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Abstract
When predictions are performative, the choice of
which predictor to deploy influences the distribu-
tion of future observations. The overarching goal
in learning under performativity is to find a pre-
dictor that has low performative risk, that is, good
performance on its induced distribution. One fam-
ily of solutions for optimizing the performative
risk, including bandits and other derivative-free
methods, is agnostic to any structure in the per-
formative feedback, leading to exceedingly slow
convergence rates. A complementary family of
solutions makes use of explicit models for the
feedback, such as best-response models in strate-
gic classification, enabling faster rates. However,
these rates critically rely on the feedback model
being correct. In this work we study a general
protocol for making use of possibly misspecified
models in performative prediction, called plug-in
performative optimization. We show this solution
can be far superior to model-agnostic strategies,
as long as the misspecification is not too extreme.
Our results support the hypothesis that models,
even if misspecified, can indeed help with learn-
ing in performative settings.

1. Introduction
Predictions have the power to influence the patterns they aim
to predict. For example, stock price predictions inform trad-
ing decisions and hence prices; traffic predictions influence
routing decisions and thus traffic outcomes; recommenda-
tions shape users’ consumption and thus preferences.

This pervasive phenomenon has been formalized in a frame-
work called performative prediction (Perdomo et al., 2020).
A central feature that distinguishes the framework from tra-
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ditional supervised learning is the concept of a distribution
map D(·). This object, aimed to capture the feedback from
predictions to future observations, is a mapping from predic-
tors fθ to their induced data distributions D(θ). The main
goal in performative prediction is thus to deploy a predic-
tor fθ that will have good performance after deployment,
that is, on its induced distribution D(θ). Formally, the goal
is to choose predictor parameters θ ∈ Θ ⊆ Rdθ so as to
minimize the performative risk:

PR(θ) = Ez∼D(θ)[ℓ(z; θ)],

where ℓ(z; θ) is the loss incurred by predicting on instance z
with model θ. Typically, z is a feature–outcome pair (x, y).
We refer to

θPO = argmin
θ∈Θ

PR(θ)

as the performative optimum.

The main challenge in optimizing the performative risk lies
in the fact that the map D(·) is not known. We only observe
samples from D(θ) for models θ that have been deployed;
we do not observe any feedback for the (typically infinitely
many) other models. A key discriminating factor between
existing solutions for optimizing under performativity is
how they cope with this uncertainty.

One group of methods accounts for the feedback without
assuming a problem-specific structure for it. This group in-
cludes bandit strategies (Kleinberg et al., 2008; Jagadeesan
et al., 2022) and derivative-free optimization (Flaxman et al.,
2004; Miller et al., 2021). These methods converge to op-
tima at typically slow—without convexity, even exponen-
tially slow—convergence rates. Moreover, their rates rely
on regularity conditions that are out of the learner’s control,
such as convexity of the performative risk (Miller et al.,
2021; Izzo et al., 2021; Dong et al., 2018) or bounded per-
formative effects (Jagadeesan et al., 2022).

A complementary group of methods—an important starting
point for this work—takes feedback into account by positing
explicit models for it. Such models include best-response
models for strategic classification (Hardt et al., 2016; Ja-
gadeesan et al., 2021; Levanon & Rosenfeld, 2021; Ghalme
et al., 2021), rational-agent models in economics (Spence,
1978; Wooldridge, 2003), and parametric distribution shifts
(Izzo et al., 2021; Miller et al., 2021; Izzo et al., 2022),
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among others. To argue that methods building on models
find optimal solutions, existing analyses assume that the
model is well-specified. However, models of social behavior
are widely acknowledged to be simplistic representations of
real-world dynamics.

Yet, despite the unavoidable misspecification of models, they
are ubiquitous in practice. Though their simplicity leads to
misspecification, it also allows for efficient, interpretable,
and practical solutions. Motivated by this observation, in
this work we ask: can models for performative feedback be
useful, even if misspecified?

1.1. Our Contribution

We initiate a study of the benefits of modeling feedback
in performative prediction. We show that models—even if
misspecified—can indeed help with learning under perfor-
mativity.

We begin by defining a general protocol for performative
optimization with feedback models, which we call plug-in
performative optimization. The protocol consists of three
steps. First, the learner deploys models θi ∼ D̃ and col-
lects data zi ∼ D(θi), i ∈ [n]. Here, D̃ is an exploration
distribution of the learner’s choosing (for example, it can
be uniform on Θ when Θ is bounded). The second step
is to use the observations {(θi, zi)}ni=1 to fit an estimate
of the distribution map. The map is chosen from a para-
metric family of possible maps DB = {Dβ}β∈B, obtained
through modeling. The estimation of the map thus reduces
to computing an estimate β̂. For example, in strategic clas-
sification, β could be a parameter quantifying the strategic
agents’ tradeoff between utility and cost. Finally, the third
step is to compute the plug-in performative optimum:

θ̂PO = argmin
θ∈Θ

PRβ̂(θ) = argmin
θ∈Θ

Ez∼Dβ̂(θ)
[ℓ(z; θ)].

We prove a general excess-risk bound on PR(θ̂PO) −
PR(θPO), showing that the error decomposes into two
terms. The first is a misspecification error term,
MisspecErr, which captures the gap between the true
performative risk and the plug-in performative risk PRβ̂(θ)
in the large-sample regime. This term is irreducible and
does not vanish as the sample size n grows. The second is a
statistical error term that captures the imperfection in fitting
β̂ due to finite samples. For a broad class of problems, our
main result can be summarized as follows.

Theorem 1.1 (Informal). The excess risk of the plug-in
performative optimum is bounded by:

PR(θ̂PO)− PR(θPO) ≤ c · MisspecErr+ Õ

(
1√
n

)
,

for some universal constant c > 0.

Therefore, although the misspecification error is irreducible,
the statistical error vanishes at a fast rate. In contrast, model-
agnostic strategies such as bandit algorithms (Kleinberg
et al., 2008; Jagadeesan et al., 2022) do not suffer from
misspecification but have an exceedingly slow, often ex-
ponentially slow, statistical rate. For example, the bandit
algorithm of (Jagadeesan et al., 2022) has an excess risk of
Õ(n

− 1
dθ+1 ). This is why feedback models are useful—for

a finite n, their excess risk can be far smaller than the risk
of a model-agnostic strategy due to the rapidly vanishing
statistical rate. The statistical rate is fast because it only
depends on the parametric estimation rate of β̂; it does not
depend on the complexity of PR.

One important case of performative prediction is strategic
classification. We apply our general theory to common best-
response models in strategic classification. We also conduct
numerical evaluations that confirm our theoretical findings.
Overall our results support the use of models in optimization
under performative feedback.

1.2. Related Work

Performative prediction. We build on the growing body
of work studying performative prediction (Perdomo et al.,
2020). Existing work studies different variants of retrain-
ing (Perdomo et al., 2020; Mendler-Dünner et al., 2020;
Drusvyatskiy & Xiao, 2022), which converge to so-called
performatively stable solutions, as well as methods for find-
ing performative optima (Miller et al., 2021; Izzo et al.,
2021; Jagadeesan et al., 2022). The methods in the latter
category are largely model-agnostic and as such converge
at slow rates. Exceptions include the study of parametric
distribution shifts (Izzo et al., 2021; 2022) and location fam-
ilies (Miller et al., 2021; Jagadeesan et al., 2022), but those
analyses crucially rely on the model being well-specified.
We are mainly interested in settings where D(θ) is a general
black-box. Other work in performative prediction includes
the study of time-varying shifts (Brown et al., 2022; Izzo
et al., 2022; Li & Wai, 2022; Ray et al., 2022), multi-agent
settings (Dean et al., 2022; Qiang et al., 2022; Narang et al.,
2022; Piliouras & Yu, 2023), causality and robustness (Ma-
heshwari et al., 2022; Mendler-Dünner et al., 2022; Kim
& Perdomo, 2023), and it would be valuable to extend our
theory on the use of models to those settings.

Strategic classification and economic modeling. Strategic
classification (Hardt et al., 2016; Dong et al., 2018; Lev-
anon & Rosenfeld, 2021; Zrnic et al., 2021), as well as
other problems studying strategic agent behavior, frequently
use models of agent behavior in order to compute Stackel-
berg equilibria, which are direct analogues of performative
optima. However, convergence to Stackelberg equilibria as-
sumes correctness of the models, a challenge we circumvent
in this work. We use strategic classification as a primary
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domain of application of our general theory.

Statistics under model misspecification. Our work is par-
tially inspired by works in statistics studying the benefits
and impact of modeling, including under misspecification
(White, 1980; 1982; Buja et al., 2019a;b). At a technical
level, our results are related to M-estimation (Van der Vaart,
2000; Geer, 2000; Mou et al., 2019) and semiparametric
statistics (Tsiatis, 2007; Kennedy, 2022).

