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ABSTRACT

Generating adversarial examples with high transferability is key to practical black-
box attack scenarios, where the attacker has limited or no information about target
models. While previous works mainly deal with input transformation or optimiza-
tion process to reduce overfitting on a surrogate model and enhance transferabil-
ity, we find that well-designed model manipulation can provide complementary
gain to existing methods. We propose Worst-case Aware Attack (WAA), a simple
effective method that provides access to a virtual ensemble of models to miti-
gate overfitting on a specific model during the adversarial example generation
process. Specifically, WAA formulates max-min optimization to seek adversar-
ial examples that are robust against the worst-case models, which are created by
adding per-example weight perturbation to the source model towards the direction
of weakening the adversarial sample in question. Unlike other model manipu-
lation methods, WAA does not require multiple surrogate models or architecture-
specific knowledge. Experimental results on ImageNet demonstrate that WAA can
be incorporated with a variety of existing methods to consistently improve trans-
ferability over different settings, including naturally trained models, adversarially
trained models, and adversarial defenses.

1 INTRODUCTION

Adversarial attacks aim to generate a small perturbation on examples that causes unintended results
on target model; due to the wide existence of such perturbations in modern Deep Neural Networks
(DNNs), adversarial attacks have received growing attention and have many useful applications
such as evaluating of the robustness of DNNs (Carlini et al., 2019; Croce et al., 2020; Croce & Hein,
2020), understanding the underlying vulnerability of the model (He et al., 2018; Ilyas et al., 2019;
Ignatiev et al., 2019), and to design defense mechanisms (Madry et al., 2017; Athalye et al., 2018;
Kurakin et al., 2018; Zhang et al., 2019; Wang et al., 2019). Broadly, there are two classes of adver-
sarial attack scenario: white- and black-box attacks. In the white-box scenario, adversaries have full
access to the target model including the model architecture and parameters, thus can directly exploit
the vulnerability through backpropagation. On the other hand, black-box scenarios provide limited
or no information about the target, which leads to more practical yet challenging settings.

In the black-box setting, a common approach to generate attacks is employing a surrogate (or source)
model as a proxy of the target model; it is widely observed that the adversarial examples generated
from one model (source model) can easily transfer to the others (target models) (Liu et al., 2017).
However, transferability of the black-box adversary is also highly dependent on various factors,
such as the choice of surrogate models (Wu et al., 2018) or optimization strategies (Dong et al., 2018;
Wang & He, 2021), since the adversary can easily overfit to the source model thus no longer effective
on the target. Hence, designing a method that prevents adversarial examples from overfitting to
enhance transferability is key to effective black-box attacks.

Common practices to avoid overfitting in black-box scenarios include input transformation (Xie
et al., 2019; Dong et al., 2019; Lin et al., 2020; Wang et al., 2021b), optimization (Dong et al., 2018;
Wang & He, 2021; Wang et al., 2021c; Huang & Kong, 2022), and feature-aware approaches (Huang
et al., 2019; Li et al., 2020a; Wang et al., 2021d). These methods often contribute to different aspects
of the attack generation process–input, optimization, and model–thus can be incorporated together to
further enhance transferability. Compared to these approaches, however, the problem has been rela-
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tively less investigated from the perspective of model manipulation, which directly manipulates the
model parameters to create augmentations of the surrogate model. Designing a model manipulation
for adversarial attacks is challenging since the impact of manipulation typically varies depending on
the model architecture. Hence, existing works (Wu et al., 2020a; Li et al., 2020b) rely on a specific
class of architectures that most source models share in common, e.g., skip-connection, but the de-
pendence induces limited applicability or performance gain. We question whether an adversary can
manipulate the source model in a model-agnostic way to alleviate overfitting.

In this paper, we show that introducing carefully designed per-example perturbations to the model
parameters can serve as an effective augmentation to the surrogate model, hence improving the
transferability of the black-box adversary by mitigating overfitting. To this end, we characterize the
desirable class of perturbations that can be useful in terms of model augmentation, and derive the
optimization objective for adversarial attack that account for the augmented models. Our method
coined Worst-case Aware Attack (WAA) follows a max-min optimization of the loss to generate an
attack by alternating between maximization with respect to the data perturbation and minimization
with respect to the weight perturbation. Throughout the optimization, the adversarial example en-
counters multiple weight-perturbed models and avoids overfitting to the source model. Compared to
the prior works on model manipulation (Guo et al., 2020; Naseer et al., 2021), our method does not
rely on any prior assumptions on model architectures and is generally applicable to various models.
Experimental results confirm the effectiveness of WAA in various scenarios, outperforming the pre-
vious model manipulation approach, and providing complementary gains to the existing methods in
enhancing transferability of black-box adversary.

2 METHODOLOGY

2.1 PRELIMINARIES

Given an image sample x with class label y, an adversarial attack aims to find an indistinguishable
adversarial sample xadv ∈ {xadv|∥xadv−x∥∞ ≤ ϵ}1 that is misclassified by the target classification
model h, i.e., h(xadv) ̸= y2. We address the black-box scenario where adversaries have no access to
the target model h but instead have white-box access to a source (surrogate) model f parameterized
by w. A common practice of black-box adversary is to generate a white-box adversarial example on
the source model and transfer it to the target model (Szegedy et al., 2013). The white-box attack on
the source model has the following objective:

argmax
xadv

J(xadv, y;w) s.t.∥xadv − x∥∞ ≤ ϵ, (1)

where J(·;w) is a loss function, e.g., cross entropy, of the source model with parameters w. The
optimization problem (Eq. 1) is generally solved by applying gradient methods (Goodfellow et al.,
2014), such as the widely used I-FGSM (Kurakin et al., 2018). I-FGSM iteratively applies gradient
update T times with step size α = ϵ/T as follows:

xadv
t+1 = xadv

t + α · sign(∇xadv
t

J(xadv
t , y;w)), (2)

where the attack begins at xadv
0 = x and xadv

T becomes the output adversarial example.

