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ABSTRACT

SHAP values – a.k.a. SHapley Additive exPlanations – are a popular local feature-
attribution method widely used in interpretable and explainable AI. We tackle the
problem of efficiently computing these values. We cover both the model-agnostic
(black-box) setting, where one only has query access to the model and also the
case of (ensembles of) trees where one has access to the structure of the tree.
For both the black-box and the tree setting we propose a two-stage approach for
estimating SHAP values.
Our algorithm’s first step harnesses recent results showing that many real-world
predictors have a spectral bias that allows us to either exactly represent (in the
case of ensembles of decision trees), or efficiently approximate them (in the case
of neural networks) using a compact Fourier representation. For the case of trees,
given access to the tree structure, one can extract the Fourier representation using
a simple recursive algorithm. For the black-box setting, given query access to
the black-box function, we utilize a sparse Fourier approximation algorithm to
efficiently extract its compact Fourier approximation.
In the second step of the algorithm, we use the Fourier representation to exactly
compute SHAP values. The second step is computationally very cheap because
firstly, the representation is compact and secondly, we prove that there exists a
closed-form expression for SHAP values for the Fourier basis functions. Fur-
thermore, the expression we derive effectively “linearizes” the computation into a
simple summation and is amenable to parallelization on multiple cores on a GPU.
Since the function approximation (first step) is only done once, it allows us to
produce Shapley values in an amortized way. We show speedups compared to
relevant baseline methods equal levels of accuracy for both the tree and black-
box settings. Moreover, this approach introduces a reliable and fine-grained con-
tinuous trade-off between computation and accuracy through the sparsity of the
Fourier approximation, a feature previously unavailable in all black-box methods.

1 INTRODUCTION

Interpretability of machine learning models is paramount, especially in high-stakes applications
in areas such as medicine, fraud detection, or credit scoring. This is crucial to the extent that in
Europe, the General Data Protection Regulation (GDPR) mandates the legal right to an explanation
of algorithmic decisions (Voigt & Von dem Bussche, 2017). Say we are given a predictor/model
h : Xn → R which maps an input (data) instance x∗ ∈ Xn to a prediction h(x∗). Instance-wise
a.k.a. local feature attribution methods assign “importances” to each of the features x∗

i ∈ X of the
instance x∗ which quantify how influential that feature was in the model predicting the value h(x∗).

A widely used method for deriving attributions (importances) is the notion of SHapley Additive ex-
Planations, commonly referred to simply as SHAP values. Originally, the notion of Shapley values
was introduced in the seminal work of Shapley (1952) in the context of cooperative game theory.
The Shapley value is a mathematically well-founded and “fair” way of distributing a reward among
all the members of a group playing a cooperative game and it is computed based on the rewards that
would be received for all possible coalitions. The Shapley value is the unique way of distributing
the reward that satisfies several reasonable mathematical properties that capture a notion of fairness
(Shapley, 1952). In the context of machine learning and statistics, the players become features, the
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reward is the prediction of the predictor h and the SHAP value is the “contribution” or “influence”
of that feature on the prediction. Shapley values are widely used due to their mathematical sound-
ness and desirable properties Gromping (2007); Štrumbelj et al. (2009); Owen (2014); Datta et al.
(2016); Owen & Prieur (2017); Lundberg & Lee (2017); Lundberg et al. (2020) Aas et al. (2021).

Despite their prevalence, computing SHAP values is challenging, as it involves an exponential
summation, i.e. a summation over exponentially many terms , see Equation 1. This is because
the formula accounts for a feature’s importance in the context of all possible “coalitions” of
other features, and therefore the formula covers all possible subsets of other features. Therefore,
approximating them and speeding up the computation has received attention in a variety of settings.
SHAP value computation can easily dominate the computation time of industry-level machine
learning solutions on datasets with millions or more entries (Yang, 2021). Yang (2021) point out
that industrial applications sometimes require hundreds of millions of samples to be explained.
Examples include feed ranking, ads targeting, and subscription propensity models. In these
modeling pipelines, spending tens of hours in model interpretation becomes a significant bottleneck
(Yang, 2021) and one usually needs to resort to multiple cores and parallel computing.

Significant work has gone into speeding up the computation of SHAP values for a variety of settings.
In the (ensemble of) trees setting, full access to the tree structure is assumed. Yang (2021); Bifet
et al. (2022) provide theoretical and practical computational speedups to the classic TREESHAP
(Lundberg et al., 2020). Similar to these results, in this work, we provide significant speedups for
the tree setting over previous methods.

As opposed to the tree setting, which is a “white box” setting, in the model-agnostic a.k.a black-box
setting, we only have query access to the model. Here, our only means of access to the predictor is
that we can pick an arbitrary x ∈ Xn and query the predictor for its value h(x). The usual approach
here is to approximate the exponential sum of the SHAP value computations using stochastic sam-
pling (Covert & Lee, 2020; Mitchell et al., 2022a; Lundberg & Lee, 2017). In this setting, Covert
& Lee (2020); Mitchell et al. (2022a) provide sampling methods that require fewer queries to the
black-box compared to vanilla KERNELSHAP (Lundberg & Lee, 2017) for equal approximation ac-
curacy. FASTSHAP Jethani et al. (2021), which introduces a method for estimating Shapley values
in a single forward pass using an end-to-end learned explainer neural network model. Our algorithm
FOURIERSHAP falls into the query-access black-box setting as well.

However, we take a different approach. We are guided by the key insight that many models used
in practice have a “spectral bias”. Yang & Salman (2019); Valle-Perez et al. (2018) provably and
experimentally show that fully connected neural networks with binary (zero-one) inputs learn low-
degree – and therefore sparse – functions in a basis called the Walsh-Hadamard a.k.a Fourier basis.
It is well known that the Walsh-Hadamard transform (WHT) of an ensemble of T trees of depth
d is also of degree at most d and moreover, k = O(T4d)-sparse (Kushilevitz & Mansour, 1993;
Mansour, 1994).

Our contributions: Guided by the aforementioned insights, we provide an algorithm to compute
SHAP values, using the Fourier representation of the tree or black-box model. We first approxi-
mate the black-box function by taking its sparse Fourier transform. We theoretically justify, and
show through extensive experiments, that for many real-world models such as fully connected neu-
ral networks and (ensembles of) trees this representation is accurate. Subsequently, we prove that
SHAP values for a single Fourier basis function admit a closed-form expression not involving an
exponential summation. Therefore, using the Fourier representation we overcome the exponential
sum and can utilize compute power effectively to compute SHAP values. Furthermore, the closed-
form expression we derive effectively “linearizes” the computation into a simple summation and
is amenable to parallelization on multiple cores or a GPU. The Fourier approximation step is only
done once, therefore FOURIERSHAP amortizes the cost of computing explanations for many inputs.
Subsequently, SHAP computations using the Fourier approximation are orders of magnitude faster
compared to other black-box SHAP approximation methods such as KERNELSHAP and other vari-
ations of it which all involve a computationally expensive optimization. We show speedups over
other methods such as DEEPLIFT (Shrikumar et al., 2017) and FASTSHAP (Jethani et al., 2021)
as well. In addition to the speedup, our algorithm enables a reliable continuous trade-off between
computation and accuracy, controlled in a fine manner by the sparsity of the Fourier approximation.
This was not formerly possible with these two black box methods.
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2 BACKGROUND

This section reviews the notion of SHAP values, and sparse and low-degree Fourier transforms.

2.1 SHAPLEY VALUES

In game theory, a cooperative game is a function v : 2[n] → R that maps a subset (coalition) S ⊆ [n]
of a group of players [n] = {1, . . . , n} to their total reward (when they cooperate). If all the players
cooperate they win a total reward of value v([n]). The main question is how they would distribute
this reward among themselves. Shapley (1952) resolved this problem by a deriving a unique value
based on “fairness axioms” proposed in his seminal work (Shapley, 1952). The Shapley value of
player i ∈ [n] is:

ϕi(v) =
1

n

∑
S⊆[n]\{i}

v(S ∪ {i})− v(S)(
n−1
|S|
) (1)

Intuitively, one can view the term v(S ∪ {i})− v(S) as the marginal contribution of player i when
they are added to the coalition S. This marginal value is weighted according to the number of
permutations the leading |S| players and trailing n− |S| − 1 players can form.

In the machine learning context, we have a predictor h : Xn → R mapping an n-dimensional feature
vector to a value. In this context, the players become features xi ∈ X and the reward is the prediction
of the predictor h and the Shapley value is the “contribution” or “influence” of the i’th feature on
the prediction. We define v(S) accordingly to capture this notion (Lundberg & Lee, 2017):

v(S) = Ex[n]\S∼p(x[n]\S))[h(x
∗
S ,x[n]\S)],

where x∗ ∈ Xn is the instance we are explaining. This definition implicitly captures the way we
handle the missing features (feature not present in the coalition): we integrate the missing features
with respect to the marginal distribution p(x[n]\S)). In practice, the marginalization is performed
with an empirical distribution by taking a subset of the training data as background dataset.

