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Abstract

Generating realistic patient-specific counterfactual images of treatment outcomes1

from longitudinal medical imaging is a challenging task, often complicated by2

confounding and selection bias in observational datasets. To address this challenge,3

we propose TIDAL (Temporal IPW Diffusion Adversarial Learning), a novel4

longitudinal causal diffusion framework that integrates causal inference techniques5

directly into diffusion model training. TIDAL utilizes a Stable Diffusion backbone6

conditioned on patient history and incorporates two key causal adaptations: (1)7

Temporal Inverse Propensity Weighting (IPW) that reweights the diffusion loss8

based on treatment propensity scores; and (2) Domain Adversarial Training that9

encourages treatment-invariant representations. We demonstrate TIDAL’s effective-10

ness by simulating knee osteoarthritis (OA) progression with longitudinal X-Rays11

from the Osteoarthritis Initiative (OAI). Performance is assessed using image fi-12

delity metrics and causally-relevant Individual Treatment Effect (ITE) metrics for13

OA features like Kellgren-Lawrence grade. Our experiments show that TIDAL14

outperforms baseline approaches, achieving 21.52% reduction in image genera-15

tion error and 18.43% improvement in causal validity, demonstrating significant16

improvements for longitudinal medical counterfactual generation.17

1 Introduction18

Visualizing patient-specific future health outcomes under hypothetical interventions holds transfor-19

mative potential for personalized medicine [7, 20]. However, generating faithful counterfactuals from20

observational medical data faces significant challenges due to confounding bias: factors influencing21

both treatment assignment and outcomes can lead to spurious correlations and misleading predic-22

tions [5, 23]. We focus on knee osteoarthritis (OA), a chronic joint disease affecting 10-37% of people23

over 60 [27, 3]. Using the Osteoarthritis Initiative (OAI) dataset [17], we propose TIDAL (Temporal24

IPW Diffusion Adversarial Learning), a framework integrating causal inference techniques into diffu-25

sion model training. TIDAL is the first longitudinal causal diffusion framework for patient-specific26

treatment outcome visualization applied to the OAI dataset.27

Contributions: (1) We proposed TIDAL Framework, combining temporal propensity weighting with28

adversarial training; (2) We incorporated TIDAL with diffusion generative model by reweighting29

diffusion loss based on treatment propensity scores and introducing Domain Adversarial Training30

that encourages treatment-invariant representations; (3) we conducted Comprehensive evaluation,31

demonstrating 21.52% reduction in image generation error and 18.43% improvement in causal32

validity over baseline approaches.33
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Figure 1: Overview of the TIDAL framework. Inputs (baseline X-Ray, patient covariates, text prompt)
condition a U-Net for diffusion-based counterfactual generation. TIDAL applies causal adjustment
via Temporal IPW RNN weighting and adversarial training with a treatment discriminator. Both
components use historical patient covariates to mitigate confounding bias.

2 Related Work34

Counterfactual Outcome Prediction: Traditional causal inference methods focusing on tabular data35

use techniques like Inverse Propensity Weighting (IPW) [22, 5] or representation learning [8]. Recent36

deep learning adaptations include sequence models [1, 16] and domain adversarial training [16].37

While some works have explored counterfactual image generation using diffusion models [26, 11, 32,38

30], integrating temporal causal inference into longitudinal medical imaging remains challenging.39

Some recent works [21, 19, 31] have advanced counterfactual medical image synthesis. However,40

existing approaches typically rely on conditional diffusion models [32, 30] without incorporating41

causality, leading to confounding bias. Our model combines diffusion generation with causal inference42

to directly address this challenge.43

Diffusion Models for Causal Inference: We choose diffusion models for their superior training44

stability and sample quality [6, 24]. Previous causal diffusion works either insufficiently account for45

causality [32, 30] or train from scratch [11, 26]. Instead, we fine-tune pre-trained models with causal46

inference-motivated losses.47

3 TIDAL: Temporal IPW Diffusion Adversarial Learning48

TIDAL generates patient-specific future medical images Xtl conditioning on baseline images Xte and49

treatments Aint during interval (te, tl], while mitigating confounding bias. The framework leverages50

patient history H long
te with two causal adaptations: Temporal IPW and Domain Adversarial Training.51

