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Abstract

Generating realistic patient-specific counterfactual images of treatment outcomes
from longitudinal medical imaging is a challenging task, often complicated by
confounding and selection bias in observational datasets. To address this challenge,
we propose TIDAL (Temporal IPW Diffusion Adversarial Learning), a novel
longitudinal causal diffusion framework that integrates causal inference techniques
directly into diffusion model training. TIDAL utilizes a Stable Diffusion backbone
conditioned on patient history and incorporates two key causal adaptations: (1)
Temporal Inverse Propensity Weighting (IPW) that reweights the diffusion loss
based on treatment propensity scores; and (2) Domain Adversarial Training that
encourages treatment-invariant representations. We demonstrate TIDAL’s effective-
ness by simulating knee osteoarthritis (OA) progression with longitudinal X-Rays
from the Osteoarthritis Initiative (OAI). Performance is assessed using image fi-
delity metrics and causally-relevant Individual Treatment Effect (ITE) metrics for
OA features like Kellgren-Lawrence grade. Our experiments show that TIDAL
outperforms baseline approaches, achieving 21.52% reduction in image genera-
tion error and 18.43% improvement in causal validity, demonstrating significant
improvements for longitudinal medical counterfactual generation.

1 Introduction

Visualizing patient-specific future health outcomes under hypothetical interventions holds transfor-
mative potential for personalized medicine [7,20]. However, generating faithful counterfactuals from
observational medical data faces significant challenges due to confounding bias: factors influencing
both treatment assignment and outcomes can lead to spurious correlations and misleading predic-
tions [5}123]]. We focus on knee osteoarthritis (OA), a chronic joint disease affecting 10-37% of people
over 60 [27, 13]. Using the Osteoarthritis Initiative (OAI) dataset [17], we propose TIDAL (Temporal
IPW Diffusion Adversarial Learning), a framework integrating causal inference techniques into diffu-
sion model training. TIDAL is the first longitudinal causal diffusion framework for patient-specific
treatment outcome visualization applied to the OAI dataset.

Contributions: (1) We proposed TIDAL Framework, combining temporal propensity weighting with
adversarial training; (2) We incorporated TIDAL with diffusion generative model by reweighting
diffusion loss based on treatment propensity scores and introducing Domain Adversarial Training
that encourages treatment-invariant representations; (3) we conducted Comprehensive evaluation,
demonstrating 21.52% reduction in image generation error and 18.43% improvement in causal
validity over baseline approaches.
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Figure 1: Overview of the TIDAL framework. Inputs (baseline X-Ray, patient covariates, text prompt)
condition a U-Net for diffusion-based counterfactual generation. TIDAL applies causal adjustment
via Temporal IPW RNN weighting and adversarial training with a treatment discriminator. Both
components use historical patient covariates to mitigate confounding bias.

2 Related Work

Counterfactual Qutcome Prediction: Traditional causal inference methods focusing on tabular data
use techniques like Inverse Propensity Weighting (IPW) [22} 3] or representation learning [8]]. Recent
deep learning adaptations include sequence models [} [16] and domain adversarial training [16]].
While some works have explored counterfactual image generation using diffusion models [26} 11} 132}
30], integrating temporal causal inference into longitudinal medical imaging remains challenging.
Some recent works [211 19} 31]] have advanced counterfactual medical image synthesis. However,
existing approaches typically rely on conditional diffusion models [32} 30] without incorporating
causality, leading to confounding bias. Our model combines diffusion generation with causal inference
to directly address this challenge.

Diffusion Models for Causal Inference: We choose diffusion models for their superior training
stability and sample quality [6}[24]]. Previous causal diffusion works either insufficiently account for
causality [32]130] or train from scratch [L1, 26]. Instead, we fine-tune pre-trained models with causal
inference-motivated losses.