The choice of which distribution to average the missing features from has been discussed thoroughly
in the relevant literature. As mentioned before, in this work, we focus on the SHAP values as de-
fined in KERNELSHAP introduced by Lundberg & Lee (2017); Lundberg et al. (2020) also known
as “Interventional” (Janzing et al., 2020; Van den Broeck et al., 2021) or “Baseline” (Sundararajan
& Najmi, 2020) SHAP, where the missing features are integrated out from the marginal distribu-
tion p(x[n]\S), as opposed to the conditional distribution p(x[n]\S |xS). We refer the reader to
Appendix B.3 for a comprehensive overview of the literature discussing these two notions and their
conceptual differences.

Since we will be using the well-known KERNELSHAP (Lundberg & Lee, 2017) and its variant
LINREGSHAP (Covert & Lee, 2020) as a baseline we briefly review their method here. Lundberg
& Lee (2017) propose the “least squares characterization” of SHAP values. They prove that SHAP
values are the solution to the following minimization problem:

β∗
0 , . . . , β

∗
n ≜ arg min

β0,...,βn

∑
0<|S|<n

n− 1(
n
|S|
)
|S|(n− |S|)

(
β0 +

∑
i∈S

βi − v(S)

)

s.t. : β0 = v({}), β0 +

n∑
i=1

βi = v([n])

Then ϕi(v) = β∗
i .

Unfortunately, the above optimization still involves an exponential sum. Therefore, Lundberg &
Lee (2017) propose to sample subsets S uniformly at random. Covert & Lee (2020); Mitchell et al.
(2022a) provide better ways of sampling and solving the optimization to get approximations with
lower variances and biases. Nevertheless, all these methods require solving a least squares mini-
mization subject to constraints for each explained instance x∗ and, therefore, are computationally
expensive.
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Later, we also compare our method to FASTSHAP (Jethani et al., 2021), a model-agnostic algorithm
for computing SHAP values. In FASTSHAP, a parametric explainer ϕ (e.g., MLP) is trained to
directly generate SHAP values given data samples. Since training is only done once, this, similar
to us, amortizes the cost of generating SHAP values across multiple instances. Computing SHAP
values only requires a forward pass on the trained model and therefore can be done very quickly.

2.2 FOURIER REPRESENTATIONS

Here we review the notions of the Fourier basis and what we mean by sparsity. We will later use
sparse Fourier representation of functions to compute SHAP values. In this work, we focus on the
setting where the inputs to the black-box function (predictor) are binary, i.e., Xn = {0, 1}n. This
means, we assume we have binary features and/or categorical features, through standard one-hot
representations 1. The Fourier representation of the pseudo-boolean function h : {0, 1}n → R is the
unique expansion of h as follows: h(x) = 1√

2n

∑
f∈{0,1}n

ĥ(f)(−1)⟨f,x⟩.

The inner product of two vectors f, x ∈ {0, 1}n is defined as: ⟨f, x⟩ ≡
∑n

i fixi,∀f, x ∈ {0, 1}n.

The unique function ĥ : {0, 1}n → R is called the Fourier transform of h. For any f ∈ {0, 1}n,
ĥ(f) is called the Fourier coefficient corresponding to the frequency f . The family of functions
1√
2n

Ψf (x) = (−1)⟨f,x⟩, f ∈ {0, 1}n are the 2n-many Fourier basis functions. These basis functions

are orthonormal:
∑

x∈{0,1}n

Ψf (x)Ψf ′(x) =

{
0 f ̸= f ′

1 f = f ′ , f, f ′ ∈ {0, 1}n. Therefore, they form a

basis for the vector space of all pseudo-boolean functions h : {0, 1}n → R.

We define the support of h to be supp(h) = {f ∈ {0, 1}n|ĥ(f) ̸= 0}. We say that a function h is k-
sparse if at most k of the 2n Fourier coefficients ĥ(f) are non-zero, i.e., |supp(h)| ≤ k. The degree
of a vector f ∈ {0, 1}n is denoted by deg(f) and is defined as the number of ones in the vector.
For example, if n = 5 then f = (1, 0, 0, 1, 0) is a vector of degree deg(f) = 2. We say a function
is degree d when the frequencies f ∈ {0, 1}n corresponding to non-zero Fourier coefficients are of
degree less or equal to d i.e. ∀f ∈ supp(h) it holds that deg(f) ≤ d.

By definition of the Fourier basis, a k-sparse degree d function can be written as a summation of k
(Fourier basis) functions, each one depending on at most d input variables. The converse is also true:

Proposition 1. Assume h : {0, 1}n → R can be decomposed as follows: h(x) =
p∑

i=1

hi(xSi
), Si ⊆

[n]. That is, each function hi : {0, 1}|Si| → R depends on at most |Si| variables. Then, h is

k = O(
p∑

i=1

2|Si|)-sparse and of degree d = max(|S1|, . . . , |Sp|). (Proof in Appendix C.1)

The sparsity k and degree d capture a notion of complexity for the underlying function. Intuitively
speaking, the sparsity factor k puts a limit on the number of functions in the decomposition, and the
degree d puts a limit on the order of interactions among the input variables.

One can see from Proposition 1, that modular functions, i.e., functions that can be written as a sum
of functions each depending on exactly one variable, are k = O(n)-sparse and of degree d = 1.
A slightly more “complex” function capturing second-order interactions among the input variables,
i.e., a function that can be written as a sum where each term depends on at most two variables is going
to be k = O(n2)-sparse and of degree d = 2. The following proposition generalizes this result.

Proposition 2. Let, h : {0, 1}n → R be a pseudo-boolean function and let d ∈ N be some constant
(w.r.t. n). If h is of degree d, then, it is k = O(nd)-sparse. (Proof in Appendix C.1)

This proposition formally shows that limiting the order of interactions among the input variables
implies an upper bound on the sparsity.

1Continuous features can be discretized into quantiles, enabling their transformation into categorical fea-
tures.
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3 MANY REAL-WORLD BLACK-BOX PREDICTORS HAVE SPARSE FOURIER
TRANSFORMS

In this section, we discuss the sparsity of the Fourier transforms of ensembles of trees and why
neural networks can be approximated by a sparse Fourier representation because of their spectral
bias. This shows both these classes of functions can be compactly represented in the Fourier basis.
The results here will become useful in the next section, where we present our main contribution on
how we can leverage this compact representation, to precisely compute SHAP values cheaply.

3.1 SPECTRAL BIAS OF FULLY CONNECTED NEURAL NETWORKS

The function a fully connected neural network represents at initialization is a sample from a Gaussian
Process (GP) (Rasmussen, 2004) in the infinite-width limit. Here, the randomness is over the initial
weights and biases. The kernel K of this GP is called the Conjugate Kernel (CK) (Daniely et al.,
2016; Lee et al., 2017). As mentioned before, here we investigate the case where the inputs to the
neural network are binary, i.e., X d = {0, 1}d, similar to (Yang & Salman, 2019; Valle-Perez et al.,
2018). The CK kernel Gram matrix formed on the whole input space X d = {0, 1}d, has a simple
eigenvalue decomposition :

K ∈ R2d×2d ,K =
∑

f∈{0,1}n

λfufu
⊤
f

where uf ∈ R2d is the eigenvector formed by evaluating the Fourier basis function Ψf for different
values of x ∈ {0, 1}n. Moreover, Yang & Salman (2019) show a weak spectral bias result in
terms of the degree of f . Namely, the eigenvalues corresponding to higher degree frequencies have
smaller values 2. Given the kernel, K, and viewing a randomly initialized neural network function
evaluated on the boolean {0, 1}n as a sample from a GP one can see the following: This sample,
roughly speaking, looks like a linear combination of the eigenvectors with the largest eigenvalues.

This is due to the fact that a sample of the GP can be obtained as
2n∑
i=1

λiwiui,wi ∼ N (0, 1).

Combining this with the spectral bias results implies that neural networks are low-degree functions
when randomly initialized.

Going beyond neural networks at initialization, numerous studies have investigated the behavior of
fully connected neural networks trained through (stochastic) gradient descent. Chizat et al. (2019);
Jacot et al. (2018b); Du et al. (2018); Allen-Zhu et al. (2019a;b) found that the weights of infinite-
width neural networks after training do not deviate significantly from their initialization, which has
been dubbed ”lazy training” by Chizat et al. (2019). Lee et al. (2018; 2019) showed that training
the last layer of an infinite-width randomly initialized neural network for an infinite amount of time
corresponds to Gaussian process (GP) posterior inference with a certain kernel. Jacot et al. (2018b)
extended the aforementioned results to training all the layers of a neural network (not just the final
layer). They showed the evolution of an infinite-width neural network function can be described
by the “Neural Tangent Kernel” (NTK, Jacot et al., 2018a) with the trained network yielding, on
average, the posterior mean prediction of the corresponding GP after an infinite amount of training
time. Lee et al. (2019) empirically showed the results carry over to the finite-width setting through
extensive experiments. Yang & Salman (2019) again showed that the uf ∈ R2d defined above
are eigenvectors of the NTK Gram matrix and spectral bias holds. Gorji et al. (2023) validated
these theoretical findings through extensive experiments in finite-width neural networks by showing
that neural networks have “less tendency” to learn high-degree frequencies. We refer the reader to
Appendix B.1 for a more comprehensive review.

