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ABSTRACT

We design a lossless compression algorithm for compressing English text by us-
ing the large language model LLaMA2-7B as a predictor for the next token given
a window of past tokens. Specifically, the proposed LLMZip algorithm uses the
conditional probabilities at the output of the large language model in conjunction
with Arithmetic Coding. Our algorithm outperforms state-of-the-art text com-
pression schemes such as BSC, ZPAQ, and paq8h. We show that it is possible
to marginally improve the compression performance further by first extracting a
summary from the document and compressing the text by conditioning on the
summary. Finally, we investigate the compression performance of LLMZip when
the summary (side information) is available both at the encoder and decoder. We
show that the LLM is able to exploit the available side information to significantly
improve the compression performance. As an important byproduct, we provide
new estimates of an asymptotic upper bound on the entropy of English which is
significantly smaller than currently available estimates.

1 INTRODUCTION

There are close connections between learning, prediction, and compression. The success of Chat-
GPT has captured the fascination of the general public and brought the connection between learning
and prediction to the fore. The main advance brought about by large language models such as
LLaMA and GPT-4 is that they excel at predicting the next token in a text corpus, conditioned on
knowing the past tokens within the context window.

The connection between prediction and compression was explored as early as 1951 by Shannon
in order to estimate the entropy of the English language (Shannon| (1951)). The idea that a good
predictor for the ¢th value in a time series based on the past values can be effectively converted to
a good compression algorithm has played a prominent role in information theory. Many algorithms
for speech, image, and video compression exploit this notion, either explicitly or implicitly. The
performance of such a compression scheme depends substantially on the efficacy of the predictor
and every time there is a major advance in the prediction capability, it behooves us to study its effect
on the compression performance. For lossless text compression, the idea of combining a language
model with arithmetic coding has been shown to be effective (MacKay|(2003)). Indeed, the authors
in|Goyal et al.| (2018)) use recurrent neural networks (RNN) as predictors, and they report improved
results for certain types of source. Their scheme still did not outperform state-of-the-art algorithms
such as BSC and ZPAQ for text compression.

Given the recent release of large language models such as the LLaMA models [Touvron et al.
(2023a),Touvron et al.| (2023b), this is an opportune time to study whether one can obtain better
compression results and sharper estimates of the entropy of the English language. This is the main
goal of this paper.

1.1 CONTRIBUTIONS

We study the compression performance of using a foundational model (LLaMA2-7B) in conjunction
with entropy coding for lossless text compression, and the resulting suite of compression algorithms
are broadly termed as LLMZip. We refer to the combination of using a large language model for
predictive modeling followed by using arithmetic coding for entropy coding as the LLM+AC algo-
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rithm. With the LLaMA2+AC algorithm, we obtain a compression ratio of 0.6936 bits/character
on a IMB section of the text8 dataset and a compression ratio of 0.7741 bits/character on a 200KB
section of a text from a book that was released on Project Gutenberg after the release of LLaMA?2
Cooke & Reed|(2023). These compression ratios are significantly better than the compression ratio
obtained using state-of-the-art text compressors such as BSC, ZPAQ and pq8h on the full 100MB of
the text8 dataset. This paper is the first to demonstrate that excellent compression can be obtained
using LLMs for compressing text that was not part of the training corpus.

We show that when the LLaMA2-7B large language model is used as the predictor, the asymptotic
upper bound on the entropy is 0.692 bits/character when estimated using a 1MB section of the text8
dataset. This is smaller than earlier estimates provided in |Cover & King| (1978)) and (Lutati et al.,
2023| Table 4). The estimate of the upper bound increases to 0.77 bits/character for a 200 KB section
of the text from |Cooke & Reed| (2023)), which is still lower than the estimates in |[Lutati et al.| (2023)).

We introduce the idea of compressing text by first creating a summary and then conditioning on the
summary to compress the text using the LLM+AC algorithm. We show that this provides marginal
improvement to the compression ratio.

Finally, we study the compression performance of LLM+AC when side information such as a short
summary of the text is present both at the encoder and decoder, and we show that the LLM is able
to exploit the presence of side information to improve the compression performance significantly
compared to when the side information is absent.