3 TIDAL: Temporal IPW Diffusion Adversarial Learning

TIDAL generates patient-specific future medical images X;, conditioning on baseline images X;_, and

treatments A, during interval (¢, ¢;], while mitigating confounding bias. The framework leverages
patient history H;:”g with two causal adaptations: Temporal IPW and Domain Adversarial Training.

3.1 Temporal Conditional Diffusion Model

Diffusion models [6, 28] progressively add noise to data in a forward process, then learn to reverse
this process to generate samples close to the distribution of data. We build on Stable Diffusion [24]]
with: (1) Frozen VAE for latent encoding/decoding, (2) Trainable U-Net for denoising, (3) Frozen
CLIP text encoder, (4) DDIM scheduler.

U-Net Conditioning: The U-Net is conditioned on text prompts “A knee X-Ray At months after
{treatment list}” and spatio-temporal context c.x from a Context Encoder RNN that processes baseline
image features, patient longitudinal history [, izng, follow-up duration At, and knee side S. The final
conditioning vector iS Cy.pet = Crext + Cetx- Lhe diffusion loss is:

£diffusion(0) - Eztl L6, Cumet 1|1€ — 69(2157 ta chnet)Hg (1)

where z;, is the target latent, € ~ N (0, I) is Gaussian noise, ¢ is the diffusion timestep, and z; is the
noisy latent.
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3.2 Inverse Propensity Weighted Diffusion Model

Modeling only the conditional distribution of outcome given treatments in the observational OAI
dataset can result in selection bias and confounding bias due to non-random treatment assignment [25]].
Inverse Propensity Weighting (IPW) addresses confounding bias by reweighting samples to create
a pseudo-randomized population. Unlike DiffPO [15]] which uses static covariates, our temporal
IPW employs LSTM-based sequence modeling for evolving treatment propensities based on patient
history Hzng. We develop a propensity score model g4, to estimate the probability of receiving
treatments A, during interval (., ;]:

Tk = o, 1 (H"8 AL, S) = P(Ains = 1| H'®, At S) )
The IPW weight for sample i is the inverse of the joint treatment probability:
1
Wi = = long (3)
P(Aine = ajinc | H o, A, Si)
The IPW-adjusted diffusion loss reweights samples:
N
Lipw.pittusion = Y Wi  Laiffusion.q “
i=1

where Zgifrusion,s 15 the per-sample diffusion loss.

3.3 Domain Adversarial Training

IPW training can introduce unstable training due to exploding weights when treatment probabili-
ties approach zero. Domain adversarial training provides an alternative approach by encouraging
treatment-invariant representations [14}29].

We train a treatment discriminator D (MLP parameterized by ¢) to predict interval treatments Ay
from generator context c., while generator G aims to fool D. The discriminator predicts over
K = 13 classes (12 specific treatments plus "no treatment"). The discriminator loss uses Binary
Cross-Entropy:

13
Lp(¢) =Eey au | Y BCE(D(con; &)k Ainck) )
k=1

The generator loss combines diffusion and adversarial terms:
£G(9) = ‘Cdiffusion(e) + )\advﬁadv(e) (6)

where L4y, () encourages uniform discriminator output distributions (maximize prediction entropy;
see Appendix |G.3). Parameters are updated iteratively: fix 6, update ¢; then fix ¢, update 6.

3.4 TIDAL: Combined IPW and Adversarial Training

TIDAL combines both mechanisms with the overall loss:

Lrpar (0, ¢) = Lipw-piffusion (0) + AadvLaav(0) + Lp (@) @)

Training alternates between propensity model pre-training and joint adversarial updates. We alternate
ming £p and ming (Lipw-pitrusion + AadvLadv); the propensity model is pre-trained and frozen during
these updates.

