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Abstract

With the great advancements in large language001
models (LLMs), adversarial attacks against002
LLMs have recently attracted increasing003
attention. We found that pre-existing adver-004
sarial attack methodologies exhibit limited005
transferability and are notably inefficient,006
particularly when applied to LLMs. In007
this paper, we analyze the core mechanisms008
of previous predominant adversarial attack009
methods, revealing that 1) the distributions010
of importance score differ markedly among011
victim models, restricting the transferability;012
2) the sequential attack processes induces013
substantial time overheads. Based on the014
above two insights, we introduce a new015
scheme, named TF-ATTACK, for Transferable016
and Fast adversarial attacks on LLMs. TF-017
ATTACK employs an external LLM as a third-018
party overseer rather than the victim model019
to identify critical units within sentences.020
Moreover, TF-ATTACK introduces the concept021
of Importance Level, which allows for parallel022
substitutions of attacks. We conduct extensive023
experiments on 6 widely adopted benchmarks,024
evaluating the proposed method through both025
automatic and human metrics. Results026
show that our method consistently surpasses027
previous methods in transferability and delivers028
significant speed improvements, up to 20×029
faster than earlier attack strategies.030

1 Introduction031

Recently, large language models (LLMs) such032

as ChatGPT and LLaMA (Ouyang et al.,033

2022; Touvron et al., 2023) have demonstrated034

considerable promise across a range of downstream035

tasks (Kasneci et al., 2023; Thirunavukarasu et al.,036

2023; Liu et al., 2023). Subsequently, there has037

been increasing attention on the task of adversarial038

attack (Xu et al., 2023; Yao et al., 2023), which039

aims to generate adversarial examples that confuse040

or mislead LLMs. This task is crucial for advancing041

CNN LSTM BERT LLaMA Baichuan

CNN 94.7 22.9 19.8 21.7 21.2
LSTM 17.3 94.1 19.4 22.0 22.1
BERT 12.6 14.6 91.0 16.6 18.3
LLaMA 12.1 9.5 8.7 86.1 16.0
Baichuan 21.8 24.0 19.6 27.2 89.3
ChatGPT 11.2 14.4 12.6 16.2 14.8

Average 14.6 17.0 18.0 20.7 18.1

Table 1: Transferability evaluation of BERT-Attack
samples on IMDB dataset. Row i and column j is the
Attack Success Rate of samples generated from model
j and evaluated on model i. The Average result is from
non-diagonal elements of each column.

reliable and robust LLMs in the AI community, 042

emphasizing the paramount importance of security 043

in AI systems(Marcus, 2020; Thiebes et al., 2021). 044

Existing predominant adversarial attack ap- 045

proaches on LLMs typically adhere to a two-step 046

process: initially, they rank token importance based 047

on the victim model, and subsequently, they replace 048

these tokens sequentially following specific rules 049

(Cer et al., 2018; Oliva et al., 2011; Jin et al., 050

2020). Despite notable successes, recent studies 051

highlight that current methods face two substantial 052

limitations: 1) poor transferability of the generated 053

adversarial samples. As depicted in Table 1, 054

while adversarial samples generated by models can 055

drastically reduce their own classification accuracy, 056

they scarcely affect other models; 2) significant 057

time overhead, particularly with larger models 058

(Spector and Re, 2023). For instance, the time 059

required to conduct an attack on LLaMA is 30× 060

slower than standard inference. 061

To tackle the above two issues, we begin by 062

analyzing the causes of the poor transferability of 063

existing adversarial attack methods and the slow 064

speed. Specifically, we first study the impact of the 065

importance score, which is the core mechanism of 066

previous methods. Comparative analysis reveals 067

distinct importance score distributions across 068

various victim models. This discrepancy largely 069
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explains why the portability of adversarial samples070

