
SafeKV: Safe KV-Cache Sharing in LLM Serving
kexin Chu , Zixu Shen , Dawei Xiang , and Wei Zhang*

School of Computing, University of Connecticut
{kexin.chu, qzt24001, ieb24002, wei.13.zhang}@uconn.edu

Abstract—Global KV cache sharing significantly improves the
efficiency of LLM inference but introduces substantial privacy
risks, while strict per-user cache isolation protects user data at
the cost of reduced performance—adding 8–38.9% overhead in
time-to-first-token (TTFT) on LLaMA2-70B in our experiments.
To bridge this gap, we present SafeKV, a privacy-aware KV
cache management system that enables selective sharing of non-
sensitive cache entries while isolating sensitive ones in private
caches. SafeKV integrates ChunkGuard, a lightweight, real-time
detector that classifies sensitive content at the chunk level, with
a decoupled cache architecture consisting of a batched Cache
Search Engine, Allocator, Monitor, and Evictor. This design
supports constant-time batched prefix lookups and enforces fine-
grained privacy policies with minimal overhead. By combining
privacy-preserving inference with high cache reuse efficiency,
SafeKV restores the benefits of global sharing while providing
strong runtime privacy guarantees.

I. INTRODUCTION

Large Language Models (LLMs) have rapidly emerged as a
transformative force, underpinning a wide array of applications
from conversational AI to complex reasoning engines. With
their vast knowledge and adaptive capabilities, LLMs have
led to significant advancements in natural language under-
standing and generation. To support the increasing demand for
real-time inference, Key-Value (KV) caching techniques have
become indispensable for accelerating LLM performance. By
storing intermediate hidden states—the “keys” and “values”
generated during attention computations—KV caching reduces
redundant computation, particularly in sequential or similar
prompts [26]. This efficiency gain is amplified through KV
cache sharing across multiple requests. In particular, prompts
with common prefixes—such as shared dialogue history or
structured prompting patterns—enable substantial throughput
improvements and latency reduction. Consequently, shared
KV caches play a vital role in enhancing performance and
optimizing resource utilization in large-scale, multi-user LLM
environments. Empirical observations indicate that a large
proportion of real-world prompts exhibit structural or prefix-
level commonalities, offering significant potential for cache
reuse and improved responsiveness [11], [20], [29].

Despite these performance benefits, KV cache sharing raises
serious privacy and security concerns in shared or multi-
tenant deployments. When KV caches are reused indiscrim-
inately across users or sessions, sensitive information—such
as user inputs, context embeddings, personalized prompts, or

* Corresponding Author.

reasoning traces—may be unintentionally exposed. Attackers
can exploit such vulnerabilities through prompt manipulation,
cross-request cache timing, or targeted probing to reconstruct
hidden states and extract private data. These risks have been
highlighted by a growing body of literature identifying diverse
attack vectors, including prompt reconstruction and cache side-
channel exploitation [17], [18], [20], [28]. Although various
studies have examined these threats, few have explored prac-
tical defenses [8], [15], [21]. A straightforward defense is
to isolate KV caches on a per-user basis, which eliminates
sharing-induced leakage but also discards the performance
gains of cache reuse. Recent benchmarks demonstrate that
such isolation leads to considerable memory overhead and
increased inference latency [10], [16], [25]. Notably, detailed
analysis shows that only a small fraction of KV cache entries
contain sensitive, user-specific data, while the majority are
non-sensitive and may be safely shared [4], [24]. This insight
opens the door to more refined strategies that aim to preserve
both privacy and efficiency.

In response to these challenges, we propose a novel safe
KV cache sharing framework that strikes a practical balance
between privacy protection and system performance. Our key
insight is the introduction of a privacy-aware KV caching
mechanism, which we call the Selective Sharing Cache. This
mechanism works by identifying private information, which
is then isolated in a per-user private cache, while non-private
information is safely promoted to a shared cache that can
be accessed by all users without jeopardizing privacy. This
innovative Selective Sharing Cache architecture enables secure
cache sharing while maintaining the efficiency of cache reuse,
opening up a new paradigm for KV cache management in
multi-user LLM services. However, this approach also presents
several critical technical challenges that must be addressed: 1)
How can we accurately and efficiently distinguish between
private and non-private cache entries in real time, while min-
imizing computational overhead? 2) How can we efficiently
manage the lifecycle of private and shared caches to ensure
that cache reuse is maximized without compromising security?
3) How can we perform efficient cache lookups when a query
may partially hit both private and shared caches, without
introducing unacceptable latency or performance bottlenecks?
4) In cases where privacy detection is imperfect, how can
we mitigate the risk of information leakage if private data
mistakenly enters the shared cache?