4 Experiments

We use the Osteoarthritis Initiative (OAI) dataset [17]], creating longitudinal image pairs (X;, , X¢,)
from chronologically ordered X-Ray scans spanning up to 144 months. Our preprocessing pipeline

extracts patient longitudinal histories Hiong including clinical assessments, prior treatments, and

e

demographic covariates. Data is split at patient level: 80% training (51,726 pairs), 10% validation
(6,684 pairs), 10% test (6,331 pairs). See Appendix[Efor detailed statistics.
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Table 1: Test Performance of Treatment Outcome Modeling with different causal inference adapta-
tions, including percentage decrease in error compared to Baseline.

Model Predicted Noise MSE ~ Generated Image MSE SSIM
Value (% vs Base) Value (% vs Base) Value (% vs Base)

Baseline 0.1361 - 0.0079 - 0.77 -

+ IPW Training 0.1359 (0.15% |.) 0.0075 (5.06% |.) 0.80 (3.90% 1)

+ Adversarial Training 0.1301 (4.41% ) 0.0067 (15.19% |) 0.81(5.19% 1)

TIDAL 0.1294 (4.92% ) 0.0062 (21.52% |) 0.83(7.79% 1)

Table 2: Causal Performance of Treatment Outcome Modeling with different causal inference
adaptations, including percentage decrease in ITE error compared to Baseline.

Model ITE - KL Grade ITE - JSN Medial Grade
Value (% Decrease vs Baseline) Value (% Decrease vs Baseline)

Baseline 0.8152 - 0.2996 -

+ IPW Training 0.7785 (4.50% |) 0.2754  (8.08% )

+ Adversarial Training 0.7712  (5.40% J) 0.2511  (16.19% )

TIDAL 0.7689 (5.68% |) 0.2444 (1843% )

Implementation Details: We use Stable Diffusion v1.5 with frozen VAE and CLIP encoders. The
Context Encoder uses 2-layer LSTMs with 128 hidden dimensions. Propensity models employ
128-dimensional bidirectional LSTMs. The treatment discriminator uses a 3-layer MLP with ReLU
activations. Training uses AdamW optimizer with learning rate 1e-5, batch size 64 on 2xL.40S GPUs,
and A\gy = 0.05. We assess image fidelity using predicted noise MSE, generated image MSE, and
SSIM. For causal validity, we measure Individual Treatment Effect (ITE) error on clinically relevant
OA features: Kellgren-Lawrence grade and JSN Medial grade [[10]. ITE compares how much an
X-Ray grade changes between the generated image and the baseline, versus how much it changes
between the target image and the baseline. It measures the absolute error between these two predicted
X-Ray grade deltas. Calibration details appear in Appendix [C| ITE error quantifies how well the
model captures true treatment effects.

4.1 Results

TIDAL achieves 21.52% reduction in image generation error and 18.43% improvement in causal
validity (Tables [T} 2). Both IPW and adversarial training contribute to these improvements, with
their combination providing the strongest performance across all metrics. Adversarial training shows
stronger improvements than IPW across all image quality metrics. The 15.19% MSE reduction with
adversarial training suggests better structural preservation in generated images. SSIM improvements
(7.79% for TIDAL) indicate better perceptual quality maintenance. Both approaches significantly
reduce ITE error, with adversarial training excelling particularly for JSN Medial grade (16.19%
improvement). This suggests the domain adversarial component effectively learns treatment-invariant
representations crucial for causal inference. The combined TIDAL approach achieves the best
performance, demonstrating complementary benefits of both causal mechanisms. The improvements
in Kellgren-Lawrence grade prediction (5.68% ITE reduction) are clinically meaningful as this
grade is the primary diagnostic metric for OA severity. Better causal validity ensures more reliable
counterfactual predictions for clinical decision support.