3.1 Temporal Conditional Diffusion Model52

Diffusion models [6, 28] progressively add noise to data in a forward process, then learn to reverse53

this process to generate samples close to the distribution of data. We build on Stable Diffusion [24]54

with: (1) Frozen VAE for latent encoding/decoding, (2) Trainable U-Net for denoising, (3) Frozen55

CLIP text encoder, (4) DDIM scheduler.56

U-Net Conditioning: The U-Net is conditioned on text prompts “A knee X-Ray ∆t months after57

{treatment list}” and spatio-temporal context cctx from a Context Encoder RNN that processes baseline58

image features, patient longitudinal history H long
te , follow-up duration ∆t, and knee side S. The final59

conditioning vector is cU-net = ctext + cctx. The diffusion loss is:60

Ldiffusion(θ) = Eztl ,ϵ,t,cU-net∥ϵ− ϵθ(zt, t, cU-net)∥22 (1)

where ztl is the target latent, ϵ ∼ N (0, I) is Gaussian noise, t is the diffusion timestep, and zt is the61

noisy latent.62
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3.2 Inverse Propensity Weighted Diffusion Model63

Modeling only the conditional distribution of outcome given treatments in the observational OAI64

dataset can result in selection bias and confounding bias due to non-random treatment assignment [25].65

Inverse Propensity Weighting (IPW) addresses confounding bias by reweighting samples to create66

a pseudo-randomized population. Unlike DiffPO [15] which uses static covariates, our temporal67

IPW employs LSTM-based sequence modeling for evolving treatment propensities based on patient68

history H long
te . We develop a propensity score model gϕp to estimate the probability of receiving69

treatments Aint during interval (te, tl]:70

π̂k = gϕp,k(H
long
te ,∆t, S) ≈ P (Aint,k = 1 | H long

te ,∆t, S) (2)

The IPW weight for sample i is the inverse of the joint treatment probability:71

wi =
1

P̂ (Aint = ai,int | H long
i,te

,∆ti, Si)
(3)

The IPW-adjusted diffusion loss reweights samples:72

LIPW-Diffusion =

N∑
i=1

wi · ℓdiffusion,i (4)

where ℓdiffusion,i is the per-sample diffusion loss.73

3.3 Domain Adversarial Training74

IPW training can introduce unstable training due to exploding weights when treatment probabili-75

ties approach zero. Domain adversarial training provides an alternative approach by encouraging76

treatment-invariant representations [14, 29].77

We train a treatment discriminator D (MLP parameterized by ϕ) to predict interval treatments Aint78

from generator context cctx, while generator G aims to fool D. The discriminator predicts over79

K = 13 classes (12 specific treatments plus "no treatment"). The discriminator loss uses Binary80

Cross-Entropy:81

LD(ϕ) = Ecctx,Aint

[
13∑
k=1

BCE(D(cctx;ϕ)k, Aint,k)

]
(5)

The generator loss combines diffusion and adversarial terms:82

LG(θ) = Ldiffusion(θ) + λadvLadv(θ) (6)

where Ladv(θ) encourages uniform discriminator output distributions (maximize prediction entropy;83

see Appendix G.3). Parameters are updated iteratively: fix θ, update ϕ; then fix ϕ, update θ.84

3.4 TIDAL: Combined IPW and Adversarial Training85

TIDAL combines both mechanisms with the overall loss:86

LTIDAL(θ, ϕ) = LIPW-Diffusion(θ) + λadvLadv(θ) + LD(ϕ) (7)

Training alternates between propensity model pre-training and joint adversarial updates. We alternate87

minϕ LD and minθ(LIPW-Diffusion + λadvLadv); the propensity model is pre-trained and frozen during88

these updates.89

4 Experiments90

We use the Osteoarthritis Initiative (OAI) dataset [17], creating longitudinal image pairs (Xte , Xtl)91

from chronologically ordered X-Ray scans spanning up to 144 months. Our preprocessing pipeline92

extracts patient longitudinal histories H long
te including clinical assessments, prior treatments, and93

demographic covariates. Data is split at patient level: 80% training (51,726 pairs), 10% validation94

(6,684 pairs), 10% test (6,331 pairs). See Appendix F for detailed statistics.95
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Table 1: Test Performance of Treatment Outcome Modeling with different causal inference adapta-
tions, including percentage decrease in error compared to Baseline.