Addressing these challenges requires rethinking the core
design of KV cache systems. Rather than focusing primarily

1



on attack prevention, we take a proactive and performance-
conscious approach, aiming to provide a scalable and secure
solution for cache sharing that preserves the critical perfor-
mance benefits of KV cache reuse. Our framework selectively
isolates sensitive data with minimal disruption to the system’s
overall performance, offering a robust and scalable solution for
next-generation LLM services that ensures privacy protection
while retaining high efficiency.

• We quantify how global KV-cache sharing risks user
privacy and show that per-user isolation severely degrades
LLM inference performance.

• We introduce SafeKV, which isolates sensitive entries
in per-user private caches while promoting non-sensitive
entries to a shared cache, striking a balance between
privacy and reuse.

• We develop ChunkGuard, a lightweight, real-time, chunk-
level model for accurate privacy inference.

• We design a cache mechanism with a unified Cache
Search Engine, Allocator, Monitor, and Evictor to op-
timize batched prefix lookups and enable low-overhead
isolation.

II. BACKGROUND AND MOTIVATION

A. LLM Inference

Large Language Models (LLMs) based on the Trans-
former [19] architecture rely on scaled dot-product attention
to compute Query (Q), Key (K), and Value (V) embeddings
that capture contextual dependencies among tokens [9], [12].
Inference is divided into two phases. During the prefill phase,
the entire input prompt is tokenized, and each token’s K/V
embeddings are computed across all layers in one bulk oper-
ation—yielding the first output token in a single step. In the
decoding phase, tokens are generated one at a time: for each
new token, Q/K/V embeddings are computed and attended
against all cached context embeddings, incurring only linear
growth in cost per token. Without caching, both phases exhibit
quadratic time complexity in sequence length, making long
prompts and multi-turn dialogues prohibitively expensive [7].

B. KV-Cache Sharing

To eliminate redundant computation, LLM serving systems
store K/V embeddings in GPU memory as a KV cache,
reducing per-token cost to O(n) rather than O(n²). Early imple-
mentations allocated large static buffers, leading to fragmenta-
tion. Modern frameworks instead employ dynamic cache-block
management:

• vLLM’s PagedAttention divides the KV cache into small
blocks, each tagged with a hash of preceding tokens,
last-access timestamps, and reference counts [10]. An
LRU policy evicts the oldest blocks when memory is
constrained; later requests compare their prefix hashes to
existing blocks and reuse matching embeddings.

• SGLang’s RadixAttention [27] uses a radix tree keyed
by token prefixes. Incoming requests are scheduled via
Longest Prefix Match (LPM)—those sharing the longest

prefix with cached entries are prioritized—minimizing
eviction and maximizing hit rates.

Both designs achieve dramatic TTFT reductions (cache hits
in microseconds versus misses in milliseconds), enabling real-
time, high-throughput LLM services even under limited GPU
memory.

C. Timing Side-Channel Attack

Although shared KV-cache optimizations significantly re-
duce inference latency, they also create a purely software-
based side channel. An adversary with only black-box access
can exploit timing differences as follows: [17], [20], [28]:

• Probe the service with a candidate prefix and measure
TTFT.

• Detect a cache hit (low latency) if the victim has already
populated that prefix, or a miss (higher latency) other-
wise.

• Iterate token by token—using an incremental search algo-
rithm—to recover private or proprietary prompt content
with high precision.

Semantic caching (e.g., GPTCache [3]) exhibits analogous
leaks: semantically similar probes yield millisecond-level hits
versus second-level misses, revealing sensitive attributes in
user queries. These attacks require only black-box access
and have been demonstrated against both open-source and
commercial LLM services.