However, optimizing adversarial attacks solely based on a single surrogate model can easily suffer
from severe overfitting, in which case its effect on the target model quickly diminishes as it is not
transferable across models. Thus, several works have proposed methods to avoid overfitting problem
and improve transferability, which we briefly introduce below.

Optimization algorithms Momentum Iterative method (MI) (Dong et al., 2018) adds a momen-
tum term into the iterative optimization procedure to escape from poor local maxima and stabilize
update directions, which turns out to improve transferability:

xadv
t+1 = xadv

t + α · sign(gt+1), gt+1 = µ · gt +
∇xadv

t
J(xadv

t , y;w)

∥∇xadv
t

J(xadv
t , y;w)∥1

. (3)

1Here, ∥ · ∥∞ indicates the L∞ norm.
2For targeted adversarial attacks, they aim h(xadv) = yt for some given target label yt ̸= y.
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Figure 1: (Left) Average loss changes by the relative perturbation size ρ. We experiment how
the (average) loss changes by two types of weight perturbations: worst-case by inner-loop of Eq 6
and random perturbation (denote with -r) inside Sρ(w). We report the average cross-entropy loss
over 100 randomly selected images in the ImageNet validation set. It verifies that perturbations in
Sρ(w) satisfy the loss-preserving property with proper choice of ρ (ρ ≤ 5×10−4). (Right) Change
of the average success rate and sharpness by WAA. We confirm that integration of WAA to MI-
FGSM with different momentum parameters (each point) consistently reduces the sharpness while
improving the success rate. We explain more experimental details in the appendix.

The gradients are accumulated over multiple steps with a momentum factor µ. Nesterov Iterative
(NI) method (Lin et al., 2020) later extends the optimization of Eq. 3 by replacing the momentum
update with Nesterov’s accelerated gradient (NAG) (Nesterov, 1983) to achieve further improved
transferability.

Input Transformations A line of work focuses on input transformations based on the idea that
the composition of input transformation and the source model can serve as a model augmentation
to reduce overfitting. Diverse Inputs (DI) (Xie et al., 2019) suggests random-resizing and padding;
Translation-Invariant (TI) (Dong et al., 2019) method proposes a set of translations implemented by
applying a convolution kernel on the gradient of the image given; Scale-Invariant (SI) (Lin et al.,
2020) method suggests scaled copies of the image; Admix (Wang et al., 2021b) replaces SI with
mixup-style augmentations. Most of these methods mentioned above can be combined together
or with other adversarial attacks to produce stronger baselines of highly transferable adversarial
examples.

2.2 WORST-CASE AWARE ATTACK

This section introduces our method to improve the transferability of the black-box adversary through
model augmentation. Our key idea is simple: we propose to directly augment the surrogate model
by applying additive perturbations to the model parameters. Augmenting the model through weight
perturbation is simple yet effective, as it can create a virtual ensemble from a single surrogate model
and is generally applicable agnostic to architectures. However, choosing such perturbations requires
careful consideration since arbitrary perturbations can easily deteriorate the model hence introducing
noisy signals in optimization of the adversarial attack. To restrict the class of augmented models to
be a valid proxy of the surrogate model, we revise the concept of loss-preserving transformation in
(Lin et al., 2020) and define a loss-preserving weight perturbation as follows:

Definition 1 (Loss-preserving weight perturbation) An input x ∈ X with its ground-truth label
y, and a classifier f(x;w) parameterized by w are given. If an additive weight perturbation v to w
satisfies J(x, y;w+ v) ≈ J(x, y;w) for any x ∈ X and the cross-entropy loss J(x, y;w), we say v
is a loss-preserving weight perturbation.

The definition characterizes the valid augmentations as the ones that preserve the similar classifi-
cation performance to the original model. While the theoretical characterization of full set of such
perturbations is challenging, we can easily characterize their subsets with simple heuristic. Specifi-
cally, we characterize the (subset of) loss-preserving weight perturbations as a set:

Sρ(w) = {v|∀l, ∥vl∥2 ≤ ρ∥wl∥2}, (4)
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where l is the layer index and ρ is a constant characterizing the magnitude of the perturbation v.
The perturbation bound of each layer is determined adaptively based on the norm of the weight
wl to consider layer-wise scale variance. Eq. 4 is based on a simple heuristic that constraining
the norm of perturbation can prevent the augmented model from much diverging from the original
one. As shown in Figure 1, such perturbations within a small bound of ρ = 5 × 10−4 do not have
much impact on loss over a wide range of source models, which verifies that Eq. 4 can generally
characterize a valid loss-preserving perturbations in Definition 1.