Model Predicted Noise MSE Generated Image MSE SSIM

Value (% vs Base) Value (% vs Base) Value (% vs Base)

Baseline 0.1361 - 0.0079 - 0.77 -
+ IPW Training 0.1359 (0.15% ↓) 0.0075 (5.06% ↓) 0.80 (3.90% ↑)
+ Adversarial Training 0.1301 (4.41% ↓) 0.0067 (15.19% ↓) 0.81 (5.19% ↑)
TIDAL 0.1294 (4.92% ↓) 0.0062 (21.52% ↓) 0.83 (7.79% ↑)

Table 2: Causal Performance of Treatment Outcome Modeling with different causal inference
adaptations, including percentage decrease in ITE error compared to Baseline.

Model ITE - KL Grade ITE - JSN Medial Grade

Value (% Decrease vs Baseline) Value (% Decrease vs Baseline)

Baseline 0.8152 - 0.2996 -
+ IPW Training 0.7785 (4.50% ↓) 0.2754 (8.08% ↓)
+ Adversarial Training 0.7712 (5.40% ↓) 0.2511 (16.19% ↓)
TIDAL 0.7689 (5.68% ↓) 0.2444 (18.43% ↓)

Implementation Details: We use Stable Diffusion v1.5 with frozen VAE and CLIP encoders. The96

Context Encoder uses 2-layer LSTMs with 128 hidden dimensions. Propensity models employ97

128-dimensional bidirectional LSTMs. The treatment discriminator uses a 3-layer MLP with ReLU98

activations. Training uses AdamW optimizer with learning rate 1e-5, batch size 64 on 2×L40S GPUs,99

and λadv = 0.05. We assess image fidelity using predicted noise MSE, generated image MSE, and100

SSIM. For causal validity, we measure Individual Treatment Effect (ITE) error on clinically relevant101

OA features: Kellgren-Lawrence grade and JSN Medial grade [10]. ITE compares how much an102

X-Ray grade changes between the generated image and the baseline, versus how much it changes103

between the target image and the baseline. It measures the absolute error between these two predicted104

X-Ray grade deltas. Calibration details appear in Appendix C. ITE error quantifies how well the105

model captures true treatment effects.106

4.1 Results107

TIDAL achieves 21.52% reduction in image generation error and 18.43% improvement in causal108

validity (Tables 1, 2). Both IPW and adversarial training contribute to these improvements, with109

their combination providing the strongest performance across all metrics. Adversarial training shows110

stronger improvements than IPW across all image quality metrics. The 15.19% MSE reduction with111

adversarial training suggests better structural preservation in generated images. SSIM improvements112

(7.79% for TIDAL) indicate better perceptual quality maintenance. Both approaches significantly113

reduce ITE error, with adversarial training excelling particularly for JSN Medial grade (16.19%114

improvement). This suggests the domain adversarial component effectively learns treatment-invariant115

representations crucial for causal inference. The combined TIDAL approach achieves the best116

performance, demonstrating complementary benefits of both causal mechanisms. The improvements117

in Kellgren-Lawrence grade prediction (5.68% ITE reduction) are clinically meaningful as this118

grade is the primary diagnostic metric for OA severity. Better causal validity ensures more reliable119

counterfactual predictions for clinical decision support.120

5 Conclusion121

We presented TIDAL, a longitudinal causal diffusion framework that generates patient-specific122

counterfactual medical images while addressing confounding bias. TIDAL achieves significant123

improvements in both image fidelity and causal validity through temporal IPW and adversarial124

training, establishing new state-of-the-art for longitudinal medical counterfactual generation. While125

our evaluation uses standard image metrics, future work should explore clinically relevant evaluation126

and prospective validation to assess real-world clinical utility.127
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A Additional Experimental Setups and Results212