generated by existing methods is poor, since071

perturbations generated according to a specific072

pattern of one model do not generalize well to other073

models with different importance assignments.074

In addition, analysis of time consumption in075

implementing a representative attack on LLMs076

shows that over 80% of processing time is spent on077

sequential word-by-word operations.078

Drawing on insights from the above observa-079

tions, we propose a new scheme, named TF-080

ATTACK, for transferable and fast adversarial081

attacks over LLMs. TF-ATTACK follows082

the overall framework of BERT-Attack which083

generates adversarial samples by synonym replace-084

ment. Different from BERT-Attack, TF-ATTACK085

employs an external third-party overseer such as086

ChatGPT to identify important units with the input087

sentence, thus eliminating the dependency on the088

victim model. Moreover, TF-ATTACK introduces089

the concept of Important Level, which divides090

the input units into different groups based on091

their semantic importance. Specifically, we utilize092

the powerful abstract semantic understanding093

and efficient automatic extraction capabilities of094

ChatGPT to form an important level priority095

queue through human-crafted Ensemble Prompts.096

Based on this, TF-ATTACK can perform parallel097

replacement of entire words within the same098

priority queue, as opposed to the traditional099

approach of replacing them sequentially one by100

one, as shown in Figure 3. This approach markedly101

reduces the time of the attacking process, thereby102

resulting in a significant speed improvement.103

Furthermore, we employ two tricks, named Multi-104

Disturb and Dynamic-Disturb, to enhance the105

attack effectiveness and transferability of generated106

adversarial samples. The former involves three107

levels of disturbances within the same sentence,108

while the latter dynamically adjusts the proportions109

and thresholds of the three types of disturbances110

based on the sentence length of the input. Both of111

them significantly boost attack effectiveness and112

transferability, and are adaptable to other attack113

methods.114

We conduct experiments on six widely adopted115

benchmarks and compare the proposed method116

with several state-of-the-art methods. To verify the117

effectiveness of our method, we consider both auto-118

matic and human evaluation. Automatic evaluation119

on 6 widely benchmarks shows that TF-ATTACK120

has surpassed the baseline method TextFooler,121

BERT-Attack and SDM-Attack. In addition, 122

human evaluation results demonstrate that TF- 123

ATTACK maintains a comparable consistency and 124

achieves a comparable level of language fluency 125

that does not cause much confusion for humans. 126

Moreover, we compare the transferability of TF- 127

ATTACK with BERT-Attack, demonstrating that 128

TF-ATTACK markedly diminishes the accuracy of 129

other models and exhibits robust migration attack 130

capabilities. Furthermore, the time cost of TF- 131

ATTACK is significantly lower than BERT-Attack, 132

more than 10× speedup on average stats. Lastly, 133

the adversarial examples generated by TF-ATTACK 134

minimally impact the performance of model after 135

adversarial training, significantly strengthening its 136

defense against adversarial attacks. Overall, the 137

main contributions of this work can be summarized 138

as follows: 139

• We investigate the underlying causes behind 140

the slow speed and poor effectiveness of pre- 141

existed adversarial attacks on LLMs. 142

• We introduce TF-ATTACK, a novel approach 143

leveraging an external LLM to identify critical 144

units and facilitates parallelized adversarial 145

attacks. 146

• TF-ATTACK effectively enhances the transfer- 147

ability of generated adversarial samples and 148

achieves a significant speedup compared to 149

previous methods. 150

2 Related Work 151

Text Adversarial Attack For NLP tasks, the 152

adversarial attacks occur at various text levels 153

including the character, word, or sentence level. 154

Character-level attacks involve altering text by 155

changing letters, symbols, and numbers. Word- 156

level attacks (Wei and Zou, 2019) involve modify- 157

ing the vocabulary with synonyms, misspellings, 158

or specific keywords. Sentence-level attacks 159

(Coulombe, 2018; Xie et al., 2020) involve adding 160

crafted sentences to disrupt the output of model. 161

Current adversarial attacks in NLP(Alzantot et al., 162

2018; Jin et al., 2020) employ substitution to 163

generate adversarial examples through diverse 164

strategies, such as genetic algorithms (Zang et al., 165

2019; Guo et al., 2021), greedy search (Sato 166

et al., 2018; Yoo and Qi, 2021), or gradient- 167

based methods (Ebrahimi et al., 2018a; Cheng 168

et al., 2018), are employed to identify substitution 169

words form synonyms (Kuleshov et al., 2018; Jin 170
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et al., 2020) or language models (Li et al., 2020b;171