D. Threat Models

We assume attacker and victim reside in separate security
domains and share access to a common LLM inference frame-
work that uses prefix caching for performance. The attacker,
acting as a benign user, cannot read the victim’s private inputs
directly but may exploit shared caches to probe for information
about those inputs.

The attacker carries out a timing side-channel by issuing
carefully constructed prompts to the LLM and measuring
response delays. Cache hits induced by the victim’s prior
requests shorten inference time; by correlating latencies with
prompt prefixes, the attacker can deduce which prefixes the
victim has queried and thereby expose sensitive data. We do
not consider physical attacks or other side channels such as
early termination. A defense is considered secure if it masks
cache-access patterns such that latency remains invariant re-
gardless of the victim’s activity.

E. Motivation & Challenges

A straightforward solution to mitigate privacy risks in KV
cache sharing is per-user cache isolation, which ensures that
sensitive data is never shared. However, this comes at a
significant performance cost: it eliminates cache reuse, leads
to redundant computations, increases memory overhead, and
degrades inference latency [14], [23]. These drawbacks ren-
der full isolation impractical for real-time, large-scale LLM
services.

To address this, we propose the Selective KV Cache Sharing
framework, which distinguishes private from non-private cache

2



entries. Sensitive data is kept in private caches, while non-
sensitive entries are safely shared, preserving both privacy and
performance. From Table I, we observe that a considerable
portion of datasets still exhibit a high degree of inter-session
reuse, indicating that completely disabling sharing can signif-
icantly impact overall system efficiency.

Realizing this framework presents several key technical
challenges across four dimensions:

• Privacy Detection. A key challenge in selective cache
sharing is accurately and efficiently identifying pri-
vate versus non-private cache entries in real time [28].
Which may contain both sensitive data (e.g., personalized
prompts, user-specific embeddings, or private reasoning
traces) and non-sensitive data (e.g., shared model weights
or intermediate results), making reliable classification
essential. This task is complicated by the dynamic nature
of inference, where cache contents vary with the prompt,
user context, and reasoning path. Detection must operate
with minimal latency to preserve performance and scale
to high-throughput environments with frequent cache
updates and diverse usage patterns. Achieving the right
trade-off between detection accuracy and computational
efficiency is critical for practical deployment.

• Cache Lifecycle Management. After classifying entries,
managing their lifecycle is essential to maximize per-
formance and ensure privacy [13]. Sensitive data must
remain in private caches, while non-sensitive data should
be promoted to the shared cache for reuse. This involves
storing, invalidating, and reusing cache entries efficiently.
Fine-grained control is necessary: premature invalidation
increases overhead, while improper isolation risks pri-
vacy breaches. The challenge lies in maintaining secure
handling of private data while maximizing reuse of non-
sensitive content [22].

• Cache Lookup Optimization. In multi-user systems,
queries may partially match entries in both private and
shared caches, making lookups complex and potentially
slow [5]. Multiple lookups increase latency, which is
problematic for high-throughput, real-time inference. To
avoid bottlenecks, lookup operations must be streamlined
and scalable. Designing an efficient lookup strategy that
minimizes delay when checking multiple caches is critical
for maintaining low response times.

• Mitigation of False Detection. Privacy classification is
not always perfect, and false negatives—where sensitive
data is misclassified as non-sensitive—pose a serious
risk. The system must contain the impact of such leaks
to prevent privacy violations. Mitigation techniques may
include secondary checks, fallback mechanisms, or en-
cryption for shared cache entries. A dynamic response
protocol is needed to adjust sharing behavior in real time
when false detections are identified, minimizing potential
harm and improving robustness.

Deploying selective KV cache sharing in multi-tenant LLM
services requires carefully addressing these challenges. Suc-

KV Cache

Cache Search Engine

Privacy Detector

User-Level
Private Cache

Shared Public 
Cache

User-Level 
Private Cache… …

Cache 
Allocator Cache EvictorWindow-Based 

Monitor

Fig. 1: The architecture overview.

cess depends on balancing privacy and performance: protect-
ing sensitive data while enabling safe reuse of non-sensitive
content. A scalable solution must minimize latency, preserve
throughput, and ensure robust privacy guarantees, making it
feasible for real-time deployment.