1.2 RELATED WORK

There is a rich body of literature that combines predictive modeling with entropy coding for ob-
taining lossless compression MacKay| (2003). In particular, the use of predictive modeling with
arithmetic coding dates back to the 1980s [Cleary & Witten| (1984)); |Witten et al.| (1987); Willems
et al. (1995). Neural networks such as fully connected neural networks and LSTMs have been used
for predictive modeling, and they have been used in conjunction with arithmetic coding for lossless
text compression in Mahoney| (2000); (Goyal et al.|(2018). Using transformers for obtaining general
purpose compression was considered in Mao et al.| (2022),/Bellard (2021). Recently, work that ap-
peared soon after our reportﬂ Delétang et al.[(2023)) showed that a large language model Chinchilla
can be used in conjunction with arithmetic coding to obtain similar compression performance to
what is reported in this paper. They report the surprising result that a large language model trained
on text data is also effective at compressing images and speech. Transformers have also been used
in conjunction with arithmetic coding for compressing audio in|Défossez et al.| (2022).

2 PREDICTIVE MODELING AND COMPRESSION USING LLMS

Let s denote a sentence from the English language composed of N, letters, where each letter is
assumed to be from the alphabet S. We assume that we have a dictionary X = [1, D] of D tokens.
We first parse s into a sequence of N tokens denoted by x = 1, %92,...,%Ti—1,Ti, Tit1,--- TNp»
where z; € X. There is a one-to-one mapping between s and x and hence, compressing s is the
same as compressing x. In this context, token x; can be thought of as realizations of the random
variable denoted by the upper case letter X;.

A language model with memory M is a predictor that operates as follows. At epoch 4, it accepts
tokens x;_ ps, Ti—pr+1, - - -, i—1 and produces a probability mass function (PMF) for the next token
in the sequence, conditioned on the past M tokens; we denote the ensuing conditional distribution
by ¢i(z;) :== Pr(X; = x;|®i—1,2—2,...,2;—p). The conditional PMF vector at epoch ¢, namely
q;, is input to a lossless compression algorithm along with the actual sequence that needs to be
compressed. The lossless compression algorithm produces a sequence of N, compressed bits. A
schematic of this scheme is shown in Fig.[T}

The main metric of interest is the compression ratio p defined as

Ny
:= —bits/character.
p N its/character

"We are not citing our own technical report due to double-blind requirements.
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Figure 1: Schematic showing the prediction at epoch 1.

2.1 ENCODING SCHEMES

We consider three schemes for the lossless compression block in Fig.

2.1.1 COMPRESSING THE RANKS USING ZLIB

First, the PMF vector q; := [q;(1),¢i(2),...,q:(D)]" is sorted in descending order; we denote the
sorted PMF vector by q;. Let v; : X — & be a permutation on the integers from 1 to D such that

ai(vi() = a(j),Vj € X.
That is, 7; () is the rank of the token j at epoch i. We define the rank of the input sequence at epoch
i as the rank of the token x; at epoch 4, r; := ~;(x;). The sequence {ri}il\fl is compressed by a
lossless compression algorithm (such as zlib) to produce Ny, bits which are the final bit representation
of the input sequence. The first scheme uses the zlib compression algorithm to encode the sequence
of ranks. We refer to this scheme as LLaMA+zlib and denote the compression ratio of this scheme
by pLLM+lib-

2.1.2 TOKEN-BY-TOKEN COMPRESSION

The second scheme uses a token-by-token lossless compression scheme which uses a time-varying
codebook to encode the token z; at epoch i. The time-varying codebook is formed using a prefix-
free code designed under the assumption that g; is the true token distribution. A natural choice for
the prefix-free code is a Huffman code. Instead, for simplicity, we adopt a prefix-free code where
the codeword for the token z; is of length I; = [log, ﬁ} A prefix-free code with this length for
x; is guaranteed to exist since this choice of lengths satisfies the Kraft inequality Cover & Thomas
(1999). The compression ratio for this scheme, denoted by prim+TbyT, 1S given by

3 gt

: i\Li
1=1

SN b,

PLLM+TbyT =

2.1.3 ARITHMETIC CODING

The above two schemes are intuitive, but their performance can be improved. A very effective
way to combine the output of the LLM with a lossless compression scheme is by using arithmetic
coding |Rissanen & Langdon|(1979)); Bell et al.| (1989); [Cleary & Witten| (1984)). Arithmetic coding
is well suited to accept time-varying probabilities, and we use g;(x;) as the probability of token
x; at epoch ¢ in the arithmetic coding scheme. Figure [2] shows a schematic of how the encoding
procedure works when using Arithmetic Coding. We denote Q; as the conditional cumulative mass

function (CMF) vector at epoch 4, with Q;(j) = Zizl gi(k). In Arithmetic Coding, an interval