Zeroth-order optimization. Plug-in performative opti-
mization serves as an alternative to black-box baselines
for zeroth-order optimization, which have previously been
studied in performative prediction. These include bandit
algorithms (Kleinberg et al., 2008; Jagadeesan et al., 2022)
and zeroth-order convex optimization algorithms (Flaxman
et al., 2004; Miller et al., 2021). As mentioned, we show
that the use of models can give far smaller excess risk, given
the fast convergence rates of parametric learning problems.

2. Plug-in Performative Optimization Protocol
We describe the main protocol at the focus of our study and
then instantiate it with an example.

We consider the use of parametric models DB := {Dβ}β∈B
for modeling the true unknown distribution map D, where
B ⊆ Rdβ . We denote

PRβ(θ) = Ez∼Dβ(θ)[ℓ(z; θ)].

Since DB is a collection of maps, we call it a distribution
atlas. We emphasize that it need not hold that D ∈ DB; the
model could be misspecified.

The protocol for plug-in performative optimization proceeds
as follows. First, the learner collects pairs of i.i.d. observa-
tions {(θi, zi)}ni=1, where θi is deployed according to some
exploration distribution D̃ and zi ∼ D(θi). The exploration
distribution should be “dispersed enough” to enable cap-
turing varied distributions D(θi) (e.g., uniform, Gaussian
with a full-rank covariance, etc). Then, the learner estimates
the distribution map by fitting β̂ based on the collected
observations:

β̂ = M̂ap((θ1, z1), . . . , (θn, zn)),

where M̂ap is some model-fitting function. We will consider
different criteria for fitting β̂. We let β∗ denote the large-
sample limit of β̂, β∗ = limn→∞ β̂. Finally, the learner
finds the plug-in performative optimum:

θ̂PO = argmin
θ∈Θ

PRβ̂(θ) = argmin
θ∈Θ

Ez∼Dβ̂(θ)
[ℓ(z; θ)].

We summarize the protocol in Algorithm 1.

Notice that, since Dβ̂ is known to the learner, we may solve

for θ̂PO explicitly in Step 3 of the protocol, without col-

Algorithm 1 Plug-in performative optimization

Require: distribution atlas DB, exploration strategy D̃,
loss ℓ(z; θ), map-fitting algorithm M̂ap.

1: Deploy θi ∼ D̃, observe zi ∼ D(θi), i ∈ [n].
2: Fit distribution map:

β̂ = M̂ap((θ1, z1), . . . , (θn, zn)), where β̂ ∈ B.
3: Compute plug-in performative optimum:

θ̂PO = argminθ∈Θ Ez∼Dβ̂(θ)
[ℓ(z; θ)].

lecting any additional real data. In particular, solving for
θ̂PO incurs only computational complexity—not statistical
complexity. A detailed discussion on how to execute Step 3
empirically can be found in Appendix C.

A canonical choice of M̂ap that we will focus on is empirical
risk minimization:

β̂ = argmin
β∈B

1

n

n∑
i=1

r(θi, zi;β),

where r is a loss function. Throughout we will use θ̃
and z̃ to denote draws θ̃ ∼ D̃, z̃ ∼ D(θ̃). Then, β∗ =
argminβ∈B E[r(θ̃, z̃;β)]. For example, one can choose
r(θ, z;β) = − log pβ(z; θ) to be the log-likelihood, where
pβ(·; θ) is the density under Dβ(θ), in which case β̂ is the
maximum-likelihood estimator. Under this choice,

β∗ = argmax
β∈B

E[log pβ(z̃; θ̃)] = argmin
β∈B

KL(D̄, D̄β).

Here, D̄ is the distribution of z̃, that is, the distribution map
D(θ) averaged over θ ∼ D̃. We similarly define D̄β . There-
fore, β∗ is the KL projection of the true data-generating
process onto the considered distribution atlas.
Example 1 (Biased coin flip). To build intuition for the
introduced concepts, we consider an illustrative example.
Suppose we want to predict the outcome of a biased coin
flip, where the bias arises due to performative effects. The
outcome is generated as z ∼ D(θ) = Bern(0.5 + µθ +
ηθ2), where µ ∈ (0, 0.5), η ∈ (0, 0.5− µ). The parameter
θ ∈ [0, 1] aims to predict the outcome while minimizing the
squared loss, ℓ(z; θ) = (z − θ)2. Suppose that we know
that θ introduces a bias to the coin flip, but we do not know
how strongly or in what way. We thus choose a simple
model for the bias, Dβ(θ) = Bern(0.5+ βθ), and fit β in a

data-driven way. To do so, we deploy θi
i.i.d.∼ Unif[0, 1] and

observe zi ∼ D(θi), for i ∈ [n]. One natural way to fit the
distribution map is to solve

β̂ = argmin
β

1

n

n∑
i=1

(zi − 0.5− βθi)
2.

Finally, we compute the plug-in performative optimum as

θ̂PO = argmin
θ

Ez∼Dβ̂(θ)
[(z − θ)2] =

1− β̂

2− 4β̂
.
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It is not hard to show that the population limit of β̂ is equal
to β∗ = µ + 0.75η. Therefore, if the feedback model is
well-specified, meaning η = 0, then β∗ indeed recovers
the true distribution map, and θ̂PO converges to the true
performative optimum.

3. Excess Risk
We study the excess risk of plug-in performative optimiza-
tion. The key takeaway of this section is that the excess risk
depends on two sources of error: one is the misspecification
error due to the fact that, often, D ̸∈ DB; the other is the
statistical error due to the gap between β̂ and β∗.

Formally, define

MisspecErr = sup
θ∈Θ

|PRβ∗
(θ)− PR(θ)|,

StatErrn = sup
θ∈Θ

|PRβ∗
(θ)− PRβ̂(θ)|.

We note that the statistical error depends on the sample size
n, while the misspecification error is irreducible even in the
large-sample limit. In later sections we will show that the
statistical error vanishes at a fast rate, namely Õ

(
1√
n

)
, for

a broad class of problems. In Theorem 3.1 we state a general
bound on the excess risk in terms of these two sources of
error.

Theorem 3.1. The excess risk of the plug-in performative
optimum is bounded by:

PR(θ̂PO)−PR(θPO) ≤ 2 (MisspecErr+ StatErrn) .

Theorem 3.1 illuminates the benefits of feedback models:
if the model is a reasonable approximation, the misspeci-
fication error is not too large; at the same time, due to the
parametric specification of the distribution atlas, the statis-
tical error vanishes quickly. Therefore, we conclude that
even misspecified models can lead to lower excess risk than
entirely model-agnostic strategies such as bandit algorithms.
Remark 3.2. It should be noted that there may be numeri-
cal inaccuracy in solving for θ̂PO in Step 3 of Algorithm 1.
However, the bound of Theorem 3.1 degrades smoothly:
if a δ-suboptimal solution is attained, then the excess risk
increases by at most δ. As mentioned before, δ is not depen-
dent on n; it only depends on the amount of computation.

In the rest of this section we give fine-grained bounds on
the misspecification error and the statistical error under
appropriate regularity assumptions, providing intuition via
examples along the way. The most natural way to bound the
misspecification error is in terms of a distributional distance
between the true distribution map D(θ) and the modeled
distribution map Dβ∗(θ). We define the misspecification of
a distribution atlas.

Definition 3.3 (Misspecification). We say that a distribution
atlas is η-misspecified in distance dist if, for all θ ∈ Θ, it
holds that dist(Dβ∗(θ),D(θ)) ≤ η.

We will measure misspecification in either total-variation
distance or Wasserstein (i.e. earth mover’s) distance. De-
pending on the problem setting, one of the two distances
will yield a smaller misspecification parameter and thus a
tighter rate according to Theorem 3.1.

We will also require that the atlas is “smooth” in the ana-
lyzed distance.
Definition 3.4 (Smoothness). We say that a distribution
atlas is ϵ-smooth in distance dist if, for all β, β′ ∈ B and
θ ∈ Θ, it holds that dist(Dβ(θ),Dβ′(θ)) ≤ ϵ∥β − β′∥.

Unless stated otherwise, ∥ · ∥ denotes the ℓ2-norm. In some
examples the parameter of the atlas will be a matrix, in
which case the norm will be the operator norm ∥·∥op. It is
important to note that, while the misspecification parameter
is a property of the true distribution map, the smoothness
parameter is entirely in the learner’s control, as it is solely a
property of the chosen distribution atlas.

In what follows, Section 3.1 and Section 3.2 focus on bound-
ing the misspecification error. Section 3.3 focuses on bound-
ing the statistical error with an explicit rate.

3.1. Total-Variation Misspecification

First we consider misspecification in total-variation (TV)
distance. Building on Theorem 3.1, we obtain the following
excess-risk bound as a function of TV misspecification.
Corollary 3.5. Suppose the distribution atlas is ηTV-
misspecified and ϵTV-smooth in TV distance. Moreover, sup-
pose that |ℓ(z; θ)| ≤ Bℓ and ∥β̂ − β∗∥ ≤ Cn. Then, the ex-
cess risk of the plug-in performative optimum is bounded by:

PR(θ̂PO)− PR(θPO) ≤ 4Bℓ · ηTV + 4Bℓ · ϵTV · Cn.