Dataset Intra-session Inter-Session
Reuse (%) Reuse (%)

ShareGPT V3 [1] 7.06 25.49
Multiturn Chat [2] 31.47 9.45
Prompt Multitasks [6] 0.0 63.10

TABLE I: Intra-session and Inter-session KV-Cache reuse rates
across different datasets.

III. SYSTEM DESIGN

To address the privacy and performance challenges of KV-
cache sharing in LLM serving, we propose SafeKV, a privacy-
preserving KV-cache management framework illustrated in
Figure 1. The processing pipeline is anchored by a Privacy
Detector, which inspects input chunks to identify sensitive con-
tent. Depending on the result, the Cache Search Engine routes
requests to either a User-Level Private Cache for isolated pro-
cessing or a Shared Public Cache for maximizing reuse. These
cache tiers operate within a unified KV Cache layer. To support
efficient cache operations, SafeKVintegrates a Cache Allocator
for dynamic memory provisioning, a Window-Based Monitor
to detect abnormal high-frequency access patterns and mitigate
misclassifications, and a Cache Evictor to maintain resource
efficiency. Together, these components enable scalable, real-
time, and privacy-aware cache sharing for LLM inference.

A. ChunkGuard: Lightweight & Real-Time Privacy Detection

In the context of Selective KV Cache Sharing for Large
Language Models (LLMs), a key challenge is designing a
lightweight, real-time privacy detection mechanism that ac-
curately differentiates private from non-private information
without incurring significant overhead. As LLM services oper-
ate under high-throughput, low-latency, multi-user workloads,

3



traditional methods—such as full-query inspection or static fil-
ters—prove inadequate due to inefficiency and lack of flexibil-
ity. To address this, we propose ChunkGuard, a novel chunk-
based, ML-driven privacy inference architecture designed for
real-time deployment. ChunkGuard segments each prompt
into fixed-size chunks and applies a lightweight, streaming-
compatible transformer model to classify the privacy sen-
sitivity of each chunk. This fine-grained approach enables
early, localized detection, allowing sensitive segments to be
routed into user-scoped KV caches while safely reusing non-
sensitive segments in a shared cache. By combining heuristics,
ML inference, and metadata tagging in a unified pipeline,
ChunkGuard achieves both strong privacy protection and high-
performance reuse—making it scalable and deployable for
modern LLM-serving infrastructures.

At the core of ChunkGuard is its fixed-size chunking strat-
egy. Instead of analyzing prompts holistically, ChunkGuard
partitions them into uniform-length chunks prior to inference.
This design simplifies preprocessing, enables parallel detec-
tion, and supports streaming workloads. Localized chunk-level
detection reduces overhead and allows early identification of
sensitive content, enabling timely routing decisions during
real-time serving. Despite its simplicity, fixed-size segmenta-
tion maintains high accuracy when paired with a lightweight
inference model, making it a practical solution for privacy-
aware caching.

Each chunk is evaluated by a compact transformer-based
privacy classifier, optimized for real-time inference. This com-
ponent uses quantized or distilled models to reduce computa-
tional cost while preserving detection quality. Trained on a
curated, privacy-annotated dataset containing sensitive entities
(e.g., names, health data, personal identifiers), the model learns
fine-grained privacy patterns and is well-suited for integration
into high-throughput LLM pipelines.

To ensure robust classification, ChunkGuard employs adap-
tive confidence thresholding: a prompt is flagged as private if
any chunk exceeds a defined sensitivity threshold. This con-
servative, safety-first strategy minimizes false negatives while
avoiding excessive over-isolation, effectively balancing privacy
protection and system utility. Based on the classification
outcome, ChunkGuard dynamically routes private inputs to
user-scoped KV caches to guarantee isolation, while directing
non-sensitive inputs to a shared cache to maximize reuse. This
integrated mechanism preserves the performance benefits of
KV caching without compromising privacy guarantees.

A key advantage of ChunkGuard is its compatibility with
streaming inference. By operating on partial input, it en-
ables early classification and routing decisions before the full
prompt is received. This is particularly beneficial in multi-
turn dialogue or token-by-token generation, reducing end-to-
end latency while maintaining privacy fidelity.

