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Abstract

Actor-critic methods have achieved significant success in many challenging ap-
plications. However, its finite-time convergence is still poorly understood in the
most practical single-timescale form. Existing works on analyzing single-timescale
actor-critic have been limited to i.i.d. sampling or tabular setting for simplicity.
We investigate the more practical online single-timescale actor-critic algorithm on
continuous state space, where the critic assumes linear function approximation
and updates with a single Markovian sample per actor step. Previous analysis
has been unable to establish the convergence for such a challenging scenario. We
demonstrate that the online single-timescale actor-critic method provably finds an
ϵ-approximate stationary point with Õ(ϵ−2) sample complexity under standard
assumptions, which can be further improved to O(ϵ−2) under the i.i.d. sampling.
Our novel framework systematically evaluates and controls the error propagation
between the actor and critic. It offers a promising approach for analyzing other
single-timescale reinforcement learning algorithms as well.

1 Introduction

Actor-critic (AC) methods have achieved great success in solving many challenging reinforcement
learning (RL) problems [17, 20, 24]. AC updates the actor (i.e., the policy) using the estimated
policy gradient (PG), which is a function of the Q-value under the policy. Meanwhile, it employs
a bootstrapping critic to estimate the Q-value, which often helps reduce variance and accelerates
convergence in practice.

Despite the empirical success, the non-asymptotic convergence analysis of AC in the most practical
single-timescale form remains underexplored. A large body of existing works consider the double-
loop variants, where the critic runs many steps to accurately estimate the Q-value for a given actor
[37, 16, 27, 2]. This leads to a decoupled convergence analysis of the critic and the actor, which
involves a policy evaluation sub-problem in the inner loop and a perturbed gradient descent in the
outer loop. Its finite-time convergence is relatively well understood [16, 37, 35]. Nevertheless, the
double-loop setting is mainly for ease of analysis, which is barely adopted in practice. Since it
requires an accurate critic estimation, it is typically sample inefficient. In fact, it is unclear whether an
inner loop of accurate policy evaluation is really necessary since it only corresponds to one transient
policy among many iterations.

Another body of works considers the (single-loop) two-timescale variants [31, 9, 36, 13], where the
actor and the critic are updated simultaneously in each iteration with stepsizes of different timescales.
The actor stepsize is typically smaller than that of the critic, with their ratio converging to zero as
the iteration number goes to infinity. Hence, the actor is updated much slower than the critic. The
two-timescale allows the critic to approximate the desired Q-value in an asymptotic way, which
enables a decoupled convergence analysis of the actor and the critic. This variant is occasionally
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Table 1: Comparison with related single-timescale actor-critic algorithms

Reference Setting Sampling Sample ComplexityState Space Reward Actor Critic
[21] Finite Discounted i.i.d. i.i.d. O(ϵ−2)
[8] Infinite Discounted i.i.d. i.i.d. O(ϵ−2)

This Paper Infinite Average Markovian Markovian Õ(ϵ−2)

adopted to improve learning stability. However, it is still considered inefficient as the actor update is
artificially slowed down.

In this paper, we consider the more practical single-timescale AC algorithm, which is the one
introduced in many works of literature as well as in [25] as a classic AC algorithm. In single-
timescale AC, the stepsizes of the critic and the actor diminish at the same timescale. Unlike the
aforementioned variants, which have specialized designs aimed at simplifying the convergence
analysis, the analysis of the single-timescale AC presents a greater challenge. Due to the substantial
errors in critic estimation and the close coupling between the parallel critic update and actor update,
the algorithm is more prone to unstable error propagation. It remains unclear under what condition
the errors will converge to zero. To study its finite-time convergence, we consider the challenging
undiscounted time-average reward formulation [25, 31, 37], which consists of three parallel updates:
the (time-average) reward estimator, the critic estimator, and the actor estimator. We keep track
of the reward estimation error, the critic error, and the policy gradient norm (which measures the
actor error) by deriving an implicit bound for each of them. They are then analyzed altogether as an
interconnected system inspired by [21] to establish the convergence simultaneously. Specifically, we
identify the (constant) ratio between the actor stepsize and the critic stepsize, below which all three
errors will diminish to zero, despite the inaccurate estimation in all three updates (reward estimation,
critic, actor).

1.1 Main Contributions

We summarise our main contributions as follows:

• We provide a finite-time analysis for the single-timescale AC under the Markovian sampling and
prove an Õ(ϵ−2) sample complexity, where Õ(·) hides additional logarithmic terms. We further
show that this sample complexity can be improved to O(ϵ−2) under i.i.d. sampling, which matches
the state-of-the-art performance of SGD on general non-convex optimization problems. Our proof
clearly shows that the additional logarithmic term under the Markovian sampling is introduced by the
mixing time of the underlying Markov chain.

• Our result compares favorably to existing works on single-timescale AC. To our knowledge, the
only other results of single-timescale AC in the general MDP (Markov decision process) case are
from [8] and [21], both of which obtain a sample complexity of O(ϵ−2) under discounted reward
setting. However, both [8] and [21] considered the i.i.d. sampling, where the transition tuples are
independently sampled from stationary distribution and discounted state-action visitation distribution.
In this paper, we consider the more practical Markovian sampling, where the transition tuples are
generated from a single trajectory (see Table 1).

Furthermore, [8] follows an explicit Lyapunov analysis, where they leave a biased term in the critic
and eliminated in the actor. Therefore, their proof framework cannot show the convergence of the
critic. We instead give a neat proof framework to guarantee convergence for both the critic and
the actor. Additionally, [21] only considered the tabular case (finite state-action space) where we
allow the state space to be infinite (see Table 1). It is worth emphasizing that moving from a finite
state space to an infinite state space takes significantly non-trivial effort in analysis. The analysis in
[21] concatenates all state-action pairs to create a finite-dimensional feature matrix, which however
becomes impossible in the infinite state space scenario. Consequently, their analysis technique and
established results are not applicable in our context.

• Technically, we develop a new analysis framework that can establish the finite-time convergence
for single-timescale AC under the general setting. The existing analysis for double-loop AC [37] and
two-timescale AC [31] hinge on decoupling the analysis of actor and critic, which typically establishes
the convergence of critic first and then actor [37, 31, 8]. We instead investigate the evolution of
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the coupled estimation errors of the time-average reward, the critic, and the policy gradient norm
altogether as an interconnected system in a much less conservative way. We emphasize that our
analysis framework includes the discounted setting as a simple special case where the interconnected
system is only two-dimensional without the time-average reward estimation.

1.2 Related Work

Policy gradient methods. Policy gradient methods [26, 25] learn a parameterized policy, constituting
a departure from the value-based approach [28, 32, 40]. The asymptotic convergence of policy
gradient methods has been well established in [29, 26, 3, 14] via stochastic approximation methods
[6]. Some recent works have shown that PG methods can find the global optimum of some particular
class of problems, such as LQR [11, 19] and tabular case problem [1]. Under general function
approximation setting, finite-time convergence of PG methods was analyzed in [1, 38, 33, 34].
Specifically, [1] established the finite-time convergence of PG methods under both tabular policy
parameterizations and general parametric policy classes. [38] showed that a variant of PG methods
can attain an ϵ-accurate stationary point at a sample complexity of O(ϵ−2), where they adopted
Monte-Carlo sampling to find an unbiased estimation of policy gradient. [33, 34] studied the variance
reduction PG and acceleration PG.

Actor-Critic methods. The AC algorithm was initially proposed by [15]. Later, [14] extended it to
the natural AC algorithm. The asymptotic convergence of AC algorithms has been well established in
[14, 5, 7, 39] under various settings. Many recent works focused on the finite-time convergence of
AC methods. Under the double-loop setting, [37] established the global convergence of AC methods
for solving linear quadratic regulator (LQR). [27] studied the global convergence of AC methods
with both the actor and the critic parameterized by neural networks. [16] studied the finite-time local
convergence of a few AC variants with linear function approximation.

Under the two-timescale AC setting, [31] established the finite-time local convergence to a stationary
point at a sample complexity of Õ(ϵ−2.5) under the undiscounted time-average reward setting.
[36] studied both local convergence and global convergence for two-timescale (natural) AC, with
Õ(ϵ−2.5) and Õ(ϵ−4) sample complexity, respectively, under the discounted accumulated reward.
The algorithm collects multiple samples to update the critic. [13] proposed a two-timescale stochastic
approximation algorithm for bilevel optimization and the algorithm was subsequently employed
in the context of two-timescale AC. [9] established the global convergence of two-timescale AC
methods for solving LQR, where only a single sample is used to update the critic in each iteration.

Under the single-timescale setting, [12] considered the least-squares temporal difference (LSTD)
update for the critic and obtained the optimal policy within the energy-based policy class for both
linear function approximation and nonlinear function approximation using neural networks. [41]
studied single-timescale AC on LQR. In addition, [8] and [21] considered the single-timescale AC in
general MDP cases, which have been reviewed and compared in Section 1.1.

Notation. We use non-bold letters to denote scalars and use lower and upper case bold letters to
denote vectors and matrices respectively. Without further specification, we write xn = O(yn) if there
exists an absolute positive constant C such that xn ≤ Cyn, for two sequences {xn} and {yn}. We
use Õ(·) to hide logarithm factors. The total variation distance of two probability measure µ and v is
defined by dTV (µ, v) :=

1
2

∫
X |µ(dx)− v(dx)|. In addition, we use P to denote a generic probability

of some random event.

2 Preliminaries

In this section, we review the basics of the Markov decision process, policy gradient algorithm, and
single-timescale AC with linear function approximation.

2.1 Markov decision process

We consider the standard Markov Decision Process (MDP) characterized by (S,A,P, r), where S is
the state space and A is the action space. We consider a finite action space |A| < ∞, whereas the state
space can be either a finite set or an (unbounded) real vector space S ⊂ Rn. P(st+1|st, at) ∈ [0, 1]
denotes the transition kernel. We consider a bounded reward r : S × A → [−Ur, Ur], which is a

3



function of the state s and action a. A policy πθ(·|s) ∈ R|A| parameterized by θ is defined as a
mapping from a given state to a probability distribution over actions.

The RL problem of consideration aims to find a policy πθ that maximizes the infinite-horizon
time-average reward [26, 25, 37, 31], which is given by

J(θ) := lim
T→∞

Eθ

∑T−1
t=0 r(st, at)

T
= E

s∼µθ,a∼πθ

[r(s, a)],

where the expectation Eθ is over the Markov chain under the policy πθ , and µθ denotes the stationary
state distribution induced by πθ . The existence of the stationary distribution can be guaranteed by the
uniform ergodicity of the underlying MDP, which is a common assumption. Hereafter, we refer to
J(θ) as the time-average reward (or exchangeably, performance function), which can be evaluated by
the expected reward over the stationary distribution µθ and the policy πθ.

The state-value function is used to evaluate the overall rewards starting from a state s and following
policy πθ thereafter, which is defined as

Vθ(s) := Eθ[

∞∑
t=0

(r(st, at)− J(θ))|s0 = s],

where the action follows the policy at ∼ πθ(·|st) and the next state comes from the transition kernel
st+1 ∼ P(·|st, at). Similarly, we define the action-value (Q-value) function to evaluate the overall
rewards starting from s, taking action a, and following policy πθ thereafter:

Qθ(s, a) = Eθ[

∞∑
t=0

(r(st, at)− J(θ))|s0 = s, a0 = a]

(i)
= r(s, a)− J(θ) + E[Vθ(s

′)],

where the expectation in (i) is taken over s′ ∼ P(·|s, a).