A.1 Common Model Architecture and Training Setup213

All TIDAL variants (Baseline, IPW-enhanced, Adversarially-trained, and combined) share a core gen-214

erative architecture based on conditional latent diffusion, fine-tuned from Stable Diffusion v1-5 [24].215

All models are implemented in PyTorch, utilizing the PyTorch Lightning framework for training and216

the Hugging Face Diffusers library for diffusion model components. Training is performed using217

AdamW optimizers with 16-bit Automatic Mixed Precision (AMP). Shared hyperparameters include218

a learning rate of 1e-5 for the generator components (U-Net and conditioning MLPs) and a batch219
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size of 64 spread across 2 NVIDIA L40S GPUs. All model variants take up 45,000 MB on each of220

the two GPUs and take 1.5 days to finish 100 training epochs. The LSTMs used in the Temporal221

IPW model and Context Encoder had 2 layers with a hidden dimension of 128, they both also used a222

Dense layer of size 8 for the time delta and 4 for the knee side. Adversarial weight was set to 0.05.223

All experiments are seeded for reproducibility.224

A.2 Qualitative Generated Image Evaluation225

These images were generated by TIDAL with domain adversarial training. During inference, the226

Stable Diffusion backbone utilized a strength of 0.75, guidance scale of 7.5, and 50 inference steps.

Input Image
Earlier KL: 0

Target Image
Later KL: 0

Generated
Pred. KL (on this): 0

Figure 2: Example X-Ray generated from TIDAL framework

227

Input Image
Earlier KL: 0

Target Image
Later KL: 3

Generated
Pred. KL (on this): 3

Figure 3: Example X-Ray generated from TIDAL correctly predicting joint space narrowing on right
side.

Input Image
Earlier KL: 0

Target Image
Later KL: 0

Generated
Pred. KL (on this): 3

Figure 4: Example X-Ray generated from TIDAL incorrectly predicting joint space narrowing on
right side.
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A.3 Adversarial Weight Ablation228

Table 3: Impact of Adversarial Weight (λadv) on Validation Loss. The reported Validation Loss is
the lowest value achieved during training on one validation set for each corresponding adversarial
weight.

Adversarial Weight (λadv) Validation Loss

1.0 0.1391
0.5 0.1337
0.1 0.1345

0.05 0.1325
0.01 0.1333

B Diffusion Pair Dataset Details229

B.1 Image Processing and Knee Localization.230

The OAI provides bilateral X-Ray images at various timepoints. To focus on individual knee data,231

we first process these bilateral scans. A YOLOv11-based object detection model [9], pre-trained on232

a dedicated knee X-Ray dataset for localization [30, 4], was employed to detect and crop the left233

and right knees from each bilateral image, see Figure 5. This step ensures that our models receive234

standardized single-knee views. All cropped images are resized to 224× 224 pixels, converted to235

tensors scaling pixel values to [0, 1], and then normalized to [−1, 1] (mean 0.5, std 0.5) for input to236

the diffusion models.237

B.2 Extracted Features.238

• Interval Treatment Information (Aint): For a pre-defined list of K treatments (e.g.,239

specific injections, NSAID usage, arthroscopy, knee replacement; K = 13 in our setup cov-240

ering left and right knee treatments such as Arthroscopy, Knee Replacement, Meniscectomy,241

Steroid Injection, Hip Replacement, and Hyaluronic Injection, plus "no treatment". This242

results in a multi-hot vector indicating treatments received during the interval.243

• Radiographic Grades (H tab): Standardized radiological assessments, including Kellgren-244

Lawrence (KL) grade, and Joint Space Narrowing (JSN) for medial and lateral compartments,245

are extracted for both the left and right knees at both month_earlier and month_later.246