5 Conclusion

We presented TIDAL, a longitudinal causal diffusion framework that generates patient-specific
counterfactual medical images while addressing confounding bias. TIDAL achieves significant
improvements in both image fidelity and causal validity through temporal IPW and adversarial
training, establishing new state-of-the-art for longitudinal medical counterfactual generation. While
our evaluation uses standard image metrics, future work should explore clinically relevant evaluation
and prospective validation to assess real-world clinical utility.
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A Additional Experimental Setups and Results

A.1 Common Model Architecture and Training Setup

All TIDAL variants (Baseline, IPW-enhanced, Adversarially-trained, and combined) share a core gen-
erative architecture based on conditional latent diffusion, fine-tuned from Stable Diffusion v1-5 [24]).
All models are implemented in PyTorch, utilizing the PyTorch Lightning framework for training and
the Hugging Face Diffusers library for diffusion model components. Training is performed using
AdamW optimizers with 16-bit Automatic Mixed Precision (AMP). Shared hyperparameters include
a learning rate of le-5 for the generator components (U-Net and conditioning MLPs) and a batch



220 size of 64 spread across 2 NVIDIA L40S GPUs. All model variants take up 45,000 MB on each of
221 the two GPUs and take 1.5 days to finish 100 training epochs. The LSTMs used in the Temporal
222 IPW model and Context Encoder had 2 layers with a hidden dimension of 128, they both also used a
223 Dense layer of size 8 for the time delta and 4 for the knee side. Adversarial weight was set to 0.05.
224  All experiments are seeded for reproducibility.

225 A.2 Qualitative Generated Image Evaluation

226 These images were generated by TIDAL with domain adversarial training. During inference, the
Stable Diffusion backbone utilized a strength of 0.75, guidance scale of 7.5, and 50 inference steps.

Generated
Pred. KL (on this): 0

Target Image
Later KL: 0

Input Image
Earlier KL: 0

Figure 2: Example X-Ray generated from TIDAL framework
227

Generated

Target Image
Pred. KL (on this): 3

Later KL: 3

Input Image
Earlier KL: 0

Figure 3: Example X-Ray generated from TIDAL correctly predicting joint space narrowing on right
side.

Input Image Target Image Generated
Earlier KL: 0 Later KL: 0 Pred. KL (on this): 3

Figure 4: Example X-Ray generated from TIDAL incorrectly predicting joint space narrowing on
right side.
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A.3 Adversarial Weight Ablation

Table 3:

Impact of Adversarial Weight (\,4,,) on Validation Loss. The reported Validation Loss is

the lowest value achieved during training on one validation set for each corresponding adversarial

weight.

Adversarial Weight (A\,4,) Validation Loss

1.0 0.1391
0.5 0.1337
0.1 0.1345
0.05 0.1325
0.01 0.1333

B Diffusion Pair Dataset Details

B.1 Image Processing and Knee Localization.

The OALI provides bilateral X-Ray images at various timepoints. To focus on individual knee data,
we first process these bilateral scans. A YOLOv11-based object detection model [9]], pre-trained on
a dedicated knee X-Ray dataset for localization [30, 4], was employed to detect and crop the left
and right knees from each bilateral image, see Figure[5] This step ensures that our models receive
standardized single-knee views. All cropped images are resized to 224 x 224 pixels, converted to
tensors scaling pixel values to [0, 1], and then normalized to [—1, 1] (mean 0.5, std 0.5) for input to
the diffusion models.

B.2 Extracted Features.

Interval Treatment Information (A;,): For a pre-defined list of K treatments (e.g.,
specific injections, NSAID usage, arthroscopy, knee replacement; K = 13 in our setup cov-
ering left and right knee treatments such as Arthroscopy, Knee Replacement, Meniscectomy,
Steroid Injection, Hip Replacement, and Hyaluronic Injection, plus "no treatment”. This
results in a multi-hot vector indicating treatments received during the interval.

Radiographic Grades (H'*"): Standardized radiological assessments, including Kellgren-
Lawrence (KL) grade, and Joint Space Narrowing (JSN) for medial and lateral compartments,
are extracted for both the left and right knees at both month_earlier and month_later.

Clinical Information: Time-varying clinical data such as Body Mass Index (BMI) and
patient age are recorded.