The aforementioned literature shows that neural networks can be approximated by low-degree func-
tions. By Proposition 2, they can be approximated by sparse functions for a large enough sparsity
factor k. Our experiments in Section 5 provide further evidence that neural networks trained on real-
world datasets are approximated well with sparse (and therefore compact) Fourier representations.

2To be more precise, they show that the eigenvalues corresponding to even and odd degree frequencies form
decreasing sequences. That is, even and odd degrees are considered separately.
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3.2 SPARSITY OF ENSEMBLES OF DECISION TREES

In our context, a decision tree is a rooted binary tree, where each non-leaf node corresponds to one
of n binary (zero-one) features, and each leaf node has a real number assigned to it. We denote the
function a decision tree represents by t : {0, 1}n → R. Let i ∈ [n] denote the feature corresponding
to the root, and let tleft : {0, 1}n−1 → R and tright : {0, 1}n−1 → R be the left and right sub-trees,
respectively. Then the tree can be represented as:

t(x) =
1 + (−1)⟨ei,x⟩

2
tleft(x) +

1− (−1)⟨ei,x⟩

2
tright(x) (2)

where, ei ∈ {0, 1}n is i’th indicator vector.

Thus, the Fourier transform of a decision tree can be computed recursively (Kushilevitz & Mansour,
1993; Mansour, 1994). The degree of a decision tree function of depth d is d, and if |supp(tleft)| =
kleft and |supp(tright)| = kright, then |supp(t)| ≤ 2(kleft + kright). As a result, a decision tree
function is k-sparse, where k = O(4d), although in some cases, when the decision tree is not
balanced or cancellations occur, the Fourier transform can be sparser, i.e., admit a lower k, than the
above upper bound on the sparsity suggests.

Due to the linearity of the Fourier transform, the Fourier transform of an ensemble of trees, such
as those produced by the random forest, cat-boost (Dorogush et al., 2018), and XGBoost (Chen &
Guestrin, 2016) algorithms/libraries, can be computed by taking the average of the Fourier transform
of each tree. If the random forest model has T trees, then its Fourier transform is k = O(T4d)-sparse
and of degree d equal to its maximum depth of the constituent trees.

4 COMPUTING SHAP VALUES WITH FOURIER REPRESENTATION OF
FUNCTIONS

In the previous section, we saw that many real-world models trained on tabular/discrete data can be
exactly represented (in the case of ensembles of decision trees), or efficiently approximated (in the
case of neural networks) using a compact (sparse) Fourier representation. We saw neural networks
have a tendency to learn approximately low-degree, and hence by Proposition 2 sparse, functions.
This has been attributed in numerous works to the reason why they generalize well and do not
overfit despite their over-parameterized nature (Valle-Perez et al., 2018; Yang & Salman, 2019; Huh
et al., 2022; Durvasula & Liter, 2020; Kalimeris et al., 2019; Neyshabur et al., 2017; Arpit et al.,
2017). We also saw that (ensembles) of decision trees, by nature, have sparse Fourier representations
(Kushilevitz & Mansour, 1993; Mansour, 1994). More generally, as made formal in Proposition 1
and the remarks after, any “simple” function that can be written as a summation of a “few” functions
each depending on a “few” of the input variables is sparse and low-degree in the Fourier domain.

We propose the following method to approximate SHAP values for black-box functions. In the
first step, given query access to a black-box function, we utilize a sparse Fourier approximation
algorithm such as (Li & Ramchandran, 2015; Amrollahi et al., 2019; Li et al., 2015) to efficiently
extract its sparse and hence compactly represented Fourier approximation. See Appendix B.2 for a
more detailed explanation. Next, in our second step presented here, we use the Fourier representation
to exactly compute SHAP values.

Let h : {0, 1}n → R be some predictor which we assume to be k-sparse with n binary input features.
Let [n] ≜ {1, . . . , n} be the set of features and let x∗ ∈ {0, 1}n be the instance we are explaining.
As outlined in Equation 1, SHAP values are obtained from the following equation:

ϕh
i =

∑
S⊆[n]\{i}

|S|!(n− |S| − 1)!

M !
(vh(S ∪ {i})− vh(S)),∀i ∈ [n] = {1, 2, . . . , n}

where vh(S) is the average prediction when one only knows x∗
S . The average is taken over the

(background) dataset D = {(x, y)i} (Lundberg & Lee, 2017). More precisely:

vh(S) ≜
1

|D|
∑

(x,y)∈D

h(x∗
S , x[n]\S)

6
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The above equations show the SHAP values are linear with respect to the prediction function h.
Therefore we proceed by computing the Shapley values for a single Fourier basis function Ψf (x) =

(−1)⟨f,x⟩, f ∈ {0, 1}n:

ϕ
Ψf

i =
1

|D|
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
·
∑

(x,y)∈D

(
(−1)⟨f,x

∗
S∪{i}⊕x[n]\S∪{i}⟩ − (−1)⟨f,x

∗
S⊕x[n]\S⟩

)
(3)

The ⊕ operator concatenates two vectors along the same axis.

This expression still has an exponential (in n) sum, since we are summing over all subsets S. As
a main contribution, we find a closed-form analytic expression for the inner summation using a
combinatorial argument. This results in the following key Lemma:

Lemma 1. Let Ψf (x) = (−1)⟨f,x⟩ be the Fourier basis function for some f ∈ {0, 1}n. Then the
SHAP value of the Fourier basis function Ψf with respect to the background dataset D is given as:

ϕ
Ψf

i = −2fi
|D|

∑
(x,y)∈D

1xi ̸=x∗
i
(−1)⟨f,x⟩

(|A|+ 1) mod 2

|A|+ 1
(4)

where A ≜ {j ∈ [n]|xj ̸= x∗
j , j ̸= i, fj = 1}. (Proof in Appendix C.2)

Finally, by the linearity of SHAP values w.r.t. the explained function h, and by utilizing Lemma 1
we arrive at the final expression for SHAP values of h. We present this closed-form expression
alongside its computational complexity in our main Theorem:

Theorem 2. Let h : {0, 1}n → R be a k-sparse pseudo-boolean function with Fourier frequencies
f1, . . . , fk ∈ supp(h) and amplitudes ĥ(f),∀f ∈ supp(f). Let D be a background dataset of size
|D|. Then, Equation 5 provides a precise expression for the SHAP value vector ϕh = (ϕh

1 , . . . , ϕ
h
n).

One can compute this vector with Θ(n · |D| · k) flops (floating point operations).

ϕh
i = − 2

|D|
∑

f∈supp(h)

ĥ(f) · fi ·
∑

(x,y)∈D

1xi ̸=x∗
i
(−1)⟨f,x⟩

(|A|+ 1) mod 2

|A|+ 1
(5)

where A is the same as in Lemma 1. (Proof in Appendix C.3)

Theorem 2 gives us a computationally efficient way to go from a Fourier representation of a function
h to SHAP values. The SHAP values from this equation are exact, i.e., as long as the Fourier rep-
resentation is exact, the SHAP values are also precise values. This is in contrast to KERNELSHAP,
where the SHAP values are approximated using stochastic sampling and one needs to check for
convergence to make sure the approximation is accurate. The approximation in our method is con-
strained to the first step: computing the (approximate) sparse Fourier representation of the black-box.

Most importantly, the sum in Equation 5 is tractable. This is because we overcome the exponential
sum involved in Equation 1 by analytically computing the sum, with a combinatorial argument,
for a single Fourier basis function. We show the number of flops that are required to compute
SHAP values in Theorem 2 to be asymptotically equal to Θ(n · |D| · k). We note that the |D| and
k factors in the asymptotic computational complexity arise from the two summations present in
Equation 5. Through this expression, we are able to “linearize” the computation of SHAP values
to a summation over the Fourier coefficients and background dataset. This allows us to maximally
utilize the parallelization on multiple cores and/or GPUs to speed up the computation significantly.
Therefore, in the presence of multiple cores or a GPU, we can get a speedup equal to the level of
parallelization, as each core or worker can compute one part of this summation.

We implement our algorithm called FOURIERSHAP using JAX (Bradbury et al., 2018), which al-
lows for fast vectorized operations on GPUs. Each term inside the summations of Equation 5 can be
implemented with simple vector operations. Furthermore, summations over the k different frequen-
cies in the support of h and also background data points can both be efficiently implemented and
parallelized using this library using its VMAP operator. We perform all upcoming experiments on a
single GPU. Nevertheless, we believe faster computation can also be achieved by crafting dedicated
code designed to efficiently compute Equation 5 on GPU.
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Figure 1: Step 1 of FOURIERSHAP: Accuracy of the Fourier transform (in approximating the black-
box function) vs. runtime of the sparse Fourier algorithm. The accuracy is evaluated by R2 score
and comparing the outputs of the black-box and the Fourier representation on a uniformly generated
random dataset on the Boolean cube {0, 1}n. For a fixed level of accuracy, higher depth trees
require a higher number of Fourier coefficients k therefore a higher runtime. For the case of trees,
we eventually are able to reach a perfect approximation since the underlying function is truly sparse.

