and infeasibility is detected at sufficiently high order.

If, moreover, the utilities u; are generic, the joint KKT variety over the product of simplices is finite.
Since Equation (/) enforces these KKT equalities and further filters candidates by the vertex deviation
inequalities, its feasible set is a finite real variety. On finite varieties, the Moment-SOS hierarchy
attains exactness at some finite order, hence Equation (/) has finite convergence (returning an NE
when feasible, and otherwise certifying nonexistence). O

F.4 PROOFS FROM SECTION[@]

Single-player IREFGs. First, we note that single-player IREFGs can be viewed as continuous
identical-interest games (see e.g.|Von Stengel & Koller| (1997)), so the existence of ex-ante optima
does not require concavity: S is compact and u is continuous, hence arg maxs u # (). We establish
that in this setting, there is an equivalence between the definitions of concave and monotone games.

Proposition F.2. A single-player IREFG ¥ is monotone if and only if the expected utility u is concave
on S. Moreover, 9 is strictly monotone if and only if u is strictly concave on S.

Proof. (Concavity = Monotonicity). Assume u is concave. The first-order concavity inequality
gives, for all u, v,

() < u)+Vu@) (@-v),  u@) < ulp)+ Vu@) - p).

Adding the two inequalities yields
(Vu(p) = Vu@) (1 —v) < 0,
which is exactly the definition of monotonicity. with v = Vu.

(Monotonicity = Concavity). Assume (v(u) —v(v), p—v) <0, Vu,v € S (i.e. the pseudogradient
is monotone). Fix p,v € S and set v(t) = v+ t(pn — v) for ¢ € [0, 1]. Define g(t) := u(y(t)). Then
g #) =Vuly(#) " (u—v).For0<s <t <1,

g'(t) = g'(s) = (Vulr(1) = Vu(y(s))) " (1 = v) = ((3(1)) = v(3(s)), 1) = 7(s)) <0,
so ¢’ is nonincreasing on [0, 1]. Therefore
! ! ! / T
uw) —u) = [ gar < [ g0 = V) (=)

which is the first-order characterization of concavity, hence w is concave on S.

(Strict case). If equality in (v(u) — v(v), p — v) <0, Yu,v € S holds only for u = v, then for any
1 # vandany t € (0,1] we have

g (t) = g'(0) = (v(v(t)) = v(¥(0)), 7(t) = 7(0)) <0,
so ¢’ is strictly decreasing and u(u) — u(v) = fol g'(t)dt < Vu(v)T(u — v). This is the strict

first-order concavity inequality, hence w is strictly concave. The converse (strict concavity = strict
monotonicity for y # v) follows by repeating the first part with inequalities strict. [
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Theorem 6.3. Consider a single-player IREFG & with utility function u. Let dy =
max; o{[deg(w)/2], [deg(g?)/2], [deg(h?)/2]}. Then, the following holds:

(i) If 9 is strictly concave/monotone, then the Moment-SOS hierarchy has finite convergence: there
exists d > do such that u3® = uj°™ = u*.

(it) If 9 is SOS-concave/SOS-monotone, the degree-dy Moment-SOS relaxations are exact: ug ™ =

ug® = u*, i.e., the Moment-SOS hierarchy converges at the first level.

Proof. (i) Let i* € S be a global maximizer, so u* = u(u*). Since S is a nonempty polyhedron
and by Propositionu is (strictly) concave, there exist KKT multipliers {\/ }; , with A2 > 0 and
{v7}; such that

)+ ZAJ Vgl (u*) + Zzﬂ Vh (u 0, M gl(u*)=0.

Let I,,, be the m x m identity. Since —V?u = 0 on S, the (strictly positive) smallest eigenvalue of
—V2u(u) is continuous in g, and the compactness of S implies that there exists § > 0 such that
~V2u(u) = 61, forall u € S. Define the (convex) Lagrangian-type polynomial

Glu) 1= (™) = u(w) = DA (1) = v/ W ().
Then G(u*) = 0, VG(u*) = 0. Define

1, pt
Fpu—p*) = /o (/0 V2G(p* + s(p— p*)) ds) dt,
so that the identity holds (Helton & Niel 2010):

G(p) = G(u*) + VG ) (p — 1) + (= %) "F (p, ) (= 1)
=(u—p" Flp—p") (p—p)).