Garg and Ramakrishnan, 2020; Li et al., 2020a).172

Recent studies have refined sampling methods, yet173

these approaches continue to be time-intensive,174

highlighting a persistent challenge in efficiency.175

Fang et al. (2023) apply reinforcement learning,176

showing promise on small models but facing177

challenges on LLMs due to lengthy iterations,178

limiting large-scale adversarial samples. We list179

more related work in Appendix A.180

Sample Transferability Evaluating text ad-181

versarial attacks heavily depends on sample182

transferability, assessing the performance of183

attack samples across diverse environments and184

models to measure their broad applicability and185

consistency. In experiments (Qi et al., 2021),186

adversarial samples generated from the Victim187

Model are directly applied to other models,188

testing transferability. Strongly transferable189

attack samples can hit almost all models in190

a black-box manner, which traditional white-191

box attacks (Ebrahimi et al., 2018b) can not192

match. Evaluation datasets like adversarial tasks193

of Adv-Glue (Wang et al., 2021) showcase this194

transferability, aiding in robustness assessment.195

Relevant research (Liu et al., 2016) endeavors196

to enhance the capability of adversarial example197

transferability by attacking ensemble models. It198

has been demonstrated (Zheng et al., 2020) that199

adversarial examples with better transferability can200

more effectively enhance the robustness of models201

in adversarial training. However, in the field of202

textual adversarial attacks, there has been a lack of203

in-depth research dedicated to how to improve the204

transferability of adversarial examples.205

3 Method206

3.1 Preliminaries: Adversarial Attack207

The task of adversarial attack aims at generating208

perturbations on inputs that can mislead the output209

of model. These perturbations can be very small,210

and imperceptible to human senses.211

As for NLP tasks, given a corpus of N input texts,212

X = {x1, x2, x3, . . . , xN}, and an output space213

Y = {y1, y2, y3, . . . , yN} containing K labels, the214

language model F(·) learns a mapping f : x→ y ,215

which learns to classify each input sample x ∈ X216

to the ground-truth label ygold ∈ Y:217

F (x) = argmax
yi∈Y

P (yi|x). (1)218

The adversary of text x ∈ X can be formulated 219

as xadv = x + ϵ, where ϵ is a perturbation to the 220

input x. The goal is to mislead the victim language 221

model F(·) within a certain constraint C(xadv): 222

F (xadv) = argmax
yi∈Y

P (yi|xadv) ̸= F (x),

and C(xadv, x),≤ λ
(2) 223

where λ is the coefficient, and C(xadv, x) is usually 224

calculated by the semantic or syntactic similarity 225

(Cer et al., 2018; Oliva et al., 2011) between the 226

input x and its corresponding adversary xadv. 227

3.2 Limitations of Importance Score 228

Existing predominant adversarial attack sys- 229

tems (Morris et al., 2020; Jin et al., 2020; Li et al., 230

2020b) on LLMs typically adhere to a two-step 231

process following BERT-Attack (Li et al., 2020b). 232

We thus take BERT-Attack as a representative 233

method for analysis. The core idea of BERT-Attack 234

is to perform substitution according to Importance 235

Score. BERT-Attack calculates the importance 236

score by individually masking each word in the 237

input text, performing a single inference for each, 238

and using changes in the confidence score and 239

label of Victim Models to determine the impact 240

of each word. In BERT-Attack, importance score 241

determine the subsequent attack sequence, which 242

is crucial for the success of subsequent attacks and 243

the times of attacks. 244

To explore the limited transferability of methods 245

relying on importance scores, we analyze the 246

importance score distribution among various 247

models. As illustrated in Figure 1, there 248

are substantial differences in the importance 249

score derived from the same sentence when 250

calculated using BERT and LLaMA. The former 251

has a sharper distribution, while the latter 252

essentially lacks substantial numerical differences. 253

This phenomenon is consistent across multiple 254

sentences, which are detailed in Appendix F. Given 255

that importance score are crucial in the attack 256

process of the aforementioned methods, variations 257

in these scores can lead to entirely different 258

adversarial samples. This variation explains the 259

poor transferability of the generated attack samples, 260

as demonstrated in Table 1. 261

To investigate the causes of significant time 262

overhead, we analyze the time consumption of 263

various components involved when implementing 264

a representative attacking method on both a small 265
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0.50 0.55 0.51 0.39 0.61 0.32 0.82 0.50