2.2 Policy gradient theorem

The policy gradient theorem [26] provides an analytic expression for the gradient of the performance
function J(θ) with respect to the policy parameter θ, which is given by:

∇θJ(θ) = Es∼µθ,a∼πθ
[Qθ(s, a)∇θ log πθ(a|s)]. (1)

Evaluating this gradient requires the Q-value corresponding to the current policy πθ. The REIN-
FORCE [29] is a Monte Carlo-based episodic algorithm, which uses all the rewards collected along
the sample trajectory (that is, the differential return) as an approximation to the true Q-value.

Note that for any function b : S → R that is independent of the action, we have∑
a∈A

b(s)∇πθ(a|s) = b(s)∇(
∑
a∈A

πθ(a|s)) = b(s)∇1 = 0.

Therefore, the policy gradient theorem can be written equivalently as:

∇J(θ) = Es∼µθ,a∼πθ
[(Qθ(s, a)− b(s))∇θ log πθ(a|s)],

where b(s) is called the baseline function. A popular choice of baseline is the state-value function,
which leads to the following advantage-based policy gradient

∇θJ(θ) = Es∼µθ,a∼πθ
[∆θ(s, a)∇θ log πθ(a|s)],

where ∆θ = Qθ(s, a)− Vθ(s) is known as the advantage function. This is the “REINFORCE with
baseline” [29]. The baseline function can help reduce variance. However, like all Monte Carlo-based
methods, it can still suffer from high variance and thus learns slowly. In addition, it is inconvenient to
implement the algorithm online for continuing tasks [25].

AC algorithm instead employs a bootstrapping critic to estimate the Q-value. We describe the classic
single-timescale AC in the next subsection.
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2.3 The single-timescale actor-critic algorithm

We consider the classic single-sample single-timescale AC method, where the critic is bootstrapping
and uses a single sampled reward to update in each iteration. This directly accommodates online
learning for continuing tasks. We consider the following linear function approximation of the
state-value function:

V̂θ(s;ω) = ϕ(s)⊤ω,

where ϕ(·) : S → Rd is a known feature mapping, which satisfies ∥ϕ(·)∥ ≤ 1. To drive V̂θ(s;w) to-
wards its true value Vθ(s), the semi-gradient TD(0) update is applied to estimate the linear coefficient
ω (hereafter referred to as the critic):

ωt+1 = ωt + βt[(rt − J(θ) + ϕ(st+1)
⊤ωt − ϕ(st)

⊤ωt)]ϕ(st), (2)

where βt is the step size of the critic ω and rt := r(st, at). Since J(θ) is unknown, the time-average
reward setting introduces an additional estimator η to estimate it. Hereafter, we simply refer to η as
the reward estimator. The temporal difference error can be defined as

δt := rt − ηt + ϕ(st+1)
⊤ωt − ϕ(st)

⊤ωt.

Then, the update rule for the critic is given by

ηt+1 = ηt + γt(rt − ηt),

ωt+1 = ωt + βtδtϕ(st),

where γt is the step size of the reward estimator ηt.

Since δt is an approximation of the advantage function, similar to REINFORCE with baseline, the
corresponding update rule for the actor can be written as:

θt+1 = θt + αtδt∇θ log πθt(at|st),
where αt is the actor stepsize. The above-described AC is summarized in Algorithm 1, which
is introduced in [25] as a classic online one-step AC algorithm. Algorithm 1 can be efficiently
implemented for continuing tasks due to its online nature.

Algorithm 1 Single-timescale Actor-Critic
1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsize

αt for actor, βt for critic, and γt for reward estimator.
2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, · · · , T − 1 do
4: Take action at ∼ πθt

(·|st)
5: Observe next state st+1 ∼ P(·|st, at) and reward rt = r(st, at)
6: δt = rt − ηt + ϕ(st+1)

⊤ωt − ϕ(st)
⊤ωt

7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠUω (ωt + βtδtϕ(st))
9: θt+1 = θt + αtδt∇θ log πθt

(at|st)
10: end for

Note that the “single-timescale” refers to the fact that the stepsizes αt, βt, γt are only constantly
proportional to each other. In addition, this is a “single-sample” algorithm, since only one sample is
needed for the update in each iteration. We remark that Algorithm 1 is more common in practice than
double loop variants. In Line 8 of Algorithm 1, a projection (ΠUω ) is introduced to keep the critic
norm-bounded by Uω, which is widely adopted in the literature [31, 37, 36, 8] for analysis. Note
that the projection can be handled easily, which is relaxed using its non-expansive property in our
analysis.

3 Main Results

We first present several standard assumptions that are common in the literature of analyzing AC with
linear function approximation [12, 35, 31, 8, 21]. Insights into these conditions and connections with
relevant works are also discussed.
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3.1 Assumptions

By taking the expectation of ωt+1 in (2) with respect to the stationary distribution, we have for any
given ωt

Eθ[ωt+1|ωt] = ωt + βt(bθ +Aθωt), (3)

where

Aθ := E(s,a,s′)[ϕ(s)(ϕ(s
′)− ϕ(s))⊤)], (4)

bθ := E(s,a)[(r(s, a)− J(θ))ϕ(s)], (5)

and s ∼ µθ(·), a ∼ πθ(·|s), s′ ∼ P(·|s, a) is the subsequent state of the (s, a). It can be easily
shown that [25] the TD limiting point ω∗(θ) satisfies:

bθ +Aθω
∗(θ) = 0. (6)

Note that Aθ reflects the exploration of the policy. To see this, note that without sufficient exploration,
Aθ can be rank deficient and (6) can be unsolvable. Consequently, the critic update (2) will not
converge. Hence, the following assumption is made to guarantee the problem’s solvability.
Assumption 3.1 (Exploration). For any θ, the matrix Aθ defined in (4) is negative definite and its
maximum eigenvalue can be upper bounded by −λ.

Assumption 3.1 is commonly adopted in analyzing TD learning with linear function approximation
[4, 42, 31, 23, 8, 21]. In particular, Assumption 3.1 holds if the policy πθ can explore all state-action
pairs in the tabular case [21]. In addition, with this assumption, we can choose Uω = 2Ur

λ so that all
ω∗ lie within the projection radius Uω because ∥bθ∥ ≤ 2Ur and ∥A−1

θ ∥ ≤ λ−1, which justifies the
projection operator introduced in Line 8 of Algorithm 1.
Assumption 3.2 (Uniform ergodicity). For any θ, denote µθ(·) as the stationary distribution induced
by the policy πθ(·|s) and the transition probability measure P(·|s, a). For a Markov chain generated
by the policy πθ and transition kernel P , there exists m > 0 and ρ ∈ (0, 1) such that

dTV (P(sτ ∈ ·|s0 = s), µθ(·)) ≤ mρτ ,∀τ ≥ 0,∀s ∈ S.

Assumption 3.2 assumes the Markov chain is geometrically mixing, which can be implied by the
uniform ergodicity. It is commonly employed to characterize the noise induced by Markovian
sampling in RL algorithms [4, 42, 31, 8, 21].
Assumption 3.3 (Lipschitz continuity of policy). Let πθ(a|s) be a policy parameterized by θ ∈ Rd.
There exists positive constants B,Ll and Lπ such that for any θ,θ1,θ2 ∈ Rd, s ∈ S, and a ∈ A, it
holds that:

(a) ∥∇ log πθ(a|s)∥ ≤ B

(b) ∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥ ≤ Ll∥θ1 − θ2∥

(c) |πθ1(a|s)− πθ2(a|s)| ≤ Lπ∥θ1 − θ2∥

Assumption 3.3 is standard in the literature of policy gradient methods [22, 42, 38, 34, 31, 8, 21].
This assumption holds for many policy classes such as Gaussian policy [10], Boltzmann policy [15],
and tabular softmax policy [1].
Assumption 3.4. For any θ,θ′ ∈ Rd, there exists constant Lµ such that ∥∇µθ −∇µθ′∥ ≤ Lµ∥θ −
θ′∥, where µθ(s) is the stationary distribution under the policy πθ.

Assumption 3.4 is introduced in [8] to show the smoothness of the optimal critic ω∗(θ), which is
critical to guarantee the convergence of single-timescale AC. This assumption holds for the finite
state-action space setting [18].

3.2 Finite-Time Analysis

We define the following uniform upper bound for the linear function approximation error of the critic:

ϵapp := sup
θ

√
Es∼µθ

(ϕ(s)⊤ω∗(θ)− Vθ(s))2.
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The error ϵapp is zero if Vθ is indeed a linear function for any θ. Naturally, it can be expected that the
learning errors of Algorithm 1 depend on ϵapp.

We define the following integer τT that will be useful in the statement of the theorems, which depends
on the number of total iterations T :

τT := min{i ≥ 0 |mρi−1 ≤ 1√
T
},

where m, ρ are constants defined in Assumption 3.2. Therefore, we choose τT = logmρ−1

log ρ−1 +
log T

2 log ρ−1 = O(log T ) such that mρτT−1 ≤ 1√
T

. The integer τT represents the mixing time of an
ergodic Markov chain, which will be used to control the Markovian noise in the analysis.

We quantify the learning errors by defining yt := ηt − J(θt), which is the difference between
the reward estimator and the true time-average reward J(θt) at time t. For the critic, we define,
zt := ωt − ω∗

t with ω∗
t := ω∗(θt) to measure the error between the critic and its target value at

iteration t. The following two theorems summarize our main results.
Theorem 3.5 (Markovian sampling). Consider Algorithm 1 with αt = α = c√

T
, βt = β = 1√

T
, γt =

γ = 1√
T

, where c is a constant depending on problem parameters. Suppose Assumptions 3.1-3.4
hold, we have for T ≥ 2τT ,

1

T − τT

T−1∑
t=τT

Ey2t = O(
log2 T√

T
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥zt∥2 = O(
log2 T√

T
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 = O(
log2 T√

T
) +O(ϵapp).

We defer the interpretation of the above results a bit and present below the analysis results under the
i.i.d. sampling first for better comparison. The major difference of i.i.d. from Markovian sampling
is that at the t-th iteration, the state st is sampled from the stationary distribution µθt

instead of the
evolving Markov chain (see Algorithm 2 in Appendix E). The i.i.d. sampling simplifies the analysis
in the way that many Markovian noise terms reduce to zero effectively. This leads to a tighter sample
complexity bound compared to the Markovian sampling by up to logarithmic factors.
Theorem 3.6 (i.i.d. sampling). Consider Algorithm 2 (see Appendix E) with αt = α = c√

T
, βt =

β = 1√
T
, γt = γ = 1√

T
, where c is a constant depending on problem parameters. Suppose

Assumptions 3.1-3.4 hold, we have for T ≥ 2τT ,

1

T − τT

T−1∑
t=τT

Ey2t = O(
1√
T
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥zt∥2 = O(
1√
T
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 = O(
1√
T
) +O(ϵapp).