• Clinical Information: Time-varying clinical data such as Body Mass Index (BMI) and247

patient age are recorded.248

• Static Demographics: Patient-level demographic information like sex, ethnicity, and race249

are included once per patient.250

• Longitudinal History (H long
te ): For models utilizing temporal context (IPW and the RNN-251

based adversarial discriminator), we construct sequences of historical covariates and treat-252

ments up to month_earlier.253

• Knee Side (S) and Follow-up Duration (∆t = month_later −month_earlier) are also254

recorded for each pair.255

C Pretrained X-Ray Grade Model Details256

To evaluate the causal validity of our generated counterfactual X-Ray images, particularly for257

assessing Individual Treatment Effects (ITE) on specific radiographic features, we pre-trained separate258

classifier models for key osteoarthritis (OA) indicators. We specifically trained models for (KL)259

Grade and JSN Medial Grade used in our main paper’s ITE evaluations.260
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Figure 5: Image showing YOLO detecting bounding boxes for each knee from a Bilateral X-Ray
from the OAI dataset.

C.1 Dataset and Preprocessing261

The feature classifiers were trained using cropped single-knee X-Ray images derived from the262

Osteoarthritis Initiative (OAI) dataset, consistent with the images used for training our main diffusion263

models. The dataset splits used the same unique patient splits from the Diffusion Model dataset. The264

specific X-Ray grade (e.g., KL Grade ranging from 0-4, JSN Medial from 0-3) served as the target265

label for each respective model.266

Input images were resized to 224×224 pixels. For training, we applied data augmentation techniques267

including random horizontal flips, random rotations (up to 10 degrees), color jitter (brightness,268

contrast, saturation by a factor of 0.2), and random affine transformations (translations up to 10%).269

All images (for training, validation, and testing) were then converted to tensors and normalized using270

ImageNet statistics (mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225]).271

C.2 Model Architecture and Training272

For each X-Ray feature, we fine-tuned a pre-trained EfficientFormerV2-L model [12]. The original273

classifier head of the model was replaced with a new linear layer randomly initialized to output C274

logits, where C is the number of classes for the specific radiographic feature (e.g., C = 5 for KL275

Grade 0-4, C = 4 for JSN Medial Grade 0-3).276

The models were trained using a cross-entropy loss function. We employed the AdamW optimizer [13]277

with an initial learning rate of 1 × 10−5. Training was conducted for 30 epochs, and the model278

state corresponding to the best validation macro-averaged AUC (Area Under the Receiver Operating279

Characteristic Curve) was saved. The batch size was set to 64.280
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C.3 Performance on Test Set281

The performance of the pre-trained classifiers for KL Grade and JSN Medial Grade on the held-out282

test set is summarized in Table 4. These models are subsequently used in a frozen state to evaluate283

the ITE of the generated counterfactual images from our main diffusion pipelines.284

Table 4: Test Set Performance of Pre-trained X-Ray Grade Classifiers.
Feature Test Loss Accuracy Macro AUC Num Classes
KL Grade 0.7918 0.6724 0.8867 5
JSN Medial Grade 1.4385 0.8160 0.9330 4

KL Grade Per-Class Test Accuracy: {0: 0.858, 1: 0.125, 2: 0.660, 3: 0.843, 4: 0.774}
KL Grade Class Prevalence (Test Set): {0: 0.392, 1: 0.175, 2: 0.262, 3: 0.131, 4: 0.039}

JSN Medial Grade Per-Class Test Accuracy: {0: 0.902, 1: 0.557, 2: 0.763, 3: 0.822}
JSN Medial Grade Class Prevalence (Test Set): {0: 0.669, 1: 0.204, 2: 0.096, 3: 0.029}

D Propensity Model Pretraining285

We pretrained two distinct propensity models to predict treatment probabilities: a temporal model that286

incorporates sequential patient history and a non-temporal baseline model. Both models employ RNN287

architectures but differ significantly in their input representations and temporal modeling capabilities.288

D.1 Temporal IPW vs. DiffPO Comparison289

Our temporal IPW addresses fundamental limitations of DiffPO [15] in longitudinal medical settings:290