B; = [Bi,min; Bi,maz) is maintained and updated at epoch i. We start with the initial condition
By = [0, 1) and during the ith epoch, we update B; according to
Bi min = Bi—1,min + (Bi—1,maz — Bi—1,min)Qi(x; — 1) (D
Bi maz = Bi—1,min + (Bi—1,maz — Bi—1,min)Qi(Z:), )
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Figure 2: Schematic showing the working of LLM in conjunction with an Arithmetic coder for
encoding a sequence of tokens in LLMZip.

where x; is the token in the input text at epoch ¢ that is to be encoded and Q;(0) is set to zero Vi.
At the end of the token sequence, any real number C' that lies in the interval B, is selected and the
binary representation of C'is selected as the compressed bit sequence corresponding to the sequence
of input tokens. In the illustrative example shown in Fig. [2| the binary representations of B; ,,in
and B; 4. are shown in the figure. At the final stage the binary representations corresponding to
BNy min and By, mae are 01100010001 and 01100010011, respectively and the final bit represen-
tation is 01100010010, which lies in By;,.. Note that in this example, encoding the first token fixes
the first two bits of the final bit sequence, while encoding the second token fixes the next three bits.

The decoder also uses the same LLM (with the same parameters) as the encoder. Decoding begins by
inputting the start token to the LLM at time ¢ = 1 and computing Q;. Then, the decoded symbol x;
is given by the j for which C' € [Q1(j — 1), @Q1(j)). We maintain an interval B at the decoder and
update it using equation |1{and equation [2} Then, we add x; to the context window and proceed to
compute Q. Thus, the decoder can mimic the same operations of the encoder to produce (); during
epoch 7 and determine x; as the symbol j for which C' € [B;_1 min+ (Bi—1.maz — Bi—1,min) Qi (j —
1), Bi—1,min + (Bi—1,maz — Bi—1,min)Qi(j)). The decoder then updates 55;. The decoder can also
work in a streaming fashion, but we don’t discuss this further.

We refer to the compression ratio of this scheme as pypm+ac. It is known that arithmetic coding is
nearly optimal as a compression scheme (MacKay, 2003, Page 115). Hence, the compression ratio
for this scheme is expected to be

NT 1
log, ——
; 82 Qi(wi)
—
Zi:TI bi

Values pLiMszlibs PLLM+TbyT> and primeac provide upper bounds on H (S).

3)

PLLM+AC =

2.2 ENTROPY BOUNDS

This section explores entropy bounds more rigorously. Let S € S§° be a random process that
represents language input. The nth character in the sequence is denoted by S,,, whereas the string
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of characters from the beginning to the nth character is expressed as S,,. The tokenizer parses the
input string and maps it to a sequence of tokens X = X7, Xo, ... using a variable-length mapping.
In this sequence, X is the ith token. The number of characters employed to generate X; depends
on the realization of the random process and, as such, we introduce random variable B; to identify
the number of characters contained in the ith token. Motivated by practical considerations, we only
admit tokenizers for which B; > 1 and B; is uniformly bounded, with B; < B < o0; these are
characteristics of commonly used tokenizers. An immediate consequence of this framework is that,
as the number of tokens grows unbounded N7 — oo, the number of characters must also approach
infinity N, — oco. Formally, consider the tokenizer function 7' : SN — XN operating on infinite
symbol sequences; that is, 7'(s) = x where s is an infinite sequence in S*°. For natural number,
i € N, define m; : S — N to be the (time) index during which the tokenizer working sequentially
on an input sequence s outputs its ith token. Specifically, suppose s is given, then

m;(s) = mgn {length (T'(s,)) > i}. “4)

We note that, by construction, lim,,_,, length (T'(s,,)) = oo and, as such, m;(+) is well-defined. It
may be pertinent to stress that the tokenizer function applied to truncated sequences is not necessarily
injective because multiple finite input series can map to the same output. This phenomenon is a
consequence of the fact that, at any point in time, a tokenizer working sequentially may be waiting
for an additional symbol before it can unambiguously select the next output token, i.e., there may be
instances where T'(s,,) = T'(s,+1). However, if we restrict the input series to input indices when a
new token is produced, then the restricted mapping becomes injective. That is, suppose T'(s) = x,
then the only (finite) series of input symbols in the restricted set for which T'(y,,) = X; is S,,,(s)-
Given a fixed sequence s, we can express the number of characters contained in a token as

b,’ = mi(s) — mi_l(s)

with initial condition m_; = 0. Consequently, the number of characters embedded in the first Ny

tokens for a random input becomes N, = Zi]\fl B;.