Static Demographics: Patient-level demographic information like sex, ethnicity, and race
are included once per patient.

Longitudinal History (H ;‘:“g): For models utilizing temporal context (IPW and the RNN-
based adversarial discriminator), we construct sequences of historical covariates and treat-
ments up to month_earlier.

Knee Side (S) and Follow-up Duration (At = month_later — month_earlier) are also
recorded for each pair.

C Pretrained X-Ray Grade Model Details

To evaluate the causal validity of our generated counterfactual X-Ray images, particularly for
assessing Individual Treatment Effects (ITE) on specific radiographic features, we pre-trained separate
classifier models for key osteoarthritis (OA) indicators. We specifically trained models for (KL)
Grade and JSN Medial Grade used in our main paper’s ITE evaluations.



261

262
263
264
265
266

267
268
269
270
271

272

273
274
275
276

277
278
279
280

Figure 5: Image showing YOLO detecting bounding boxes for each knee from a Bilateral X-Ray
from the OAI dataset.

C.1 Dataset and Preprocessing

The feature classifiers were trained using cropped single-knee X-Ray images derived from the
Osteoarthritis Initiative (OAI) dataset, consistent with the images used for training our main diffusion
models. The dataset splits used the same unique patient splits from the Diffusion Model dataset. The
specific X-Ray grade (e.g., KL Grade ranging from 0-4, JSN Medial from 0-3) served as the target
label for each respective model.

Input images were resized to 224 x 224 pixels. For training, we applied data augmentation techniques
including random horizontal flips, random rotations (up to 10 degrees), color jitter (brightness,
contrast, saturation by a factor of 0.2), and random affine transformations (translations up to 10%).
All images (for training, validation, and testing) were then converted to tensors and normalized using
ImageNet statistics (mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225]).

C.2 Model Architecture and Training

For each X-Ray feature, we fine-tuned a pre-trained EfficientFormerV2-L model [12]. The original
classifier head of the model was replaced with a new linear layer randomly initialized to output C
logits, where C' is the number of classes for the specific radiographic feature (e.g., C' = 5 for KL
Grade 0-4, C = 4 for JSN Medial Grade 0-3).

The models were trained using a cross-entropy loss function. We employed the AdamW optimizer [13]]
with an initial learning rate of 1 x 10~°. Training was conducted for 30 epochs, and the model
state corresponding to the best validation macro-averaged AUC (Area Under the Receiver Operating
Characteristic Curve) was saved. The batch size was set to 64.
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C.3 Performance on Test Set

The performance of the pre-trained classifiers for KL Grade and JSN Medial Grade on the held-out
test set is summarized in Table[d] These models are subsequently used in a frozen state to evaluate
the ITE of the generated counterfactual images from our main diffusion pipelines.

Table 4: Test Set Performance of Pre-trained X-Ray Grade Classifiers.

Feature Test Loss Accuracy Macro AUC Num Classes
KL Grade 0.7918 0.6724 0.8867 5
JSN Medial Grade 1.4385 0.8160 0.9330 4

KL Grade Per-Class Test Accuracy: {0: 0.858, 1: 0.125, 2: 0.660, 3: 0.843, 4: 0.774}
KL Grade Class Prevalence (Test Set): {0: 0.392, 1: 0.175, 2: 0.262, 3: 0.131, 4: 0.039}

JSN Medial Grade Per-Class Test Accuracy: {0: 0.902, 1: 0.557, 2: 0.763, 3: 0.822}
JSN Medial Grade Class Prevalence (Test Set): {0: 0.669, 1: 0.204, 2: 0.096, 3: 0.029}

D Propensity Model Pretraining

We pretrained two distinct propensity models to predict treatment probabilities: a temporal model that
incorporates sequential patient history and a non-temporal baseline model. Both models employ RNN
architectures but differ significantly in their input representations and temporal modeling capabilities.