To further enhance protection, ChunkGuard’s classifier is
trained with differential privacy techniques, ensuring that
sensitive training examples cannot be reverse-engineered. This
adds a defense-in-depth layer, safeguarding user data during
both inference and model development.

B. Cache Search Engine: Batch Processing

In SafeKV’s architecture, a hash-based KV cache design
is employed to efficiently manage both privacy-aware and
non-privacy KV cache entries. This design enables low-
latency, batch-level prefix retrieval, which is essential for high-
performance LLM inference while ensuring privacy isolation.
To achieve this, each input prompt is partitioned into fixed-
size chunks, allowing for the precise segmentation and storage
of relevant data in the cache.

Each chunk is then mapped to a global hash table that
connects the chunk’s hash value to its associated attention-
key (K-Cache) and attention-value (V-Cache) blocks. The key
design feature of this system is how the hash for each chunk
is calculated. Specifically, for chunk i, the hash is computed
as follows: for non-privacy chunks, the hash is:

hashi = Hash(hashi−1 ∥ chunki)

For privacy-sensitive chunks, the hash is computed by
including the session identifier (session id) to ensure that
privacy isolation is maintained across different users’ data:

hashi = Hash(hashi−1 ∥ chunki ∥ session id)

Here, hashi−1 represents the hash of the previous chunk
in the context, and the inclusion of the session identifier for
privacy-sensitive chunks guarantees that the data remains user-
specific, while non-sensitive data can be shared more freely.

Each entry in the global hash table contains several
important elements: it includes a pointer to the asso-
ciated Key-Cache (K-Cache) and Value-Cache (V-Cache)
blocks, metadata fields such as last acc ts (timestamp of the
last access), cache hit count cur (current cache hit count),
cache hit count prev (previous cache hit count), and other
relevant tracking information. Additionally, the entry contains
a next-chunk pointer that ensures continuity in the caching of
consecutive chunks, preserving context across chunks in the
prompt.

To enhance search efficiency and reduce latency,
SafeKVemploys batch processing for KV cache lookups.
Instead of retrieving chunks individually, which would result
in higher latency, batch processing allows the system to
process multiple chunks at once. By grouping chunks that
share similar prefixes, SafeKVcan perform efficient, parallel
lookups, reducing the time it takes to fetch the required Key-
Cache and Value-Cache blocks. This batch-based approach,
combined with constant-time hash lookups, ensures that the
system maintains high throughput and low latency, even
under heavy request loads.

C. Cache Allocator: Adaptive Provisioning

In SafeKV’s architecture, the cache allocator goes beyond
traditional static memory budgeting by intelligently adapting
to the ever-changing privacy requirements of the system.
This dynamic cache allocation mechanism ensures optimal
resource utilization while maintaining robust privacy isolation
and preserving high-performance throughput. By continuously

4



adjusting the partition sizes between the User-Level Private
Cache and the Shared Public Cache, SafeKVis able to respond
to fluctuating privacy demands without compromising system
efficiency.

During LLM inference, key-value (KV) caches are gen-
erated and stored in high-bandwidth memory (HBM) for
fast access. As each chunk of data is processed, the Cache
Allocator begins by evaluating its privacy status based on the
results from the Privacy Detector. Depending on this evalu-
ation, the chunk is either assigned to the User-Level Private
Cache—ensuring sensitive user data remains isolated—or to
the Shared Public Cache, where non-sensitive data can be
reused. Once the appropriate cache placement is determined,
the allocator calculates the key- and value-cache addresses
for the chunk and inserts a new entry into the global hash
table. This entry contains not only the key-value pointers but
also critical metadata, such as last acc ts (timestamp of the
last access), cache hit count cur (cache hits in current time
window), cache hit count prev (cache hits in last time win-
dow), and other tracking information. To ensure consistency
and continuity of cached data, the next-chunk pointer of the
previous entry is also updated, preserving the integrity of
cached chunks across sequential requests.

Rather than relying on fixed memory budgets for private
and shared caches, SafeKVcontinuously monitors privacy de-
tection statistics and adjusts cache partitioning in real-time.
Leveraging metadata counters and privacy flags from incoming
requests, the system dynamically allocates memory based
on the current privacy needs. For instance, during periods
of increased privacy-labeled requests—indicating a higher
volume of user-specific data—SafeKVintelligently reallocates
resources by shifting memory from the Shared Public Cache to
the User-Level Private Cache, ensuring that privacy-sensitive
data is properly isolated. This adaptive memory management
strategy not only guarantees privacy compliance but also opti-
mizes overall cache usage and system performance, adapting
seamlessly to the dynamic needs of multi-user LLM services.