Since V2G (1) = — V2u(u) = 01, on S, for any £ € R™ we have
1t

* )

P 2 6 [ [ ¢Tedsat = ST
0Jo
Hence F(p, u*) = g I, forall X € S. Since F'(u,pn*) is a symmetric polynomial matrix that is

positive definite on S, the matrix polynomial version of Putinar’s Positivstellensatz yields SOS-matrix
polynomials Fy, {F?} and polynomial matrices { H7} such that

F(u,p*) = Fo(p) + ZF({(M)QZ;(M) + ZHj(u) h?

Multiply it on both sides by (1 — p*) to obtain

Glu) = oo(p) + D _ob(w) galm) + > v () W (1),

J

where oo(p) = (1 — i, Fo(u)(p — 1)) € Blu], 03 (p) = (= p*, Fi (u)(p — p*)) € B,
Pi(p) = (u—p* H ( )(u u*)) [ ]. Recalling the definition of G and rearranging,
u(p*) —ulp) = oo(n) + JZ; [+} X)) g3(n) + Z [J; V) ().
ceXp ER[p

Let d = max{[deg(00)/2], [deg(i;)/2], [deg(p;)/2]} + 1. Then with u* = u(u*), the tuple
(u*,00,{0f + X}, {p’ + 17}) is feasible for the degree-dy SOS program in Equation (15, so
uy® < w*. By weak duality, we have u$?® > uj'°™ > u*. Therefore, u® = ugwm = u*
Conversely, choosing y as the Dirac moments of §,,- in the moment SDP of Equation (24) gives a
feasible point with value L, (u) = u*.

(ii) Recall dy = max{d,,ds} = d,. Let u* € arg max;es u(p) and set u* := u(p*). Because ¢4
is (SOS-)concave/monotone, Proposition [F.2)implies that v is concave on S. Since S is a nonempty
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polyhedron, the KKT conditions are necessary and sufficient for optimality. Hence, for any optimal
solution p* there exist Lagrange multipliers {\/ }; , with AZ > 0 and {2 }; such that:

V(u)(*) + Y N, Vi) + Y v VA (u*) =0,
J,a J
XNogh(w*) =0, gh(u*) >0, XN, >0, K (u*)=0.
Since —V?2u is SOS-matrix and deg(—u) < 2dy, by (Lasserre, 2024, Theorem 3.9):

(—u)(p) = (~u)(1*) = V(=) (") (0 — 1) = o0 (1),
with g € X[u]4,. Using stationarity and linearity of g/, h/ (their gradients are constant), we obtain
from the KKT condition:

V() (u*) (o —p') = - Z NV(g) T (n—p*) — Zvjv(hj)T(u — )
= —Zki(gi(u) —gl(u*)) - Zvjhj(u),

where we used b/ (11*) = 0. Plugging this back, we have
wt—u(p) = oo(p)+ YN (gh(1) — gh(w) + > v ()
J.a J

= oo+ > N gi(w)+ > v h ().
eslul I esiu J

since 3_; , A g4(1*) = 0. Thus we have the original-domain SOS certificate
u*—u(p) = oo(p)+ Y ol(w) gh(w) + > 0/ (u) b (),
J,a J

with o7 (p) = A (nonnegative constants are SOS) and p? (1) = 1. Degree bounds: deg(og) <
2dg, deg(o? g?) < 1, deg(p’h?) < 1. Thus (u*,09,{0’},{p’}) is feasible for the SOS dual
Equation at order dy, yielding uzct’)s < u*. By weak duality, we have u3>® > uggom > u*.
Therefore ug ™™ = ug® = u*. Conversely, choosing y as the Dirac moments of 5 w+ in the moment
SDP Equation gives a feasible point with value L, (u) = u*. O

G EMPIRICAL EXAMPLES

In this section, we show some illustrative examples for how our proposed methods can be used to
compute ex-ante optima in single-player IREFGs. We remark that we use only standard scientific
computing packages in Julia, alongside an off-the-shelf SumOfSquares package (Legat et al., 2017
Weisser et al., [2019). The code is run on a PC with an AMD Ryzen 5 5600 processor and 16 GB of
RAM running a 64-bit version of Windows 11, and is provided in a supplementary file.

Example[B.4] As a running example, we revisit Example[B.4] Since the game is not multilinear
(i.e. the player is absentminded), we use the standard Moment-SOS hierarchies. In particular, we run
the SOS hierarchy in the Moment-SOS loop, testing the rank condition at each level until an atomic
measure (i.e. a feasible maximizer) can be extracted. The program converges at truncation degree
d = 4, returning optimal solution (x7,z3,) = (1,0) and (x3;, z3,) = (1,0). This gives objective
value p(z*) = 9. The compute time required to solve this example was 0.02 seconds.