Having established these properties, we turn to the relation between H (S) and H (X). We make the
assumption that {S}7°,, {B;};2,, and {X;}7°, are stationary and ergodic processes. We know
from the Shannon-McMillan-Breiman Theorem |Cover & Thomas| (1999) that

1 1
- log, ps, (S1,...,5,) = - log, ps, (Sn) — H(S) almost surely. ®)

Let Qg be the collection of w € (2 for which this limit holds. In an analogous manner, the Shannon-
McMillan-Breiman theorem implies

1 1
—=logy px, (X1,...,X;) = —=logy px,(X;) = H(X) almost surely. (6)
1 1
Define Q2x as the collection of w € € for which this limit holds. Finally, by construction, we have
(S
lim L() =E[B] almost surely. (7
1—>00 1

Set 2 to be the set of w € {2 for which this limit holds. For any w € Qg N Qx N Qp, we deduce
that

, 1
H(S) = Jim —— log, ps), (Sk(w))

. 1

.hm -7 10g2 ps,, (Sl7 (w))

1—>00 ll v
1

= lim T log, Pr(X; = T'(Sy,(w)))

71— 00 i

1 1 H(X)
=——— lim - log, Pr(X; =%x;) = ——-.
EB] A, 7 1o Pr(Xi =xi) =
The first equality follows from equation [5} The second equality is a consequence of the fact that
{l; = m;(S(w))|¢ € N} is an infinite subset of the natural numbers. Since a subsequence of a
convergent sequence must converge to the same limit, we immediately gather that this alternate form
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approaches H (S). The third equality is a consequence of the equivalence between the following two
events,
{we QXi(w) = xi} = {w € AT (S, (s(w))) = Xi}-

This is characteristic of the tokenization process, and it is a consequence of the correspondence
described above. The last step holds because we are considering an w € Q. The sets Q2g, {2x, and
) p each have probability one; this implies that their intersection also has probability one, Thus, we
must conclude that X

H(S) = IEEB]) almost surely.
As a corollary to this result, any upper bound on H (X) produces an upper bound on H (S). This is
the property we wish to exploit.

Then, from the results of |Cover & King(1978), we can see that

Nt
. 1
Pr {H(X) < lim Ny ;logg qi(Xi)} =1, (8)

- NT*}OO

where ¢;(-) is the output PMF from the language model. Therefore, an asymptotic upper bound on
the entropy rate H(S) is given by

H(S) < limpy, o0 7NLT Zi\g log, ¢;(X;)

< E[B] 9

We refer to the expression in the right-hand side of equation [0] as the asymptotic upper bound on
H(S) and denote it by H,;. The numerator in equation E] represents the average number of bits
required to represent the tokens X ., and the denominator in equation [q is the average number of
characters per token. Hence, the unit for H (S) is bits/character. In/Cover & King|(1978)), the authors
offer 1.3 bits/character as an estimate of the asymptotic upper bound on H(S). They also provide
an extensive list of references and a discussion of the literature on estimating the entropy of English
prior to 1976. Very recently, in (Lutati et al., [2023| Table 4), the performance of several language
models have been evaluated on the text8 dataset using a metric called bits per character (bpc). The
bpc metric in |Lutati et al.| (2023)) is the same as the asymptotic upper bound in this paper.

It is important to emphasize that Hyp, pLLaMA+zlibs PLLaMA+TbyT> aNd primsac are estimated using
a finite number of tokens; the statistical properties of such estimates should be kept in mind when
interpreting the results, especially since the tokens are from a very large alphabet and the language
model has a large memory.

3 LLM-BASED COMPRESSION WITH SIDE INFORMATION

In this section, we discuss the value of side information in the form of a summary of the text, when
it is available either during compression alone, or both during compression and decoding.