Corollary 3.5 shows that plug-in performative optimization
is efficient as long as the distribution atlas is smooth, not
too misspecified, and the rate of estimation Cn is fast. In
Section 3.3 we will prove convergence rates Cn when β̂ is
a sufficiently regular empirical risk minimizer.

We now build intuition for the relevant terms in Corollary 3.5
through examples. First we give a couple of examples of dis-
tribution atlases and bound their smoothness parameter ϵTV.
Example 2 (Mixture model). Suppose that we have k can-
didate distribution maps {D(i)(θ)}ki=1. We would like to
find a combination of these maps that approximates the
true map D(θ) as closely as possible. To do so, we can
define Dβ(θ) =

∑k
i=1 βiD(i)(θ), where β ∈ [0, 1]k defines

the mixture weights. This model is smooth in TV distance:
TV(Dβ(θ),Dβ′(θ)) ≤ 1

2∥β − β′∥1 ≤
√
k
2 ∥β − β′∥2.
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Example 3 (Self-fulfilling prophecy). Suppose that we want
to model outcomes that follow a “self-fulfilling prophecy,”
meaning that predicting a certain outcome makes it more
likely for the outcome to occur. Assume we have histori-
cal data of feature–label pairs before the model was de-
ployed. Denote the resulting empirical distribution by
D0 = DX

0 × DY |X
0 . We assume the features are non-

performative; only the labels exhibit performative effects.
Then, we can model the label distribution as DY |X

β (θ) =

(1−β)DY |X
0 +βδfθ(X), where δfθ(X) denotes a point mass

at the predicted label. Here, β ∈ [0, 1] tunes the strength
of performativity: β = 0 implies no performativity, while
β = 1 a perfect self-fulfilling prophecy. This atlas has
TV-smoothness equal to ϵTV = 1.

Next, we describe a general type of misspecification that
implies a bound on ηTV.

Example 4 (“Typically” well-specified model). Suppose
that the data distribution consists of observations about
strategic individuals. Suppose that a (1− p)-fraction of the
population is “rational” and acts in a predictable fashion.
The remaining p-fraction acts arbitrarily. Then, if we model
the predictable behavior appropriately, meaning Dβ∗(θ)
follows the distribution produced by the rational agents,
the misspecification parameter ηTV is at most p. More
generally, if we have D(θ) = (1 − p)Dβ∗(θ) + pD̃(θ),
where D̃(θ) is an arbitrary component, then ηTV ≤ p.

3.2. Wasserstein Misspecification

We next consider misspecification in Wasserstein (i.e. earth
mover’s) distance. Building on Theorem 3.1, we bound the
excess-risk via Wasserstein misspecification.

Corollary 3.6. Suppose that the distribution atlas is ηW -
misspecified and ϵW -smooth in Wasserstein distance. More-
over, suppose that the loss ℓ(z; θ) is Lz-Lipschitz in z, and
that ∥β̂ − β∗∥ ≤ Cn. Then, the excess risk of the plug-in
performative optimum is bounded by:

PR(θ̂PO)− PR(θPO) ≤ 2Lz · ηW + 2Lz · ϵW · Cn.

As in Corollary 3.5, we see that the excess risk of the plug-in
performative optimum is small as long as the distribution
atlas is smooth, not overly misspecified, and the rate Cn is
sufficiently fast.

Below we give an example of a natural distribution atlas and
characterize its Wasserstein smoothness.

Example 5 (Performative outcomes). As in Example 3, sup-
pose that we have data of feature–outcome pairs before any
model deployment, and suppose that only the outcomes are
performative while the features are static. Let D0 denote
the historical data distribution. We assume that a predictor
θ affects the outcomes only through its predictions fθ(x).

One simple way to model such feedback is via an addi-
tive effect on the outcomes. Formally, we define (x, y) ∼
Dβ(θ) ⇔ (x0, y0) ∼ D0, x = x0, y = y0 + β · fθ(x). As
in Example 3, β ∈ R controls the strength of performativ-
ity. This atlas is ϵW -smooth in Wasserstein distance for
ϵW = supθ Ex∼DX

0
[|fθ(x)|].

One way that misspecification can arise is due to omitted-
variable bias. We illustrate this in the following example
and explicitly bound the misspecification parameter ηW .

Example 6 (Omitted-variable bias). Suppose that only
a subset of the coordinates I ⊆ [d] of θ induce perfor-
mative effects. This can happen in linear or logistic re-
gression, where the coordinates of θ measure feature im-
portance, but only a subset of the features are manipu-
lable. Specifically, assume the data follows a location
family model: z ∼ D(θ) ⇔ z = z0 + M̃θI , where
M̃ ∈ Rdz×|I| is a true parameter of the shift and z0 is
a zero-mean draw from a base distribution D0. Suppose
the model omits one performative coordinate by mistake:
z ∼ DM(θ) ⇔ z = z0 +MθI′ , where I ′ = I \ {imiss}
and M ∈ Rdz×|I′|. If M̂ is fit via least-squares, M̂ =
argminM

1
n

∑n
i=1 ∥zi−Mθi,I′∥2, and D̃ is a product dis-

tribution, then the population-level counterpart of M̂ is
equal to M∗ = M̃I′ , which denotes the restriction of M̃ to
the columns indexed by I ′. Putting everything together, we
can conclude that the misspecification due to the omitted co-
ordinate is ηW = supθ W(D(θ),DM∗(θ)) ≤ B∥M̃imiss

∥,
where we assume the imiss-coordinate of |θ| is at most B.

3.3. Bounding the Estimation Error

We saw that the statistical error is driven by the estimation
rate of β∗. We show that for a broad class of problems the
rate is Õ(n− 1

2 ). We focus on map-fitting via empirical risk
minimization (ERM):

β̂ = argmin
β∈B

1

n

n∑
i=1

r(θi, zi;β), (1)

where B ⊂ Rdβ is bounded and convex. We denote
r(β) = E[r(θ̃, z̃;β)], and note that β∗ = argminβ∈B r(β).
To establish the error bound, we rely on the following as-
sumptions.

Assumption 3.7. ERM problem (1) is regular if:

(a) r(β) is convex and µ-strongly convex at β∗, and the
Hessian ∇2r(β) is σr-Lipschitz;

(b) ∀β ∈ B, the gradient ∇r(θ̃, z̃;β) is a subexponential
vector with parameter Br > 0;

(c) ∀u, u′ ∈ Sdβ−1, supβ∈B u⊤∇2r(θ̃, z̃;β)u′ is subex-
ponential with parameter Lr > 0.
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We will see that Assumption 3.7 is satisfied in many impor-
tant settings. Condition (a) is fairly standard; conditions
(b,c) seem less standard because we want to make them real-
istic for problems with diverging dimension. They immedi-
ately hold if ∇r(θ, z;β),∇2r(θ, z;β) are bounded, which
are standard conditions.

The following lemma is the key tool for obtaining our main
excess-risk bounds with a fast rate, stated in Theorem 3.9.
Lemma 3.8. Assume the map-fitting algorithm is regular
(Ass. 3.7) and that n

logn ≥ C(dβ + log(1/δ)) for a suffi-
ciently large C > 0. Then, for some constant C ′ > 0, with
probability 1− δ it holds that

∥β̂ − β∗∥ ≤ C ′
√
log n

√
dβ + log(1/δ)

n
.

Theorem 3.9. Assume the map-fitting algorithm is regu-
lar (Ass. 3.7) and that n

logn ≥ C(dβ + log(1/δ)) for a
sufficiently large C > 0.

• If the distribution atlas is ηTV-misspecified and ϵTV-
smooth in total-variation distance, and |ℓ(z; θ)| ≤ Bℓ,
then there exists a C ′ > 0 such that, with probability
1− δ:

PR(θ̂PO)− PR(θPO)

≤ 4BℓηTV + C ′BℓϵTV

√
log n

√
dβ + log(1/δ)

n
.

• If the distribution atlas is ηW -misspecified and ϵW -
smooth in Wasserstein distance, and ℓ(z; θ) is Lz-
Lipschitz in z, then there exists a C ′ > 0 such that,
with probability 1− δ:

PR(θ̂PO)− PR(θPO)

≤ 2LzηW + C ′LzϵW
√

log n

√
dβ + log(1/δ)

n
.

The excess risk is thus bounded by the sum of a term due
to misspecification and a fast statistical rate. To contrast
this with a model-agnostic rate, the bandit algorithm of (Ja-
gadeesan et al., 2022) does not suffer from misspecification
but has an exponentially slow excess risk, Õ(n−1/(dθ+1)).