0.54 0.34 0.30 0.41 0.42 0.60 0.54 0.21

0.76 0.54 0.64 0.54 0.39 0.45 0.27 0.62
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0.51 0.28 0.37 0.54 0.75 0.48 0.46 0.49
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0.36 0.52 0.69 0.38 0.55 0.53 0.32 0.52
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Figure 1: Importance score distribution of the same
sentence given by BERT-Attack on BERT and LLaMA.
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Figure 2: Time cost of each module from BERT-Attack
on SA-LLaMA and BERT.

and a large model. As depicted in Figure 2, when266

applying BERT-Attack to attack small models267

like BERT, the average time spent per entry is268

very short, and the time consumption of various269

components is similar. However, the time cost per270

inference on LLaMA far exceeds that of BERT,271

disrupting this balance. It is evident that in LLMs,272

over 80% of the time spent per entry in the attack is273

consumed by the Get import-scores and substitute274

& Attack component. In addition, it is worth noting275

that this phenomenon is even more pronounced276

in successfully attacked samples. The underlying277

reason is that BERT-Attack necessitates performing278

the attack sequentially, according to the calculated279

importance score. This drawback becomes more280

pronounced when applied to large models, as both281

components require performing model inference,282

significantly increasing the time cost.283

3.3 TF-ATTACK: Transferable and Fast284

Adversarial Attacks on LLMs285

To address the above limitations caused by the286

importance score mechanism, we introduce TF-287

ATTACK as a solution for transferable and fast288

adversarial attacks. Firstly, as shown in Figure 3,289

TF-ATTACK employs an external model as a third-290

party overseer to identify important units. In this291

way, TF-ATTACK avoids excessive dependence292

on the victim model during the attack process.293

Specifically, we design several instructions1 for 294

ChatGPT to partition all words in the original input 295

according to their semantic importance. Another 296

advantage of TF-ATTACK is its ability to utilize the 297

rich semantic knowledge within ChatGPT, making 298

the subsequent generation of attack sequences 299

more universally semantic. In terms of speed, 300

this approach does not require inference from the 301

victim model, thus alleviating the problem of high 302

inference costs for LLMs. TF-ATTACK only needs 303

one inference to obtain a comprehensive Important 304

Level priority queue, while the traditional approach 305

requires inference times proportional to the length 306

of the text. 307

Secondly, TF-ATTACK introduces the concept of 308

Importance Level to facilitate parallel substitution. 309

Specifically, TF-ATTACK takes the original 310

sentence as input and outputs a priority queue 311

with 5 levels, with a different number of words 312

in each level. The concept of importance level 313

assumes that words within the same level have 314

no specific order, enabling parallel replacement 315

of candidate words at the same level. This 316

parallel replacement process markedly decreases 317

both the search space and the number of required 318

inferences, offering a substantial improvement 319

over the previous approach that relied on greedy, 320

sequential word replacements. 321

Additionally, we employ a reverse pyramid 322

search space strategy for importance levels, 323

optimizing the search space to reduce inefficient 324

search expenditures. Words prioritized at higher 325

levels are presumed to significantly influence 326

sentence sentiment. Consequently, a larger search 327

space is utilized to identify semantically similar 328

words, with the aim of replacing them with 329

synonyms that precipitate a notable decline in the 330

performance of victim model. For words at lower 331