3.1 SUMMARY AVAILABLE AT THE ENCODER

We first consider the case where the text is compressed by conditioning on a summary, which is
generated at the encoder. Let S denote the text to be compressed and let g(S) denote a function of
the text such as, for example, a summary. The joint entropy of S and ¢(S) can be decomposed in
two different ways,

H(S,9(S)) = H(S) + H(g(S)[S) = H(g(S)) + H(S|9(S)) (10)
= H(S) = H(y(S)) + H(S|g(S)). (11

H(g(S)|S) = 0. Intuitively, the implication of equation|11|is that it is (nearly) optimal to compress
S by using H (g(S)) bits to compress g(S) and using H (S|g(S)) bits to compress S by conditioning
on ¢g(S). An optimal universal compression algorithm may implicitly leverage these notions and,
when such an algorithm is available, there is no discernible benefit to explicitly taking this two-step

Above, equation follows from equation because W is a deterministic function and, hence,



Under review as a conference paper at ICLR 2024

approach. Yet, LLM-based compressors are not necessarily universally optimal — particularly for
finite context window lengths and, therefore, their gap to optimality may be different depending on
whether we compress S with or without conditioning on ¢(S). Although the English language is
often modeled as an ergodic random process, a finite length of English text may exhibit substantial
variations in its statistical properties based on the underlying context. In this case, g(S) can act as
the hidden context, and, hence, the two-step approach can aid in the compression of S.

We perform compression using the summary g(S) as follows. The summary g(S) is parsed into a se-
quence of tokens denoted by y. We first use LLM+AC to compress ¢g(S) and obtain IV, compressed
bits for the summary. Then, the LLM+AC algorithm is adapted to compress the text S such that at
each epoch ¢, we pass the summary tokens y, along with the past M tokens to the LLM, to obtain
a conditional PMF ¢;(x;) := Pr(X; = x|y, zi—1,Ti—2, ..., Ti—p), Va; € X. The conditional
PMF vector q; is then passed to the arithmetic coder, which produces a sequence of IV, bits. At the
decoder, the summary is first decoded and then added to the context window similar to what is done

at the encoder. The compression ratio (p) of this scheme is p = N"]\J,r Mo where N, is the number of
characters in the text s alone.

It should be noted that compressing g(S) requires an additional Ny, > H (g(S)) bits. Therefore, the
gain in compressing S by conditioning on g(S) should exceed N, bits for the two-step approach to
be beneficial. In Section[d] we show that this is indeed the case in some cases.

3.2 SUMMARY AVAILABLE AT BOTH THE ENCODER AND DECODER

We next consider the compression performance of LLM+AC when ¢(S) is available as side infor-
mation to both the encoder and the decoder. Since H (S|g(S)) < H(S), we expect an improvement
in the compression performance if LLM+AC can exploit the side information, . As in Sec.[3.1] the
side information is added to the beginning of the context window for all i. The difference from
Sec. lies in the fact that g(S) does not have to be compressed since it is available at the decoder.

4 RESULTS

We used the two versions of the LLaMA foundation models, which are LLaMA-7B [Touvron et al.
(2023a) and LLaMAZ2-7B [Touvron et al.| (2023b)) as the large language models for our results. We
will refer to them as LLaMA and LLaMA?2, respectively.

It should be noted that the tokenizer and the model are trained on a large corpus of text which
includes uppercase letters, special characters, etc. This is in contrast to many studies on estimating
the entropy of English, where the input alphabet is restricted to lowercase letters such as in|Shannon
(1951)); [Cover & King| (1978)); |Goyal et al.| (2018). This makes it difficult to perform an entirely
fair comparison between these models. By using a pre-trained LLM on an input consisting only of
lowercase letters, we may be unfair to the LLM. We will show that LLM-based compression has
excellent performance regardless of this issue.

4.1 COMPRESSION PERFORMANCE WHEN USING LLAMA MODELS ON TEXT8 DATASET

In our first experiment, we used the text8 dataset available from http://mattmahoney.net/
dc/text 8. zip|to benchmark the performance of LLaMA?2 with compression against other state-
of-the-art results for text compression. In |Goyal et al.| (2018)), it is mentioned that the ZPAQ
algorithm obtains the best compression ratio for the text8 dataset with a compression ratio of
1.4 bits/character. In Mahoney| (2011), the paq8h algorithm provides a compression ratio of 1.2
bits/character. To the best of our knowledge, this appears to be the best performance reported.
Therefore, we used these two algorithms as baselines. We did not independently run the ZPAQ or
paq8h algorithms; we are quoting results from the existing literature.