If the critic approximation error ϵapp is zero, we see that the reward estimator, the critic, and the
actor estimation errors all diminish at a sub-linear rate of Õ(T− 1

2 ). The additional logarithmic term
hidden by Õ(·) is incurred by the mixing time of the Markov chain, which can be get rid of under the
i.i.d. sampling. It also hides the polynomials of all other problem parameters. They are explicitly
characterized in the proofs up to the last step of analyzing the overall interconnected error propagation
system. One can easily keep and get the dependence orders of all parameters if needed. Here we
focus on the dependence of the iteration number for ease of presentation.
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To put the results into perspective, note that O(T− 1
2 ) is the rate one would obtain from stochastic

gradient descent (SGD) on general non-convex functions with unbiased gradient updates. In terms of
sample complexity, to obtain an ϵ-approximate stationary point, it takes a number of Õ(ϵ−2) samples
for Markovian sampling (Algorithm 1) and O(ϵ−2) for i.i.d. sampling (Algorithm 2), which matches
the state-of-the-art performance of SGD on non-convex optimization problems.

The obtained sample complexities are superior to those of other AC variants. Notably, [16] provided
finite-time convergence for double-loop variant with a O(ϵ−4) sample complexity and [31] analysed
two-timescale variant, yielding a Õ(ϵ−2.5) sample complexity. The sample complexity gap is intrinsic
to their inefficient usage of data. In the double-loop setting, the critic starts over to estimate the Q-
value for an intermediate policy in the inner loop, ignoring the fact that the consecutive Q-values can
be similar given a relatively minor policy update. The two-timescale setting artificially slows down
the actor update by adopting an actor stepsize that decays faster than the critic. The single-timescale
approach updates the critic and actor parallelly with proportional stepsizes and thus learns more
efficiently.

Moreover, our result matches the O(ϵ−2) sample complexity of policy gradient methods such as
REINFORCE [2, 22] under the i.i.d sampling. It is previously found in [31] that there is a sample
complexity gap between Algorithm 1 adopting two-timescale stepsizes and (variance-reduced)
REINFORCE [22]. In this paper, we close this gap by providing a single-timescale analysis for
Algorithm 1 which shows that this practical single-timescale AC can have the same sample complexity
as REINFORCE.

3.3 Proof Sketch

The main challenge in the finite-time analysis lies in that the estimation errors of the time-average
reward, the critic, and the policy gradient are strongly coupled. To overcome this difficulty, we
view the propagation of these errors as an interconnected system and analyze them holistically. To
better appreciate the advantage of our analysis framework over the decoupled methods that are
traditionally adopted in analyzing double-loop and two-timescale variants, we sketch the main proof
steps of Theorem 3.5 in the following. We also highlight the key challenges and techniques developed
correspondingly. All supporting lemmas mentioned below can be found in Appendix.

We first derive implicit (coupled) upper bounds for the reward estimation error yt, the critic error zt,
and the policy gradient ∇J(θt), respectively. Then, we solve a system of inequalities to establish
finite-time convergence.

Step 1: Reward estimation error analysis. Using the reward estimator update rule (Line 7 of
Algorithm 1), we decompose the reward estimation error into:

y2t+1 = (1− 2γt)y
2
t + 2γtyt(rt − J(θt))

+ 2yt(J(θt)− J(θt+1)) + (J(θt)− J(θt+1) + γt(rt − ηt))
2.

(7)

The second term on the right-hand side of (7) is a bias term caused by the Markovian sample, which
is characterized in Lemma C.1. As shown in Lemma E.1, this bias reduces to 0 under i.i.d. sampling
after taking the expectation. The third term captures the variation of the moving targets J(θt). The
double-loop variant of AC runs a policy evaluation sub-problem in the inner loop for each target
J(θt) to estimate the policy gradient accurately. This easily ensures the monotonic decreasing of
J(θt) and consequently the convergence. The two-timescale variant utilizes the additional property
of limt→∞ αt/βt = 0 to annihilate this term and consequently can have a decoupled analysis. In
the case of single-timescale AC, we do not have the aforementioned special algorithm designs and
properties to ease the analysis. Instead, we utilize the smoothness of J(θ) (see Lemma B.2) and
derive an implicit upper bound for this term as a function of the norm of yt and ∇J(θt). This
bound will be combined with the implicit bounds derived in Step 2 and Step 3 below to establish the
non-asymptotic convergence altogether. The last term in (7) reflects the variance in reward estimation,
which is bounded by O(γt).

Step 2: Critic error analysis. Using the critic update rule (Line 8 of Algorithm 1), we decompose
the squared error by (we neglect the projection for the time being for the ease of comprehension. The
complete analysis can be found in the appendix.)

∥zt+1∥2 =∥zt∥2 + 2βt⟨zt, ḡ(ωt,θt)⟩+ 2βtΨ(Ot,ωt,θt) + 2βt⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2,

(8)
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where Ot := (st, at, st+1) is a tuple of observations and the definitions of g, ḡ,∆g, and Ψ can be
found in (12) and (13) in Appendix A. Without diving into the detailed definitions, here we focus on
illustrating the high-level insights of our proof. First of all, the second term on the right-hand side of
(8) can be bounded by −2λβt∥zt∥2 under Assumption 3.1. It provides an explicit characterization
of how sufficient exploration can help the convergence of learning. The third term is a Markovian
noise, which is further bounded implicitly in Lemma C.3. For the i.i.d sampling case, as shown
in Lemma E.1, this bias reduces to 0 after taking the expectation. The fourth term is caused by
inaccurate reward and critic estimations, which can be bounded by the norm of yt and zt. The
fifth term tracks both the critic estimation performance zt and the difference between the drifting
critic targets ω∗

t . Similar to the case of Step 1, the double-loop approach bounds this term relying
on the accurate policy evaluation sub-problem in the inner loop for each target ω∗

t , whereas the
two-timescale approach ensures its convergence by additionally requiring limt→∞ αt/βt = 0. In
contrast, we establish an implicit upper bound for this term as a function of yt and zt by utilizing the
smoothness of the optimal critic proved in Lemma B.4. Finally, the last term reflects the variances of
various estimations, which is bounded by O(βt).

Step 3: Policy gradient norm analysis. Using the actor update rule (Line 9 of Algorithm 1) and the
smoothness property of J(θ) (see Lemma B.2), we derive

∥∇J(θt)∥2 ≤ 1

αt
(J(θt+1)− J(θt)) + Θ(Ot,θt)− ⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩

− ⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+
LJ′

2
αt∥δt∇ log πθt

(at|st)∥2,
(9)

where O′
t is a shorthand for an independent sample from stationary distribution s ∼ µθt

, a ∼
πθt

, s′ ∼ P(·|s, a), Θ is defined in (13), and LJ′ is a constant. The first term on the right-hand
side of (9) compares the actor’s performances between consecutive updates, which can be bounded
via Abel summation by parts. The second term is a noise term introduced by Markovian sampling,
which is characterized in Lemma C.6. Again, as proven in Lemma E.1, this bias reduces to 0 under
i.i.d. sampling after taking the expectation. The third term is an error introduced by the inaccurate
estimations of both the time-average reward and the critic. This term was directly bounded to zero
under both the double-loop setting and the two-timescale setting due to their particular algorithm
design, to enable a decoupled analysis. We control this term by providing an implicit bound depending
on yt, zt, and ∇J(θt). The fourth term comes from the linear function approximation error. The last
term captures the variance of the stochastic gradient update, which is bounded by O(αt).

Step 4: Interconnected iteration system analysis. Taking the expectation of and summing (7), (8),
and (9) from τT to T − 1, respectively, we obtain the following system of inequalities in terms of
YT , ZT , GT :

YT :=
1

T − τT

T−1∑
t=τT

Ey2t ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT :=
1

T − τT

T−1∑
t=τT

E∥zt∥2 ≤ O(
log2 T√

T
) +O(ϵapp) + l2

√
YTZT + l3

√
ZT (2YT + 8ZT ),

GT :=
1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 ≤ O(
log2 T√

T
) +O(ϵapp) + l4

√
GT (2YT + 8ZT ),

where l1, l2, l3, l4 are positive constants. By solving the above system of inequalities, we further
prove that if

l1(1 + 2l24 + 8l24(2l
2
2 + l3)) ≤ 1 and 16l3 ≤ 1,

then YT , ZT , GT converge at a rate of O( log
2 T√
T

). This condition can be easily satisfied by choosing
the stepsize ratio c to be smaller than a threshold identified in Equation (28). Thus, it completes the
proof.

The above proof applies to i.i.d sampling straightforwardly, with the corresponding terms pointed out
in the above steps reducing to 0 in the analysis. The additional proof can be found in Lemma E.1.

9



4 Conclusion and Discussion

In this paper, we establish the finite-time analysis for single-timescale AC with Markovian sampling.
Our work compares favorably to existing works in terms of analyzing online learning and considering
the continuous state space. We developed a series of lemmas that characterize the propagation of
errors, and establish their convergence simultaneously by solving a system of nonlinear inequalities.
The proposed framework is general and can be applied to analyze other single-timescale stochastic
approximation algorithms. Our future work includes further considering the continuous action space
problems and developing new proof techniques that require fewer assumptions.
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A Notation

We make use of the following auxiliary Markov chain to deal with the Markovian noise.

Auxiliary Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1.
(10)

For reference, we also show the original Markov chain.

Original Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ+2−−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−→ ãt

P−→ s̃t+1.
(11)

In the sequel, we denote by Õt := (s̃t, ãt, s̃t+1) the tuple generated from the auxiliary Markov chain
in (10) while Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in (11).

We define the following functions, which will benefit to decompose the errors and simplify the
presentation.

∆g(O, η,θ) := [J(θ)− η]ϕ(s),

g(O,ω,θ) := [r(s, a)− J(θ) + (ϕ(s′)− ϕ(s))⊤ω]ϕ(s),

ḡ(ω,θ) := E(s,a,s′)∼(µθ,πθ,P)[[r(s, a)− J(θ) + (ϕ(s′)− ϕ(s))⊤ω]ϕ(s)],

∆h(O, η,ω,θ) := (J(θ)− η + (ϕ(s′)− ϕ(s))⊤(ω − ω∗(θ))∇ log πθ(a|s),
∆h′(O,θ) := ((ϕ(s′)ω∗(θ)− Vθ(s

′))− (ϕ(s)⊤ω∗(θ)− Vθ(s)))∇ log πθ(a|s),
h(O,θ) := (r(s, a)− J(θ) + ϕ(s′)⊤ω∗(θ)− ϕ(s)⊤ω∗(θ))∇ log πθ(a|s).

(12)

We also define the following functions, which characterize the Markovian noise.
Φ(O, η,θ) := (η − J(θ))(r(s, a)− J(θ)),

Ψ(O,ω,θ) := ⟨ω − ω∗
θ, g(O,ω,θ)− ḡ(ω,θ)⟩,

Θ(O,O′,θ) := ⟨∇J(θ),EO′ [h(O′,θ)]− h(O,θ)⟩,
Ξ(O,ω,θ) := ⟨ω − ω∗

θ, (∇ω∗
θ)

⊤(EO′ [h(O′,θ)]− h(O,θ))⟩,

(13)

where O′ is a shorthand for an independent sample from stationary distribution s ∼ µθ, a ∼ πθ, s
′ ∼

P . Define Uδ := 2Ur + 2Uω so that we have |δt| ≤ Uδ , where δt comes from Line 6 in Algorithm 1.
Note that from Assumption 3.3, we have ∥δ∇ log πθ∥ ≤ G := UδB.
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B Preliminary Lemmas

Lemma B.1 ([31], Lemma C.4). For any θ1,θ2, we have

|J(θ1)− J(θ2)| ≤ LJ∥θ1 − θ2∥,

where LJ = 2Ur|A|Lπ(1 + ⌈logρ m−1⌉+ 1
1−ρ ).