priority levels, a smaller search space suffices, 332

as alterations to these words minimally impact 333

sentence sentiment. Excessive searching at these 334

levels can lead to increased inference costs without 335

substantially enhancing effectiveness. More details 336

of experiments could be found in F. 337

3.4 Multi-Disturb & Dynamic-Disturb 338

These two strategies can be incorporated into 339

traditional text adversarial attack methods as a 340

post-processing step, significantly improving the 341

transferability of adversarial samples. Specifically, 342

1Please refer Appendix F for detailed instructions.
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Figure 3: Step 1: Using ChatGPT to categorize words into 5 Important Level with varying word counts. The Inverted
Pyramid Searching Space reflects the decreasing length of Substitute Candidates based on decreasing levels. Step 2:
Selecting words from the same level and generates a Disturbed Input through Parallel Substitutions. Exploring
possible Disturbed Inputs via SA-LLaMA, choose the result surpassing the threshold as Generated Sample from
Confirmed Substitutions. Substitution Iterations will end when meet the finished condition. Step 3: Implementing
Multi-Disturb and Dynamic Disturb produces Transferable Samples.

the Multi-Disturb strategy refers to introducing a343

variety of disturbances within the same sentence.344

Appendix H outlines 9 ways of disturbance,345

including character-level, word-level, and sentence-346

level disturbances, which can greatly enhance the347

transferability of attack samples. Dynamic-Disturb348

refers to using an FFN+Softmax network to assess349

the length and structural distribution of the input350

sentence, outputting the ratios of these three types351

of disturbances.352

In assessing attack sample effectiveness, tradi-353

tional methods heavily depend on model output354

confidence, likely leading to overfitting to the355

model architecture. To rectify the problem, we356

incorporate random disturbance to diminish model357

confidence during replacement evaluation. Our358

experiments confirm that this two tricks can359

be adapted to almost all text adversarial attack360

methods, significantly enhancing transferability361

and increasing the ability of adversarial samples to362

confuse models through adaptive post-processing.363

The attacking algorithm is on Appendix B.364

4 Experiments 365

4.1 Experimental Setups 366

Tasks and Datasets Following (Li et al., 2020b), 367

we evaluate the effectiveness of the proposed 368

TF-ATTACK on classification tasks upon diverse 369

datasets covering news topics (AG’s News; Zhang 370

et al., 2015), sentiment analysis at sentence 371

(MR; Pang and Lee, 2005) and document levels 372

(IMDB2 and Yelp Polarity; Zhang et al., 2015). As 373

for textual entailment, we use a dataset of sentence 374

pairs (SNLI; Bowman et al., 2015) and a dataset 375

with multi-genre (MultiNLI; Williams et al., 2017). 376

Following Jin et al. (2020); Alzantot et al. (2018), 377

we attack 1k samples randomly selected from the 378

test set of each task. The statistics of datasets and 379

more details can be found in Appendix C. 380

Baselines We compare TF-ATTACK with recent 381

studies: 1) TextFooler (Jin et al., 2020), which finds 382

important words via probability-weighted word 383

saliency and then applies substitution with counter- 384

2https://datasets.imdbws.com/
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Dataset Method A-rate↑ Mod↓ Sim↑ Dataset Method A-rate ↑ Mod ↓ Sim↑

Yelp

TextFooler 78.9 9.1 0.73

IMDB

TextFooler 83.3 8.1 0.79
BERT-Attack 80.5 11.5 0.69 BERT-Attack 84.2 9.6 0.78
SDM-Attack 81.1 10.7 0.71 SDM-Attack 86.1 8.9 0.75
TF-ATTACK (Zero-Shot) 81.3 10.3 0.71 TF-ATTACK (Zero-Shot) 86.1 8.7 0.81
TF-ATTACK (Few-Shot) 83.7 9.0 0.77 TF-ATTACK (Few-Shot) 86.7 7.4 0.76
+MD 84.6 12.3 0.71 +MD 87.1 10.7 0.77
+MD +DD 84.5 11.9 0.72 +MD +DD 87.7 9.9 0.81