The performance of LLaMA?2 is shown in Table [I] for various memory()) lengths. It can be seen
that using LLaMA?2 with Arithmetic Coding and a memory of 511 results in a compression ratio of
0.6936 bits/character. This is substantially better than the state-of-the-art results mentioned in|Goyal
et al.|(2018)) or[Mahoney| (2011) and is very close to our computed upper bound. The performance
with the LLaMA2+zIib algorithm and LLaMA2+TbyT compression is also better than that of the
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known state-of-the-art results. Table[T]also shows the upper bound in equation[9] It should be noted
that the upper bound on the entropy is lower than that computed by Shannon in |[Shannon| (1951)),
Cover and King in |Cover & King| (1978) and more recent estimates based on neural networks in
Lutati et al.|(2023)). It can be seen that the compression performance improves with increasing M.

We included the performance of LLaMA+AC in the last column, and we can observe that using
LLaMA?2 indeed improves the performance across all memory lengths. We also observed that the
inference time scaled approximately linearly with the input memory length, i.e., batches with a
memory of 511 tokens ran about 16 times slower than batches with a memory of 31 tokens.

Table 1: Compression performance of LLMZip on text8 dataset as a function of its memory (M)

M N, N, Hyy PLLaMA2+zlib PLLaMA2+TbyT | PLLaMA2+AC | PLLaMA+AC
(bpc) | file size (bits) (bpe) (bpc) (bpc)
31 | 4,568,855 | 1,000,000 | 0.8955 1.2963 1.0241 0.8962 0.9145
127 | 4,568,855 | 1,000,000 | 0.7343 1.1104 0.8685 0.7352 0.752
255 | 4,568,855 | 1,000,000 | 0.708 1.0792 0.8435 0.7089 0.725
511 | 4,568,855 | 1,000,000 | 0.6927 1.061 0.8292 0.6936 0.7101

Note that we did not run the LLaM A models on the entire 100MB of the text8 dataset due to compute
limitations. Hence, the comparison with the state-of-the-art corresponds to estimates obtained from
different input sizes. Also, since the text8 dataset is derived from Wikipedia on which LLaMA
models were trained, it is likely that our results for the text8 dataset are optimistic. We next test on
a problem for which we are certain that the LLaMA models were not trained.

4.2 COMPRESSION PERFORMANCE WHEN USING LLAMA?2 ON A RECENT BOOK

We study the performance of LLaMA?2 on a recently released (Sep 20, 2023) book |Cooke & Reed
(2023)) under Project Gutenberg, which appeared after LLaMA2 was published. We extracted text
that corresponds to 50,000 tokens. We applied the same text pre-processing as used in the text8
dataset to clean the text from the book. The resulting text data contained only lowercase letters and
space as in the text8 dataset. Table 2] shows the compression performance of the LLM on the book.
It can be seen that the compression ratios and the entropy upper bound are slightly higher compared
to the performance on the text8 dataset; nevertheless, the asymptotic upper bound on the entropy
is lower than that of currently known models given in (Lutati et al., [2023} Table 4)). Similarly, the
compression ratios of LLaMA2-based compressors are better than those of known state-of-the-art
results for the text8 dataset. The compression ratio for LLaMA?2 with arithmetic coding is only
0.7741 bits/character and is very close to the estimated upper bound on H(S).

Table 2: Compression performance of the LLaMa2 + AC on a recently published book in Project
Gutenberg |Cooke & Reed|(2023)), as a function of its memory (M)

M N, N, Hy, PLLaMA2+zlib | PLLaMA2+TbyT | PLLaMA2+AC Standalone Zlib
(bpc) (bpc) (bpe) (bpe) (bpc)

31 | 210,682 | 48,921 | 1.0974 1.5571 1.2296 1.0977 2.55

127 | 210,682 | 48,921 | 0.8544 1.2783 0.9941 0.8552 2.55

255 | 210,682 | 48,921 | 0.8047 1.2213 0.9474 0.8054 2.55

511 | 210,682 | 48,921 | 0.7733 1.1826 0.9172 0.7741 2.55

To provide some insight into the comparative performance of LLaMA2 based compressors vis-
a-vis standard text compressors, we also ran the zlib algorithm directly on the input text. The
resulting compression ratio was 2.55 bits/character (shown in the last column). It is clear that the
performance of LLaMA?2 based compressors is substantially better than this. The zlib algorithm
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may not be optimized for compressing small text samples and hence, the compression ratio for the
zlib algorithm and the LLaMA2+zlib will likely improve on longer texts.