The analysis underlying Theorem 3.9 is based on standard
ERM analyses under model misspecification, though there
are differences. The main one is that our setting requires
that we analyze the error in terms of the difference between
parameters β̂−β∗, as opposed to the excess risk r(β̂)−r(β∗)
in the standard ERM analysis. This difference requires new
tools and assumptions akin to those in Assumption 3.7.

4. Applications
We apply our theory and plug-in performative optimization
to several problems with performative feedback, building

on prevalent models for those problems. In each problem,
we prove the model’s smoothness and fast estimation of β∗.

4.1. Strategic Regression

We begin by considering strategic regression. Here, a pop-
ulation of individuals described by (x, y) strategically re-
sponds to a deployed predictor fθ. For example, the predic-
tor could be fθ(x) = θ⊤x.

Distribution atlas. The strategic responses consist of ma-
nipulating features in order to maximize a utility function,
which is often equal to the prediction itself. Formally, given
an individual with features x0, a commonly studied response
model is gβ(x0, θ) = argmaxx(uθ(x) − 1

2β ∥x − x0∥2),
where uθ(x) is a concave utility function and the second
term captures the cost of feature manipulations. Here,
β ∈ [βmin, βmax] ⊆ R+ trades off utility and cost. The nat-
ural distribution atlas capturing the above response model
is obtained as follows. Suppose that we have a historical
distribution of feature–label pairs D0. Then, let:

(x, y) ∼ Dβ(θ) ⇔ (x0, y) ∼ D0, x = gβ(x0, θ). (2)

Claim 4.1. If ∥∇uθ(x)∥ ≤ Bu and ∇uθ(x) is Lu-Lipschitz,
then {Dβ}β has

ϵW ≤ Bu

1− βmaxLu
.

This bound is attained for uθ(x) = x⊤θ. There,
Lu = 0, Bu = supθ∈Θ ∥θ∥, so the bound equals ϵW ≤
maxθ∈Θ ∥θ∥. This is tight because supx,θ∈Θ ∥gβ(x, θ) −
gβ′(x, θ)∥ = |β − β′| supθ∈Θ ∥θ∥.

Map fitting. We can fit β̂ via maximum-likelihood estima-
tion (MLE). Suppose that DX

0 has a density and denote it
by pX0 . Then, we can let

β̂ = argmin
β∈B

− 1

n

n∑
i=1

log
(
pX0 (xi − β∇uθi(xi))

)
.

Given the first-order optimality condition for gβ(x0, θ), un-
der mild regularity and correct specification of the model,
meaning D(θ) = Dβ(θ) for some β, this map-fitting
strategy ensures ηW = 0, as expected. For example, if
DX

0 = N (0, σ2I), MLE reduces to

β̂ = argmin
β∈B

1

n

n∑
i=1

∥xi − β∇uθi(xi)∥2.

Least-squares makes sense even if the features are not Gaus-
sian; it just coincides with MLE for Gaussians. We show a
fast estimation rate of least-squares under mild conditions
via Lemma 3.8.
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Claim 4.2. If E[∥∇uθ̃(x̃)∥2] > 0, x̃ and ∇uθ̃(x̃) are sub-
gaussian, and n

logn ≥ C(1 + log(1/δ)) for a sufficiently
large C > 0, then

|β̂ − β∗| ≤ C ′
√
log n

√
1 + log(1/δ)

n

with probability 1− δ.

If, in addition, the loss function ℓ(z; θ) is Lz-Lipschitz in z,
combining Claim 4.1, Claim 4.2, and Corollary 3.6 gives an
upper bound on the excess risk PR(θ̂PO)− PR(θPO).

4.2. Binary Strategic Classification

Next, we consider binary strategic classification, in which a
population of strategic individuals described by (x, y) takes
strategic actions in order to reach a decision boundary. We
assume the learner’s decision rule is obtained by threshold-
ing a linear model, fθ(x) = 1{θ⊤x ≥ T}, for some T .
Without loss of generality we assume ∥θ∥ = 1, since the
rule is invariant to rescaling θ and T .

Distribution atlas. A common model assumes that the
individuals have a budget β > 0 on how much they can
change their features (Kleinberg & Raghavan, 2020; Chen
et al., 2020; Zrnic et al., 2021). The individuals move to the
decision boundary if it is within ℓ2 distance β. Formally,
an individual with features x0 responds with gβ(x0, θ) =
x0 + θ(T − x⊤

0 θ) if x⊤
0 θ ∈ [T − β, T ), and does not move

otherwise. The natural distribution atlas corresponding to
the above model is defined as in Eq. (2), for a given base
distribution D0. We show that this atlas is smooth in total-
variation distance.
Claim 4.3. If, for all θ, x⊤

0 θ has a density upper bounded
by ϕu, then {Dβ}β has ϵTV ≤ ϕu.

Map fitting. According to the atlas, all individuals with
x⊤
0 θ ∈ [T − β, T ) move to the decision boundary, defined

by x⊤θ = T . Therefore, one can estimate the individuals’
budget by finding β̂ such that P{x⊤

0 θ̃ ∈ [T − β̂, T ]} =
1
n

∑n
i=1 1{x⊤

i θi ∈ (T ± ϵ)}, for a small ϵ > 0. The latter
term estimates the mass in a small neighborhood of the
boundary. Therefore, P{x⊤

0 θ̃ ∈ [T − β∗, T ]} = P{x̃⊤θ̃ ∈
(T ± ϵ)}. For simplicity we assume x⊤

0 θ̃ has a density on R
so that β̂ exists. Note that P{x⊤

0 θ̃ ∈ [T − β, T ]} is known
for all β because it is a property of the base distribution, so
finding β̂ reduces to estimating P{x̃⊤θ̃ ∈ (T ± ϵ)}.
Claim 4.4. If x⊤

0 θ̃ has a density lower bounded by ϕl, then

|β̂ − β∗| ≤ 1

ϕl

√
log(2/δ)

2n

with probability 1− δ.

If the learner’s loss is bounded, putting together Claim 4.3,
Claim 4.4, and Corollary 3.5 gives an upper bound on the
excess risk PR(θ̂PO)− PR(θPO).

4.3. Location Families

Lastly, we consider general location families (Miller et al.,
2021; Jagadeesan et al., 2022; Ray et al., 2022), in which
the deployment of θ leads to performativity via a linear shift.
This model often appears in strategic classification with
linear or logistic regression, and can capture performativity
only in certain features (Miller et al., 2021).

Distribution atlas. The location-family model is defined
by z ∼ DM(θ) ⇔ z = Mθ + z0, where M ∈ Rdz×dθ is a
matrix that parameterizes the shift, and z0 is a sample from a
zero-mean base distribution D0. We assume supθ∈Θ ∥θ∥ ≤
Bθ. It is not hard to see that the atlas is smooth in ∥·∥op.
Claim 4.5. The atlas {DM}M has ϵW ≤ Bθ.

Map fitting. We fit the distribution map via least-squares:

M̂ = argmin
M

1

n

n∑
i=1

∥zi −Mθi∥2.

Thus, M∗ = argminM E[∥z̃−Mθ̃∥2]. We provide control
on the estimation error below.
Claim 4.6. Assume D̃ is zero-mean and subgaussian with
κminI ⪯ E[θ̃θ̃⊤] ⪯ κmaxI . Further, for all u ∼
Sdθ−1, v ∼ Sdz−1, assume u⊤θ̃ · v⊤z̃ is subexponen-
tial with parameter Lθz and ∥E[θ̃z̃T ]∥op ≤ B. Then, if
n ≥ C(dθ + dz + log(1/δ)) for some sufficiently large
C > 0, there exists C ′ > 0 such that with probability 1− δ
we have

∥M̂ −M∗∥op ≤ C ′

√
dθ + dz + log(1/δ)

n
.

The above assumptions hold under mild regularity condi-
tions when the model is nearly well-specified. If the loss
is Lz-Lipschitz in z, then using Claim 4.5, Claim 4.6, and
Corollary 3.6, we can bound the excess performative risk
PR(θ̂PO)− PR(θPO).

5. Experiments
We confirm the qualitative takeaways of our theory empiri-
cally. We compare our approach with two model-agnostic
algorithms: derivative-free optimization (DFO) (Flaxman
et al., 2004) and greedy SGD (Mendler-Dünner et al., 2020).
The latter naively retrains while ignoring the feedback; it
is a practical heuristic but only converges to stable points.
For the location-family experiment, we also compare our
approach with PerfGD (Izzo et al., 2021), which approxi-
mates the performative gradient via numerical methods. We
refer the reader to Appendix B for further details.

5.1. Location Family

We start with the location-family setting. We assume the true
map follows a linear model with a quadratic term, zi = b+
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Figure 1. (Location family) Excess risk of plug-in per-
formative optimization, DFO, greedy SGD, and PerfGD
with ±1 standard deviation on a logarithmic scale.