Lemma B.2 ([38], Lemma 3.2). For the performance function J(θ), there exists a constant LJ′ > 0
such that for all θ1,θ2 ∈ Rd, it holds that

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ′∥θ1 − θ2∥, (14)

which further implies

J(θ2) ≥ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩ −
LJ′

2
∥θ1 − θ2∥2, (15)

J(θ2) ≤ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩+
LJ′

2
∥θ1 − θ2∥2. (16)

Lemma B.3 ([31], Proposition 4.4). There exists a constant L∗ > 0 such that

∥ω∗(θ1)− ω∗(θ2)∥ ≤ L∗∥θ1 − θ2∥,∀θ1,θ2 ∈ Rd,

where L∗ = (2λ−2Ur + 3λ−1Ur)|A|Lπ(1 + ⌈logρ m−1⌉+ 1
1−ρ ).

Lemma B.4 ([8], Proposition 8). For any θ1,θ2 ∈ Rd, we have

∥∇ω∗(θ1)−∇ω∗(θ2)∥ ≤ Ls∥θ1 − θ2∥,
where Ls is a positive constant.
Lemma B.5 ([42],[31]). For any θ1 and θ2, it holds that

dTV (µθ1
, µθ2

) ≤ |A|(⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

) ≤ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P) ≤ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

Lemma B.6 ([31], Lemma B.2). Given time indexes t and τ such that t ≥ τ > 0, consider the
auxiliary Markov chain in (10). Conditioning on st−τ+1 and θt−τ , we have

dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·)) ≤ dTV (P(Ot ∈ ·),P(Õt ∈ ·)),
dTV (P(Ot ∈ ·),P(Õt ∈ ·)) = dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)),

dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)) ≤ dTV (P(st ∈ ·),P(s̃t ∈ ·)) + 1

2
|A|E[∥θt − θt−τ∥].

C Proof of Main Theorem

C.1 Step 1: Reward estimation error analysis

In this subsection, we will establish an implicit bound for estimator.
Lemma C.1. From any t ≥ τ > 0, we have

E[Φ(Ot, ηt,θt)] ≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |

+ 2U2
r |A|Lπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
rmρτ−1.

Theorem C.2. Choose αt =
c√
T
, βt = γt =

1√
T

, we have

YT ≤ O(
log2 T√

T
) + cG

√
YTGT . (17)

14



Proof. From the update rule of reward estimator in Line 7 of Algorithm 1, we have

ηt+1 − J(θt+1) = ηt − J(θt) + J(θt)− J(θt+1) + γt(rt − ηt)

Then we have

y2t+1 = (yt + J(θt)− J(θt+1) + γt(rt − ηt))
2

≤ y2t + 2yt(J(θt)− J(θt+1)) + 2γtyt(rt − ηt)

+ 2(J(θt)− J(θt+1))
2 + 2γ2

t (rt − ηt)
2

= (1− 2γt)y
2
t + 2γtyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1))

+ 2(J(θt)− J(θt+1))
2 + 2γ2

t (rt − ηt)
2.

Taking expectation up to st+1 (the whole trajectory), rearranging and summing from τT to T − 1, we
have
T−1∑
t=τT

E[y2t ] ≤
T∑

t=τT

1

2γt
E(y2t − y2t+1)︸ ︷︷ ︸
I1

+

T−1∑
t=τT

E[yt(rt − J(θt))]︸ ︷︷ ︸
I2

+

T−1∑
t=τT

1

γt
E[yt(J(θt)− J(θt+1)]︸ ︷︷ ︸

I3

+

T−1∑
t=τT

1

γt
E[(J(θt)− J(θt+1))

2]︸ ︷︷ ︸
I4

+

T−1∑
t=τT

γtE[(rt − ηt)
2]︸ ︷︷ ︸

I5

.

For term I1, from Abel summation by parts, we have

I1 =

T−1∑
t=τT

1

2γt
(y2t − y2t+1)

=

T−1∑
t=τT+1

y2t (
1

2γt
− 1

2γt−1
) +

1

2γτt
y2τt −

1

γT−1
y2T

≤ 2U2
r

γT−1

= 2U2
r

√
T .

For term I2, from Lemma C.1, we have

E[yt(rt − J(θt))] ≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |

+ 2U2
r |A|Lπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
rmρτ−1

≤ 4UrLJGταt−τ + 4U2
r τγt−τ + 2U2

r |A|Lπτ(τ + 1)Gαt−τ + 4U2
rmρτ−1

≤ (4UrLJGτ + 2U2
r |A|LπGτ(τ + 1))αt−τ + 4U2

r τγt−τ + 4U2
rmρτ−1.

Choose τ = τT , we have

I2 =

T−1∑
t=τT

E[yt(rt − J(θt))]

≤ (4UrLJGτT + 2U2
r |A|LπGτT (τT + 1))

T−1∑
t=τT

αt

+ 4U2
r τT

T−−1∑
t=τT

γt + 4U2
r

T−1∑
t=τT

1√
T

= (4UrLJGτT + 2U2
r |A|LπGτT (τT + 1) + 4U2

r τT + 4U2
r )

T − τT√
T

.
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For I3, if yt > 0, from (15), we have

yt(J(θt)− J(θt+1)) ≤ yt(
LJ′

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
If yt ≤ 0, from (16), we have

yt(J(θt)− J(θt+1)) ≤ yt(−
LJ′

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
Overall, we get

I3 =

T−1∑
t=τT

1

γt
E[yt(J(θt)− J(θt+1))]

≤
T−1∑
t=τT

1

γt
E[LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥]

≤
T−1∑
t=τT

E[cLJ′UrG
2αt + cG|yt|∥∇J(θt)∥]

≤ cLJ′UrG
2T − τT√

T
+ cG(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

For term I4, we have

I4 =

T−1∑
t=τT

1

γt
E[(J(θt)− J(θt+1))

2]

≤
T−1∑
t=τT

1

γt
L2
JE∥θt − θt+1∥2

≤
T−1∑
t=τT

1

γt
L2
JG

2α2
t

= L2
JG

2c2
T − τT√

T
.

For term I5, we have

I5 =

T−1∑
t=τT

γtE[(rt − J(θt))
2]

≤
T−1∑
t=τT

4U2
r γt

= 4U2
r

T − τT√
T

.

Therefore, we get
T−1∑
t=τT

E[y2t ] ≤ (4UrLJGτT + 2U2
r |A|LπGτT (τT + 1)

+ 4U2
r (τT + 2) + c2G2(LJ′Ur + L2

J))
T − τT√

T

+ 2U2
r

√
T + cG(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .
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Since τT = O(log T ), we have
√
T

T−τT
≤ 2√

T
for large T . Then we get

1

T − τT

T−1∑
t=τT

E[y2t ]

≤ (4UrLJGτT + 2U2
r |A|LπGτT (τT + 1)

+ 4U2
r (τT + 3) + c2G2(LJ′Ur + L2

J))
1√
T

+ cG(
1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2

= O(
log2 T√

T
) + cG(

1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Thus we finish the proof.

C.2 Step 2: Critic error analysis

In this subsection, we will establish an implicit upper bound for critic.

Lemma C.3. For any t ≥ τ > 0, we have

E[Ψ(Ot,ωt,θt)] ≤ C1∥θt − θt−τ∥+ 6Uδ∥ωt − ωt−τ∥+ U2
δ |A|LπGτ(τ + 1)αt−τ + 2U2

δmρτ−1,

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1−ρ ) + 2UδLJ + 2UδL∗.

Lemma C.4. Given the definition of Ξ(Ot,ωt,θt), for any t ≥ τ > 0, we have

E[Ξ(Ot,ωt,θt)] ≤ C2∥θt − θt−τ∥+ 2UδB∥ωt − ωt−τ∥
+ 2U2

δB|A|LπGτ(τ + 1)αt−τ + 4U2
δBmρτ−1.

where C2 := 3BU2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1−ρ ) + 3U2
δLl + 8UδBL∗.

Theorem C.5. Choose αt =
c√
T
, βt = γt =

1√
T

, we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) +

2

λ

√
YTZT +

2cBL∗

λ

√
ZT (2YT + 8ZT ). (18)

Proof. From the update rule of critic in Line 8 of Algorithm 1, we have

∥ωt+1 − ω∗
t+1∥ = ∥ΠUω (ωt + βtδtϕ(st))− ω∗

t+1∥
= ∥ΠUω (ωt + βtδtϕ(st))−ΠUω (ω

∗
t+1)∥

≤ ∥ωt + βtδtϕ(st)− ω∗
t+1∥

= ∥ωt + βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))− ω∗
t+1∥

= ∥ωt − ω∗
t + βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥.

Therefore, we have

∥zt+1∥2 = ∥zt + βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗
t − ω∗

t+1∥2

= ∥zt∥2 + 2βt⟨zt, g(Ot,ωt,θt)⟩+ 2βt⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

= ∥zt∥2 + 2βt⟨zt, ḡ(ωt,θt)⟩+ 2βtΨ(Ot,ωt,θt) + 2βt⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

≤ ∥zt∥2 + 2βt⟨zt, ḡ(ωt,θt)⟩+ 2βtΨ(Ot,ωt,θt) + 2βt⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δ β
2
t + 2∥ω∗

t − ω∗
t+1∥2.
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Note that we have

⟨zt, ḡ(ωt,θt)⟩ = ⟨zt, ḡ(ωt,θt)− ḡ(ω∗
t ,θt)⟩

= ⟨zt,E[(ϕ(s′)− ϕ(s))⊤(ωt − ω∗
t )ϕ(s)]⟩

= z⊤
t E[ϕ(s)(ϕ(s′)− ϕ(s))⊤]zt

= z⊤
t Azt

≤ − λ∥zt∥2,

where the first equality is due to the fact that ḡ(ω∗
t ,θt) = 0 and the last inequality follows from

Assumption 3.1.

Taking expectation up to st+1, we have

E∥zt+1∥2 ≤ E∥zt∥2 + 2βtE⟨zt, ḡ(ωt,θt)⟩+ 2βtEΨ(Ot,ωt,θt) + 2βtE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δ β
2
t + 2E∥ω∗

t − ω∗
t+1∥2

≤ (1− 2λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2βtE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δ β
2
t + 2E∥ω∗

t − ω∗
t+1∥2

≤ (1− 2λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2βtE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1 + (∇ω∗

t )
⊤(θt+1 − θt)⟩

+ 2E⟨zt, (∇ω∗
t )

⊤(θt − θt+1)⟩+ 2U2
δ β

2
t + 2E∥ω∗

t − ω∗
t+1∥2

(1)

≤ (1− 2λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2βtE∥zt∥|yt|+ LsE∥zt∥∥θt+1 − θt∥2

+ 2αtE⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩+ 2U2

δ β
2
t + 2L2

∗E∥θt − θt+1∥2

≤ (1− 2λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2βt

√
Ey2t

√
E∥zt∥2

+
Ls

2
E∥zt∥2∥θt+1 − θt∥2 +

Ls

2
E∥θt+1 − θt∥2 + 2U2

δ β
2
t + 2L2

∗G
2α2

t

+ 2αtE⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩

≤ (1− 2λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2βt

√
Ey2t

√
E∥zt∥2 +

LsG
2

2
α2
tE∥zt∥2

+ 2U2
δ β

2
t + (2L2

∗ +
Ls

2
)G2α2

t + 2αtE⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩

(2)

≤ (1− λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2βt

√
Ey2t

√
E∥zt∥2

+ 2U2
δ β

2
t + (2L2

∗ +
Ls

2
)G2α2

t + 2αtE⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt(at|st)⟩ (19)

where (1) follows from the Ls-smoothness of ω∗ in Lemma B.4; (2) uses LsG
2

2 α2
t ≤ λβt for large T .