By applying the empirical loss-preserving weight perturbations Sρ(w) discussed above, the objec-
tive of optimizing adversarial examples on the set of weight-augmented models becomes:

argmax
xadv

Ev∈Sρ(w)[J(x
adv, y;w + v)] s.t. ∥xadv − x∥∞ ≤ ϵ. (5)

Eq. 5 extends the objective of black-box adversary in Eq. 1 with the augmented weights w + v
constructed by weight perturbations v ∈ Sρ(w). Optimizing the expectation of the above equa-
tion is expected to be more robust against the overfitting than optimizing over the fixed surrogate
model (Eq. 1) in principle, yet we observe that the improvement is marginal. It is because the loss-
preserving weight perturbation is a necessary but not a sufficient condition to characterizes useful
perturbations in terms of augmentation; indeed, Eq 4 loosely characterizes such useful perturbations
that improve transferability, and contains many trivial solutions of Definition 1 i.e., near-duplicates
of the non-perturbed model. Hence, we propose applying the worst-case optimization using the
lower-bound of the expectation in Eq. 4 to filter out the effect of degenerate solutions in Sρ(w) by:

argmax
xadv

min
v∈Sρ(w)

J(xadv, y;w + v) s.t. ∥xadv − x∥∞ ≤ ϵ. (6)

Since it is a lower-bound, optimization of Eq. 6 eventually corresponds to the optimization of Eq. 5
over all v ∈ Sρ(w), while avoiding the degenerated solutions in Sρ(w) in generating adversarial
attack xadv at the outer maximization. Also, while Eq. 6 is the minimization problem with respect to
the weight perturbation v, it still functions as ensemble in practice since the adversarial example xadv

keeps changing during the alternating optimization process (Section 2.3). Our experiments show that
our objective function (Eq. 6) consistently improves the transferability of adversarial attack over the
baseline (Eq. 1) and random augmentation (Eq. 5) (Section 4).

Connection with sharpness-aware optimization (Foret et al., 2020) Rewriting our objective
function, we can draw useful insights from the model generalization perspective. Specifically, Eq. 6
can be rephrased as:

max
xadv

min
v∈Sρ(w)

J(xadv, y;w + v) = max
xadv

J(xadv, y;w)− [J(xadv, y;w)− min
v∈Sρ(w)

J(xadv, y;w + v)].

Note that the first term J(xadv, y;w) simply corresponds to the adversarial attack objective in
(Eq. 1). The second term, which similarly appears in Foret et al. (2020), captures the sharpness
of the example loss J(xadv, y;w) on the parameter space by measuring how quickly the loss can be
decreased by moving from w to a nearby perturbed parameter value w+v. In Foret et al. (2020), it is
shown that the sharpness of the loss is highly correlated with the generalization performance of the
model i.e., the parameters at flatter loss landscape tend to generalize better to test data. In contrast
to Foret et al. (2020) that optimizes the sharpness over the training data by maximization, we opti-
mize it over the adversarial examples by minimization to improve the transferability of adversarial
examples, not the model parameters. Intuitively, without the sharpness term, naive optimization of
Eq 1 will produce an adversarial attack positioned on a sharp local maximum with poor adversarial
transferability since even a small weight perturbation will neutralize the attack. Our objective can
be viewed as minimizing the sharpness of the loss landscape to reach an adversarial attack at a flat
loss landscape that improves the transferability across the target models with different parameters.
Indeed, the experimental result in Figure 1 shows the negative correlation between the sharpness
of the loss and transferability, i.e., more transferable adversarial examples are placed in the flatter
landscape, which verifies our intuition.

2.3 OPTIMIZATION STRATEGY

We explain the optimization strategy of WAA. We use bi-level optimization that alternates between
inner- and outer-loop optimization similar to weight perturbation methods (Wu et al., 2020b). For
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Algorithm 1 WAA-MI-FGSM
1: Input: A target image x, label y, loss function J parameterized by w, maximum image per-

turbation ϵ, step size α, momentum factor µ, number of outer iterations Tout, relative maximum
weight perturbation size ρ, number of inner iterations Tin, inner step size β.

2: Output: adversarial image xadv

3: xadv ← x, v ← 0, g0 ← 0,
4: for t = 1, . . . , Tout do
5: for i = 1, . . . , Tin do
6: v ← Πρ

(
v − β ∇vJ(x

adv,y;w+v)
∥∇vJ(xadv,y;w+v)∥2

∥w∥2
)

7: end for
8: ĝt ← ∇xadvJ(xadv, y;w + v)

9: gt ← µ · gt−1 +
ĝt

∥ĝt∥1

10: xadv ← Clip(xadv + α · sign(gt), x− ϵ, x+ ϵ)
11: end for

the inner minimization, we use normalized gradient descent (Cortés, 2006) that suits constrained
optimization on our layer-wise bounds:

v ← Πρ

(
v − β

∇vJ(x
adv, y;w + v)

∥∇vJ(xadv, y;w + v)∥2
∥w∥2

)
, (7)

where Πρ is a projection operation to satisfy the constraint of Eq. 4, defined as:

Πρ(v) =

{
ρ∥w∥2

∥v∥2
v if ∥v∥2 > ∥w∥2

v otherwise
. (8)

For the outer maximization, the gradient includes a second-order term:

∇xadv min
v∈S(w)

J(xadv, y;w + v) ≈ ∇xadvJ(xadv, y;w + v∗) (9)

= ∇xadvJ(xadv, y;w)
∣∣
w+v∗ +

dv∗

dxadv
∇wJ(x

adv, y;w)
∣∣
w+v∗ ,

where v∗ is the weight perturbation given by inner minimization. To reduce computation, we use a
gradient approximation from Foret et al. (2020) as follows:

∇xadv min
v∈S(w)

J(xadv, y;w + v) ≈ ∇xadvJ(xadv, y;w)
∣∣
w+v∗ . (10)

We observe that dropping the second-order gradients does not degrade the performance. Our method
can integrate into existing black-box methods by simply adding an inner loop minimization. We
describe our method integrated with MI-FGSM in Alg 1.