4.3 COMPRESSION PERFORMANCE OF LLAMA2 MODELS ON A RESEARCH PAPER BY USING
A SUMMARY OF THE PAPER

In Table [3] we report the compression performance of LLaMa2 + AC on a recently published re-
search paper |Li et al|(2023) in arXiv. We evaluate six different texts as summaries which include
the paper’s abstract, the first paragraph in the introduction, and four summaries of varying lengths
that were generated using GPT-4. We compress the Latex source code available for the paper and do
not include the abstract as part of the compression. We observe that when the summary is available
as side information at both the encoder and decoder, the compression ratio (prrqrra2+4cC), always
improves. It’s worth noting that Summary 3 and Summary 4 offer the maximum improvements com-
pared to others, and yet Summary 3 is roughly half the size of that of Summary 4. We further noted
that Summary 3 is less compressible than Summary 2, which suggests that it is more informative. It
is also worth noting that Paragraph 1 offers the least improvement, indicating the improvements are
indeed due to the conditioning of a valid summary, and conditioning on just a paragraph may not
yield significant improvements.

For the case when the summary is only available at the encoder, we only get a marginal improvement
in the compression ratio denoted by pr.rqara2+4c. Summary 3 offers the best compression ratio,
while Summary 4 and Paragraph 1 have compression ratios worse than the no summary case.

Conditioning on summaries is much less computationally expensive than using an LLM with a
larger memory M. This is because the summaries are fixed text, at a fixed position and hence
the corresponding keys, queries, and values can be computed once and reused for the subsequent
attention mechanisms in each epoch. This is not the case when the LLM has larger M, as for every
stride across the text, the positional encodings change and hence the keys and values of the tokens
present in previous epochs cannot be reused.

Table 3: Compression performance of LLaMa2 +AC with summary and M = 511 on a recently
published paper in arXiv |Li et al.|(2023)

Type Summary Text N, + N, PLLaMa2+AC | PLLaMa2+AC
Nig | Neg | Ny Ny Ne Ny (bpc) (bpc)
No Summary 0 0 0 12578 | 43787 | 26354 26354 0.6019 0.6019
Abstract 252 | 1312 | 662 | 12578 | 43787 | 25596 26258 0.5846 0.5997
Summary 1 | 219 | 1095 | 611 | 12578 | 43787 | 25612 26223 0.5849 0.5989
Summary 2 | 473 | 2233 | 1281 | 12578 | 43787 | 24836 26117 0.5672 0.5965
Summary 3 | 428 | 1918 | 1375 | 12578 | 43787 | 24370 25745 0.5566 0.5880
Summary 4 | 945 | 4919 | 2228 | 12578 | 43787 | 24328 26556 0.5556 0.6064
Paragraph 1 | 281 | 1255 | 931 | 12578 | 43787 | 26190 27121 0.5981 0.6194

5 CONCLUSION

In this paper, we introduced a suite of lossless text compression algorithms that use an LLM
(LLaMA2-7B) in conjunction with entropy coding. The LLM is used to predict the next token given
a window of past tokens as memory. Our suite of algorithms outperforms state-of-the-art compres-
sion algorithms like BSC, ZPAQ and paq8h. We obtained our best result when using LLaMA2-7B
with arithmetic coding and a memory of 512 tokens. We also observed that LLMs with greater
memory length showed better performance. Additionally, we provided estimates of an asymptotic
upper bound on the entropy of English, which are significantly smaller than those found in prior
work. Finally, we showed that when using LLaMA?2 + AC for compressing a document, a marginal
performance improvement can be obtained by first extracting a summary of the document, and com-
pressing the document by conditioning on this summary. We also show that when such a summary
is available at both the encoder and decoder a significant performance improvement can be obtained.
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