For term E⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩, we have

E⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt(at|st)⟩
= E⟨zt, (∇ω∗

t )
⊤(−∆h(Ot, ηt,ωt,θt)− h(Ot,θt))⟩

= −E⟨zt, (∇ω∗
t )

⊤∆h(Ot, ηt,ωt,θt)⟩
+ E⟨zt, (∇ω∗

t )
⊤(EO′

t
[h(O′

t,θt)]− h(Ot,θt)− EO′
t
[h(O′

t,θt)])⟩
= E[Ξ(Ot,ωt,θt)]− E⟨zt, (∇ω∗

t )
⊤∆h(Ot, ηt,ωt,θt)⟩ − E⟨zt, (∇ω∗

t )
⊤EO′

t
[h(O′

t,θt)]⟩ (20)

Note that from Cauchy-Schwartz inequality and L∗ is the Lipschitz constant of ω∗ in Lemma B.3,
we have

−E⟨zt, (∇ω∗
t )

⊤∆h(Ot, ηt,ωt,θt)⟩ ≤ BL∗
√

E∥zt∥2
√
2Ey2t + 8E∥zt∥2. (21)
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Furthermore, it holds that

EO′∥∇h′(O,θ)∥2 = EO′∥((ϕ(s′)⊤ω∗ − Vθ(s
′))− (ϕ(s)⊤ω∗ − Vθ(s)))∇ log πθ(a|s)∥2

≤ EO′ [B2((ϕ(s′)⊤ω∗ − Vθ(s
′))− (ϕ(s)⊤ω∗ − Vθ(s)))

2]

≤ EO′ [2B2(ϕ(s′)⊤ω∗ − Vθ(s
′))2 + (ϕ(s)⊤ω∗ − Vθ(s))

2]

= 4B2EO′ [(ϕ(s)⊤ω∗ − Vθ(s))
2]

= 4B2ϵ2app.

Therefore, we have

−⟨zt, (∇ω∗
t )

⊤EO′ [∆h′(O′,θt)]⟩ ≤ UδL∗
√
∥EO′ [∆h′(Ot,θt)]∥2

≤ UδL∗
√

EO′∥∆h′(Ot,θt)∥2
≤ 2BUδL∗ϵapp. (22)

Substituting (21) and (22) into (20) yields

E⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt(at|st)⟩ ≤ EΞ(Ot,ωt,θt) + 2BUδL∗ϵapp

+BL∗
√

E∥zt∥2
√
2Ey2t + 8E∥zt∥2.

(23)

Plugging (23) into (19), we have

E∥zt+1∥2 ≤ (1− λβt)E∥zt∥2 + 2βtEΨ(Ot,ωt,θt) + 2αtEΞ(Ot,ωt,θt)

+ 2βt

√
Ey2t

√
E∥zt∥2 + 2BL∗αt

√
E∥zt∥2

√
2Ey2t + 8E∥zt∥2

+ 2U2
δ β

2
t + (2L2

∗ +
Ls

2
)G2α2

t + 4BUδαtϵapp.

(24)

Rearranging and summing from τT to T gives

λ

T−1∑
τT

E∥zt∥2 ≤
T−1∑
t=τT

1

βt
(E∥zt∥2 − E∥zt+1∥2)︸ ︷︷ ︸

I1

+2

T−1∑
t=τT

EΨ(Ot,ωt,θt)︸ ︷︷ ︸
I2

+2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)︸ ︷︷ ︸
I3

+ 2

T−1∑
t=τT

√
Ey2t

√
E∥zt∥2︸ ︷︷ ︸

I4

+2cBL∗

T−1∑
t=τT

√
E∥zt∥2

√
2Ey2t + 8E∥zt∥2︸ ︷︷ ︸

I5

+

T−1∑
t=τT

(2U2
δ βt + c(2L2

∗ +
Ls

2
)G2αt + 4cBUδϵapp).

In the sequel, we will tackle I1, I2, I3, I4, I5 respectively.

For term I1, from Abel summation by parts, we have

I1 =

T−1∑
t=τT

1

βt
(E∥zt∥2 − E∥zt+1∥2)

=

T−1∑
t=τT+1

(
1

βt
− 1

βt−1
)E∥zt∥2 +

1

βτT

E∥zτT ∥2 −
1

βT−1
E∥zT ∥2

≤ U2
δ (

T−1∑
t=τT+1

(
1

βt
− 1

βt−1
) +

1

βτT

)

= U2
δ

√
T ,

where the inequality is due to E∥zt∥2 ≤ U2
δ and discard the last term.
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For term I2, from Lemma C.3, choose τ = τT , we have

EΨ(Ot,ωt,θt) ≤ C1∥θt − θt−τT ∥+ U2
δ |A|LπGτT (τT + 1)αt−τT

+ 2U2
δmρτT−1 + 6Uδ∥ωt − ωt−τT ∥

≤ C1

t−1∑
k=t−τT

Gαk + U2
δ |A|LπGτT (τT + 1)αt−τT +

2U2
δ√
T

+ 6Uδ

t−1∑
k=t−τT

Uδβk

≤ (C1GτT + U2
δ |A|LπGτT (τT + 1))αt−τT +

2U2
δ√
T

+ 6U2
δ τTβt−τT .

Then we get

I2 = 2

T−1∑
T=τT

EΨ(Ot,ωt,θt)

≤ 2

T−1∑
T=τT

((C1GτT + U2
δ |A|LπGτT (τT + 1))αt +

2U2
δ√
T

+ 6U2
δ τTβt).

For term I3, from Lemma C.4, choose τ = τT , we have

E[Ξ(Ot,ωt,θt)] ≤ C2∥θt − θt−τ∥+ 2UδB∥ωt − ωt−τ∥
+ 2U2

δB|A|LπGτ(τ + 1)αt−τ + 4U2
δBmρτ−1

≤ C2

t−1∑
k=t−τT

Gαk + 2UδB

t−1∑
k=t−τT

Uδβk

+ 2U2
δB|A|LπGτ(τ + 1)αt−τ + 4U2

δBmρτT−1

≤ (C2GτT + 2U2
δB|A|LπGτT (τT + 1))αt + 2U2

δBτTβt +
4U2

δB√
T

.

Therefore, we have

I3 = 2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)

≤ 2c

T−1∑
t=τT

((C2GτT + 2U2
δB|A|LπGτT (τT + 1))αt + 2U2

δBτTβt +
4U2

δB√
T

).

For term I4 and I5, from Cauchy-Schwartz inequality, we have

I4 ≤ 2(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2 ,

I5 ≤ 2cBL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8

T−1∑
t=τT

E∥zt∥2)
1
2 .
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Overall, we get

λ

T−1∑
t=τT

E∥zt∥2 ≤ 2(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2cBL∗(

T−1∑
t=τt

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8

T−1∑
t=τT

E∥zt∥2)
1
2

+ U2
δ

√
T + 2

T−1∑
T=τT

((C1GτT + U2
δ |A|LπGτT (τT + 1))αt +

2U2
δ√
T

+ 6U2
δ τTβt)

+ 2c

T−1∑
t=τT

((C2GτT + 2U2
δB|A|LπGτT (τT + 1))αt + 2U2

δBτTβt +
4U2

δB√
T

)

+

T−1∑
t=τT

(2U2
δ βt + c(2L2

∗ +
Ls

2
)G2αt + 4cBUδϵapp).

Therefore, we have

ZT

(1)

≤ 2

λ
(

1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cBL∗

λ
(

1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8
1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
1

λ
(
2U2

δ√
T

+ 2(C1GτT + U2
δ |A|LπGτT (τT + 1))αt +

4U2
δ√
T

+ 12U2
δ τTβt

+ 2c(C2GτT + 2U2
δB|A|LπGτT (τT + 1))αt + 4cU2

δBτTβt +
8cU2

δB√
T

+ 2U2
δ βt + c(2L2

∗ +
Ls

2
)G2αt + 4cBUδϵapp)

= O(
log2 T√

T
) +O(ϵapp) +

2

λ
(

1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cBL∗

λ
(

1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8
1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2 ,

where (1) follows from τT = O(log T ) so that T − τT ≥ 1
2T for large T . Therefore, we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) +

2

λ

√
YTZT +

2cBL∗

λ

√
ZT (2YT + 8ZT ),

which completes the proof.

C.3 Step 3: Policy gradient norm analysis

In this subsection, we will establish an implicit upper bound for policy gradient norm.

Lemma C.6. For any t ≥ τ > 0, it holds that

E[Θ(Ot,θt)] ≤ D1τ(τ + 1)Gα+D2mρτ−1,

where D1 = max{UδBLJ′ + 3LJLh, 2UδBLJ |A|Lπ} and D2 = 4UδBLJ .

Theorem C.7. We have

GT ≤ O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8ZT ). (25)

21



Proof. From the update rule of actor in Line 9 of Algorithm 1 and 15, we have

J(θt+1) ≥ J(θt) + ⟨∇J(θt),θt+1 − θt⟩ −
LJ′

2
∥θ1 − θ2∥2

= J(θt) + ⟨∇J(θt), δt∇ log πθt
(at|st)⟩ −

LJ′

2
α2
t ∥δt∇ log πθt

(at|st)∥2

= J(θt) + αt⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ αt⟨∇J(θt), h(Ot,θt)⟩

− LJ′

2
α2
t ∥δt∇ log πθt

(at|st)∥2

= J(θt) + αt⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αtΘ(Ot,θt)

+ αt⟨∇J(θt),EO′ [h(O′,θt)]⟩ −
LJ′

2
α2
t ∥δt∇ log πθt(at|st)∥2

= J(θt) + αt⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αtΘ(Ot,θt) + αt∥∇J(θt)∥2

+ αt⟨∇J(θt),EO′ [∆h′(O′,θt)]⟩ −
LJ′

2
α2
t ∥δt∇ log πθt(at|st)∥2,

where the last equality is due to the fact
EO′ [h(O′,θ)−∆h′(O′,θ)] = EO′ [(r(s, a)− J(θ) + Vθ(s

′)− Vθ(s))∇ log πθ(a|s)] = ∇J(θ).

Rearranging the above inequality and taking expectation, we have

E∥∇J(θt)∥2 ≤ 1

αt
(E[J(θt+1)− J(θt)])− E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ E[Θ(Ot,θt)]

− E⟨∇J(θt),EO′ [∆h′(O′,θt)]⟩+
LJ′

2
αtE∥δt∇ log πθt

(at|st)∥2.

Note that from Cauchy-Schwartz inequality, we have

−E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ ≤ B
√

E∥∇J(θt)∥2
√

2Ey2t + 8E∥zt∥2.
From Lemma C.6 and choosing τ = τT , we have

E[Θ(Ot,θt)] ≤ D1(τT + 1)

t∑
k=t−τT+1

E∥θk − θk−1∥+D2mρτT−1

≤ D1(τT + 1)G

t−1∑
k=t−τT

αk +D2mρτT−1

≤ GD1(τT + 1)2αt−τT +D2
1√
T
.