Finally, we note that the function approximation (first step) is only done once, i.e., we compute the
sparse Fourier approximation of the black-box only once. This is typically the most expensive part
of the computation. For any new query to be explained, we resort to an efficient implementation of
Equation 5. As our experiments will show, this yields orders of magnitudes faster computation than
previous methods such as KERNELSHAP where, as mentioned before in Section 2, each explained
instance requires solving an expensive optimization problem.

5 EXPERIMENTS

We assess the performance of our algorithm, FOURIERSHAP, on four different real-world datasets
of varying nature and dimensionality. Three of our datasets are related to protein fitness landscapes
(Poelwijk et al., 2019; Wu et al., 2016; Sarkisyan et al., 2016) and are referred to as “Entacmaea”
(dimension n = 13), “GB1” (n = 80), and “avGFP” (n = 236) respectively. The fourth dataset
is a GPU-tuning (Nugteren & Codreanu, 2015) dataset referred to as “SGEMM” (n = 40). The
features of these datasets are binary (zero-one) and/or categorical with standard one-hot encodings.
See Appendix D for dataset details.

For the Entacmaea and SGEMM datasets, we train fully connected neural networks with 3 hidden
layers containing 300 neurons each. For GB1 we train ensembles of trees models of varying depths
using the random forest algorithm and for avGFP we train again, ensembles of trees models of
varying depths using the cat-boost algorithm/library (Dorogush et al., 2018).

Black-box setting. The first step of the FOURIERSHAP algorithm is to compute a sparse Fourier
approximation of the black-box model. We use a GPU implementation of a sparse Walsh-Hadamard
Transform (sparse WHT) a.k.a Fourier transform algorithm (Amrollahi et al., 2019) for each of
the four trained models. The algorithm accepts a sparsity parameter k which is the sparsity of
the computed Fourier representation. Higher sparsity parameter k results in a better function
approximation but the sparse-WHT runtime increase linearly in k as well. In Figure 1 we plot the
accuracy of the Fourier function approximation as measured by the R2-score for different values of
k (which result in different runtimes). The R2 score is computed over a dataset formed by randomly
sampling the Boolean cube {0, 1}n.

The second step of FOURIERSHAP utilizes the Fourier approximation to compute SHAP values
using Equation 5. We implement this step using JAX library (Bradbury et al., 2018), and run it on a
GPU. For each model to be explained, we choose four different values for the number of background
samples and four different values for the number of query points to be explained, resulting in a
total of 16 runs of FOURIERSHAP for each model. Error bars capture these variations. We take
the runtime of KERNELSHAP, with Github repo default settings, to be the base runtime all other
methods are compared to, i.e., we assume its runtime is 1 unit.
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Figure 2: Speedup vs. Accuracy. Speedup of different algorithms is reported as a multiple com-
pared to the runtime of KERNELSHAP. Accuracy is quantified by the R2-score against ground
truth SHAP values. DEEPLIFT(Shrikumar et al., 2017): is a white-box algorithm for neural net-
works. LINREGSHAP(Covert & Lee, 2020) is black-box algorithm and a variance-reduced version
of KERNELSHAP. FASTSHAP(Jethani et al., 2021), a black box algorithm, is a trained MLP to
output SHAP values given inputs in one forward pass. We experiment three sizes for MLPs for each
dataset. FOURIERSHAP is ours. We are 10-10000x faster than LINREGSHAP on all dataset/model
variations. More notably, we outperform DeepLift (a white-box algorithm) in the neural network
model setting even though we assume only query access (black-box setting) to the neural network.
We achieve higher accuracy than FASTSHAP in 3/4 settings, while enabling a fine-grained control
over the speed-accuracy trade-off.

In order to measure the accuracy of the SHAP values produced by our and other algorithms we
need ground truth SHAP values. We use KERNELSHAP to this extent. Note that KERNELSHAP
is inherently an approximation method for computing interventional SHAP values. However, this
approximation becomes more precise by sampling more coalition subsets. Therefore, to generate
ground truth values, for each dataset, we sample more and more coalition subsets and check for
convergence in these values. A more detailed explanation can be found in Appendix F.3.

We compute the R2 values of Shapley values computed by FOURIERSHAP (ours) vs. ground truth
values to evaluate accuracy. For our method, a higher sparsity k for the Fourier representation results
in a more accurate function approximation therefore higher R2 values for the SHAP value quality.
On the other hand, a higher k results in a slower runtime as Equation 5 is a sum over the k different
frequencies. In Figure 2 we plot this trade-off.

We compare against the following baselines in Figure 2. The first is LINREGSHAP, a variance-
reduced version of KERNELSHAP (Covert & Lee, 2020). We found that although this algorithm
requires fewer queries from the black-box, it takes orders of magnitudes longer to run compared to
ours. Secondly, for the neural network models, we also compare against a state-of-the-art white-
box method – DEEPLIFT (Shrikumar et al., 2017). This algorithm, requires access to the neural
network’s activations in all layers. In comparison, we achieve a 10-100x speedup while being both
more accurate and only assuming query access to the neural net (true black-box setting).

Finally, we compare against FASTSHAP (Jethani et al., 2021), which is the closest to our setting,
i.e., the model agnostic black-box, amortized setting. We provide higher accuracy for similar values
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Figure 3: Speedup vs. depth of tree, for different algorithms, reported as a multiple compared to
the runtime of TREESHAP Lundberg et al. (2020). FOURIERSHAP is ours. As other baselines
we have a GPU implementation of TREESHAP (Mitchell et al., 2022b), FASTTREESHAP (Yang,
2021), and PLTREESHAP (Zern et al., 2023). We achieve order of magnitude speedups over all
depths on the Entacmaea and SGEMM datasets. We also achieve significant speedups in the other
two datasets; however, the edge diminishes as the maximum depth increases.

of speedup compared to FASTSHAP in 3/4 settings. More importantly though, we can see by con-
trolling the sparsity parameter k of the Fourier function approximation, we can control the tradeoff
between accuracy and speed in a reliable and fine-grained manner. Whereas for FASTSHAP the
accuracy of the SHAP values relies on the functional approximation properties of the MLP which
directly produces SHAP values. As seen in Figure 2, the MLP can behave in unpredictable ways. In
this figure we can see that increasing the depth of the model (and hence the approximation capability
of the MLP) does not have a reliable effect on SHAP accuracy. Finally, in FASTSHAP for a different
choice of background dataset a new MLP model has to be trained from scratch. Since, the MLP ap-
proximates the process of directly computing SHAP values. Whereas we can support different sets
of background datasets since our Fourier functional approximation is done on the black box predic-
tor, and not the whole process of producing SHAP values in an end-to-end manner (FASTSHAP).

Tree setting. FOURIERSHAP can also be utilized for the computation of SHAP values for (en-
sembles of) trees in the white-box setting, i.e., where full access to the tree’s structure is available.
In this setting, the exact sparse Fourier representation of an ensemble of trees can be efficiently
computed (the first step of FOURIERSHAP) using Equation 2. With the exact Fourier representa-
tion at hand, SHAP values can be efficiently and exactly computed using Equation 5, the second
step of FOURIERSHAP. This makes our method a highly parallelizable alternative for TREESHAP
(Lundberg et al., 2020) with the potential for order of magnitude speedups.

To demonstrate our method’s ability in fast computation of SHAP values in this setting, we compute
SHAP values for random forests fitted on all aforementioned real-world datasets. We compare
FOURIERSHAP’s speedup over TREESHAP (Lundberg et al., 2020), to FASTTREESHAP (Yang,
2021), a fast implementation of TREESHAP, the GPU implementation of TREESHAP (Mitchell
et al., 2022b) and PLTREESHAP (Zern et al., 2023). To the best of our knowledge, these are the
fastest available frameworks for computation of the “interventional” SHAP values. Figure 3 shows
the superior speed of our method over all state-of-the-art algorithms in most settings, which weakens
by the increment of depth and number of features, resulting in more frequencies and computation
overhead. Note that the SHAP values computed by all methods are precise and identical to the
values produced by TREESHAP, which is to be expected for FOURIERSHAP, given access to exact
Fourier representation of random forests.