M1θi+sM2(θi◦θi)+z0,i, where zi, θi, b ∈ Rd, θi◦θi :=
(θ2i,1, . . . , θ

2
i,d) represents the quadratic effect, and z0,i ∼

N (0, σ2Id). The parameter s ≥ 0 varies the magnitude of
misspecification. We want to minimize the loss ℓ(z; θ) =
∥z − θ∥2, and we use a simple linear model to approximate
D(θ), i.e., z ∼ DM(θ) ⇔ z

d
= b + Mθ + z0. To fit

M̂, we use the loss r(θ, z;M) = ∥z − Mθ∥2. We vary
d ∈ {5, 10} and let Mi = M̃i/∥M̃i∥op, i ∈ {1, 2} where
M̃i ∈ Rd×d have entries generated i.i.d. from N (0, 1). We
let b ∼ N (0, Id), σ = 0.5, and Θ = {θ : ∥θ∥ ≤ 1}.

In Figure 1 we see that the excess risk of our algorithm
converges rapidly to a value that reflects the degree of mis-
specification. It approaches zero for s = 0 (top panel) due
to no misspecification and stabilizes at a nonzero value for
s > 0 (middle and bottom panels), consistent with our the-
ory. In contrast, the risk of both PerfGD and DFO reduce
slowly, while SGD quickly reaches a suboptimal value.

5.2. Strategic Regression

We next consider strategic regression. We first generate
5000 i.i.d. base samples (xi, yi) where xi ∼ N (0, Idx

),
and yi ∈ {0, 1} follows from a logistic model with a fixed
parameter vector η ∼ Unif(Sdx−1). Denote the joint em-
pirical distribution of (xi, yi) by D0. The true distribution
map, (x, y) ∼ D(θ), is defined via

(x0, y0) ∼ D0, y = y0, x = argmax
x′∈Rdx

(θ⊤x′− 1

2β̃
∥x′−x0∥ρρ),
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Figure 2. (Strategic regression) Excess risk and accuracy
of plug-in performative optimization, DFO, and greedy
SGD, with ±1 standard deviation on a logarithmic scale.

for some ρ > 1. We set dx = 5 and β̃ = 2. To construct a
model for D(·), we follow the procedure from Section 4.1,
using the linear utility and quadratic cost. Thus, ρ = 2
results in correct specification. We choose ℓ(z; θ) to be the
logistic loss with a ridge penalty and Θ = {θ : ∥θ∥ ≤ 1}.

We examine the well-specified scenario ρ = 2 and two mis-
specified cases ρ ∈ {2.5, 3}, comparing our method with
DFO and greedy SGD in Figure 2. We see our algorithm
quickly tends to zero excess risk when ρ = 2 (top left).
When ρ ̸= 2 (middle and bottom left), the algorithm still
converges, albeit to a suboptimal point. SGD converges to a
suboptimal point with nonzero excess risk, while the excess
risk of the DFO method decreases at a slow rate. We remark
that PerfGD is not applicable in our strategic regression set-
ting as D(θ) does not admit a probability density function.
Similar trends appear for test accuracy.

6. Discussion
We discuss several limitations and comment on a few techni-
cal aspects of our work. Along the way, we discuss valuable
future directions in the context of modeling the distribution
map in performative prediction.

First, our approach may be of limited use when the learner
has very little prior knowledge of the true data-generating
process, as this prevents them from choosing an atlas in an
informed way. This is a hard scenario, and it is possible that
no existing method would lead to a satisfactory performance.
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For example, while the model-free approach of Jagadeesan
et al. (2022) is asymptotically more robust, for a reasonable
number of samples it is not clear that it would outperform
our approach with a highly misspecified model. One valu-
able future direction is to choose a family of distribution
maps DB that is sufficiently complex and has strong expres-
sive power, e.g., neural networks, in cases where the learner
is very uncertain about the true map. When the number
of samples is suitably large, this may give a small excess
risk as the misspecification error is smaller with a more
expressive model. While in the current paper we mainly
focus on simple models with closed-form expressions, we
are hopeful that our approach could be valuable in such
settings with black-box modeling as well.

Modeling could be particularly useful if one considers the
fact that in reality data distributions take time to shift after
model deployment and do not generate i.i.d. observations.
Such time-varying shifts were, in fact, modeled in prior
work (Brown et al., 2022; Izzo et al., 2022; Li & Wai, 2022;
Ray et al., 2022). It would be interesting to study the impacts
of modeling the time-varying aspect of distribution maps.

Many of our examples assumed access to historical data.
However, this assumption is not fundamental to our frame-
work. Often this just means that there was another historical
model in place under which the data was collected. We
can model this as “step 0” in our framework, where we
first deploy a “default” model θ0 (e.g. θ0 = 0) and collect
data points drawn from D(θ0) ≡ D0 (for instance, in Ex-
ample 5 this would correspond to deploying a model with
fθ(x) = 0 for all x; there exist analogues for other prob-
lems as well). This alternative view would simply incur an
additional statistical error term due to having finite-sample
access to D(θ0).

In this work, we used standard ERM to estimate the distri-
bution map. However, the learner may want to incorporate
criteria other than model fit (which is the focus on ERM)
in this process. For example, the learner may want to use a
classical model selection criterion such as AIC or BIC (see,
e.g., Hastie et al. (2009)) to regularize towards “simpler”
models and run ERM afterwards. Investigating model selec-
tion criteria beyond ERM for distribution map estimation is
another valuable future direction.

Impact Statement
We have analyzed performative prediction with misspecified
models. Our results highlight the statistical gains of using
models, however modeling has consequences far beyond
statistical efficiency. On the positive side, modeling can
help interpretability and computational efficiency. On the
negative side, however, using highly misspecified models
can lead to unfairness, lack of validity, and poor downstream

decisions. For example, modeling may be too coarse and
not represent certain demographic groups properly. Going
forward, it would be valuable to develop deeper understand-
ing of such negative aspects of modeling. Overall, given
that models are ubiquitous in practice, we believe they merit
further study—especially under misspecification—and we
have only scratched the surface of this agenda.
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A. Proofs
A.1. Notation and Definitions

In the proofs we will sometimes use c, c′ > 0 to denote universal constants and C,C ′ > 0 to denote constants that may
depend on the parameters introduced in the assumptions. We allow the values of the constants to vary from place to place.

We say a random variable x is subexponential with parameter ν if

P{|x| ≥ t} ≤ 2 exp

(
− t

ν

)
for any t ≥ 0. Unless specified, we do not assume x has mean zero in general. Moreover, we say a vector x ∈ Rd is
subexponential with parameter ν if ⟨u, x⟩ is subexponential with parameter ν for any fixed direction u ∈ Sd−1. Similarly,
we say a random variable x is subgaussian with parameter σ if

P{|x| ≥ t} ≤ 2 exp

(
− t2

σ2

)
for any t ≥ 0. Likewise, a vector x ∈ Rd is subgaussian with parameter σ if ⟨u, x⟩ is subgaussian with parameter σ for any
fixed direction u ∈ Sd−1.

A.2. Proof of Theorem 3.1

Define the population-level counterpart of θ̂PO as:

θ∗ = argmin
θ∈Θ

PRβ∗
(θ).

We can write

PR(θ̂PO)− PR(θPO)

= (PR(θ̂PO)− PRβ∗
(θ̂PO)) + (PRβ∗

(θ̂PO)− PRβ̂(θ̂PO)) + (PRβ̂(θ̂PO)− PRβ̂(θ∗))

+ (PRβ̂(θ∗)− PRβ∗
(θ∗)) + (PRβ∗

(θ∗)− PRβ∗
(θPO)) + (PRβ∗

(θPO)− PR(θPO)).

By the definition of θ̂PO, we know PRβ̂(θ̂) − PRβ̂(θ∗) ≤ 0. Similarly, by the definition of θ∗, we know PRβ∗
(θ∗) −

PRβ∗
(θPO) ≤ 0. Using these inequalities, we establish

PR(θ̂PO)− PR(θPO) ≤ (PR(θ̂PO)− PRβ∗
(θ̂PO)) + (PRβ∗

(θ̂PO)− PRβ̂(θ̂PO))

+ (PRβ̂(θ∗)− PRβ∗
(θ∗)) + (PRβ∗

(θPO)− PR(θPO))

≤ 2 sup
θ

|PR(θ)− PRβ∗
(θ)|+ 2 sup

θ
|PRβ∗

(θ)− PRβ̂(θ)|

= 2(StatErrn + MisspecErr).

A.3. Proof of Corollary 3.5

We have

|PRβ∗
(θ)− PR(θ)| =

∣∣∣∣∫ ℓ(z; θ)(pβ∗(z; θ)− p(z; θ))dz

∣∣∣∣
≤ Bℓ ·

∫
|pβ∗(z; θ)− p(z; θ)|dz

= 2Bℓ · TV(Dβ∗(θ),D(θ)).

Therefore,
MisspecErr ≤ 2Bℓ sup

θ∈Θ
TV(Dβ∗(θ),D(θ)) ≤ 2BℓηTV.