Key Differences: (1) Sequential vs. Static Modeling: DiffPO uses time-agnostic propensity models291

with fixed covariates, while our temporal IPW employs LSTM-based sequence modeling to capture292

evolving treatment propensities based on longitudinal patient history H long
te . (2) Interval vs. Point293

Treatment Modeling: DiffPO predicts single-point treatment assignments, whereas our model294

estimates probabilities for multi-treatment sets administered during specific time intervals (te, tl],295

reflecting real-world clinical practice. (3) Temporal Context Integration: Unlike DiffPO’s static296

approach, our propensity model incorporates follow-up duration ∆t and contextual factors (knee297

side S) that influence treatment timing decisions, enabling more accurate propensity estimation in298

longitudinal settings.299

D.2 Model Architectures300

Temporal Propensity Model: The temporal model processes sequential patient histories using an301

LSTM-based encoder (2 layers, 128 hidden dimensions). We compared LSTM against Transformer302

architectures, finding that LSTM achieved superior validation performance (AUC: 0.714 vs 0.682 for303

Transformer). The model takes as input:304

• Sequential covariate vectors (medical history over time)305

• Sequential treatment vectors (previous treatments)306

• Temporal features including normalized time intervals (∆t) between observations307

• Side information (left/right knee distinction)308

The LSTM processes concatenated sequence features, followed by specialized MLPs for temporal309

(∆t) and side features. The final prediction head combines the sequence encoding with processed310

features to output treatment probabilities for K = 13 classes.311

Detailed Architecture: The LSTM-based propensity model employs the following detailed architec-312

ture: The final hidden state from the LSTM hhist summarizes the patient’s entire history. Features for313

∆t and S are processed by separate small MLPs to yield h∆t and hS . The concatenated representation314

[hhist;h∆t;hS ] is passed through a final feed-forward network with sigmoid activation to output the315

K-dimensional probability vector π̂ = (π̂1, . . . , π̂K).316
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Training Details: The propensity model gϕp is pre-trained separately by minimizing binary cross-317

entropy loss between predictions π̂ and true multi-hot interval treatment labels Aint. To address class318

imbalance, the loss uses positive class weights derived from inverse treatment frequencies in the319

training data.320

Non-temporal Propensity Model: The baseline model uses a simpler fusion approach, combining321

image features from an EfficientFormer backbone with tabular features (X-Ray grades, clinical322

information, and demographics). This model lacks temporal sequence processing and instead323

operates on static feature representations at individual time points.324

D.3 Training Performance Comparison325

The temporal model demonstrated superior performance across all key metrics:326

Temporal Model Results:327

• Final validation AUC: 0.714328

• Final validation accuracy: 68.8%329

• Macro recall (positives): 94.1%330

• Training converged in 40 epochs with early stopping331

Non-temporal Model Results:332

• Final validation AUC: 0.706333

• Final validation accuracy: 62.6%334

• Macro recall (positives): 65.4%335

• Training completed 50 full epochs336

D.4 Key Findings337

The temporal model’s superior performance can be attributed to several factors:338

1. Sequential Information Utilization: The temporal model leverages the full patient history339

sequence, capturing temporal dependencies and treatment progression patterns that the static model340

cannot access.341

2. Temporal Feature Engineering: The explicit modeling of time intervals (∆t) between obser-342

vations, with normalization (mean=35.17, std=22.99), allows the model to understand the temporal343

spacing of medical events.344

3. Enhanced Recall Performance: The temporal model achieved significantly higher macro recall345

(positives) (94.1% vs 65.4%), indicating better identification of patients who actually received346

treatments.347

4. Class Imbalance Handling: Both models employed positive weight rebalancing to address the348

severe class imbalance (90.7% "No Treatment" cases in temporal model), but the temporal model’s349

sequential processing provided better discrimination.350

The temporal model’s architecture effectively captures the dynamic nature of treatment decisions in351

longitudinal healthcare data, demonstrating the importance of sequential modeling for propensity352

score estimation in medical applications.353

E Longitudinal Data Pair Creation354
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00 12 18 24 30 36 48 72 96