D. Cache Eviction: Anomaly-Aware Privacy Protection

Although SafeKVincorporates a privacy classification mech-
anism to isolate sensitive content, it remains vulnerable to
cache probing attacks, where adversaries infer private input
prefixes by analyzing access patterns and response latencies.
To counter this threat, SafeKVintegrates a lightweight, adap-
tive eviction mechanism driven by a novel anomaly detection
module that monitors temporal access behavior in real time.

Each entry in the SafeKVhash table maintains metadata
fields hit_cur and hit_prev, which record the number of
accesses during the current and previous observation windows,
respectively. Under normal usage, access frequency is expected
to remain relatively stable. SafeKVflags potential anomalies
when current accesses spike relative to the previous baseline.
Specifically, a chunk is considered anomalous if:

hit_cur ≥ 2× hit_prev

This conservative threshold is designed to detect abrupt
changes without penalizing high-frequency but consistent traf-
fic patterns.

Upon detecting an anomaly, SafeKVtriggers a targeted
eviction protocol. Rather than removing the entire metadata
record, which could disrupt downstream context, it selectively
invalidates the associated attention-key and attention-value
blocks in memory—effectively erasing the cached content
while preserving structural integrity. This ensures that any
potentially leaked data is promptly removed without disrupting
unrelated cache entries.

This eviction strategy also serves as a secondary safeguard
against misclassified content. While the classifier is trained
to identify sensitive data, errors are inevitable. By incorpo-
rating runtime access patterns, SafeKVintroduces a dynamic,
feedback-driven mechanism to detect and mitigate risks that
static classification may miss.

Compared to conventional eviction policies (e.g., LRU or
LFU) focused solely on performance, SafeKV’s anomaly-
aware strategy prioritizes privacy without significantly sac-
rificing throughput. It evicts entries only in the presence of
suspicious behavior, preserving cache efficiency under normal
conditions while strengthening defenses against timing-based
inference attacks.

By combining static privacy detection with runtime anomaly
monitoring, SafeKVprovides a dual-layer defense for shared
caching infrastructure. This hybrid strategy—integrating pri-
vacy awareness, adaptive response, and lightweight mitiga-
tion—enhances the resilience of LLM caching systems under
adversarial workloads.

IV. EVALUATION

In this section, we evaluate SafeKVusing different LLM
models such as Llama-2-13B, and Llama-2-70B-GPTQ. We
utilize the following datasets: ShareGPT [1], Multiturn
Chat [2], and Multitasks [6]. We implemented SafeKVbased
on Sglang and deployed it on a system with 2 NVIDIA A6000-
48GB GPUs.

A. Isolated per User vs Global Sharing

We compare the time-to-first-token (TTFT) under isolation
versus global-sharing for two models: LLaMA-2-13B and
LLaMA-2-70B, across three datasets with different workload
patterns (ShareGPT, multiturn and multitask). As shown in
Figure 2(a) and (b). For LLaMA-2-13B, enabling isolation
incurs only a modest TTFT overhead: roughly 3.2 – 2.3%
in the ShareGPT and multiturn datasets, rising to about 8.9
% under the most diverse (multitask) workload. In contrast,
LLaMA-2-70B exhibits a larger penalty—approximately 29.7
% for ShareGPT, 8.3 % for multiturn, and over 38.9 % for
multitask—reflecting the increased cost of enforcing strict
privacy isolation on a heavier model. These results show that
while isolation can protect private data, it can impact inference
performance, and the impact scales with model size and
request diversity. For larger models, the impact of isolation-
per-user is unacceptable.

5



ShareGPT Multiturn Multitask
0.0

0.5

1.0

TT
FT

 c
om

pa
ris

on
Isolation-per-User Global-Sharing

(a) Llama-2-13B

ShareGPT Multiturn Multitask
0.0

0.5

1.0

TT
FT

 c
om

pa
ris

on

Isolation-per-User Global-Sharing

(b) Llama-2-70B

Fig. 2: Normalized performance of TTFT between global-
sharing and the isolated-per-user cache reuse.