3 RELATED WORKS

Model manipulation approaches Several works have explored source model manipulation meth-
ods. Li et al. (2020b) proposes to adjust the magnitude of skip-connection or dropout, enabling the
ensemble effect to generate more transferable attacks. Naseer et al. (2021) suggest self-ensembling
that exploits the output class-tokens of different intermediate vision transformer Dosovitskiy et al.
(2021); Touvron et al. (2021) blocks. Wu et al. (2020a) further improves Li et al. (2020b) by chang-
ing only the backward computation of skip-connection while maintaining the forward. Guo et al.
(2020) show that skipping nonlinear components during backpropagation can also improve black-
box attacks. While these methods provide extra transferability in their settings, they rely on the
architectural characteristics of model networks, i.e., class-token, limiting their applications. In con-
trast, our method does not lean on architectural properties and functions in a model-agnostic way.

Min-max optimization approaches A few adversarial attack methods employ minimax formu-
lation. Bose et al. (2020) introduces a framework for crafting adversarial examples to hypothesis
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classes by a min-max game between a generator of attacks and a classifier when training both from
scratch. Wang et al. (2021a) suggest exploiting an affine combination of multiple source models to
generate attacks in a min-max formulation. However, their experimental results are limited to small-
scaled datasets, e.g., CIFAR-10. In our method, we introduce a worst-case weight perturbation as
an inner-loop minimization and verify the effectiveness in more challenging ImageNet evaluation.

Adversarial training One of the best defenses against adversarial attacks to date is adversarial
training (Madry et al., 2017; Zhang et al., 2019; Carmon et al., 2019; Wang et al., 2019), in which the
training set is augmented by adversarially attacked images of the original training data. However,
some works allow the adversary to directly perturb the weight parameters to obtain more robust
model. Sun et al. (2021) demonstrates that a carefully designed weight corruption is sufficient
to cause misclassification, and training the model parameters to be robust against such corruption
can further enhance adversarial robustness. Another line of similar work is Adversarial Weight
Perturbations (AWP) (Wu et al., 2020b). Similar to Sharpness-Aware Minimization (SAM) (Foret
et al., 2020) relating flat loss landscape with improved generalization to unseen natural images,
AWP draws connection between flat loss landscape and adversarial robustness generalization by
performing adversarial training under weight perturbations that aim to maximize the loss function.
Our method can be interpreted as applying AWP in the adversarial attack scheme, where we optimize
adversarial examples under the presence of loss-minimizing weight perturbations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset Following the experiment protocols provided by Lin et al. (2020)3, we conduct exper-
iments on 1000 images randomly chosen from each category of the ILSVRC 2012 validation set
(Russakovsky et al., 2015). The RGB values of all images are scaled to range [0, 1]. All models that
we use in our experiments correctly classifies the images with at least 99.8% accuracy. When simu-
lating the targeted attack, we follow the protocols in the ImageNet-compatible dataset4 and assign a
fixed random target label on each image for evaluation.

Models Following Lin et al. (2020), we consider four classifiers as both the source and the target
model in different architectures, namely Inception-v3 (Inc-v3) (Szegedy et al., 2016), Inception-
v4 (Inc-v4) (Szegedy et al., 2017), Inception-ResNet-v2 (IncRes-v2) (Szegedy et al., 2017), and
ResNet-v2-101 (RN-v2) (He et al., 2016). We also consider four adversarially trained models as
extra target models, which are Adv-Inc-v3 (Kurakin et al., 2017), Ens3-Inc-v3, Ens4-Inc-v4, and
Ens3-IncRes-v2 (Tramèr et al., 2018). Additionally, we also include advanced defense models for
evaluation: FD (Liu et al., 2019), JPEG (Guo et al., 2017), Bit-Red (Xu et al., 2017), NRP (Naseer
et al., 2020), and R&P (Xie et al., 2017).

Baselines We compare our method with various black-box attack methods, many of which also
address improving the transferability of the attack. As optimization-based methods, we consider
three popular baselines: I-FGSM (I) (Kurakin et al., 2018), MI-FGSM (MI) (Dong et al., 2018), and
NI-FGSM (NI) (Lin et al., 2020). As approaches based on data augmentation, we consider DI (Xie
et al., 2019), TI (Dong et al., 2019), SI (Lin et al., 2020), and CT as their combination (DI, TI, and
SI). Since these two classes of baselines address different aspects of black-box transferability, we
also consider their combinations as strong baselines in our experiment.

Hyperparameters Following the settings of (Dong et al., 2018; Lin et al., 2020), we set the max-
imum perturbation bound of the adversarial attack as ϵ = 16/255, number of iterations Tout = 10,
and step size α = 1.6/255. In MI-FGSM and NI-FGSM, the decay factor is set to µ = 1.0. In
DI, the transformation probability is p = 0.5. In TI, we use Gaussian kernel of size 7 × 7. In
SI, we use m = 5 scale copies of the input image. For our method, we set the relative perturba-

3https://github.com/JHL-HUST/SI-NI-FGSM
4https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_

v3.1.0/examples/nips17_adversarial_competition
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Table 1: Performance of untargeted transfer attacks. We evaluate using three naturally trained
models that were not used to generate the attack and report the success rate (%).

source: inc-v3 source: inc-v4
Method inc-v4 incres-v2 rn-v2 inc-v3 incres-v2 rn-v2

I / +WAA 20.4 / 25.3 17.7 / 22.1 14.9 / 18.4 30.7 / 37.5 20.7 / 25.2 18.6 / 22.5
MI / +WAA 45.4 / 48.5 42.0 / 46.3 34.5 / 39.2 56.2 / 62.1 46.6 / 50.9 42.5 / 46.2
NI / +WAA 52.8 / 54.8 49.2 / 51.7 41.6 / 42.4 64.2 / 66.4 51.5 / 55.6 45.4 / 46.9