Randomly Generated NAM-IREFG. We also create a procedure to randomly generate single-
player IREFGs. Specifically, we seek to validate Statement (iii) of Theorem[4.1] that convergence
occurs at a structure dependent level of the Moment-SOS hierarchy. For example, consider a
(randomly generated) non-absentminded game %, with 3 infosets and two actions per infoset, resulting
in variables x1, xo for I, y1, yo for I, and 21, 25 for I3. The payoff function for ¢ is given by:

ug, (2,y,2) = —421 + Tays + Tay221 — 3xT2y122 — 3T2y121- (39)
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Due to Theorem we expect convergence and extraction to be possible at level d = 4 of the
hierarchy, since there are 3 infosets. Moreover, since the game is a NAM-IREFG, we can further
restrict the feasible region to vertex set S, Setting d = 4 in the hierarchy, we find ex-ante optimal
solution (x7,23) = (0,1), (y1,v3) = (0,1), and (=}, z5) = (0, 1) with optimal value 1. The
compute time required to solve this game was 0.06 seconds.

Randomly Generated Absentminded IREFG. As another example, we show that in a randomly
generated absentminded game, the hierarchies empirically converge at ‘reasonable’ levels. Consider
game % with two infosets /; and I, where the player chooses between 3 actions in each infoset.
This gives variables x1, x2, x5 in Iy and y1, yo, y3 in I5. The payoff function for % is given by

ug, (z,y) = 4x123 + 22223Y3 — BLT1X2Y3 + T1Z2y1 — 4T223Y2Y3. (40)

Running the hierarchies, we obtain convergence at level d = 6, with ex-ante optimal solution
(x5, x5, 2%) = (0.5,0,0.5) and (y7,vs,v5) = (0.134,0.594,0.272), giving optimal value 1. Notice
that unlike the NAM case, the optimal solution is not a vertex. The total compute time required to
solve this example was 0.41 seconds.

SOS-Monotone Example. We show experimental corroboration for Statement (ii) of Theorem@
Using a technique established in |/Ahmadi et al.|(2013)), we construct a game %sog with degree-4
polynomial utility which is SOS-convex. The polynomial is given below:

Usgeors (T, ) = 9.3Tys + 9.3Tysy2 + 937y} + 1.1723y2 — 0.0923y1yo + 0.94x2y?
+ 9.3731:3l — O.78m1x2y§ — 0.52z122y1Y2 + 0.55x1x2yf + O.ISxfyg 41
+ 0162291 + 0.132%y? + 9.372222 + 9.372%

Even though this polynomial is quartic, we need only run the SOS hierarchy at level d = 4 to
obtain the optimal value and extract a solution. We obtain the solution (z7,z5) = (0,1) and
(y1,v3) = (0,1), with value 19.9. The compute time was < 0.001 seconds.

Comparison With A Local Method. To further illustrate the gap between local methods and SOS,
we consider a small but nontrivial randomly generated absentminded game ¥; with two infosets Iy
and I, where I; has 2 actions and I3 has 3 actions. This gives variables x1, x5 in I and y1, y2, y3 in
I5. The payoff function for ¥3 is given by

ug, (2, y) = 623ys + 8T122y2 — 3y3 + 25 + dzoy1ys — da3yi. (42)

Using our Moment-SOS implementation, the degree-4 relaxation is already flat and certifies the
global optimum at («7,z3) = (1,0), (v7,v5,v4) = (0,0, 1), with optimal value 4. The compute
time was 0.03 seconds.

As a baseline, we apply projected gradient descent (PGD) directly to the same objective over the
feasible region. We define the concatenated variable z = (z,y) € R®, perform gradient steps
zt+1 = 2zt + NV f(z;) with step size n = 0.02, and after each step project the - and y-coordinates
onto their respective simplices using the standard Euclidean simplex projection. We stop when
|zt41 — 2¢]]2 < 1078 or after 5000 iterations. Running PGD from 100 random interior initializations,
66/100 runs converge to the global optimum, while the remaining runs converge to a distinct
stationary point with payoff ~ 2.15. Thus, first-order methods can get trapped at suboptimal KKT
points with nontrivial probability, whereas SOS returns the global solution together with a certificate
at a modest relaxation degree.
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