V. CONCLUSION

We identify a fundamental privacy–performance tradeoff
in KV-cache reuse: while per-user isolation safeguards sen-
sitive data, it incurs significant overhead—ranging from 8%
to 38.9% in time-to-first-token (TTFT) on LLaMA-2-70B.
To address this, SafeKV selectively isolates sensitive cache
entries while enabling the safe reuse of non-sensitive ones.
This is achieved through ChunkGuard’s real-time sensitivity
detection and a decoupled architecture comprising a Cache
Search Engine, Allocator, Monitor, and Evictor. Future work
will complete the SafeKV prototype, aiming to restore near-
global sharing performance while upholding strong privacy
guarantees.

REFERENCES

[1] “Datasets:anon8231489123/sharegpt vicuna unfiltered,” 2023, https://
huggingface.co/datasets/anon8231489123/ShareGPT Vicuna unfiltered.

[2] “Datasets:bellegroup/multiturn chat 0.8m,” 2023, https://huggingface.
co/datasets/BelleGroup/multiturn chat 0.8M.

[3] F. Bang, “Gptcache: An open-source semantic cache for llm applications
enabling faster answers and cost savings,” in Proceedings of the 3rd
Workshop for Natural Language Processing Open Source Software
(NLP-OSS 2023), 2023, pp. 212–218.

[4] N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer,
B. Balle, D. Ippolito, and E. Wallace, “Extracting training data from
diffusion models,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 5253–5270.

[5] Y. Dong, Y. Miao, W. Li, X. Zheng, C. Wang, and F. Lyu, “Accelerating
llm inference throughput via asynchronous kv cache prefetching,” arXiv
preprint arXiv:2504.06319, 2025.

[6] V. Gallego, “Configurable safety tuning of language models with syn-
thetic preference data,” 2024.

[7] N. Ho, S. Bae, T. Kim, H. Jo, Y. Kim, T. Schuster, A. Fisch, J. Thorne,
and S.-Y. Yun, “Block transformer: Global-to-local language modeling
for fast inference,” Advances in Neural Information Processing Systems,
vol. 37, pp. 48 740–48 783, 2024.

[8] T. Jiang, Z. Wang, J. Liang, C. Li, Y. Wang, and T. Wang, “Robustkv:
Defending large language models against jailbreak attacks via kv evic-
tion,” arXiv preprint arXiv:2410.19937, 2024.

[9] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” ACM computing surveys (CSUR),
vol. 54, no. 10s, pp. 1–41, 2022.

[10] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[11] H. Li, Y. Li, A. Tian, T. Tang, Z. Xu, X. Chen, N. Hu, W. Dong, Q. Li,
and L. Chen, “A survey on large language model acceleration based on
kv cache management,” arXiv preprint arXiv:2412.19442, 2024.

[12] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” AI
open, vol. 3, pp. 111–132, 2022.

[13] Y. Liu, H. Li, Y. Cheng, S. Ray, Y. Huang, Q. Zhang, K. Du, J. Yao,
S. Lu, G. Ananthanarayanan et al., “Cachegen: Kv cache compression
and streaming for fast large language model serving,” in Proceedings of
the ACM SIGCOMM 2024 Conference, 2024, pp. 38–56.

[14] J. Lucas and R. Harang, “Structuring applications to secure the
kv cache,” https://developer.nvidia.com/blog/structuring-applications-to-
secure-the-kv-cache/, Apr. 2025, accessed: 2025-05-01.

[15] E. Mathew, “Enhancing security in large language models: A com-
prehensive review of prompt injection attacks and defenses,” Authorea
Preprints, 2024.

[16] Z. Pang, W. Wang, and Y. Liao, “Cache partitioning for mitigating timing
side-channel attacks in llm serving systems,” in 2024 6th International
Conference on Frontier Technologies of Information and Computer
(ICFTIC). IEEE, 2024, pp. 1238–1245.