It has been shown that
EO′∥∇h′(O,θ)∥2 = EO′∥((ϕ(s′)⊤ω∗ − Vθ(s

′))− (ϕ(s)⊤ω∗ − Vθ(s)))∇ log πθ(a|s)∥2

≤ EO′ [B2((ϕ(s′)⊤ω∗ − Vθ(s
′))− (ϕ(s)⊤ω∗ − Vθ(s)))

2]

≤ EO′ [2B2(ϕ(s′)⊤ω∗ − Vθ(s
′))2 + (ϕ(s)⊤ω∗ − Vθ(s))

2]

= 4B2EO′ [(ϕ(s)⊤ω∗ − Vθ(s))
2]

= 4B2ϵ2app.

Therefore, we have

−⟨∇J(θt),EO′ [∆h′(O′,θt)]⟩ ≤ LJ

√
∥EO′ [∆h′(Ot,θt)]∥2

≤ LJ

√
EO′∥∆h′(Ot,θt)∥2

≤ 2BLJϵapp,

where we use ∥∇J(θ)∥ ≤ LJ which comes from Lemma B.1. Plugging the three terms yields

E∥∇J(θt)∥2 ≤ 1

αt
(E[J(θt+1)]− E[J(θt)]) +B

√
E∥∇J(θt)∥2

√
2Ey2t + 8E∥zt∥2

+ 2BLJϵapp +GD1(τT + 1)2αt−τT +D2
1√
T

+
LJ′

2
G2αt.
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Summing over t from τT to T − 1 gives

T−1∑
t=τT

E∥∇J(θt)∥2 ≤
T−1∑
t=τT

1

αt
(E[J(θt+1)− E[J(θt)])︸ ︷︷ ︸

I1

+B

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8E∥zt∥2

+ (GD1(τT + 1)2 +D2)
T − τT√

T
+ 2BLJϵapp(T − τT ).

For term I1, from Abel summation by parts, we have

I1 =

T−1∑
t=τT

1

αt
(E[J(θt+1)− E[J(θt)])

=

T−1∑
t=τT+1

(
1

αt−1
− 1

αt
)E[J(θt)]− E[J(θτT )]

1

ατT

+
1

αT−1
E[J(θT )]

≤
T−1∑

t=τT+1

(
1

αt
− 1

αt−1
)Ur +

1

ατT

Ur +
1

αT−1
Ur

=
2Ur

αT−1

=
2Ur

c

√
T .

Overall, we have

T−1∑
t=τT

E∥∇J(θt)∥2 ≤ 2Ur

c

√
T + (GD1(τT + 1)2 +D2)

T − τT√
T

+ 2BLJϵapp(T − τT )

+B

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8E∥zt∥2

≤ 2Ur

c

√
T + (GD1(τT + 1)2 +D2)

T − τT√
T

+ 2BLJϵapp(T − τT )

+B(

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8

T−1∑
t=τT

E∥zt∥2)
1
2 .

Therefore, we get

GT ≤ (
4Ur

c
+GD1(τT + 1)2 +D2)

1√
T

+ 2BLJϵapp +B
√
GT (2YT + 8ZT )

= O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8ZT ),

which concludes the proof.

C.4 Step 4: Interconnected iteration system analysis

In this subsection, we perform an interconnected iteration system analysis to prove Theorem 3.5.

Proof of Theorem 3.5.
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Proof. Combining (17), (18), and (25), we have

YT ≤ O(
log2 T√

T
) + cG

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) +

2

λ

√
YTZT +

2cBL∗

λ

√
ZT (2YT + 8ZT ),

GT ≤ O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8ZT ).

Denote

l1 := cG,

l2 :=
2

λ
,

l3 :=
2cBL∗

λ
,

l4 := B.

Then we have

YT ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + l2

√
YTZT + l3

√
ZT (2YT + 8ZT ),

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l4

√
GT (2YT + 8ZT ).

For GT , we get

GT ≤ O(
log2 T√

T
) +O(ϵapp) +

1

2
GT + l24(YT + 4ZT ),

GT ≤ O(
log2 T√

T
) +O(ϵapp) + 2l24(YT + 4ZT ). (26)

For ZT , we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) +

1

4
ZT + l22YT + 4l3ZT +

l3
2
YT .

If it satisfies 4l3 ≤ 1
4 , we further have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + (2l22 + l3)YT . (27)

For YT , we get

YT ≤ O(
log2 T√

T
) +

l1
2
(YT +GT ).

Plugging (26) and (27) into the above inequality gives

YT ≤ O(
log2 T√

T
) +O(ϵapp) +

l1
2
(YT + 2l24YT + 8l24ZT )

≤ O(
log2 T√

T
) +O(ϵapp) +

l1
2
(YT + 2l24YT + 8l24(2l

2
2 + l3)YT )

= O(
log2 T√

T
) +O(ϵapp) +

l1
2
(1 + 2l24 + 8l24(2l

2
2 + l3))YT .
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Therefore, if l1(1 + 2l24 + 8l24(2l
2
2 + l3) ≤ 1, we have

YT ≤ O(
log2 T√

T
) +O(ϵapp).

Overall, we require

4l3 ≤ 1

4
,

l1(1 + 2l24 + 8l24(2l
2
2 + l3)) ≤ 1.

According to the definition of l1, l2, l3, l4, we have

8cBL∗

λ
≤ 1

4
,

cG(1 + 2B2 + 8B2(
8

λ2
+

2cBL∗

λ
)) ≤ 1.

Thus we choose

c = min{ λ

32BL∗
,

λ2

G(λ2 + 3B2λ2 + 64B2)
}, (28)

which satisfies the above two inequalities. Therefore, we have

YT = O(
log2 T√

T
) +O(ϵapp),

and consequently,

ZT = O(
log2 T√

T
) +O(ϵapp),

GT = O(
log2 T√

T
) +O(ϵapp).

Thus we conclude our proof.

D Proof of Supporting Lemmas

The following three lemmas only deal with the Markovian noise, which are originally proved in [31]
and updated in [30]. We include the proof with slight modifications for proving Theorem 3.5.

Proof of Lemma C.1.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2, η, O = (s, a, s′), we have

|Φ(O, η,θ1)− Φ(O, η,θ2)| ≤ 4UrLJ∥θ1 − θ2∥. (29)

By the definition of Φ(O, η,θ) in (13), we have

|Φ(O, η,θ1)− Φ(O,θ,θ2)| = |(η − J(θ1))(r − J(θ1))− (η − J(θ2))(r − J(θ2))|
≤ |(η − J(θ1))(r − J(θ1))− (η − J(θ1))(r − J(θ2))|

+ |(η − J(θ1))(r − J(θ2))− (η − J(θ2))(r − J(θ2))|
≤ 4Ur|J(θ1)− J(θ2)|
≤ 4UrLJ∥θ1 − θ2∥.

Step 2: show that for any θ, η1, η2, O, we have

|Φ(O, η1,θ)− Φ(O, η2,θ) ≤ 2Ur|η1 − η2|. (30)

By definition, we have

|Φ(O, η1,θ)− Φ(O, η2,θ)| = |(η1 − J(θ))(r − J(θ))− (η2 − J(θ))(r − J(θ))|
≤ 2Ur|η1 − η2|.
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Step 3: show that for original tuple Ot and the auxiliary tuple Õt, conditioned on st−τ−1 and θt−τ ,
we have

|E[Φ(Ot, ηt−τ ,θt−τ )− E[Φ(Õt, ηt−τ ,θt−τ )]| ≤ 2U2
r |A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (31)

By definition, we have

E[Φ(Ot, ηt−τ ,θt−τ )− E[Φ(Õt, ηt−τ ,θt−τ )] = (ηt−τ − J(θt−τ ))E[r(st, at)− r(s̃t, ãt)].

By definition of total variation norm, we have

E[r(st, at)− r(s̃t, ãt)] ≤ 2UrdTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )). (32)

By Lemma B.6, we get

dTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ ))

= dTV (P((st, at) ∈ ·|st−τ+1,θt−τ ),P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ ))

≤ dTV (P(st ∈ ·|st−τ+1,θt−τ ),P(s̃t ∈ ·|st−τ+1,θt−τ )) +
1

2
LπE∥θt − θt−τ∥

≤ dTV (P(Ot−1 ∈ ·|st−τ+1,θt−τ ),P(Õt−1 ∈ ·|st−τ+1,θt−τ )) +
1

2
LπE∥θt − θt−τ∥.

Repeat the above argument from t to t− τ + 1, we have

dTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )) ≤
1

2
|A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (33)

Plugging (33) into (32), we have

|E[Φ(Ot, ηt−τ ,θt−τ )− E[Φ(Õt, ηt−τ ,θt−τ )]| ≤ 2U2
r |A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥.

Step 4: show that conditioned on st−τ+1 and θt−τ , we have

E[Φ(Õt, ηt−τ ,θt−τ )] ≤ 4U2
rmρτ−1. (34)

Note that according to definition, we have

E[Φ(O′
t−τ , ηt−τ ,θt−τ )|θt−τ ] = 0,

where O′
t−τ = (s′t−τ , a

′
t−τ , s

′
t−τ+1) is the tuple generated by s′t−τ ∼ µt−τ , a

′
t−τ ∼

πθt−τ
, s′t−τ+1 ∼ P . From the uniform ergodicity in Assumption 3.2, it shows that

dTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ
) ≤ mρτ−1.

Then we have

E[Φ(Õt, ηt−τ ,θt−τ )] = E[Φ(Õt, ηt−τ ,θt−τ )− Φ(O′
t−τ , ηt−τ ,θt−τ )]

= E[(ηt−τ − J(θt−τ ))(r(s̃t, ãt)− r(s′t−τ , a
′
t−τ ))]

≤ 4U2
r dTV (P(Õt−τ = ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ ⊗ P)

≤ 4U2
rmρτ−1.

Combing (29), (30), (31), and (34), we have

E[Φ(Ot, ηt,θt)] = E[Φ(Ot, ηt,θt)− Φ(Ot, ηt,θt−τ )] + E[Φ(Ot, ηt,θt−τ )− Φ(Ot, ηt−τ ,θt−τ )]

+ E[Φ(Ot, ηt−τ ,θt−τ )− Φ(Õt, ηt−τ ,θt−τ )] + E[Φ(Õt, ηt−τ ,θt−τ )]

≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|Lπ

t∑
i=t−τ

E∥θi − θt−τ∥

+ 4U2
rmρτ−1,

which concludes the proof.
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Proof of Lemma C.3.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2,ω and tuple O = (s, a, s′), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ C1∥θ1 − θ2∥, (35)

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1−ρ ) + 2UδLJ + 2UδL∗.

By definition of Ψ(O,ω,θ) in (13), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2)|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I1

+ |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I2

.

For term I1, we have

I1 = |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− g(O,ω,θ2)⟩|+ |⟨ω − ω∗
1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|

= |⟨ω − ω∗
1 ,ϕ(s)(J(θ1)− J(θ2))⟩|+ |⟨ω − ω∗

1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|
≤ 2UωLJ∥θ1 − θ2∥+ 2Uω∥ḡ(ω,θ1)− ḡ(ω,θ2)∥
≤ 2UωLJ∥θ1 − θ2∥+ 2Uω · 2UδdTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P)

≤ 2UωLJ∥θ1 − θ2∥+ 2U2
δ dTV (µθ1

⊗ πθ1
⊗ P, µθ2

⊗ πθ2
⊗ P)

≤ (2UδLJ + 2U2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

where we use the fact that Uδ = 2Ur + 2Uω and the last inequality comes from Lemma B.5.