CONCLUSIONS

We illustrated in theory and practice how many black-box functions can be represented or efficiently
approximated by a compact Fourier representation. We proved that SHAP values of Fourier basis
functions admit a closed form expression, and therefore, we can compute SHAP values efficiently
using the compact Fourier representation. Moreover, this closed form expression is amenable to
parallelization. These two factors helped us in gaining speedups of 10-10000x over baseline methods
for the computation of SHAP values.
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A APPENDIX

B RELEVANT WORK

B.1 NEURAL NETWORK THEORY AND SIMPLICITY BIASES

With regards to simplicity biases in fully connected neural networks, a substantial amount of re-
search has been dedicated to analyzing neural networks in function space. This line of research is
dedicated to firstly showing that “infinite-width”, randomly initialized (with Gaussian distribution)
neural networks are distributed as Gaussian Processes (GPs) and secondly computing the kernel as-
sociated to the GP (Neal, 1996; Williams, 1996; Cho & Saul, 2009; Hazan & Jaakkola, 2015; Lee
et al., 2017; Ancona et al., 2018; Daniely, 2017). The kernel associated with the GP is commonly
known as the “conjugate kernel” (Daniely, 2017) or the “NN-GP kernel”(Lee et al., 2017). Other
works show that in infinite-width neural networks weights after training via SGD do not end up
too far from the original (Chizat et al., 2019; Jacot et al., 2018a; Du et al., 2018; Allen-Zhu et al.,
2019a;b), referred to as “lazy training” by Chizat et al. (2019). This allowed Jacot et al. (2018a)
to prove that the evolution of an infinite-width neural network during training can be described by
a kernel called the “Neural Tangent Kernel”. Lee et al. (2019) showed, through extensive experi-
ments that the same behavior holds even for the more realistic case of neural nets of finite width.
Empirically speaking, it was shown by Rahaman et al. (2019) that a neural net with one input tends
to learn sinusoids of lower frequencies in earlier epochs than those with higher frequencies. By
analyzing the spectrum of the NTK’s Gram matrix, Ronen et al. (2019); Basri et al. (2020) were
able to formally prove this empirical finding. Yang & Salman (2019); Fan & Wang (2020) analyze
the spectra of the NTK gram matrix for higher dimensional inputs. Specifically, Yang & Salman
(2019); Valle-Perez et al. (2018) provide simplicity bias results for the case where the inputs to the
neural net are Boolean (zero-one) vectors.

B.2 SPARSE AND LOW-DEGREE FOURIER TRANSFORM ALGORITHMS

We now discuss algorithms that efficiently approximate general black-box predictors by a Fourier
sparse representation. Let h : {0, 1}n → R be a any function. We assume we have query access to
h. That is, we can arbitrarily pick x ∈ {0, 1}n and query h for its value h(x). Without any further
assumptions, computing the Fourier transform requires us to query exponentially, to be precise 2n,
many queries: one for every x ∈ {0, 1}n. Furthermore, classical Fast Fourier Transform (FTT)
algorithms are known to take at least Ω(2n log(2n)) time.

Under the additional assumption that h is k-sparse, works such as Cheraghchi & Indyk (2017);
Amrollahi et al. (2019); Scheibler et al. (2015); Kushilevitz & Mansour (1993); Li & Ramchan-
dran (2015); Li et al. (2015) provide algorithms that obtain the Fourier transform more efficiently.
In particular, Amrollahi et al. (2019) provide algorithms with query complexity O(nk) and time
complexity O(nk log k) time. Assuming further that the function is of degree d = o(n), the query
complexity reduces to O(kd log n), with run time still polynomial in n, k, d. Crucially, even if the
function h is not k-sparse, Algorithm ROBUSTSWHT of Amrollahi et al. (2019) yields the best
k-sparse approximation in the ℓ2 − ℓ2 sense. More precisely, let us denote by hk : {0, 1}n → the
function that is formed by only keeping the top k non-zero Fourier coefficients of h and setting the
rest to zero. Then the algorithm returns a O(k)-sparse function g such that:∑

f∈{0,1}n

(ĝ(f)− ĥ(f))2 ≤ C(1 + ϵ) min
all k-sparse g

∑
f∈{0,1}n

(ĝ(f)− ĥk(f))
2,

where C is a universal constant. By Parseval’s identity, the same holds if the summations were over
the time (input) domain instead of the frequency domain.

B.3 SHAPLEY VALUES IN THE CONTEXT OF MACHINE LEARNING

In the context of ML, many works have derived a different notion of Shapley value depending on
what they mean by data distribution, deleted features, etc. We refer the reader to the survey by
Sundararajan & Najmi (2020); Janzing et al. (2020) for a comprehensive overview. In this work we
focus on the notion of SHAP introduced by Lundberg & Lee (2017); Lundberg et al. (2020) also
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known as “Interventional” (Janzing et al., 2020; Van den Broeck et al., 2021) or “Baseline” SHAP
(Sundararajan & Najmi, 2020) where the missing features are integrated out from the marginal
distribution as opposed to the conditional distribution (see Section 2). As pointed out by Janzing
et al. (2020) there are two main ways to define the SHAP value “interventional” and “observational”
SHAP. These are referred to by Sundararajan & Najmi (2020) as “baseline” and “conditional” SHAP
respectively.

As pointed out by Janzing et al. (2020) the difference between these definitions can be better viewed
with the lens of causality (Pearl, 2009). Roughly speaking “observational” SHAP tells us about how
influential a feature is to the prediction of the predictor if it goes from the state of being unobserved
to observed. “Interventional” SHAP is causal and tells us how influential a feature is if we were
to reach in (through a process called an intervention) and change that feature in order to change
the prediction. Put into the context of credit scores and loan approvals, “observational” SHAP will
provide us with important features which are “observed” by the predictor and hence are influential
in predicting if a particular loan request will be rejected or approved. Interventional SHAP would
tell us which feature we could change or “intervene” in order to change the outcome of the loan
request.

The original (ML) SHAP paper (Lundberg & Lee, 2017) proposes “observational” SHAP as the cor-
rect notion of SHAP. Van den Broeck et al. (2021); Arenas et al. (2021) provide intractability results
for observational SHAP in a variety of simple distributional assumptions on the data and simple
predictors f . This has lead to many attempts to approximate observational SHAP values (Lundberg
et al., 2020; Covert & Lee, 2020; Aas et al., 2021; Kwon et al., 2021; Sundararajan & Najmi, 2020).
It is interesting to note that the version of “Kernel”-SHAP in Lundberg & Lee (2017) is also an
approximation for observational SHAP values that ends up coinciding precisely with interventional
SHAP values, which explains a lot of the confusion in the community. Janzing et al. (2020) boldly
claims that researchers should stop the pursuit of approximations to “observation” SHAP values as
it lacks certain properties, for example, sensitivity i.e. the SHAP value of a feature can be non-zero
while the predictor f has no dependence on that feature. This phenomenon happens because when
features are correlated, the presence of a feature can provide information about other features that
the predictor does depend on. This does not happen in interventional SHAP. Finally, Chen et al.
(2020) argues that both SHAP definitions are worthy of pursuit. They emphasize that the interven-
tional framework provides explanations that are more “true to the model”, and the observational
approach’s explanations are more “true to the data”.

C PROOFS

Before we start with the proofs we review the Fourier analysis and synthesis equations. As we
mentioned in the Background Section 2, the Fourier representation of the pseudo-boolean function
h : {0, 1}n → R is the unique expansion of h as follows:

h(x) =
1√
2n

∑
f∈{0,1}n

ĥ(f)(−1)⟨f,x⟩

This is the so called Fourier “synthesis” equation.

The Fourier coefficients ĥ(f) are computed by the Fourier “analysis” equation:

ĥ(f) =
1√
2n

∑
x∈{0,1}n

h(x)(−1)⟨f,x⟩ (6)

C.1 PROOF OF PROPOSITIONS

We can now prove Proposition 1:

Proposition 1. Assume h : {0, 1}n → R can be decomposed as follows: h(x) =
p∑

i=1

hi(xSi
), Si ⊆

[n]. That is, each function hi : {0, 1}|Si| → R depends on at most |Si| variables. Then, h is

k = O(
p∑

i=1

2|Si|)-sparse and of degree d = max(|S1|, . . . , |Sp|). (Proof in Appendix C.1)
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Proof. Let g : {0, 1}n → R be a function dependent on exactly d variables xi1 , . . . , xid , where
i1, . . . , id ∈ [n] are distinct indices. We show that for any frequency f ∈ {0, 1}n, if fj = 1 for
some j /∈ S ≜ {i1, . . . , id}, then, ĝ(f) = 0. From the Fourier analysis Equation 6 we have:

ĝ(f) =
1√
2n

∑
x∈{0,1}n

g(x)(−1)⟨f,x⟩ =
∑

xi:i∈S

∑
xj :j∈[n]\S

g(x)(−1)⟨fS ,xS⟩(−1)⟨f[n]\S ,x[n]\S⟩

(i)
=
∑

xi:i∈S

g(x)(−1)⟨fS ,xS⟩
∑

xj :j∈[n]\S

(−1)⟨f[n]\S ,x[n]\S⟩
(ii)
=
∑

xi:i∈S

g(x)(−1)⟨fS ,xS⟩ · 0 = 0

Where Equation i holds because g is only dependent on the variables in S and Equation ii holds by
checking the inner sum has an equal number of 1 and −1 added together.