No Treatment Left Knee Replacement

Δt = 72

Δt = 48Δt = 24

Figure 6: Illustration of longitudinal data pair creation from patient timelines. For each patient,
all chronologically ordered pairs of X-Ray scans (e.g., month 00 to 24, 00 to 72, 24 to 72) are
formed. The interval treatments (e.g., "No Treatment", "Left Knee Replacement") and the duration
∆t between scans are recorded for each pair.
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F Dataset Statistics355

Table 5: Summary Statistics of Dataset Splits. Treatment occurrences show the number of image
pairs where the treatment was recorded in the interval, with the percentage of total pairs for that split
in parentheses. "No Treatment" is inferred for pairs where none of the specified treatments occurred.

Characteristic Train Validation Test

Image Pairs 51,726 6,684 6,331
Unique Subjects 3,604 450 451

Treatment Occurrences (Count (%))

L. Arthroscopy 933 (1.80) 132 (1.97) 153 (2.42)
R. Arthroscopy 963 (1.86) 131 (1.96) 95 (1.50)
L. Meniscectomy 702 (1.36) 130 (1.94) 138 (2.18)
R. Meniscectomy 775 (1.50) 76 (1.14) 85 (1.34)
L. Hyaluronic Inj. 815 (1.58) 105 (1.57) 111 (1.75)
R. Hyaluronic Inj. 793 (1.53) 85 (1.27) 114 (1.80)
L. Steroid Inj. 1902 (3.68) 253 (3.79) 247 (3.90)
R. Steroid Inj. 1805 (3.49) 182 (2.72) 302 (4.77)
L. Knee Replacement 679 (1.31) 108 (1.62) 93 (1.47)
R. Knee Replacement 704 (1.36) 51 (0.76) 108 (1.71)
L. Hip Replacement 411 (0.79) 34 (0.51) 26 (0.41)
R. Hip Replacement 417 (0.81) 93 (1.39) 48 (0.76)

No Treatment 45,312 (87.60) 5,845 (87.45) 5,384 (85.04)

G Detailed Method Descriptions356

G.1 U-Net Conditioning Strategy Details357

To generate a target latent ztl (corresponding to Xtl), the U-Net is conditioned on a combination of358

textual information and a rich, spatio-temporal context vector:359

1. Textual Prompts (ctext): Dynamically generated prompts of the form “A knee X-Ray ∆t360

months after {treatment list}”, where {treatment list} enumerates all treatments within the361

time interval. These are tokenized and encoded by the CLIP text encoder.362

2. Spatio-Temporal Rich Context (cctx): This comprehensive conditioning vector is derived by363

a dedicated Context Encoder RNN (Ectx). This encoder processes:364

• The baseline image condition cimg, which is the output of a linear layer (fimg) applied365

to the VAE-encoded latent representation of the baseline X-Ray Xte .366

• The patient’s longitudinal history H long
te , comprising sequences of historical covariates367

and treatments up to te. These sequences are processed by an LSTM within Ectx to368

capture temporal dependencies, yielding hhist.369

• The normalized follow-up duration ∆t and the knee side S, each processed by separate370

small MLPs to get h∆t and hS .371

Ectx concatenates these features, [hhist; cimg;h∆t;hS ], to form a single vector and is subse-372

quently projected by a linear layer (fproj) to match the dimensionality of the text embeddings,373

resulting in cctx.374

The final conditioning vector cU-net fed to the U-Net’s cross-attention layers is then the sum of the375

text embeddings and this projected rich context: cU-net = ctext + cctx.376

G.2 IPW Background and Extension Details377

Standard IPW Background: Inverse Propensity Weighting (IPW) is a causal inference technique378

that addresses confounding bias by reweighting samples to create a pseudo-randomized population.379

The propensity score π(x) = P (A = 1|X = x) represents the probability of receiving treatment380
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given covariates X . By weighting each sample by 1/π(x) for treated units and 1/(1 − π(x)) for381

control units, IPW balances the covariate distributions between treatment groups, simulating a382

randomized experiment.383

Temporal IPW Extension: Unlike DiffPO which uses static covariates, our temporal IPW employs384