For term I2, from Cauchy-Schwartz inequality, we have

I2 = |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω∗

1 − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ 2Uδ∥ω∗
1 − ω∗

2∥
≤ 2UδL∗∥θ1 − θ2∥.

Combining the results from I1 and I2, we get

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ C1∥θ1 − θ2∥,

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1−ρ ) + 2UδLJ + 2UδL∗.

Step 2: show that for any θ,ω1,ω2 and tuple O(s, a, s′), we have

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ 6Uδ∥ω1 − ω2∥. (36)

By definition, we have

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)|
= |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|

+ |⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ 2Uω∥(g(O,ω1)− g(O,ω2))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥+ 2Uδ∥ω1 − ω2∥
≤ 6Uδ∥ω1 − ω2∥,

where the last inequality is due to ∥g(O,ω1,θ)− g(O,ω2,θ)∥ = |(ϕ(s′)− ϕ(s))⊤(ω1 − ω2)| ≤
2∥ω1 − ω2∥, ∥ḡ(ω1,θ)− ḡ(ω2,θ)∥ ≤ 2∥ω1 − ω2∥, and 2Uω ≤ Uδ .
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Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ψ(Ot,ωt−τ ,θt−τ )−Ψ(Õt,ωt−τ ,θt−τ )] ≤ U2
δ |A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (37)

By the definition of total variation norm, we have

E[Ψ(Ot,ωt−τ ,θt−τ )−Ψ(Õt,ωt−τ ,θt−τ )]

≤ E[⟨ωt−τ − ω∗
t−τ , g(Ot,ωt−τ ,θt−τ )− g(Õt,ωt−τ ,θt−τ ))]

≤ 2U2
δ dTV (P(Ot ∈ ·|st−τ+1,θ−τ ),P(Õt ∈ ·|st−τ+1,θt−τ ))

(1)

≤ U2
δ |A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ U2
δ |A|LπGτ(τ + 1)αt−τ ,

where (1) follows from (33).

Step 4: show that conditioning on st−τ+1 and θt−τ ,

E[Ψ(Õt,ωt−τ ,θt−τ )] ≤ 2U2
δmρτ−1 (38)

From the definition of Ψ(O,ω,θ), we have

E[Ψ(O′
t−τ ,ωt−τ ,θt−τ )|st−τ+1,θt−τ ] = 0,

where O′
t−τ is the tuple generated by s′t−τ ∼ µθt−τ , a

′
t−τ ∼ πθt−τ , s

′
t−τ+1 ∼ P . From Assumption

3.2, we have

dTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ
) ≤ mρτ−1.

Then, it holds that

E[Ψ(Õt,ωt−τ ,θt−τ )] = E[Ψ(Õt,ωt−τ ,θt−τ )−Ψ(O′
t−τ ,ωt−τ ,θt−τ )]

= E⟨ωt−τ − ω∗
t−τ , g(Õt,ωt−τ ,θt−τ − g(O′

t−τ ,ωt−τ ,θt−τ )⟩
≤ 4UωUδdTV (P(Õt = ·|st−τ+1,θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P)

≤ 2U2
δ dTV (P(Õt = ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ ⊗ P)

= 2U2
δ dTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ )

= 2U2
δ dTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ

)

≤ 2U2
δmρτ−1.

Combining (35), (36), (37), and (38), we have

E[Ψ(Ot,ωt,θt)] = E[Ψ(Ot,ωt,θt)−Ψ(Ot,ωt,θt−τ )]

+ E[Ψ(Ot,ωt,θt−τ )−Ψ(Ot,ωt−τ ,θt−τ )]

+ E[Ψ(Ot,ωt−τ ,θt−τ )−Ψ(Õt,ωt−τ ,θt−τ )]

+ E[Ψ(Õt,ωt−τ ,θt−τ )]

≤ C1∥θt − θt−τ∥+ U2
δ |A|LπGτ(τ + 1)αt−τ

+ 2U2
δmρτ−1 + 6Uδ∥ωt − ωt−τ∥,

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1−ρ ) + 2Uδ(LJ + L∗).

Proof of Lemma C.4.

Proof. We will divide the proof of this lemma into four steps.
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Step 1: show that
∥Ξ(Ot,ωt,θt)− Ξ(Ot,ωt,θt−τ )∥ ≤ (3UδLh + 2UδBL∗)∥θt − θt−τ∥ (39)

Since Ξ(Ot,ωt,θt) = ⟨ωt − ω∗
t ,EO′ [h(O′,θ)] − h(O,θ)⟩, we define Eθ[h(O

′,θ)] :=
EO′ [h(O′,θ)], where Eθ is the shorthand of EO′∼(µθ,πθ,P). In the following, we will show that each
term in Ξ(Ot,ωt,θt) is Lipschitz.

Term ωt is not related to θ and term ω∗
t := ω∗(θt) is L∗-Lipschitz.

For term h(O,θ), denote δ(O,θ) := r(s, a)− r(θ) + (ϕ(s′)− ϕ(s))⊤ω∗, we have
∥h(O,θ1)− h(O,θ2)∥

= ∥δ(O,θ1)∇ log πθ1(a|s)− δ(Ot,θ2)∇ log πθ2(a|s)∥
≤ ∥δ(O,θ1)∇ log πθ1(a|s)− δ(O,θ1)∇ log πθ2(a|s)∥

+ ∥δ(O,θ1)∇ log πθ2
(a|s)− δ(O,θ2)∇ log πθ2

(a|s)∥
≤ UδLl∥θ1 − θ2∥+B|δ(O,θ1)− δ(O,θ2)|
≤ UδLl∥θ1 − θ2∥+B(|r(θ1)− r(θ2)|+ ∥ϕ(s′)− ϕ(s)∥ · ∥ω∗(θ1)− ω∗(θ2)∥)
≤ (UδLl + 2BL∗)∥θ1 − θ2∥+B|Es∼µθ1

,a∼πθ1
[r(s, a)]− Es∼µθ1

,a∼πθ2
[r(s, a)]|

≤ (UδLl + 2BL∗)∥θ1 − θ2∥+ 2BUrdTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

)

≤ (UδLl + 2BL∗ + 2BUr|A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
))∥θ1 − θ2∥.

Hence we have h(O,θ) is Lh-Lipschitz, where Lh denotes the above coefficient.

For term Eθ[h(O
′,θ)], we have

∥Eθ1
[h(O′,θ1)]− Eθ2

[h(O′,θ2)]∥
≤ ∥Eθ1

[h(O′,θ1)]− Eθ1
[h(O′,θ2)]∥+ ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Eθ1
[∥h(O′,θ1)− h(O′,θ2)∥] + ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Lh∥θ1 − θ2∥+ ∥Eθ1 [h(O
′,θ2)]− Eθ2 [h(O

′,θ2)]∥
≤ Lh∥θ1 − θ2∥+ 2BUrdTV (µθ1

⊗ πθ1
, µθ2

⊗ πθ2
)

≤ [Lh + 2BUr|A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)]∥θ1 − θ2∥

≤ 2Lh∥θ1 − θ2∥.
Then we have ωt − ω∗

t is Uδ-bounded and L∗-Lipschitz; h(O,θ)− Eθ[h(O
′,θ)] is 3Lh-Lipschitz

and 2UδB-bounded. By the triangle inequality, we have
∥Ξ(Ot,ωt,θt)− Ξ(Ot,ωt,θt−τ )∥ ≤ (3UδLh + 2UδBL∗)∥θt − θt−τ∥ ≤ C2∥θt − θt−τ∥,

where C2 := 3BU2
δ |A|Lπ(1 + ⌈logρ m−1⌉+ 1

1−ρ ) + 3U2
δLl + 8UδBL∗.

Step 2: show that
∥Ξ(O,ωt,θ)− Ξ(O,ωt−τ ,θ)∥ ≤ 2UδB∥ωt − ωt−τ∥. (40)

Actually, we have
∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ = ∥⟨ω1 − ω2,EO′ [h(O′,θ)]− h(O,θ)⟩∥ ≤ 2UδB∥ω1 − ω2∥

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )] ≤ 2U2
δB|A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (41)

By definition of Ξ(O,ω,θ), we have

∥E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )]∥
= ∥E[⟨ωt−τ − ω∗

t−τ , h(Õt,θt−τ )− h(Ot,θt−τ )]∥
= ∥E[⟨ωt−τ − ω∗

t−τ , h(Õt,θt−τ )⟩ − E[⟨ωt−τ − ω∗
t−τ , h(Ot,θt−τ )⟩]∥

≤ 4U2
δBdTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )), (42)
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where the inequality comes from the definition of total variation distance. The total variation norm
between Ot and Õt has been computed in (33). Plugging (33) into (42), we get

∥E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )]∥ ≤ 2U2
δB|A|Lπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ 2U2
δB|A|LπGτ(τ + 1)αt−τ .

Step 4: Show that conditioning on st−τ+1 and θt−τ , we have

∥E[Ξ(Õt,ωt−τ ,θt−τ )]∥ ≤ 4U2
δBmρτ−1. (43)

It can be shown that

∥E[Ξ(Õt,ωt−τ ,θt−τ )]∥
(1)
= ∥E[Ξ(Õt,ωt−τ ,θt−τ )− Ξ(O′

t−τ ,ωt−τ ,θt−τ )]∥
= ∥E[⟨ωt−τ − ω∗

t−τ , h(O
′
t−τ ,θt−τ )⟩ − ⟨ωt−τ − ω∗

t−τ , h(Õt,θt−τ )⟩]∥
(2)

≤ 4U2
δBdTV (P(Õt ∈ ·|st−τ+1,θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P),

where (1) is due to the fact that O′
t is from the stationary distribution which satisfies

E[Ξ(O′
t,ωt−τ ,θt−τ )] = 0 and (2) follows from the definition of total variation distance. From

Assumption 3.2, we know that

dTV (P(s̃t ∈ ·), µθt−τ
) ≤ mρτ−1.

We also have the fact that

P(Õt ∈ ·|st−τ+1,θt−τ ) = P(s̃t ∈ ·|st−τ+1,θt−τ )⊗ πθt−τ ⊗ P.

Therefore, we have

∥E[Ξ(Õt,ωt−τ ,θt−τ )∥ ≤ 4U2
δBmρτ−1.

Combining (39)-(43), we can decompose the Markovian bias as

E[Ξ(Ot,ωt,θt)] = E[Ξ(Ot,ωt,θt)− Ξ(Ot,ωt,θt−τ )]

+ E[Ξ(Ot,ωt,θt−τ )− Ξ(Ot,ωt−τ ,θt−τ )]

+ E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )]

+ E[Ξ(Õt,ωt−τ ,θt−τ )]

≤ C2∥θt − θt−τ∥+ 2UδB∥ωt − ωt−τ∥
+ 2U2

δB|A|LπGτ(τ + 1)αt−τ + 4U2
δBmρτ−1.

Thus we conclude our proof.

Proof of Lemma C.6.

Proof. We will divide the proof of this lemma into three steps.