The proof of the proposition follows by the linearity of the Fourier transform.

Moving on to Proposition 2:
Proposition 2. Let, h : {0, 1}n → R be a pseudo-boolean function and let d ∈ N be some constant
(w.r.t. n). If h is of degree d, then, it is k = O(nd)-sparse. (Proof in Appendix C.1)

Proof. We simply note that the number of frequencies f ∈ {0, 1}n of degree at most d is equal to
d∑

i=0

(
n
i

)
. This sum is O(nd) for d constant w.r.t n.

C.2 PROOF OF LEMMA 1

Proof. We start from Equation 3:

ϕ
Ψf

i =
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
· 1

|D|
∑

(x,y)∈D

(
(−1)⟨f,x

∗
S∪{i}⊕x[n]\S∪{i}⟩ − (−1)⟨f,x

∗
S⊕x[n]\S⟩

)
=

1

|D|
∑

(x,y)∈D

∑
S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(−1)⟨f−i,x

∗
S⊕x[n]\S∪{i}⟩

(
(−1)fix

∗
i − (−1)fixi

)
By checking all 8 possible combinations of xi, x

∗
i , fi ∈ {0, 1}, one can see that (−1)fix

∗
i −

(−1)fixi = 2fi(xi − x∗
i ). This is simply because the two exponents only differ when fi = 1

and xi ̸= x∗
i .

To determine (−1)⟨f−i,x
∗
S⊕x[n]\S∪{i}⟩, we partition [n] \ {i} into two subsets A ≜ {j ∈ [n]|xj ̸=

x∗
j , j ̸= i, fj = 1} and B ≜ [n]\A∪{i}. Doing this, we can factor out (−1)⟨f−i,x−i⟩ and determine

the rest of the sign based on the number of indices in S where x and x∗ disagree and fi = 1. This is
equal to |A ∩ S|:

ϕ
Ψf

i =
2fi
|D|

∑
(x,y)∈D

(xi − x∗
i )(−1)⟨f−i,x−i⟩

∑
S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(−1)|A∩S|

A and B partition [n] \ {i}, therefore we split the inner sum as follows:

ϕ
Ψf

i =
2fi
|D|

∑
(x,y)∈D

(xi − x∗
i )(−1)⟨f−i,x−i⟩

∑
B̃⊆B

∑
Ã⊆A

(|Ã|+ |B̃|)!(n− (|Ã|+ |B̃|)− 1)!

n!
(−1)|Ã|

Since the inner expression only depends on the cardinalities of Ã and B̃ we can recast the inner sum
to be over numbers instead of subsets by counting the number of times each cardinality appears in
the summation:

ϕ
Ψf

i =
2fi
|D|

∑
(x,y)∈D

(xi − x∗
i )(−1)⟨f−i,x−i⟩

n−|A|−1∑
b=0

|A|∑
a=0

(
n− |A| − 1

b

)(
|A|
a

)
(a+ b)!(n− a− b− 1)!

n!
(−1)a

=
2fi
|D|

∑
(x,y)∈D

(xi − x∗
i )(−1)⟨f−i,x−i⟩

|A|∑
a=0

(−1)a
n−|A|−1∑

b=0

(|A|
a

)(
n−|A|−1

b

)
n
(
n−1
a+b

) (7)
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Now we find a closed-form expression for the innermost summation in the above Equation, which
is a summation over b where a is fixed:

n−|A|−1∑
b=0

(|A|
a

)(
n−|A|−1

b

)
n
(
n−1
a+b

) (i)
=

n−|A|−1∑
b=0

(|A|
a

)(
n−|A|−1

b

)
n

(n−1
|A| )

(a+b
a )(n−a−b−1

|A|−a )

(|A|
a

)(
n−|A|−1

b

)
=

1

n
(
n−1
|A|
) n−|A|−1∑

b=0

(
a+ b

a

)(
n− a− b− 1

|A| − a

)
(ii)
=

1

n
(
n−1
|A|
)( n

|A|+ 1

)
=

1

|A|+ 1
(8)

In Equation i, we use the following identity:
(
n−1
a+b

)(
a+b
a

)(
n−a−b−1

|A|−a

)
=
(
n−1
|A|
)(|A|

a

)(
n−|A|−1

b

)
. This

can be checked algebraically by simply writing down each binomial term as factorials and doing the
cancellations:

(
n− 1

a+ b

)(
a+ b

a

)(
n− a− b− 1

|A| − a

)
=

(n− 1)!

(a+ b)!(n− a− b− 1)!
· (a+ b)!

a!b!
· (n− a− b− 1)!

(|A| − a)!(n− a− b− 1− (|A| − a))!

=
(n− 1)!

a!b!(|A| − a)!(n− |A| − b− 1)!
.

=
(n− 1)!

|A|!(n− |A| − 1)!
· |A|!
a!(|A| − a)!

· (n− |A| − 1)!

b!(n− |A| − 1− b)!

=

(
n− 1

|A|

)(
|A|
a

)(
n− |A| − 1

b

)
In Equation ii, we use

∑n−|A|−1
b=0

(
a+b
a

)(
n−a−b−1

|A|−a

)
=
(

n
|A|+1

)
which holds because of the following

double-counting argument. The term
(

n
|A|+1

)
counts the number of ways to choose a subset of size

|A|+ 1 from a set of n elements. Imagine elements are numbered from 1 to n, and π1 < π2 < ... <
π|A|+1 ∈ [n] represent |A| + 1 chosen elements. Let’s condition on πa+1 = (a + b + 1) where
possible values for b can only be 0 ≤ b ≤ n − |A| − 1. This is due to the fact that πa+1 < a + 1
implies π1, ..., πa are chosen from less than a elements, and similarly πa+1 > n − |A| + a implies
πa+2, ..., π|A|+1 (|A| − a chosen elements) are chosen from less than |A| − a elements, which
are both impossible. Given the condition, a elements numbered lower than (a+ b+ 1) and |A| − a

elements numbered larger than (a+b+1) are also chosen. This is possible in
(
a+b
a

)(
n−a−b−1

|A|−a

)
ways.

Therefore, keeping in mind that a is fixed,
∑n−|A|−1

b=0

(
a+b
a

)(
n−a−b−1

|A|−a

)
should give the number of

ways to choose a subset of size |A|+ 1 from a set of n elements, through the new perspective.

Based on Equation 8, we see that the innermost summation in Equation 7 is only dependent on |A|.
Thus, we rewrite Equation 7 as follows:

ϕ
Ψf

i =
2fi
|D|

∑
(x,y)∈D

(xi − x∗
i )(−1)⟨f−i,x−i⟩ (|A|+ 1) mod 2

|A|+ 1

By absorbing the sign of (xi − x∗
i ) into the (−1)⟨f−i,x−i⟩ term we arrive at Equation 4:

ϕ
Ψf

i = −2fi
|D|

∑
(x,y)∈D

1xi ̸=x∗
i
(−1)⟨f,x⟩

(|A|+ 1) mod 2

|A|+ 1
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C.3 PROOF OF THEOREM 2

Proof. Proof of Equation 5 simply follows from the fact that SHAP values are linear w.r.t. the
explained function. Regarding the computational complexity we restate Equation 5

ϕh
i = − 2

|D|
∑

f∈supp(h)

ĥ(f) · fi
∑

(x,y)∈D

1xi ̸=x∗
i
(−1)⟨f,x⟩

(|A|+ 1) mod 2

|A|+ 1

where A ≜ {j ∈ [n]|xj ̸= x∗
j , j ̸= i, fj = 1}.

We first do a pre-processing step for amortizing the cost of computing |A|: we compute Ã ≜ {j ∈
[n]|xj ̸= x∗

j , fj = 1} which takes Θ(|D|n) flops.

We assume we are computing the whole vector Φh = (Φh
1 , . . . ,Φ

h
n), that is we are compute SHAP

values for all i ∈ [n] at the same time. Going back to the inner summation above, computing A

(and |A|) for different values of i ∈ [n] is Θ(n) if we utilize the pre-computed Ã. The inner product
⟨f, x⟩ is not dependent on i and is Θ(n) flops. Computing 1xi ̸=x∗

i
for different values of i ∈ [n]

is Θ(n). Therefore, the inner expression of the summand takes Θ(n) flops for a fixed data-point
x ∈ D and f ∈ supp(h).

Computing the inner sum for any fixed frequency f ∈ supp(h) is Θ(n|D|), because we are summing
over |D| vectors each of size n (the vector which holds SHAP value for each i ∈ [n]). Moving on
to the outer sum each evaluation of the inner sum is Θ(n|D|) and it results in a vector of size n (one
element for each SHAP value). The multiplication of ĥ(f) · fi is Θ(n). Therefore the cost of the
inner sum dominates i.e. Θ(n|D|). Since we are summing over the whole support the total number
of flops is: Θ(n|D|k) where k = |supp(h)|.

D DATASETS

We list all the datasets used in the Experiments Section 5.