MI-DI / +WAA 64.7 / 68.4 60.9 / 65.9 54.6 / 58.6 73.2 / 74.0 64.3 / 67.1 55.8 / 58.5
MI-TI / +WAA 48.2 / 53.9 43.7 / 48.4 39.4 / 43.0 58.2 / 63.5 46.5 / 52.7 43.4 / 46.0
MI-SI / +WAA 70.0 / 76.0 66.8 / 74.1 62.0 / 66.8 80.8 / 85.6 74.3 / 80.9 68.7 / 73.5
MI-CT / +WAA 85.8 / 88.5 81.8 / 85.7 77.9 / 81.6 87.4 / 88.5 84.3 / 86.5 78.1 / 81.2
NI-CT / +WAA 85.0 / 88.1 82.1 / 83.0 76.9 / 78.4 88.2 / 89.8 83.8 / 86.1 77.5 / 79.5

source: incres-v2 source: rn-v2
Method inc-v3 inc-v4 rn-v2 inc-v3 inc-v4 incres-v2

I / +WAA 32.8 / 38.1 24.3 / 30.0 20.8 / 22.4 32.2 / 35.9 26.1 / 29.6 22.0 / 26.4
MI / +WAA 59.3 / 66.7 50.0 / 57.9 44.9 / 48.7 56.9 / 62.6 52.2 / 56.9 48.8 / 54.7
NI / +WAA 62.1 / 64.2 55.0 / 55.8 45.5 / 45.7 64.4 / 67.1 58.3 / 61.0 57.1 / 59.1

MI-DI / +WAA 69.9 / 70.6 64.2 / 65.4 58.7 / 58.7 32.2 / 35.9 26.1 / 29.6 22.0 / 26.4
MI-TI / +WAA 63.3 / 67.0 54.3 / 62.1 50.8 / 53.4 74.9 / 79.4 69.8 / 74.0 70.4 / 73.9
MI-SI / +WAA 84.0 / 88.2 80.2 / 84.3 76.0 / 79.7 59.4 / 63.8 53.6 / 57.9 53.1 / 58.1
MI-CT / +WAA 88.3 / 90.1 86.3 / 88.3 83.2 / 85.5 73.1 / 79.3 69.9 / 74.3 68.8 / 73.2
NI-CT / +WAA 90.3 / 91.6 87.3 / 89.3 82.8 / 84.3 87.3 / 89.4 83.5 / 85.1 84.9 / 86.2

Table 2: Performance of untargeted transfer attacks on adversially trained models. We report
the success rate (%) for attacks generated using CT as input transformation.

Source Method ens3-inc-v3 ens4-inc-v3 ens3-incres-v2 adv-inc-v3

inc-v3 MI-CT / +WAA 67.1 / 71.6 64.1 / 69.1 47.6 / 52.1 65.4 / 70.5
NI-CT / +WAA 61.3 / 63.7 56.5 / 60.1 41.7 / 43.8 61.9 / 62.7

inc-v4 MI-CT / +WAA 71.9 / 74.0 68.4 / 71.9 57.9 / 61.5 66.6 / 70.6
NI-CT / +WAA 66.6 / 68.9 62.8 / 66.2 50.6 / 53.3 63.0 / 66.0

incres-v2 MI-CT / +WAA 77.9 / 80.5 74.9 / 77.6 72.1 / 75.0 75.3 / 78.8
NI-CT / +WAA 74.2 / 76.4 67.9 / 70.7 64.5 / 66.5 72.2 / 73.9

rn-v2 MI-CT / +WAA 77.2 / 79.3 72.5 / 75.1 63.0 / 66.6 73.3 / 76.1
NI-CT / +WAA 72.8 / 74.2 68.0 / 69.5 57.7 / 59.5 71.4 / 72.4

tion size to ρ = 5 × 10−4 for all models, number of inner iterations Tin = 1, and inner step size
β = ρ/(Tout · Tin) unless indicated otherwise.

4.2 MAIN RESULTS

Untargeted attacks Following (Lin et al., 2020), we first evaluate the performance of WAA on
four source models, by fusing with seven different combinations of optimization algorithms and
input transformation methods: I, MI, NI, MI-DI, MI-TI, MI-SI, MI-CT, and NI-CT. Table 1 shows
the attack performance when the generated adversarial examples are transferred to different target
classifiers.

When combined with various optimization methods, I, MI, and NI, we observe that our method
improves the success rates of the transfer attack consistently over all methods, each of which by
4.4%, 5.1%, and 2.0% on average, respectively. Furthermore, when combining MI with various
input transformation methods to create stronger baselines, MI-DI, MI-TI, and MI-SI, our method
consistently improves the baselines by 2.8%, 4.7%, and 5.1%, respectively. Finally, even when we
create the strongest baselines, MI-CT and NI-CT, by combining all input transformation methods
with an optimization algorithm, the average improvements gained by WAA are a considerable 2.3%
and 1.8%. It shows that our method provides complementary gains to improve the transferability of
the black-box attacks over the existing algorithms and their combinations.
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Table 3: Performance of untargeted transfer attacks on advanced defense methods. We report
the attack success rate (%) of adversarial examples after they pass through defense mechanisms.