Step 1: show that

|Θ(Ot,θt−τ )−Θ(Õt,θt−τ )| ≤ (2UδBLJ′ + 3LJLh)∥θt − θt−τ∥, (44)

where Lh = UδLl + (2 + 2λ−2 + 3λ−1)BUr|A|Lπ(1 + ⌈logρ m−1⌉+ 1/(1− ρ)).

Since Θ(O,θ) = ⟨∇J(θ),Eθ[h(O
′,θ)] − h(O,θ)⟩, we will show that each term in Θ(O,θ) is

Lipschitz.

For the term ∇J(θ), by Lemma B.3 we know it’s LJ′ -Lipschitz.
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For term h(O,θ), denote δ(O,θ) := r(s, a)− r(θ) + (ϕ(s′)− ϕ(s))⊤ω∗, we have

∥h(O,θ1)− h(O,θ2)∥
= ∥δ(O,θ1)∇ log πθ1

(a|s)− δ(Ot,θ2)∇ log πθ2
(a|s)∥

≤ ∥δ(O,θ1)∇ log πθ1
(a|s)− δ(O,θ1)∇ log πθ2

(a|s)∥
+ ∥δ(O,θ1)∇ log πθ2

(a|s)− δ(O,θ2)∇ log πθ2
(a|s)∥

≤ UδLl∥θ1 − θ2∥+B|δ(O,θ1)− δ(O,θ2)|
≤ UδLl∥θ1 − θ2∥+B(|r(θ1)− r(θ2)|+ ∥ϕ(s′)− ϕ(s)∥ · ∥ω∗(θ1)− ω∗(θ2)∥)
≤ (UδLl + 2BL∗)∥θ1 − θ2∥+B|Es∼µθ1

,a∼πθ1
[r(s, a)]− Es∼µθ1

,a∼πθ2
[r(s, a)]|

≤ (UδLl + 2BL∗)∥θ1 − θ2∥+ 2BUrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ (UδLl + 2BL∗ + 2BUr|A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
))∥θ1 − θ2∥.

Hence we have h(O,θ) is Lh-Lipschitz, where Lh denotes the above coefficient.

For term Eθ[h(O
′,θ)], we have

∥Eθ1 [h(O
′,θ1)]− Eθ2 [h(O

′,θ2)]∥
≤ ∥Eθ1

[h(O′,θ1)]− Eθ1
[h(O′,θ2)]∥+ ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Eθ1
[∥h(O′,θ1)− h(O′,θ2)∥] + ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Lh∥θ1 − θ2∥+ ∥Eθ1 [h(O
′,θ2)]− Eθ2 [h(O

′,θ2)]∥
≤ Lh∥θ1 − θ2∥+ 2BUrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ [Lh + 2BUr|A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)]∥θ1 − θ2∥

≤ 2Lh∥θ1 − θ2∥.
Then we have ∇J(θ) is LJ -bounded and LJ′-Lipschitz; h(O,θ)− Eθ[h(O

′,θ)] is 3Lh-Lipschitz
and 2UδB-bounded. By the triangle inequality, we have

Θ(Ot,θt)−Θ(Ot,θt−τ ) ≤ (2UδBLJ′ + 3LJLh)∥θt − θt−τ∥
Step 2: show that for t ≥ τ > 0, we have

|E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]| ≤ 2UδBLJ |A|Lπ

t∑
k=t−τ

∥θk − θt−τ∥ (45)

By definition of Θ(O,θ), we have

|E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]|
= |E[⟨∇J(θt−τ ), h(Õt,θt−τ )− h(Ot,θt−τ )]|
= |E[⟨∇J(θt−τ ), h(Õt,θt−τ )⟩ − E[⟨∇J(θt−τ ), h(Ot,θt−τ )⟩]|
≤ 4UδBLJdTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )), (46)

where the inequality comes from the definition of total variation distance. The total variation norm
between Ot and Õt has been computed in (33). Plugging (33) into (46), we get

|E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]| ≤ 2UδBLJ |A|Lπ

t∑
k=t−τ

∥θk − θt−τ∥.

Step 3: show that for t ≥ τ > 0, we have

|E[Θ(Õt,θt−τ )−Θ(O′
t,θt−τ )]| ≤ 4UδBLJmρτ−1. (47)

From the definition of Θ(O,θ), we have

|E[Θ(Õt,θt−τ )−Θ(O′
t,θt−τ )]| = |E[⟨∇J(θt−τ ), h(O

′
t,θt−τ )⟩ − ⟨∇J(θt−τ ), h(Õt,θt−τ )⟩]|

≤ 4UδBLJdTV (P(Õt ∈ ·|st−τ+1,θt−τ ), µθt−τ
⊗ πθt−τ

⊗ P).
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The inequality is due to the definition of total variation distance. From Assumption 3.2, we know that
dTV (P(s̃t ∈ ·), µθt−τ

) ≤ mρτ−1.

We also have the fact that
P(Õt ∈ ·|st−τ+1,θt−τ ) = P(s̃t ∈ ·|st−τ+1,θt−τ )⊗ πθt−τ ⊗ P.

Therefore, we have
|E[Θ(Õt,θt−τ −Θ(O′

t,θt−τ )]| ≤ 4UδBLJmρτ−1.

Combining (44), (45), and (47), we can decompose the Markovian bias as
E[Θ(Ot,θt)] = E[Θ(Ot,θt)−Θ(Ot,θt−τ )]

+ E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]

+ E[Θ(Õt,θt−τ )−Θ(O′
t,θt−τ )]

+ E[Θ(O′
t,θt−τ )],

where Õt is from the auxiliary Markovian chain defined in (10) and O′
t is from the stationary

distribution which satisfies E[Θ(O′
t,θt−τ )] = 0.

Then we have
E[Θ(Ot,θt)] ≤ (2UδBLJ′ + 3LJLh)E∥θt − θt−τ∥

+ 2UδBLJ |A|Lπ

t∑
k=t−τ

∥θk − θt−τ∥+ 4UδBLJmρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑
k=t−τ+1

E∥θk − θk−1∥

+ 2UδBLJ |A|Lπ

t∑
k=t−τ+1

k∑
j=t−τ+1

E∥θj − θj−1∥+ 4UδBLJmρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑
k=t−τ+1

E∥θk − θk−1∥

+ 2UδBLJ |A|Lπτ

t∑
j=t−τ+1

E∥θj − θj−1∥+ 4UδBLJmρτ−1

≤ D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2mρτ−1

≤ D1(τ + 1)2Gα+D2mρτ−1

where D1 = max{UδBLJ′ + 3LJLh, 2UδBLJ |A|Lπ} and D2 = 4UδBLJ . Thus we conclude the
proof.

E IID Sampling Analysis

Algorithm 2 Single-timescale Actor-Critic (i.i.d. sampling)
1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsize

αt for actor, βt for critic and γt for reward estimator.
2: for t = 0, 1, 2, · · · , T − 1 do
3: Sample st ∼ µθt

4: Take the action at ∼ πθt
(·|st)

5: Observe next state s′t ∼ P(·|st, at) and the reward rt = r(st, at)
6: δt = rt − ηt + ϕ(s′t)

⊤ωt − ϕ(st)
⊤ωt

7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠUω (ωt + βtδtϕ(st))
9: θt+1 = θt + αtδt∇θ log πθt

(at|st)
10: end for
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Note that under i.i.d. sampling in Algorithm 2, we denote by st the samples from the stationary
distribution and s′t the subsequent state following transition kernel s′t ∼ P(·|st, at). Correspondingly,
we redefine the observation tuple as Ot = (st, at, s

′
t) (in contrast to Ot = (st, at, st+1) in the

Markovian sampling case). This modification implies the decoupling of Ot and Ot+1 since st+1 in
tuple Ot+1 is a new state sampled from the stationary distribution rather than inherited from Ot. This
intuitively elucidates the vanishment of Markovian noise under i.i.d. sampling.
Lemma E.1. Under i.i.d sampling, we have

E[Φ(Ot, ηt,θt)] = 0,

E[Ψ(Ot,ωt,θt)] = 0,

E[Θ(Ot, O
′
t,θt)] = 0,

E[Ξ(Ot,ωt,θt)] = 0.

Proof. Note that the expectation is taken over all the random variables. We use the notation Ot to
denote the tuple (st, at, s

′
t) and v0:t to denote the sequence (st, at, s

′
t), (st, at, s

′
t), · · · , (st, at, s′t).

By definition in (13), it can be shown that

E[Φ(Ot, ηt,θt)] = Ev0:t [Φ(Ot, ηt,θt)]

= Ev0:t−1
Ev0:t [(ηt − J(θt))(rt − J(θt))|v0:t−1],

where is second equality is due to law of total expectation. Once we know v0:t−1, ηt and J(θt) is not
a random variable any more. It holds that

E[Φ(Ot, ηt,θt)] = Ev0:t−1
Ev0:t [(ηt − J(θt))(rt − J(θt))|v0:t−1]

= Ev0:t−1
(ηt − J(θt))Ev0:t [(rt − J(θt))|v0:t−1]

= Ev0:t−1(ηt − J(θt))EOt [(rt − J(θt))|v0:t−1]

= 0,

where the last equation is due to EOt
[(rt − J(θt))|v0:t−1] = 0 under i.i.d. sampling.

By a similar argument, we have

E[Ψ(Ot, ηt,θt)] = Ev0:t [⟨ωt − ω∗
t , g(O,ω,θ)− ḡ(ωt,θt)⟩]

= Ev0:t−1Ev0:t [⟨ωt − ω∗
t , g(Ot,ωt,θt)− ḡ(ωt,θt)⟩|v0:t−1]

= Ev0:t−1
⟨ωt − ω∗

t ,Ev0:t [g(Ot,ωt,θt)− ḡ(ωt,θt)⟩|v0:t−1]

= Ev0:t−1
⟨ωt − ω∗

t ,EOt
[g(Ot,ωt,θt)− ḡ(ωt,θt)⟩|v0:t−1]

= 0,

where we use the fact that EOt [g(Ot,ωt,θt)− ḡ(ωt,θt)⟩|v0:t−1] = 0.

Similarly, we have

E[Θ(Ot, O
′
t,θt)] = Ev0:t [⟨∇J(θt),EO′

t
[h(O′

t,θt)]− h(Ot,θt)⟩]
= Ev0:t−1

Ev0:t [⟨∇J(θt),EO′
t
[h(O′

t,θt)]− h(Ot,θt)⟩|v0:t−1]

= Ev0:t−1
⟨∇J(θt),Ev0:t [EO′

t
[h(O′

t,θt)]− h(Ot,θt)⟩|v0:t−1]

= Ev0:t−1
⟨∇J(θt),EOt

[EO′
t
[h(O′

t,θt)]− h(Ot,θt)⟩|v0:t−1]

= 0,

where we use fact that Ot = O′
t under i.i.d. sampling.

The proof of E[Ξ(Ot,ωt,θt)] = 0 is the same as the above argument, which concludes the proof.

Proof of Theorem 3.6.

Proof. The proof follows similarly to the Markovian sampling case. Specifically, all the Markovian
noises (see the definitions in (13)) present in the former analysis reduce to zero after taking expec-
tations. The detailed results and proof are presented in Lemma E.1. Then, replacing Lemma C.1,
Lemma C.3, and Lemma C.6 with Lemma E.1, we will get the desired O(T− 1

2 ) convergence rate
and thus an O(ϵ−2) sample complexity accordingly.
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