12
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By a similar argument as above, |PRβ∗
(θ) − PRβ̂(θ)| ≤ 2BℓTV(Dβ∗(θ),Dβ̂(θ)). Applying ϵTV-smoothness of the

distribution atlas, we get

StatErrn ≤ 2Bℓ sup
θ∈Θ

TV(Dβ∗(θ),Dβ̂(θ)) ≤ 2BℓϵTV∥β̂ − β∗∥ ≤ 2BℓϵTVCn.

Applying Theorem 3.1 completes the proof.

A.4. Proof of Corollary 3.6

Denote by Π(D,D′) a coupling between two distributions D and D′. We have∣∣∣PRβ∗
(θ)− PR(θ)

∣∣∣ = ∣∣∣∣ inf
Π(Dβ∗ (θ),D(θ))

E(z,z′)∼Π(Dβ∗ (θ),D(θ))[ℓ(z; θ)− ℓ(z′; θ)]

∣∣∣∣
≤ inf

Π(Dβ∗ (θ),D(θ))
E(z,z′)∼Π(Dβ∗ (θ),D(θ))[|ℓ(z; θ)− ℓ(z′; θ)|]

≤ L inf
Π(Dβ∗ (θ),D(θ))

E(z,z′)∼Π(Dβ∗ (θ),D(θ))[∥z − z′∥]

= LW(Dβ∗(θ),D(θ)).

Therefore,
MisspecErr ≤ L sup

θ∈Θ
W(Dβ∗(θ),D(θ)) ≤ L · ηW .

By a similar argument, |PRβ∗
(θ)− PRβ̂(θ)| ≤ LW(Dβ∗(θ),Dβ̂(θ)). Applying ϵW -smoothness of the distribution atlas,

we get
StatErrn ≤ L sup

θ∈Θ
W(Dβ∗(θ),Dβ̂(θ)) ≤ LϵW ∥β̂ − β∗∥ ≤ L · ϵW · Cn.

Applying Theorem 3.1 completes the proof.

A.5. Proof of Lemma 3.8

We first present Lemma A.1 which we will use in the proof.
Lemma A.1.

⟨∇r(β), β − β∗⟩ ≥


µ

2
∥β∗ − β∥2, ∥β∗ − β∥ ≤ µ

σr
,

µ2

2σr
∥β∗ − β∥, ∥β∗ − β∥ ≥ µ

σr
.

(3)

See the proof of Lemma A.1 in Supplement A.6

Let Bβ be the bound of the parameter set B, i.e., ∥β∥ ≤ Bβ for any β ∈ B. We will show Lemma 3.8 holds with some
sufficiently large constants C,C ′ > 0 that depend polynomially on (log |1 +Bβ |, 1/µ, Lr, Br, σr).

Denote

rn(β) :=
1

n

n∑
i=1

r(θi, zi;β); r(β) := Eθ∼D̃,z∼D(θ)[r(θ, z;β)].

We begin by claiming the following result, which we will prove later. With probability over 1− δ

sup
β∈B

∥∇βrn(β)−∇βr(β)∥ ≤ C
√
log n

√
dβ + log(1/δ)

n
. (4)

With this result at hand, it follows from Lemma A.1 that

min
{µ
2
∥β̂ − β∗∥2, µ2

2σr
∥β̂ − β∗∥

}
≤ ⟨∇βr(β̂), β̂ − β∗⟩ = ⟨∇βr(β̂)−∇βrn(β̂), β̂ − β∗⟩

≤ ∥∇βr(β̂)−∇βrn(β̂)∥∥β̂ − β∗∥ ≤ C
√

log n

√
dβ + log(1/δ)

n
∥β̂ − β∗∥, (5)

13
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where the first equality is due to the fact that ∇βrn(β̂) = 0. Eliminating ∥β̂ − β∗∥ in both the first and the last term of (5)
yields

µ2

2σr
∧ µ

2
∥β̂ − β∗∥ ≤ C

√
log n

√
dβ + log(1/δ)

n
.

By the sample size Assumption in Lemma 3.8, we may assume n is sufficiently large such that µ2

2σr
≥ C

√
log n

√
dβ+log(1/δ)

n
for some constant C > 0. Therefore, we conclude that

∥β̂ − β∗∥ ≤ C
√
log n

√
dβ + log(1/δ)

n
.

Proof of Eq. (4). Let {u1, u2, . . . , uM} be a 1/2-covering of Sdβ−1 in the Euclidean norm such that |M | ≤ 5dβ . Define
the random variables

ϕu,β := ⟨u, ∇βrn(β)−∇βr(β)⟩, ϕu := sup
β∈B

ϕu,β .

It follows from a standard discretization argument (e.g., (Wainwright, 2019), Chap. 6) that

sup
β∈B

∥∇βrn(β)−∇βr(β)∥ ≤ 2 sup
β∈B

sup
i∈[M ]

ϕui,β . (6)

We make the following claim which will be proved at the end. With probability over 1− δ∥∥∥∥∥ 1n
n∑

i=1

sup
β∈B

∇2
βr(θi, zi;β)

∥∥∥∥∥
op

≤ cLr + cLr

√
dβ + log(1/δ)

n
≤ cLr. (7)

for some constant c > 0.

Let ϵ > 0 be some value we specify later. Construct an ε-covering net {β1, . . . , βN} of B in ∥ · ∥. Then the covering number
|N | ≤ (1 + 2Bβ/ϵ)

dβ , and

sup
β∈B

sup
i∈[M ]

ϕui,β ≤ sup
i∈[M ]

sup
j∈[N ]

ϕui,βj + sup
i∈[M ]

sup
∥β1−β2∥≤ε

|ϕui,β1 − ϕui,β2 |

≤ sup
i∈[M ]

sup
j∈[N ]

ϕui,βj + sup
i∈[M ]

sup
∥β1−β2∥≤ε

1

n

n∑
i=1

sup
β∈B

u⊤
i ∇2

βr(θi, zi;β)(β1 − β2)

≤ sup
i∈[M ]

sup
j∈[N ]

ϕui,βj + sup
i∈[M ]

sup
∥β1−β2∥≤ε

∥ui∥

∥∥∥∥∥ 1n
n∑

i=1

sup
β∈B

∇2
βr(θi, zi;β)

∥∥∥∥∥
op

∥β1 − β2∥

≤ sup
i∈[M ]

sup
j∈[N ]

ϕui,βj + cLrε, (8)

where the last inequality follows from the claim in (7). Since ⟨u, ∇βr(θi, zi;β)− E[∇βr(θi, zi;β)]⟩ is zero mean
subexponential with parameter Br by condition (b) of Assumption 3.7, it follows from concentration of subexponential
variables that

P{|ϕui,βj | ≥ t} ≤ 2 exp

(
− nt2

2B2
r

)
for any |t| ≤ Br.

Applying a union bound over i, j, we establish

P
{

max
i∈[M ],j∈[N ]

|ϕui,βj | ≥ t

}
≤ 2 exp

(
cdβ(log(1 + 2Bβ/ϵ) + 1)− nt2

2B2
r

)
for any |t| ≤ Br. (9)

Let ϵ =
√

dβ+log(1/δ)
n and

t =
cBr

√
log(1/δ) + dβ(log(1 + 2Bβ/ϵ) + 1)

√
n

≤
CBr

√
log n(dβ + log(1/δ))

√
n

≤ Br

14
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for some constant c > 0, where the last inequality uses the sample size assumption of the lemma. Substituting the values of
ϵ and t into Equations (8), (9) and combining with Eq. (6), we obtain

sup
β∈B

∥∇βrn(β)−∇βr(β)∥ ≤
CBr

√
log n(dβ + log(1/δ))

√
n

+ cLr

√
dβ + log(1/δ)

n

≤ C ′
√
log n

√
dβ + log(1/δ)

n

with probability over 1− δ for some parameter-dependent constant C ′.

Proof of Eq. (7). Similar to equation (6), from a standard discretization argument we have∥∥∥∥∥ 1n
n∑

i=1

sup
β∈B

∇2
βr(θi, zi;β)

∥∥∥∥∥
op

≤ 2 sup
j∈[M ]

1

n

n∑
i=1

sup
β∈B

u⊤
j ∇2

βr(θi, zi;β)uj .

Since supβ∈B u⊤
j ∇2

βr(θi, zi;β)uj are subexponential variables by condition (c) in Assumption 3.7, we have from properties
of subexponential variables and Bernstein’s inequality that

P

{
u⊤
j

1

n

n∑
i=1

sup
β∈B

∇2
βr(θi, zi;β)uj ≥ cLr + t

}

≤ P

{
u⊤
j

1

n

n∑
i=1

sup
β∈B

∇2
βr(θi, zi;β)uj ≥ E[u⊤

j sup
β∈B

∇2
βr(θi, zi;β)uj ] + t

}

≤ exp

(
−cmin{ nt

Lr
,
nt2

L2
r

}
)
.