Method Source FD JPEG Bit-Red NRP R&P

MI-CT / +WAA

inc-v3 72.0 / 74.8 76.4 / 80.5 46.7 / 49.8 41.5 / 45.0 68.7 / 73.0
inc-v4 71.5 / 74.8 77.5 / 79.9 50.4 / 54.3 47.7 / 50.3 72.3 / 74.9

incres-v2 78.7 / 81.1 82.6 / 85.3 60.6 / 63.4 57.2 / 60.1 78.8 / 80.7
rn-v2 77.8 / 80.1 81.9 / 84.7 57.5 / 59.0 54.8 / 57.3 78.2 / 80.5

Table 4: Performance of targeted transfer attacks. We evaluate against three naturally trained
models that were not used to generate the attack and report the success rate (%).

source: inc-v3 source: inc-v4
Methods Iterations inc-v4 incres-v2 rn-v2 inc-v3 incres-v2 rn-v2

MI-CT / +WAA 100 16.6 / 21.7 14.8 / 19.7 8.4 / 10.1 9.8 / 15.6 11.0 / 16.7 5.3 / 8.2
300 19.3 / 28.0 17.6 / 25.8 10.4 / 13.2 10.8 / 19.3 12.5 / 23.5 6.3 / 10.3

source: incres-v2 source: rn-v2
Attack iterations inc-v3 inc-v4 rn-v2 inc-v3 inc-v4 incres-v2

MI-CT / +WAA 100 10.4 / 20.1 13.1 / 23.4 10.0 / 17.0 26.4 / 31.5 23.8 / 29.7 30.2 / 36.8
300 12.2 / 22.1 15.2 / 25.7 10.4 / 18.4 29.6 / 36.1 28.4 / 35.5 35.7 / 42.8

Since MI-CT and NI-CT are the strongest baselines with the highest transfer success rate, we addi-
tionally evaluate those attacks (with WAA) on four adversarially trained models. As shown in Table
2, WAA brings 3.4% and 2.2% extra success rate over the baselines MI-CT and NI-CT respectively.
Altogether, the results on untargeted attcks demonstrate that WAA can generate more transferable
adversarial examples from the same source model compared to baselines of varying strength.

Untargeted attacks on advanced defense methods We also evaluate a stong baseline MI-CT
and our method against several advanced adversarial defense methods. To this end, we feed the
adversarial examples through each defense method and evaluate the output images on the Ens3-Inc-
v3 classifier. Table 3 summarizes the result. We can observe that MI-CT-WAA achieves higher
attack success rate under all scenarios, and outperforms the baseline MI-CT with a clear margin of
2.7% averaged across all models and defenses.

Targeted attacks We also evaluate our method on a more challenging task of targeted attack,
whose objective is to produce the pre-defined label from the targeted attack. Following Zhao et al.
(2021), we employ the logit loss to generate attacks, and increase the number of steps to T = 100
or T = 300 while fixing other hyperparameters. Note that the inner minimization objective in line
6 of Alg 1 is also replaced with the logit loss to demonstrate that WAA works with loss functions
other than standard cross entropy as well.

Table 4 summarizes the results. After 100 iterations, WAA improves the attack success rate against
target models by 5.9%, and shows even larger average improvement of 7.7% after 300 iterations.
Hence we conclude WAA shows clear improvements in targeted attack success rates across all source
models.

4.3 ANALYSIS

Comparison with model manipulation baselines We compare our method with other alternatives
of model manipulation. (1) Random weight augmentation derived from Eq. 5: Instead of adding the
worst-case perturbation in line 6 of Alg 1, we replace this line by adding a random Gaussian noise
of the same norm. (2) Dropout erosion proposed by Li et al. (2020b): They apply random dropout
to intermediate feature layers, which can also be viewed as a virtual ensemble of models created in a
model-agnostic manner. The dropout probability is set to 0.006 for Inception-v3 network following
the official code repository5.

5https://github.com/LiYingwei/ghost-network
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Figure 2: Ablation study on hyperparameters (Left) ρ and (Right) Tin.

Table 5: Comparison with baseline model manipulation methods. We report the success rate
(%) of the untargeted transfer attacks created from Inception-v3 model using different model ma-
nipulation methods. We denote +R: random augmentation by Eq. 5, +D: Dropout erosion (Li et al.,
2020b), and +W: WAA (ours).

Methods inc-v4 incres-v2 rn-v2

MI / +R / +D / +W 45.4 / 44.0 / 47.8 / 48.5 42.0 / 42.1 / 45.7 / 46.3 34.5 / 36.2 / 38.6 / 39.2
MI-CT / +R / +D / +W 85.8 / 85.6 / 60.5 / 88.5 81.8 / 82.3 / 57.7 / 85.7 77.9 / 77.2 / 52.0 / 81.6

The results are shown in Table 5. We first observe that random weight augmentation occasionally
provides improvement over the baselines MI and MI-CT, yet the improvements are marginal in gen-
eral as discussed in Section 2.2. On the other hand, Dropout erosion provides consistent improve-
ment over MI, while its performance drops significantly when combined with input transformation
(MI-CT).

Ablation on relative maximum perturbation size ρ While we vary the perturbation size ρ, the
inner step size β must change accordingly as β = ρ/(Tout · Tin) to allow the optimization process
reach the perturbation bound. With that in mind, the results of MI-CT-WAA with different values of
ρ against 4 source models are illustrated in Figure 2 (Left). While even small values of ρ show better
transferability, the range 4×10−4 ≤ ρ ≤ 7×10−4 shows consistent improvement across all models,
then the performance starts declining as the bound becomes too wide and no longer qualifies as a set
of loss-preserving weight perturbations. Thus we adopt ρ = 5× 10−4 for our experiments.

Ablation on the number of inner steps Tin We vary the number of inner steps in the range
Tin ∈ {1, 2, 3, 5, 10} for each source model, and the results are in Figure 2 (Right). Interestingly,
varying Tin delivers mixed effects depending on the source model. Increasing the number of inner
steps imply that earlier steps of the outer optimization have to deal with larger magnitudes of weight
perturbation. Since the nature of I-FGSM produces input perturbations of smaller norm in the earlier
stages, such exposure to extreme worst-case weight perturbation might overwhelm the adversarial
effect of input perturbation.