Entacmaea quadricolor fluorescent protein. (Entacmaea) Poelwijk et al. (2019) study the flu-
orescence brightness of all 213 distinct variants of the Entacmaea quadricolor fluorescent protein,
mutated at 13 different sites.

GPU kernel performance (SGEMM). Nugteren & Codreanu (2015) measures the running time
of a matrix product using a parameterizable SGEMM GPU kernel, configured with different pa-
rameter combinations. The input has 14 categorical features. After one-hot encoding the dataset is
40-dimensional.

Immunoglobulin-binding domain of protein G (GB1). Wu et al. (2016) study the “fitness” of
variants of protein GB1, that are mutated at four different sites. Fitness, in this work, is a quantitative
measure of the stability and functionality of a protein variant. Given the 20 possible amino acids
at each site, they report the fitness for 204 = 160, 000 possible variants, which we represent with
one-hot encoded 80-dimensional binary vectors.

Green fluorescent protein from Aequorea victoria (avGFP). Sarkisyan et al. (2016) estimate
the fluorescence brightness of random mutations over the green fluorescent protein sequence of
Aequorea victoria (avGFP) at 236 amino acid sites. We transform the amino acid features into binary
features indicating the absence or presence of a mutation at each amino acid site. This converts the
original 54, 024 distinct amino acid sequences of length 236 into 49, 089 236-dimensional binary
data points.

E FOURIERSHAP IMPLEMENTATION

We implemented four versions of our algorithm, i.e., Equation 5, using Google JAX library (Brad-
bury et al., 2018). JAX provides a flexible framework for developing high-performace functions
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for vectorized computations. JAX enables automatic performance optimisation of algebraic com-
putation as well as just-in-time (JIT) compilation of the vectorized functions for faster iterations at
runtime.

The full code base is provided as supplementary material to the paper. We refer the reader there
for more details. Here we give a high level overview of the four versions we implemented and
experimented with:

• Base: In this version, frequencies are represented as n-dimensonal binary vectors. A sim-
ple implenetation is provided for computing the SHAP values given a single frequency, a
single background instance, and a single query instance. This is next extended to multiple
frequencies, multiple background instances, and multiple query instances using multiple
JAX vmaps.

• Precompute: This version is a modified version of the Base version. We take a closer look
at Equation 5 and pre-compute terms dependent only on frequencies f and background
dataset points x (not including terms dependent on the query point x∗). These are then
loaded from memory at run-time. This version was faster than Base in all of our experi-
ments, but inherently requires more memory; in our case, more GPU memory.

• Sparse: Here we utilize the sparsity of frequencies f ∈ {0, 1}n i.e. the fact that frequencies
have mostly zero entries in practice. In this version, for each frequency f , we focus on
positions i where fi = 1. Inspecting Equation 5, these are the only positions where f can
affect the final SHAP value vector.

• Positional: This version brings again builds on the previous and computes SHAP values
separately for each coordinate i ∈ [n]. This adds one extra precomputation step to map
frequencies to coordinates they affect, but enables mathematical simplifications as well as
potential for extra vectorization. We observed that although this extra precomputation step
could become time-consuming for large set of frequencies, it can result in a significantly
faster SHAP value computation at run-time in the case of low-degree Fourier spectrums,
compared to the Sparse version.

F EXPERIMENT DETAILS

The code for running the experiments and the implementations of all modules will be open-
sourced once the double-blind review process is over. We run all experiments on a machine with
one NVIDIA GeForce RTX 4090 GPU, on servers with Intel(R) Xeon(R) CPU E3-1284L v4 @
2.90GHz, restricting the memory/RAM to 20 GB, which was managed with Slurm.

F.1 BLACK-BOX

For the Entacmaea and SGEMM datasets, we train fully connected neural networks with 3 hid-
den layers containing 300 neurons each. The network is trained using the means-squared loss and
ADAM optimizer with a learning rate of 0.01. For GB1 we train ensembles of trees models of vary-
ing depths using the random forest algorithm using the sklearn library (Pedregosa et al., 2011). For
avGFP we train again, ensembles of trees models with 10 trees of varying depths using the cat-boost
algorithm/library(Dorogush et al., 2018). All other setting are set to the default in both cases. Model
accuracy for different depths are plotted in Figure 4.

For each dataset, we use all possible combination of number of background samples and query
instances (instances to be explained) from {10, 20, 30, 40}, resulting in a total of 16 runs per dataset.
Error bars in Figure 2 capture the variation in speedups.

F.1.1 FOURIERSHAP

For the first step of the FOURIERSHAP, i.e., computing a sparse Fourier approximation of the
black-box model, we use an implementation of a sparse Walsh-Hadamard Transform (sparse WHT)
a.k.a Fourier transform algorithm (Amrollahi et al., 2019) for each of the four trained models. The
implementation is done using Google JAX (Bradbury et al., 2018) library as part of this work, and
is available in the project repository.
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Figure 4: Model accuracy of tree models evaluated on the test set for different depths

For the second step of FOURIERSHAP, i.e., utilizing the approximated Fourier spectrum to compute
SHAP values as per Equation 5, we use our “Precompute” implementation. We discussed the details
in the previous Section, Section E.

To showcase the flexibility of our method in controlling the trade-off between speed and accuracy in
Figure 2, we prune the computed sparse Fourier spectrum in the first step, and remove frequencies
with amplitudes smaller than a specific threshold from the spectrum. For the threshold, we use 10
values between 0.0001 and 0.05 and specified a minimal descriptive subset of them as points in
Figure 2.

F.1.2 KERNELSHAP

For KERNELSHAP, we use the standard library provided by the writers of the paper (Lundberg &
Lee, 2017) 3 with its default settings. As part of the default setting, the paired sampling trick is also
enabled, which shown to be beneficial for faster convergence of KERNELSHAP. KERNELSHAP is
written in C and is to our knowledge the fastest implementation of this algorithm.

To ensure a fair comparison, we run models on GPU wherever possible, i.e., for Neural Networks
on Entacmaea and SGEMM datasets.

F.1.3 FAST-SHAP

We tried our best to capture the full potential of FASTSHAP in predicting SHAP values in terms
of speed and accuracy, to ensure a practical and grounded comparison to our method. Here are the
details on training Fast-SHAP as a baseline for computing interventional SHAP values:

• Imputer: ”Imputer” is a FastSHAP module used in the computation of neural networks’
loss, acting as the value function in SHAP formula, that generates model’s prediction us-
ing a strategy for treating features excluded in the subset, given the predictor and a subset
of features. To compute interventional SHAP values, we use MarginalImputer, im-
plemented in the original FastSHAP repo, which computes mean predictions when using
the backgorund dataset’s values for excluded features. Therefore, each trained FastSHAP
model is specific to a fixed background dataset, as the Imputer used in its loss is. In our
experiments, we use four different background datasets with multiple sizes per (real-world)
dataset, which lead to training four FastSHAP models per setting.

• Feature Subset Sampling: We train FastSHAP models with 1, 4, and 16 feature subset
samples per input. Although we did not observe monotonic improvements by increasing the
number of feature subset samples, we decided to use the models trained with 16 samples
per input to compare our method with, as it was mostly performing the best in terms of
accuracy.

• Paired Sampling: We enable paired sampling in FastSHAP, which is a trick to pair each
feature subset sample s ∈ {0, 1}n with its complement 1− s, that is shown to be beneficial
in reducing the variance and improving the accuracy, in both KernelSHAP and FastSHAP.

3https://github.com/slundberg/shap
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• Neural Network Architectures: We use MLPs with three different sizes to train Fast-
SHAP, and reported the results for each separately:

– Small (2-layer): in× 128× out.

– Medium (4-layer): in× 128× 128× 128× out.

– Large (6-layer): in× 128× 128× 128× 128× 128× out.

We use ReLU as the activation function in all models.

• Hyperparameters: We use the training batch size of 64 and FastSHAP’s defaults for all
other components and hyper-parameters. We train each model with early stopping and up
to 200 epochs.

Table 1 shows the time required to train the FASTSHAP models used in our black-box experi-
ments. Both FOURIERSHAP (ours) and FASTSHAP are amortized methods that have a heavier
“pre-computation” step. For FASTSHAP this pre-computation appears as training an MLP that di-
rectly predicts SHAP values and for us this appears as computing a Fourier transform. When com-
paring FASTSHAP’s initial training time to ours (reported in Figure 1), we can see our method has a
considerably lower pre-computation time.

Dataset Black-box
model

FastSHAP
size

Training time (m)
for background dataset size Total training

time (m)
10 20 30 40

Entacmaea MLP
Small 5 8 15 18 46

Medium 2 4 6 10 22
Large 3 6 11 11 31

SGEMM MLP
Small 47 130 249 173 599

Medium 55 52 162 128 397
Large 72 73 152 91 388

GB1 Random Forest
(depth=5)

Small 114 148 42 173 477
Medium 83 207 55 130 475

Large 54 102 155 184 495

avGFP Catboost
(depth=5)

Small 24 28 36 39 127
Medium 35 58 41 62 196

Large 11 20 22 25 78

Table 1: Training times of FASTSHAP models used in our black-box experiments (in minutes).
Unlike FOURIERSHAP (ours), FASTSHAP needs to be separately trained for each background
dataset. Part of the difference in the training times are due to the variance in the number of training
epochs before the early stopping occurs. Background datasets are also of varying sizes that lead to
different number of training samples per epoch.