[17] L. Song, Z. Pang, W. Wang, Z. Wang, X. Wang, H. Chen, W. Song,
Y. Jin, D. Meng, and R. Hou, “The early bird catches the leak:
Unveiling timing side channels in llm serving systems,” arXiv preprint
arXiv:2409.20002, 2024.

[18] S. Wang, Y. Zhao, Z. Liu, Q. Zou, and H. Wang, “Sok: Understanding
vulnerabilities in the large language model supply chain,” arXiv preprint
arXiv:2502.12497, 2025.

[19] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020
conference on empirical methods in natural language processing: system
demonstrations, 2020, pp. 38–45.

[20] G. Wu, Z. Zhang, Y. Zhang, W. Wang, J. Niu, Y. Wu, and Y. Zhang, “I
know what you asked: Prompt leakage via kv-cache sharing in multi-
tenant llm serving,” in Proceedings of the 2025 Network and Distributed
System Security (NDSS) Symposium. San Diego, CA, USA, 2025.

[21] B. Yan, K. Li, M. Xu, Y. Dong, Y. Zhang, Z. Ren, and X. Cheng, “On
protecting the data privacy of large language models (llms): A survey,”
arXiv preprint arXiv:2403.05156, 2024.

[22] J. Yao, H. Li, Y. Liu, S. Ray, Y. Cheng, Q. Zhang, K. Du, S. Lu, and
J. Jiang, “Cacheblend: Fast large language model serving for rag with
cached knowledge fusion,” in Proceedings of the Twentieth European
Conference on Computer Systems, 2025, pp. 94–109.

[23] W. Zeng, Y. Dong, J. Zhou, J. Ma, J. Tan, R. Wang, and M. Li,
“MPCache: MPC-friendly KV cache eviction for efficient private LLM
inference,” 2025. [Online]. Available: https://openreview.net/forum?id=
QliOktBcy3

[24] J. Zhan, W. Zhang, Z. Zhang, H. Xue, Y. Zhang, and Y. Wu, “Portcullis:
A scalable and verifiable privacy gateway for third-party llm inference,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39,
no. 1, 2025, pp. 1022–1030.

[25] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song,
Y. Tian, C. Ré, C. Barrett et al., “H2o: Heavy-hitter oracle for efficient
generative inference of large language models,” Advances in Neural
Information Processing Systems, vol. 36, pp. 34 661–34 710, 2023.

[26] J. Zhao, Z. Fang, S. Li, S. Yang, and S. He, “Buzz: Beehive-structured
sparse kv cache with segmented heavy hitters for efficient llm inference,”
arXiv preprint arXiv:2410.23079, 2024.

[27] L. Zheng, L. Yin, Z. Xie, C. L. Sun, J. Huang, C. H. Yu, S. Cao,
C. Kozyrakis, I. Stoica, J. E. Gonzalez et al., “Sglang: Efficient ex-

6

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M
https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M
https://developer.nvidia.com/blog/structuring-applications-to-secure-the-kv-cache/
https://developer.nvidia.com/blog/structuring-applications-to-secure-the-kv-cache/
https://openreview.net/forum?id=QliOktBcy3
https://openreview.net/forum?id=QliOktBcy3


ecution of structured language model programs,” Advances in Neural
Information Processing Systems, vol. 37, pp. 62 557–62 583, 2024.

[28] X. Zheng, H. Han, S. Shi, Q. Fang, Z. Du, X. Hu, and Q. Guo,
“Inputsnatch: Stealing input in llm services via timing side-channel
attacks,” arXiv preprint arXiv:2411.18191, 2024.

[29] Z. Zheng, X. Ji, T. Fang, F. Zhou, C. Liu, and G. Peng, “Batchllm:
Optimizing large batched llm inference with global prefix sharing and
throughput-oriented token batching,” arXiv preprint arXiv:2412.03594,
2024.

7


	Introduction
	Background and Motivation
	LLM Inference
	KV-Cache Sharing
	Timing Side-Channel Attack
	Threat Models
	Motivation & Challenges

	System Design
	ChunkGuard: Lightweight & Real-Time Privacy Detection
	Cache Search Engine: Batch Processing
	Cache Allocator: Adaptive Provisioning
	Cache Eviction: Anomaly-Aware Privacy Protection

	Evaluation
	Isolated per User vs Global Sharing

	Conclusion
	References