5 CONCLUSION

In this work, we propose Worst-case Aware Attack (WAA), an intriguing direction of model aug-
mentation that improves the transferability of generated adversarial examples. WAA applies per-
example worst-case weight perturbations on the source model to obtain weight-augmented models,
which provide a virtual ensemble of models to mitigate overfitting on a specific model. While ex-
isting model manipulation approaches rely on parts that some model architectures have in common
to avoid overfitting, the weight perturbation operation of WAA is model-agnostic and applies to
a broader range of networks without any adaptation. Extensive experiments on a subset of Ima-
geNet demonstrate that WAA can be combined with baseline attacks to improve the transferability
of adversarial attacks further. Finally, we draw some similarities between weight loss landscape
and adversarial transferability, which we leave as an interesting future work direction for a more
thorough investigation.
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REPRODUCIBILITY STATEMENT

Our method is simple and easy to implement. To support reproducibility, we include a pseudo-code
description of our method in Sec. 2.3 while also including the core part of implementation with
TensorFlow in the Appendix. For the experimental results in Sec. 4, we provide all the detailed
experimental setups in Sec 4.1, including the references to our baselines. For the results in Fig 1,
we add more experimental details in the Appendix for reproducibility. We will release our code in
public as soon as the reviewing process ends.

ETHICS STATEMENT

Our work focuses on improving black-box adversarial transferability, which may assist groups with
a malicious intention on disrupting neural network models deployed in real-world environments.
However, a black-box adversary must have access to a compatible training dataset or at least a
surrogate model to maximize the chances of adversarial transferability, which restricts the use cases
of our method. We believe our work also highlights the need for more advanced defense mechanisms
against such attacks, which our work will support such research in the long run.
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A DETAILED DESCRIPTION OF TOY EXPERIMENTS

All experiments are performed on the same dataset with the main experiments.

Figure 1 (Left) We visualize the average cross-entropy loss using the following formula:

L(xj , ρ) =
1

∥D∥
∑
xi∈D

J(xi, yi, w − ρvj), (11)

vj =
∇vJ(xj , yj ;w)

∥∇vJ(xj , yj ;w)∥2
∥w∥2. (12)

Here, we sample a fixed set of 100 random images from the dataset to create a validation subset D,
and we average L(xj , ρ) over a fixed set of 20 random images distinct from the validation subset.
For random weight perturbations, vj is replaced by a random Gaussian noise of the same L2 norm.

Figure 1 (Right) We visualize the relationship between sharpness and transferability using the
Inception-v3 model. Given a set of attacked images D = xadv

i , we define sharpness as:

S(D) = 1

∥D∥
∑

xadv
i ∈D

[
J(xadv

i , yi;w)− min
v∈Sρ(w)

J(xadv
i , yi;w + v)

]
(13)

Under this definition, a larger sharpness implies the set of attacks can be easily weakened by adding
small weight perturbations. In Figure 1 (Right), we demonstrate that MI attack augmented with
WAA shows lower sharpness (i.e. is more robust weight perturbations) while the average success
rate also increases.

B IMPLEMENTATION

For reproducibility, we include the core implementation of our method WAA, below:

1 if FLAGS.beta > 0:
2 for j in range(FLAGS.inner):
3 weights_nat = tf.get_collection(tf.GraphKeys.

TRAINABLE_VARIABLES, scope=f’Nat/{scope_name}’)
4

5 # Calculate gradient of current adversarial example
6 with tf.control_dependencies(deps):
7 if FLAGS.si and FLAGS.mode == ’full’:
8 x_scaled_list = []
9 for scale in [1.0, 2.0, 4.0, 8.0, 16.0]:

10 x_scaled_list.append(x_nes / scale)
11 x_scaled_list = tf.concat(x_scaled_list, 0)
12 one_hot_batched = tf.concat([one_hot, one_hot,

one_hot, one_hot, one_hot], 0)
13 inner_adv_logit, _ = model_forward(x_scaled_list, ’

Adv’)
14 inner_cross_entropy = tf.losses.softmax_cross_entropy

(one_hot_batched, inner_adv_logit)
15 else:
16 if FLAGS.mode == ’simple’:
17 inner_adv_logit, _ = model_forward(x_nes, ’Adv’)
18 else: # ’simplest’
19 inner_adv_logit, _ = model_forward_no_diversity(

x_nes, ’Adv’)
20 inner_cross_entropy = tf.losses.softmax_cross_entropy

(one_hot, inner_adv_logit)
21 adv_loss_list = tf.tensor_scatter_update(

adv_loss_list, [[i, j]], [inner_cross_entropy])
22

23 # Collect reference to weights
24 deps = [inner_cross_entropy, adv_loss_list]
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25 weights_adv = tf.get_collection(tf.GraphKeys.
TRAINABLE_VARIABLES, scope=f’Adv/{scope_name}’)

26

27 # Add weight perturbation in the loss-decreasing direction
28 with tf.control_dependencies(deps):
29 grad_weights = tf.gradients(inner_cross_entropy,

weights_adv)
30 for grad_weight, weight_adv, weight_nat in zip(

grad_weights, weights_adv, weights_nat):
31 if ’BatchNorm’ in weight_adv.name or ’Aux’ in

weight_adv.name:
32 continue
33 grad_norm = tf.norm(grad_weight, FLAGS.lp)
34 weight_norm = tf.norm(weight_nat) if FLAGS.norm == ’

rel’ else 1
35 scale = - FLAGS.beta * weight_norm / (grad_norm + 1e

-12)
36 new_pert = (weight_adv - weight_nat) + grad_weight *

scale
37 new_pert = tf.clip_by_norm(new_pert, FLAGS.beta *

weight_norm * FLAGS.multiplier)
38 deps.append(weight_adv.assign(weight_nat + new_pert))

C ADDITIONAL EXPERIMENTAL RESULTS

Targeted attack against adversarially trained models Extending Table 4, we evaluate targeted
attacks generated using MI-CT and MI-CT-WAA on adversarially trained models as well. Results
provided in Table 6 demonstrate that WAA still delivers improvement on the extremely challenging
setting of generating targeted attacks that are transferable to adversarially trained models.