LSTM-based sequence modeling for evolving treatment propensities based on patient history H long
te .385

Key differences include: (1) sequential vs. static modeling, (2) interval vs. point treatment prediction,386

and (3) temporal context integration.387

We develop a propensity score model gϕp to estimate the probability of receiving treatments Aint388

during interval (te, tl], conditioned on patient history H long
te , knee side S, and interval duration ∆t.389

The model provides estimated marginal probabilities π̂i,k for each treatment, and the joint probability390

is:391

P̂ (Aint = ai,int | H long
i,te

,∆ti, Si) =

K∏
k=1

(
π̂
ai,int,k
i,k × (1− π̂i,k)

(1−ai,int,k)
)

(8)

G.3 Adversarial Training Details392

The objective is to encourage the generator to learn representations of the baseline patient state (cctx)393

that are invariant to the actual treatment Aint received during the subsequent interval, conditioned on394

the patient’s prior history H long
te .395

Diffusion Image Generator (G): The core conditional diffusion model (with trainable parameters396

θ) generates realistic future X-Ray images Xtl and the rich context vector cctx.397

Treatment Discriminator (D): An auxiliary MLP (parameterized by ϕ) predicts interval treatments398

Aint using the generator’s context vector cctx as input.399

The generator aims to fool D by making cctx uninformative about Aint via adversarial loss:400

Ladv(θ) = −Ecctx

[
H(D(cctx(θ); ϕ̂))

]
(9)

Training Procedure: Parameters θ (generator) and ϕ (discriminator) are updated iteratively by alter-401

nating between minimizing LD(ϕ) and LG(θ). This encourages treatment-invariant representations402

while maintaining image quality.403

G.4 Key Technical Innovations404

TIDAL introduces three critical advances: (1) Longitudinal Sequence Modeling: Unlike DiffPO’s405

static covariates, we employ LSTM-based temporal modeling of patient histories, capturing dy-406

namic treatment decisions over time. (2) Multi-Treatment Interval Modeling: We predict treatment407

combinations over intervals rather than single point treatments, better reflecting clinical reality. (3)408

Dual Causal Mechanism Integration: We uniquely combine temporal IPW with adversarial training,409

providing complementary causal adjustments that neither method achieves alone.410

This unified approach allows TIDAL to benefit from both explicit propensity-based reweighting and411

implicit treatment-invariant representation learning, resulting in superior causal performance.412

H Limitations and Broader Impacts413

H.1 Limitations414

Our work has several limitations. While we used standard image fidelity metrics, we acknowledge415

their limitations in fully capturing clinically significant changes in longitudinal medical images; future416

work should explore more clinically relevant image-based evaluation metrics. Another limitation is417

that our method is described for counterfactual generation but is evaluated on factual outcomes. While418

synthetic counterfactual medical datasets exist, to our knowledge, none take into account longitudinal419

patient information, a critical component for medical utility and treatment-decision making.420
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H.2 Broader Impacts421

Our research carries significant broader impacts regarding the crucial need for informed patient422

decision-making in osteoarthritis management. As highlighted by studies showing that patients often423

lack a clear understanding of potential treatment outcomes [2, 18], leading to suboptimal choices,424

tools that improve patient comprehension are vital. By enabling visualization of patient-specific425

future outcomes under different treatment scenarios, our framework has the potential to significantly426

enhance clinical decision support and facilitate shared decision-making. This visual aid can empower427

patients, fostering more informed and appropriate treatment pathways. A prospective clinical trial is428

needed to rigorously assess its clinical utility and impact on patient decision-making.429

However, potential negative impacts require careful consideration. Risks include the generation430

of misleading or unrealistic images that could lead to incorrect clinical interpretations if not used431

responsibly. Fairness is crucial, as performance disparities across diverse patient subgroups could432

exacerbate healthcare disparities. Privacy concerns regarding sensitive medical data necessitate secure433

handling and deployment. Finally, the potential for misuse, such as generating fraudulent images,434

highlights the need for robust safeguards.435
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