AG’s News

TextFooler 73.2 16.1 0.54

MR

TextFooler 81.3 10.5 0.53
BERT-Attack 76.6 17.3 0.59 BERT-Attack 82.8 10.2 0.51
SDM-Attack 79.3 16.2 0.61 SDM-Attack 84.0 9.9 0.55
TF-ATTACK (Zero-Shot) 77.1 18.3 0.52 TF-ATTACK (Zero-Shot) 84.6 8.9 0.58
TF-ATTACK (Few-Shot) 81.9 16.1 0.58 TF-ATTACK (Few-Shot) 83.1 12.4 0.44
+MD 82.8 19.4 0.53 +MD 83.0 13.2 0.40
+MD +DD 83.0 19.1 0.55 +MD +DD 84.0 10.4 0.50

SNLI

TextFooler 82.8 14.1 0.39

MNLI

TextFooler 77.1 11.5 0.51
BERT-Attack 80.5 12.3 0.46 BERT-Attack 75.8 8.4 0.54
SDM-Attack 83.1 14.6 0.42 SDM-Attack 79.3 10.2 0.55
TF-ATTACK (Zero-Shot) 82.9 10.2 0.45 TF-ATTACK (Zero-Shot) 79.3 8.4 0.55
TF-ATTACK (Few-Shot) 82.7 10.4 0.47 TF-ATTACK (Few-Shot) 78.2 7.9 0.57
+MD 83.6 11.7 0.46 +MD 77.7 8.3 0.53
+MD +DD 83.5 10.9 0.41 +MD +DD 79.4 8.5 0.52

Table 2: Automatic evaluation results of attack success rate (A-rate), modification rate (Mod), and semantic
similarity (Sim) on SA-LLaMA. ↑ represents the higher the better and ↓ means the opposite. The best results are
bolded, and the second-best ones are underlined.

fitted word embeddings. 2) BERT-Attack (Li385

et al., 2020b), which uses a mask-predict approach386

to generate adversaries. 3) SDM-Attack (Fang387

et al., 2023), which employs reinforcement learning388

to determine the attack sequence. We use389

the official codes BERT-Attack and TextAttack390

tools (Morris et al., 2020) to perform attacks in391

our experiments. The TF-ATTACK (zero-shot)392

denotes that no demonstration examples were393

provided when generating the Important Level with394

ChatGPT. Conversely, the TF-ATTACK (few-shot)395

uses five demonstrations as context information. To396

ensure a fair comparison, we follow Morris et al.397

(2020) to apply constraints for TF-ATTACK. More398

details are available in Appendix D.399

Implementation Details Following established400

training protocols, we fine-tuned a LLaMA-2-401

7B model to develop specialized Task-LLaMA402

models tailored for specific downstream tasks.403

Among them, the Task-LLaMA fine-tuned on404

the IMDB training set achieved an accuracy of405

96.95% on the test set, surpassing XLNET with406

additional data, which achieved 96.21%. The407

model achieved 93.63% on another sentiment408

classification dataset, SST-2, indicating that Task-409

LLaMA is not overfitting to the training data but a410

strong baseline for experiments.411

Automatic Evaluation Metrics Following prior412

work (Jin et al., 2020; Morris et al., 2020), we413

assess the results with the following metrics: 1)414

attack success rate (A-rate): post-attack model415

performance decline; 2) Modification rate (Mod): 416

percentage of altered words compared to the 417

original; 3) Semantic similarity (Sim): cosine 418

similarity between original and adversary texts via 419

universal sentence encoder (USE; Cer et al., 2018); 420

and 4) Transferability (Trans): the mean accuracy 421

decreases across three models between adversarial 422

and original samples. 423

Manual Evaluation Metrics We further manu- 424

ally validate the quality of the adversaries from 425

three challenging properties. 1) Human prediction 426

consistency (Con): how often human judgment 427

aligns with the true label; 2) Language fluency 428

(Flu): measured on a scale of 1 to 5 for sentence 429

coherence (Gagnon-Marchand et al., 2019); and 3) 430

Semantic similarity (Simhum): gauging consistency 431

between input-adversary pairs, with 1 indicating 432

agreement, 0.5 ambiguity, and 0 inconsistency. 433

4.2 Results 434

Overall Performance Table 2 shows the perfor- 435

mance of different systems on four benchmarks. 436

As shown in Table 2, TF-ATTACK consistently 437

achieves the highest attack success rate to attack 438

LLaMA and has little negative impact on Mod and 439

Sim. Additionally, TF-ATTACK mostly obtains 440

the best performance of modification and similarity 441

metrics, except for AG’s News, where TF-ATTACK 442

achieves the second-best. In general, our method 443

can simultaneously satisfy the high attack success 444

rate with a lower modification rate and higher 445
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CNN LSTM BERT LLaMA Baichuan