Table 6: Performance of targeted transfer attacks on adversarially trained models.

Source Attack ens3-inc-v3 ens4-inc-v3 ens3-incres-v2 adv-inc-v3

inc-v3 MI-CT / +AWP (100step) 0.4 / 0.5 0.4 / 0.5 0.3 / 0.1 0.7 / 0.7
MI-CT / +AWP (300step) 0.5 / 0.9 0.4 / 0.7 0.2 / 0.2 0.6 / 0.7

inc-v4 MI-CT / +AWP (100step) 1 / 1.3 0.5 / 0.7 0.3 / 0.4 0.6 / 0.8
MI-CT / +AWP (300step) 0.6 / 1.1 0.4 / 0.5 0.1 / 0.3 0.7 / 0.9

incres-v2 MI-CT / +AWP (100step) 2 / 2.8 0.9 / 1 0.4 / 0.6 1.1 / 1.3
MI-CT / +AWP (300step) 1.9 / 3 1 / 1 0.4 / 0.5 1 / 1.4

rn-v2 MI-CT / +AWP (100step) 4.6 / 5.1 2.3 / 2.8 0.6 / 1 3.2 / 4.1
MI-CT / +AWP (300step) 3.5 / 6.5 1.5 / 3 0.8 / 1.4 2.7 / 4.4

Experimental results w.r.t. different values of perturbation size ρ In the main submission,
Table 1 provides the evaluation under ρ = 5 × 10−4 . Here, we further report the performance of
WAA under different values of ρ in Tables 7 and 8, to show that our method outperforms baselines
at wide range of hyperparameters.
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Table 7: Additional results of ρ = 4× 10−4

source: inc-v3 source: inc-v4
Attack inc-v4 incres-v2 rn-v2 inc-v3 incres-v2 rn-v2

MI / +AWP 45.4 / 48.2 42 / 46.1 34.5 / 39.8 56.2 / 60.8 46.6 / 49.7 42.5 / 44.4
NI / +AWP 52.8 / 55.2 49.2 / 53.3 41.6 / 43.5 64.2 / 64.8 51.5 / 53.6 45.4 / 46.4

MI-CT / +AWP 85.8 / 88.3 81.8 / 85.3 77.9 / 80.9 87.4 / 88.9 84.3 / 86.2 78.1 / 81.3
NI-CT / +AWP 85 / 86.9 82.1 / 83.1 76.9 / 78.6 88.2 / 89.4 83.8 / 85.3 77.5 / 79.4

source: incres-v2 source: rn-v2
Attack inc-v3 inc-v4 rn-v2 inc-v3 inc-v4 rn-v2

MI / +AWP 59.3 / 64.1 50 / 55.7 44.9 / 48.5 56.9 / 61.1 52.2 / 55.3 48.8 / 54.1
NI / +AWP 62.1 / 63.8 55 / 55.1 45.5 / 46 64.4 / 67.2 58.3 / 60.2 57.1 / 59.4

MI-CT / +AWP 88.3 / 89.7 86.3 / 88.1 83.2 / 85.1 86.5 / 88.1 82.7 / 84.5 84.7 / 86
NI-CT / +AWP 90.3 / 91.4 87.3 / 88.6 82.8 / 84.3 87.3 / 89.3 83.5 / 84.2 84.9 / 85.7

Table 8: Additional results of ρ = 6× 10−4

source: inc-v3 source: inc-v4
Attack inc-v4 incres-v2 rn-v2 inc-v3 incres-v2 rn-v2

MI / +AWP 45.4 / 49.6 42 / 47.2 34.5 / 41.1 56.2 / 62.7 46.6 / 52.4 42.5 / 45.8
NI / +AWP 52.8 / 55 49.2 / 51.8 41.6 / 42.9 64.2 / 65.7 51.5 / 54.9 45.4 / 45.7

MI-CT / +AWP 85.8 / 88.8 81.8 / 86.2 77.9 / 82.2 87.4 / 88.9 84.3 / 87 78.1 / 80.9
NI-CT / +AWP 85 / 87.2 82.1 / 83.2 76.9 / 79 88.2 / 89.4 83.8 / 85.9 77.5 / 79.9

source: incres-v2 source: rn-v2
Attack inc-v3 inc-v4 rn-v2 inc-v3 inc-v4 rn-v2

MI / +AWP 59.3 / 65.8 50 / 57.8 44.9 / 49.3 56.9 / 63.5 52.2 / 57.9 48.8 / 54.8
NI / +AWP 62.1 / 65.8 55 / 56.4 45.5 / 47.7 64.4 / 67.8 58.3 / 61.4 57.1 / 59.7

MI-CT / +AWP 88.3 / 89.7 86.3 / 88.3 83.2 / 85.1 86.5 / 88.1 82.7 / 85.4 84.7 / 85.8
NI-CT / +AWP 90.3 / 91.9 87.3 / 88.9 82.8 / 84.9 87.3 / 89.1 83.5 / 85.3 84.9 / 86.6
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