D.1 Temporal IPW vs. DiffPO Comparison

Our temporal IPW addresses fundamental limitations of DiffPO [15]] in longitudinal medical settings:

Key Differences: (1) Sequential vs. Static Modeling: DiffPO uses time-agnostic propensity models
with fixed covariates, while our temporal IPW employs LSTM-based sequence modeling to capture
evolving treatment propensities based on longitudinal patient history H, iing. (2) Interval vs. Point
Treatment Modeling: DiffPO predicts single-point treatment assignments, whereas our model
estimates probabilities for multi-treatment sets administered during specific time intervals (., t;],
reflecting real-world clinical practice. (3) Temporal Context Integration: Unlike DiffPO’s static
approach, our propensity model incorporates follow-up duration At and contextual factors (knee
side S) that influence treatment timing decisions, enabling more accurate propensity estimation in
longitudinal settings.

D.2 Model Architectures

Temporal Propensity Model: The temporal model processes sequential patient histories using an
LSTM-based encoder (2 layers, 128 hidden dimensions). We compared LSTM against Transformer
architectures, finding that LSTM achieved superior validation performance (AUC: 0.714 vs 0.682 for
Transformer). The model takes as input:

* Sequential covariate vectors (medical history over time)
» Sequential treatment vectors (previous treatments)
* Temporal features including normalized time intervals (At) between observations
* Side information (left/right knee distinction)
The LSTM processes concatenated sequence features, followed by specialized MLPs for temporal

(At) and side features. The final prediction head combines the sequence encoding with processed
features to output treatment probabilities for K = 13 classes.

Detailed Architecture: The LSTM-based propensity model employs the following detailed architec-
ture: The final hidden state from the LSTM hy;, summarizes the patient’s entire history. Features for
At and S are processed by separate small MLPs to yield ~a: and hg. The concatenated representation
[hnist; hat; hs) is passed through a final feed-forward network with sigmoid activation to output the
K -dimensional probability vector = (71, ..., TK).
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Training Details: The propensity model g, is pre-trained separately by minimizing binary cross-
entropy loss between predictions 7r and true multi-hot interval treatment labels A;,. To address class
imbalance, the loss uses positive class weights derived from inverse treatment frequencies in the
training data.

Non-temporal Propensity Model: The baseline model uses a simpler fusion approach, combining
image features from an EfficientFormer backbone with tabular features (X-Ray grades, clinical
information, and demographics). This model lacks temporal sequence processing and instead
operates on static feature representations at individual time points.

D.3 Training Performance Comparison

The temporal model demonstrated superior performance across all key metrics:

Temporal Model Results:

* Final validation AUC: 0.714
* Final validation accuracy: 68.8%
* Macro recall (positives): 94.1%

* Training converged in 40 epochs with early stopping
Non-temporal Model Results:

* Final validation AUC: 0.706

* Final validation accuracy: 62.6%
* Macro recall (positives): 65.4%

* Training completed 50 full epochs

D.4 Key Findings

The temporal model’s superior performance can be attributed to several factors:

1. Sequential Information Utilization: The temporal model leverages the full patient history
sequence, capturing temporal dependencies and treatment progression patterns that the static model
cannot access.

2. Temporal Feature Engineering: The explicit modeling of time intervals (At) between obser-
vations, with normalization (mean=35.17, std=22.99), allows the model to understand the temporal
spacing of medical events.

3. Enhanced Recall Performance: The temporal model achieved significantly higher macro recall
(positives) (94.1% vs 65.4%), indicating better identification of patients who actually received
treatments.

4. Class Imbalance Handling: Both models employed positive weight rebalancing to address the
severe class imbalance (90.7% "No Treatment" cases in temporal model), but the temporal model’s
sequential processing provided better discrimination.

The temporal model’s architecture effectively captures the dynamic nature of treatment decisions in
longitudinal healthcare data, demonstrating the importance of sequential modeling for propensity
score estimation in medical applications.