Applying a union bound over j ∈ [M ] and setting t = cLr

√
dβ+log(1/δ)

n < cLr, we establish

u⊤
j

1

n

n∑
i=1

sup
β∈B

∇2
βr(θi, zi;β)uj ≤ cLr + cLr

√
dβ + log(1/δ)

n
≤ cLr

for some c > 0 with probability over 1− δ.

A.6. Proof of Lemma A.1

For any ∥β∗ − β∥ ≤ µ
σr

, by a Taylor expansion of ∇r(β) at β∗ and Ass. 3.7(a), we have

⟨∇r(β), β − β∗⟩ = ⟨∇r(β)−∇r(β∗), β − β∗⟩ ≥ µ∥β − β∗∥2 − σr

2
∥β∗ − β∥3 ≥ µ

2
∥β∗ − β∥2.

This gives the second part of Lemma A.1. When ∥β∗ − β∥ ≥ µ
σr

, write β = β∗ + tu, where u = (β − β∗)/∥β − β∗∥. For
a fixed direction u, define β(t) := β∗ + tu and

f(u, t) :=
〈
∇r(β(t)),

β(t)− β∗

∥β(t)− β∗∥

〉
= ⟨u, ∇r(β(t))⟩.

Then for t ≥ 0, using Ass. 3.7(a) again we obtain

∂tf(u, t) = ⟨u, ∇2r(β(t))u⟩ ≥ 0

Therefore f(u, t) is increasing in t and for any ∥β − β∗∥ ≥ µ
σr〈

∇r(β),
β − β∗

∥β − β∗∥

〉
≥
〈
∇r
(
β
( µ

σr

))
,

β
(

µ
σr

)
− β∗

∥β
(

µ
σr

)
− β∗∥

〉

≥ µ

2
∥β
( µ

σr

)
− β∗∥ =

µ2

2σr
.

This gives the second part of Lemma A.1.
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A.7. Proof of Theorem 3.9

The first statement follows directly by putting together Corollary 3.5 and Lemma 3.8. Similarly, the second statement
follows by putting together Corollary 3.6 and Lemma 3.8.

A.8. Proof of Claim 4.1

Fix x and θ. We will use the shorthand notation gβ(x, θ) ≡ xβ . First, we show that ∥xβ − xβ′∥2 ≤ Bu

1−βmaxLu
|β − β′|. To

see this, notice that the optimality condition of the best-response equation is equal to:

β · ∇uθ(xβ)− xβ = −x.

Since β∇uθ(xβ)− xβ = β′∇uθ(xβ′)− xβ′ = −x, we know

∥β∇uθ(xβ)− β′∇uθ(xβ′)∥ = ∥xβ − xβ′∥.

We also know

∥β∇uθ(xβ)− β′∇uθ(xβ′)∥ = ∥β∇uθ(xβ)− β∇uθ(xβ′) + β∇uθ(xβ′)− β′∇uθ(xβ′)∥
≤ βLu∥xβ − xβ′∥+Bu |β − β′| .

Therefore,
∥xβ − xβ′∥ ≤ βLu∥xβ − xβ′∥+Bu |β − β′| .

Rearranging the terms, we get

∥xβ − xβ′∥ ≤ Bu

1− βLu
|β − β′|.

By the definition of Wasserstein distance, this condition directly implies

W(Dβ(θ),Dβ′(θ)) ≤ Bu

1− βmaxLu
|β − β′|,

which is the definition of Bu

1−βmaxLu
-smoothness.

A.9. Proof of Claim 4.2

The claim follows by Lemma 3.8 after verifying the conditions required in Assumption 3.7. We have r(θ, x;β) =
∥x − β∇uθ(x)∥2, so ∇r(θ, x;β) = −2(x⊤∇uθ(x) − β∥∇uθ(x)∥2) and ∇2r(θ, x;β) = 2∥∇uθ(x)∥2. Conditions
(b) and (c) of Assumption 3.7 are thus satisfied by x̃ and ∇uθ̃(x̃) being subgaussian since products of subgaussians
are subexponential. Condition (a) is satisfied by the fact that r(β) = E[∥x̃ − β∇uθ̃(x̃)∥2] is a quadratic in β when
E[∥∇uθ̃(x̃)∥2] > 0.

A.10. Proof of Claim 4.3

Fix θ, β, β′, and without loss of generality let β > β′. We show that TV(Dβ(θ),Dβ′(θ)) ≤ ϕu. The distributions Dβ(θ)
and Dβ′(θ) are equal to each other and to D0 for all {x : x⊤θ ∈ (−∞, T − β)∪ (T,∞)}. Moreover, under both Dβ(θ) and
Dβ′(θ), there is no mass for {x : x⊤θ ∈ (T−β′, T )}. The distributions thus only differ for {x : x⊤θ ∈ [T−β, T−β′]∪{T}}.
Since the density of x⊤θ is bounded by ϕu, the measure of such vectors x is at most ϕu|β − β′|.

A.11. Proof of Claim 4.4

By Hoeffding’s inequality, with probability 1− δ it holds that∣∣∣∣∣ 1n
n∑

i=1

1{x⊤
i θi ∈ (T ± ϵ)} − P{x̃⊤θ̃ ∈ (T ± ϵ)}

∣∣∣∣∣ ≤
√

log(2/δ)

2n
.
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Let ∆ =
√

log(2/δ)
2n . Next we argue that |β̂ − β∗| ≤ ∆

ϕl
by contradiction. Suppose |β̂ − β∗| > ∆

ϕl
. Then,∣∣∣∣∣ 1n

n∑
i=1

1{x⊤
i θi ∈ (T ± ϵ)} − P{x̃⊤θ̃ ∈ (T ± ϵ)}

∣∣∣∣∣ = ∣∣∣P{x⊤
0 θ̃ ∈ [T − β̂, T ]− P{x⊤

0 θ̃ ∈ [T − β∗, T ]}
∣∣∣

> ϕl
∆

ϕl

= ∆,

which contradicts Hoeffding’s inequality. Therefore, we conclude that |β̂ − β∗| ≤ ∆
ϕl

.

A.12. Proof of Claim 4.5

By the definition of Wasserstein distance, we have

W(DM1
(θ),DM2

(θ)) = W(M1θ + z0,M2θ + z0) = ∥M1θ −M2θ∥ ≤ Bθ ∥M1 −M2∥op

for any M1,M2. Therefore, the distribution atlas {DM}M is ϵW -smooth with parameter Bθ.

A.13. Proof of Claim 4.6

Let νθ be the subgaussian parameter of D̃. We prove that there exists C,C ′ depending polynomially on
(1/κmin, κmax, νθ, Lθz, B) such that Claim 4.6 holds. By definition, we have

M̂⊤ =

(
1

n

n∑
i=1

θiθ
⊤
i

)−1 ( 1
n

n∑
i=1

θiz
⊤
i

)
,

M∗⊤ = E[θ̃θ̃⊤]−1E[θ̃z̃⊤].

We state the following results, which we will prove later:∥∥∥∥∥∥
(
1

n

n∑
i=1

θiθ
⊤
i

)−1

− E[θiθ⊤i ]−1

∥∥∥∥∥∥
op

≤ cν2θ
κ2
min

√
dθ + log(1/δ)

n
≤ C; (10)

∥∥∥∥∥ 1n
n∑

i=1

θiz
⊤
i − E[θiz⊤i ]

∥∥∥∥∥
op

≤ cLθ,z

√
dθ + dz + log(1/δ)

n
. (11)

Combining Equations (10), (11) with the assumptions of the claim, we establish

∥∥∥M̂ −M∗
∥∥∥

op
=

∥∥∥∥∥∥
(
1

n

n∑
i=1

θiθ
⊤
i

)−1 ( 1
n

n∑
i=1

θiz
⊤
i

)
− E[θiθ⊤i ]−1E[θiz⊤i ]

∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥
(
1

n

n∑
i=1

θiθ
⊤
i

)−1

− E[θiθ⊤i ]−1

∥∥∥∥∥∥
op

∥∥∥∥∥ 1n
n∑

i=1

θiz
⊤
i

∥∥∥∥∥
op

+
∥∥E[θiθ⊤i ]−1

∥∥
op

∥∥∥∥∥ 1n
n∑

i=1

θiz
⊤
i − E[θiz⊤i ]

∥∥∥∥∥
op

≤ C ′

√
dθ + dz + log(1/δ)

n
.

for some C ′ > 0 that depends on problem-specific parameters.
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Proof of Eq. (10). Under the conditions of the claim, we establish from concentration inequalities for subgaussian vectors
(see, e.g., Theorem 6.5 in (Wainwright, 2019)) that with probability at least 1− δ,

κmin

2
≤ κmin − cν2θ

√
dθ + log(1/δ)

n
≤ σmin

(
1

n

n∑
i=1

θiθ
⊤
i

)
,

≤ σmax

(
1

n

n∑
i=1

θiθ
⊤
i

)
≤ κmax + cν2θ

√
dθ + log(1/δ)

n
≤ 3

2
κmax,

where the last line follows from the sample-size assumption. In addition, we also have from (Wainwright, 2019) that∥∥∥∥∥ 1n
n∑

i=1

θiθ
⊤
i − E[θiθ⊤i ]

∥∥∥∥∥
op

≤ cν2θ

√
dθ + log(1/δ)

n
.