F.1.4 LINREGSHAP

LINREGSHAP, is a variance-reduced version of KERNELSHAP (Covert & Lee, 2020). We again
use the implementation of the original writers4. Their implementation includes automatic detec-
tion of the convergence of stochastic sampling which is meant to speed up the algorithm by taking
less samples from the black box. Furthermore, as per the default setting, we also allowed paired
sampling.

To ensure a fair comparison, we run models on GPU wherever possible, i.e., for Neural Networks
on Entacmaea and SGEMM datasets.

4https://github.com/iancovert/shapley-regression
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F.1.5 DEEPLIFT

For DeepLift we as well use the library of Lundberg & Lee (2017) 5 with default settings. In this
setting the neural network is passed to the algorithm on a GPU to make sure this algorithm is as fast
as possible.

F.2 TREES

We fit random forests of maximum depths ranging from 3 to 8 with 20 estimators on 90% of all
four datasets used in the black-box setting. We compare performance of four algorithms in com-
puting SHAP values for these random forest models; the classic TREESHAP as well as its GPU
implementation 6, FASTTREESHAP 7, and our FOURIERSHAP. We always use 100 datapoints as
the background data samples, and 100 datapoints to explain and compute the SHAP values for. We
report the speedup of each algorithm over classic TREESHAP in Figure 3, with error bars showing
the standard deviation in speedup over five independent runs.

For the first step of the FOURIERSHAP, we derive the exact sparse Fourier representation from the
ensemble of trees, accessing the tree structures and using Equation 2. We also perform a pruning on
the exact sparse Fourier representation derived from the ensemble of trees, and keep the frequencies
with largest amplitudes that cover at least 99.95% of the original Fourier spectrum’s energy. We also
make sure to only remove frequencies with apmlitudes smaller than 0.005.

To run FOURIERSHAP, we use our “Precompute” implementation for Entacmaea, and “Positional”
version for other datasets, given larger feature spaces and the low-degreeness of the spectrum as
a result of bounded maximum depth. See Section E for implementation details. We compare the
resulted SHAP values with TREESHAP results and achieve R2 of at least 0.99, ensuring precise
values computed by FOURIERSHAP.

F.3 USING KERNELSHAP TO PRODUCE GROUND TRUTH SHAP VALUES

As mentioned before, in order to measure the accuracy of the SHAP values produced by our and
other algorithms we need ground truth SHAP values. We use KERNELSHAP to this extent. KER-
NELSHAP is an approximation method for computing interventional SHAP values. This approxima-
tion becomes more precise by sampling more coalition subsets. Therefore, to generate ground truth
values, for each dataset, we sample more and more and check for convergence in these values.

In order to check if KERNELSHAP values have converged to ground truth interventional SHAP
values, we update the number of subset samples KERNELSHAP uses to generate SHAP values for
each instance. Looking into KERNELSHAP repo 8, this is the default number of samples in the code:

self.nsamples = 2 * self.M + 2**11

Here, self.M is the number of indices where the instance is different from the background dataset.

To understand the convergence dynamics of KERNELSHAP, we multiply this number by multiple
“sample factor”s and run the algorithm. This allows us to experiment with the number of subsets
sampled, and find a sample factor that ensures convergence while avoiding unnecessary extra com-
putation. We test sample factors in the set {0.02, 0.03, 0.04, 0.1, 1.0, 2.0, 10.0}.

For instance, for GB1 dataset, we compute the R2 score of the KERNELSHAP SHAP values with
different sample factors to sample factor 10 (as the ground truth). For this dataset, the default setting,
i.e., sample factor = 1, seems good enough to make sure we are producing ground truth values and
that the algorithm has converged. This is the general procedure we use for all datasets.

5https://github.com/slundberg/shap
6https://github.com/slundberg/shap
7https://github.com/linkedin/FastTreeSHAP
8https://github.com/shap/shap/blob/master/shap/explainers/_kernel.py
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Figure 5: From left to right, 1- SHAP values generated by KERNELSHAP, 2- SHAP values gen-
erated by FourierSHAP (ours), 3- and the ground truth SHAP values computed by the original
exponential SHAP formula Equation1 on the Entacmaea dataset. In 3, Computation of ground truth
SHAP values using the exponential formula is possible due to the dataset containing all 213 possible
boolean feature vectors. 10 query points and a background dataset points are chosen at random and
are of size 10. This figure shows that both KernelSHAP and our method compute exact ground truth
SHAP values.

Sample Factor Runtime R2 w.r.t Ground Truth
0.02 4.031 0.902
0.03 4.274 0.934
0.04 4.530 0.967
0.1 5.399 0.991
1.0 19.452 0.999
2.0 34.451 1.0

10.0 160.251 1.0 (R2 w.r.t itself trivially=1)

Table 2: Table of sample factor, runtime, and R2 with respect to sample factor 10, on GB1 dataset.

G LIMITATIONS & FUTURE WORK

G.1 EXTENDING TO CONTINUOUS FEATURES

A limitation of FOURIERSHAP is that it currently does not natively support continuous features
and they have to be handled by quantization into categorical features. However, there is value
in computing efficient SHAP values for models with continuous features and this is an important
potential future work. In the following, we discuss how we think such an extension would work for
the two classes of models we extensively covered in this work, namely trees and MLPs.

Trees in the white-box setting. Trees can be seen as inherently discrete structures even though
they perfectly work for continuous features. By setting a threshold, i.e., a continuous number to
define a split of the node, all trees are inherently in fact binary. This way of thinking gives one very
simple but crude extension of the current framework: To assign to each node of the tree a binary
feature specifying whether a certain continuous feature is bigger or smaller than its threshold. This
would increase the feature dimension of the problem to the number of nodes in the tree in the worst
case scenario. With the careful design of the transformation of continuous features into node-based
binary features, this could be a potential extension for which the current work can lay a foundation.

A second and more principled and less crude way to think about the case of trees is to not use
a Fourier transform that we are using now which is over Z2 × Z2 × ...Z2 (n times where n is the
number of features). But rather use a transform over ZK1

,×, ZKn
where Ki is the number of distinct

thresholds feature i has in the tree. Coming up with a closed form solution for the SHAP values in
this Fourier basis is an interesting question that we also plan to look at. It is not too far-fetched to
think that we can also find a closed form solution to this discrete Fourier basis. This would perfectly
handle the case of any tree. Note that by a recursive formula one can readily compute the Fourier
transform of trees as well.
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MLPs. Regarding the case of MLPs with continuous input features, one can not simply resort
to the discrete Fourier transform of type Zk × . . . Zk to perfectly capture this structure as it is
no longer inherently discrete (like trees). This is a slightly tricky scenario because it requires us
to characterize the relationship of continuous and discrete Fourier transforms of neural networks
functions. In classical signal processing there are results which characterize what level of granularity
in discretization is required to reconstruct continuous transform with the discrete one for a given
level of error. These results depend on the Spectrum of the continuous transform. For example the
case of super imposition of sinusoids, where the spectrum has a bounded domain give rise to the
Nyquist rate etc.

For Neural network functions, if one had clear theoretical results on the spectral behavior of con-
tinuous transforms of neural networks it is not too hard to come up with conditions on the level of
quantization required for the discrete transform to approximate them. One result that computes the
spectrum appears over a multi dimensional inputs is (Theorem 1 of Rahaman et al. (2019)) but we
are not aware of any spectral bias bounds on the continuous spectrum derived from this equation.
However, for Neural networks with a single input dimension, bounds have been derived on the spec-
trum Cao et al. (2019) (in addition to the empirical results of Rahaman et al. (2019)). This intuitively
means that single input Neural networks provably have a tendency to approximate functions with
lower frequency sinusoids in the continuous domain. This implies that a discrete Fourier transform
over ZK can approximate these function correctly for a sufficiently large discretization parameter K.
This gives hope that a empirically a discrete Fourier transform of type ZK× . . . ZK for a sufficiently
large K would also approximate neural network function with higher dimensional inputs for a large
enough discretization parameter K. Therefore, an extension of our closed-form solution for SHAP
to ZK × . . . ZK transform could be a potential direction for the future work.

G.2 CONDITIONAL SHAP VALUES

Another direction for future work is extending this work to compute conditional SHAP values. In
this work, we only cover interventional SHAP values (the difference of interventional and condi-
tional SHAP versions is discussed in detail in Appendix B.3).

In model-based methods like TREESHAP Lundberg et al. (2020), one can use the tree itself to
approximate conditional distributions of the data in a tractable way. One idea for extending this
work is to attempt to tractably find a representation of the conditional distribution of the data using
a sparse Fourier approximation of the predictor. Next, computing conditional SHAP Values using
this conditional approximation.
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