E Longitudinal Data Pair Creation
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Figure 6: Illustration of longitudinal data pair creation from patient timelines. For each patient,
all chronologically ordered pairs of X-Ray scans (e.g., month 00 to 24, 00 to 72, 24 to 72) are
formed. The interval treatments (e.g., "No Treatment", "Left Knee Replacement") and the duration
At between scans are recorded for each pair.
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F Dataset Statistics

Table 5: Summary Statistics of Dataset Splits. Treatment occurrences show the number of image
pairs where the treatment was recorded in the interval, with the percentage of total pairs for that split
in parentheses. "No Treatment" is inferred for pairs where none of the specified treatments occurred.

Characteristic Train Validation Test
Image Pairs 51,726 6,684 6,331
Unique Subjects 3,604 450 451
Treatment Occurrences (Count (%))

L. Arthroscopy 933 (1.80) 132 (1.97) 153 (2.42)
R. Arthroscopy 963 (1.86) 131 (1.96) 95 (1.50)
L. Meniscectomy 702 (1.36) 130 (1.94) 138 (2.18)
R. Meniscectomy 775 (1.50) 76 (1.14) 85 (1.34)
L. Hyaluronic Inj. 815 (1.58) 105 (1.57) 111 (1.75)
R. Hyaluronic Inj. 793 (1.53) 85 (1.27) 114 (1.80)
L. Steroid Inj. 1902 (3.68) 253 (3.79) 247 (3.90)
R. Steroid Inj. 1805 (3.49) 182 (2.72) 302 (4.77)
L. Knee Replacement 679 (1.31) 108 (1.62) 93 (1.47)
R. Knee Replacement 704 (1.36) 51 (0.76) 108 (1.71)
L. Hip Replacement 411 (0.79) 34 (0.51) 26 (0.41)
R. Hip Replacement 417 (0.81) 93 (1.39) 48 (0.76)
No Treatment 45,312 (87.60) 5,845 (87.45) 5,384 (85.04)

G Detailed Method Descriptions

G.1 U-Net Conditioning Strategy Details

To generate a target latent z;, (corresponding to X¢,), the U-Net is conditioned on a combination of
textual information and a rich, spatio-temporal context vector:

1. Textual Prompts (¢y): Dynamically generated prompts of the form “A knee X-Ray At
months after {treatment list}”, where {treatment list} enumerates all treatments within the
time interval. These are tokenized and encoded by the CLIP text encoder.

2. Spatio-Temporal Rich Context (c.): This comprehensive conditioning vector is derived by
a dedicated Context Encoder RNN (F.). This encoder processes:

* The baseline image condition cjmg, which is the output of a linear layer ( fimg) applied
to the VAE-encoded latent representation of the baseline X-Ray X;_.

* The patient’s longitudinal history H;‘:”g, comprising sequences of historical covariates
and treatments up to t.. These sequences are processed by an LSTM within E to
capture temporal dependencies, yielding hy;s.

* The normalized follow-up duration At and the knee side .S, each processed by separate
small MLPs to get ha; and hg.

E¢x concatenates these features, [Anis; Cimg; RA¢; hs], to form a single vector and is subse-
quently projected by a linear layer (fyroj) to match the dimensionality of the text embeddings,
resulting in cx-

The final conditioning vector cy.ye fed to the U-Net’s cross-attention layers is then the sum of the
text embeddings and this projected rich context: cy.pet = Ctext + Cetx-

G.2 IPW Background and Extension Details
Standard IPW Background: Inverse Propensity Weighting (IPW) is a causal inference technique

that addresses confounding bias by reweighting samples to create a pseudo-randomized population.
The propensity score 7(z) = P(A = 1|X = z) represents the probability of receiving treatment

13
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given covariates X. By weighting each sample by 1/7(x) for treated units and 1/(1 — m(x)) for
control units, IPW balances the covariate distributions between treatment groups, simulating a
randomized experiment.