Therefore, it follows from Woodbury’s matrix identity and the last two displays that∥∥∥∥∥∥
(
1

n

n∑
i=1

θiθ
⊤
i

)−1

− E[θiθ⊤i ]−1

∥∥∥∥∥∥
op

=

∥∥∥∥∥∥
(
1

n

n∑
i=1

θiθ
⊤
i

)−1((
1

n

n∑
i=1

θiθ
⊤
i

)
− E[θiθ⊤i ]

)
(E[θiθ⊤i ])−1

∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥
(
1

n

n∑
i=1

θiθ
⊤
i

)−1
∥∥∥∥∥∥

op

∥∥∥∥∥ 1n
n∑

i=1

θiθ
⊤
i − E[θiθ⊤i ]

∥∥∥∥∥
op

∥∥(E[θiθ⊤i ])−1
∥∥

op

≤ cν2θ
κ2
min

√
dθ + log(1/δ)

n
.

The second inequality follows from the assumption on sample size.

Proof of Eq. (11). Let {u1, . . . , uM} be a 1/4-covering of Sdθ−1 in the Euclidean norm with |M | ≤ 9dθ , and
{v1, . . . , vN} to be a 1/4-covering of Sdz−1 with |N | ≤ 9dz . Then by a standard discretization argument, we have∥∥∥∥∥ 1n

n∑
i=1

θiz
⊤
i − E[θizi]

∥∥∥∥∥
op

≤ 2 sup
k∈[M ],l∈[N ]

1

n

n∑
i=1

u⊤
k θiz

⊤
i vl − E[u⊤

k θiz
⊤
i vl].

Since u⊤
k θiz

⊤
i vl − E[u⊤

k θiz
⊤
i vl] are zero-mean subexponential variables by assumption, it follows that

P

{∣∣∣∣∣ 1n
n∑

i=1

u⊤
k θiz

⊤
i vl − E[u⊤

k θiz
⊤
i vl]

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
−cmin

{
nt2

L2
θz

,
nt

Lθz

})
.

Applying a union bound over M,N and setting t = cLθz

√
dθ+dz+log(1/δ)

n < cLθz with some sufficiently large constant
c > 0 yields

P


∥∥∥∥∥ 1n

n∑
i=1

u⊤
k θiz

⊤
i vl − E[u⊤

k θiz
⊤
i vl]

∥∥∥∥∥
op

≥ t


≤ P

{
sup
k,l

∣∣∣∣∣ 1n
n∑

i=1

u⊤
k θiz

⊤
i vl − E[u⊤

k θiz
⊤
i vl]

∣∣∣∣∣ ≥ t

}

≤ 2 exp

(
(dθ + dz) log 9− cmin

{
nt2

L2
θz

,
nt

Lθz

})
≤ δ,

which gives Eq. (11).
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Figure 3. Excess risk (top) and accuracy (bottom) versus n for plug-in performative optimization, the DFO algorithm, and greedy
SGD, with a changed value of β̃ = 1. We display the ±1 standard deviation, logarithmically scaled. The takeaways are largely
the same as in Figure 2.

B. Further Experimental Results and Details
We repeat each experiment 10 times and plot the mean excess risk as well as the ±1 standard deviation. In all experiments
on strategic classification, we choose the ridge parameter λ = 0.001.

In Figure 3 we provide an additional comparison in the context of the strategic-regression example from Section 5. We let
β̃ = 1, showing that our takeaways are robust to the exact value of β̃.

We also run the strategic-regression experiment on a real data set. We use the credit data set, in particular the processed
version available at: https://github.com/ustunb/actionable-recourse. The data set contains 30, 000
samples of d = 17 features and a {0, 1}-valued outcome yi with yi = 1 denoting individual i not defaulting on a credit card
payment. The features include marital status, age, education level, and payment patterns. We assume the individuals can
modify their records on education level and payment patterns (features 7–17), but cannot change other records. We use
1500 randomly drawn data points to form the base distribution D0; we assume the same true response model and use the
same distribution atlas as before. We set β̃ = 5, Θ = {θ : ∥θ∥ ≤ 1}, and standardize the features so that each column is
zero-mean and has unit variance. In Figure 4, we observe patterns similar to those in Figure 2, though the gap in accuracy
between our method and SGD is smaller.

Below we provide implementation details for the two considered baselines.

Derivative-free optimization (DFO). Starting from θ0 = 1d/
√
d, we run the updates

θt+1 = Proj∥·∥≤1(θt − ηtÊ[uPR(θt + δu)d/δ])

for t ≥ 0, where the step size ηt = c0/(t + 1), u is uniformly distributed on Sd−1, and Ê[uPR(θt + δu)d/δ] denotes
the unbiased sample estimation of E[uPR(θt + δu)d/δ] using m i.i.d. pairs of (u, z) ∼ Unif(Sd−1)×D(θt + δu). The
projection Proj∥·∥≤1(x) denotes the projection of x ∈ Rd onto the ball {v ∈ Rd : ∥v∥ ≤ 1} in Euclidean norm. We choose
the step size parameter c0 ∈ [10−4, 10−1], the batch size m in [1, 500], and δ ∈ [0.1, 100] via grid search.

Greedy stochastic gradient descent (SGD). Starting from θ0 = 1d/
√
d, we run the updates

θt+1 = Proj∥·∥≤1(θt − ηt∇θℓ(zt; θt))

with step size ηt = c0/(t+ 1) and zt ∼ D(θt). The step size parameter c0 ∈ [10−4, 10] and the batch size m ∈ [1, 500] are
selected via grid search. The greedy SGD algorithm neglects the implicit dependence of z on θ due to performativity, and
therefore typically converges to suboptimal points.
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Figure 4. Excess risk (top) and accuracy (bottom) versus n for plug-in performative optimization, the DFO algorithm, and greedy
SGD, on the credit data set. We display the ±1 standard deviation, logarithmically scaled.

Performative gradient descent (PerfGD). Assume the distribution map has the form z ∼ D(θ) ⇔ z
d
= N (f(θ), σ2Id),

where f is some unknown smooth function. Starting from θ0 = 1d/
√
d, we first run the greedy SGD updates for H burn-in

steps. Next, we run SGD on the performative risk using an estimated performative gradient, namely,

θt+1 = Proj∥·∥≤1(θt − ηt∇̂θE[ℓ(zt; θt)]),

with step size ηt = c0/(t+ 1) and zt ∼ D(θt), where the estimated performative gradient is computed as in Algorithm 3
and Eq. (2) in (Izzo et al., 2021) via numerically estimating the gradient ∂f

∂θ .

We choose the number of burn-in steps H = 10d. The step size parameter c0 ∈ [10−4, 10] and the batch size m ∈ [1, 500]
are selected via grid search. PerfGD runs stochastic gradient descent on the performative risk using an estimated performative
gradient. It should be noted that the numerical approximation of ∂f

∂θ is unstable when d > 1, which results in the suboptimal
performance of PerfGD in our location-family experiment.

C. Solving for θ̂PO

The map Dβ̂ belongs to the distribution atlas chosen by the learner, and as such, it is fully specified and known to the learner.

Therefore, solving for θ̂PO = argminθ∈Θ Ez∼Dβ̂(θ)
[ℓ(z; θ)] can only incur error due to computational inaccuracies. There

is no additional statistical complexity (i.e. dependence on n), which is the focus of our excess risk bounds in Theorem 3.1.
In a sense, our results can be thought of as analogous to classical generalization bounds for empirical risk minimizers: we
are concerned with characterizing the performance of the empirical risk minimizer, not with computational strategies for
finding them.

More practically, there are several approaches one can take to compute θ̂PO. Sometimes θ̂PO has a closed-form expression,
as in Example 1. In such cases there is no error in Step 3 of Algorithm 1. Sometimes Dβ̂(θ) and ℓ(z; θ) are simple enough

that PRβ̂(θ) has a closed-form expression; in such cases, we compute θ̂PO by running gradient descent on PRβ̂(θ). This is
the case in all our experiments. Alternatively, if PRβ̂(θ) does not have a closed-form expression, one may compute θ̂PO by
using a black-box optimizer on an unbiased estimate of Ez∼Dβ̂(θ)

[ℓ(z; θ)] obtained by drawing many i.i.d. samples from
Dβ̂(θ) (the right algorithm depends on what we know about the problem; generically we can always use DFO (Flaxman
et al., 2004)). Since these samples are all synthetic and do not count toward the sample complexity—i.e., they do not require
collecting real data but only simulation—we can draw arbitrarily many samples to achieve a small numerical error.
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