Temporal IPW Extension: Unlike DiffPO which uses static covariates, our temporal IPW employs

LSTM-based sequence modeling for evolving treatment propensities based on patient history H, jong
Key differences include: (1) sequential vs. static modeling, (2) interval vs. point treatment predlctlon
and (3) temporal context integration.

We develop a propensity score model gy, to estimate the probability of receiving treatments Ay

during interval (t., ¢;], conditioned on patient hlstory H, 1°"¢ knee side S, and interval duration At.
The model provides estimated marginal probabilities 7; j for each treatment, and the joint probability
is:

K
P(Aim = ajin | H;?:eg, At“ S H ( 04 int,k 1 _ 7T k)(l*aq‘,,im,k)> (8)
k=1

G.3 Adversarial Training Details

The objective is to encourage the generator to learn representations of the baseline patient state (cq)
that are invariant to the actual treatment A, received during the subsequent interval, conditioned on

the patient’s prior history H, long

Diffusion Image Generator (G): The core conditional diffusion model (with trainable parameters
0) generates realistic future X-Ray images X;, and the rich context vector c.

Treatment Discriminator (D): An auxiliary MLP (parameterized by ¢) predicts interval treatments
A, using the generator’s context vector c. as input.

The generator aims to fool D by making ¢ uninformative about A;, via adversarial loss:
La(0) = ~Eey, [H(D(cex(0);9)) ©)

Training Procedure: Parameters 6 (generator) and ¢ (discriminator) are updated iteratively by alter-
nating between minimizing £Lp(¢) and L (). This encourages treatment-invariant representations
while maintaining image quality.

G.4 Key Technical Innovations

TIDAL introduces three critical advances: (1) Longitudinal Sequence Modeling: Unlike DiffPO’s
static covariates, we employ LSTM-based temporal modeling of patient histories, capturing dy-
namic treatment decisions over time. (2) Multi-Treatment Interval Modeling: We predict treatment
combinations over intervals rather than single point treatments, better reflecting clinical reality. (3)
Dual Causal Mechanism Integration: We uniquely combine temporal IPW with adversarial training,
providing complementary causal adjustments that neither method achieves alone.

This unified approach allows TIDAL to benefit from both explicit propensity-based reweighting and
implicit treatment-invariant representation learning, resulting in superior causal performance.

H Limitations and Broader Impacts

H.1 Limitations

Our work has several limitations. While we used standard image fidelity metrics, we acknowledge
their limitations in fully capturing clinically significant changes in longitudinal medical images; future
work should explore more clinically relevant image-based evaluation metrics. Another limitation is
that our method is described for counterfactual generation but is evaluated on factual outcomes. While
synthetic counterfactual medical datasets exist, to our knowledge, none take into account longitudinal
patient information, a critical component for medical utility and treatment-decision making.
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H.2 Broader Impacts

Our research carries significant broader impacts regarding the crucial need for informed patient
decision-making in osteoarthritis management. As highlighted by studies showing that patients often
lack a clear understanding of potential treatment outcomes [2} [18]], leading to suboptimal choices,
tools that improve patient comprehension are vital. By enabling visualization of patient-specific
future outcomes under different treatment scenarios, our framework has the potential to significantly
enhance clinical decision support and facilitate shared decision-making. This visual aid can empower
patients, fostering more informed and appropriate treatment pathways. A prospective clinical trial is
needed to rigorously assess its clinical utility and impact on patient decision-making.

However, potential negative impacts require careful consideration. Risks include the generation
of misleading or unrealistic images that could lead to incorrect clinical interpretations if not used
responsibly. Fairness is crucial, as performance disparities across diverse patient subgroups could
exacerbate healthcare disparities. Privacy concerns regarding sensitive medical data necessitate secure
handling and deployment. Finally, the potential for misuse, such as generating fraudulent images,
highlights the need for robust safeguards.
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