CNN -2.2 +33.8 +58.5 +37.4 +24.0
LSTM +22.4 -3.8 +31.2 +45.8 +29.4
BERT +21.4 +26.0 +2.2 +25.4 +25.6
LLaMA +24.0 +26.8 +41.8 +12.4 +24.4
Baichuan +22.2 +20.6 +22.4 +21.6 +4.4
ChatGPT +14.8 +18.6 +22.4 +22.4 +18.8

Average +21.2 +23.6 +35.2 +30.0 +27.6

Table 3: Transferability evaluation of TF-ATTACK
Samples on IMDB dataset. Each element is calculated
from the difference in Attack Success Rate between TF-
ATTACK and BERT-Attack.
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Figure 4: The time cost according to varying sentence
lengths in the IMDB dataset. The left is on LLaMA
while the right is on BERT.

similarity. We additionally observe that TF-446

ATTACK achieves a better attack effect on the447

binary classification task. Empirically, when there448

exist more than two categories, the impact of449

each replacement word may be biased towards450

a different class, leading to an increase in the451

perturbation rate. We also provide several cases452

to better understand our method, please refer453

Appendix G for more details.454

Transferability We evaluate the transferability of455

TF-ATTACK samples to detect whether the samples456

generated from TF-ATTACK can effectively attack457

other models. We conduct experiments on the458

IMDB datasets and use BERT-Attack as a baseline.459

Table 3 shows the improvement of the attack460

success rate of TF-ATTACK over BERT-Attack. It461

can be observed that TF-ATTACK achieves obvious462

improvements over BERT-Attack when applied463

to other models. In particular, the new samples464

generated by TF-ATTACK can lower the accuracy465

by over 10 percent on binary classification tasks,466

essentially confusing the victim model. Even a467

powerful baseline like ChatGPT would drop to only468

68.6% accuracy. It is important to highlight that469

these samples do not necessitate attacks tailored to470

specific victim models.471

Efficiency We probe the efficiency according to472

varying sentence lengths in the IMDB dataset.473

Dataset Con↑ Flu↑ Simhum ↑

IMDB Original 0.93 4.5 0.93TF-ATTACK 0.87 4.1

MR Original 0.88 4.0 0.82TF-ATTACK 0.79 3.8

Table 4: Human evaluation results comparing the
original input and generated adversary by TF-ATTACK
of human prediction consistency (Con), language
fluency (Flu), and semantic similarity (Simhum).

As shown in Figure 4, the time cost of TF- 474

ATTACK is surprisingly mostly better than BERT- 475

Attack, which mainly targets obtaining cheaper 476

computation costs with lower attack success rates 477

in Table 2. Furthermore, with the increase of 478

sentence lengths, TF-ATTACK maintains a stable 479

time cost, while the time cost of BERT-Attack is 480

exploding. The reason is that TF-ATTACK has 481

the advantage of much faster parallel substitution, 482

hence as the sentence grows, the increase in time 483

cost will be much smaller. These phenomena verify 484

the efficiency advantage of TF-ATTACK, especially 485

in dealing with long texts. 486

Manual evaluation We first randomly select 100 487

samples from successful adversaries in IMDB and 488

MR datasets and then ask ten crowd-workers to 489

evaluate the quality of the original inputs and 490

our generated adversaries. The results are shown 491

in Table 4. For human prediction consistency, 492

humans can accurately judge 93% of the original 493

inputs on the IMDB dataset while maintaining an 494

87% accuracy rate with our generated adversarial 495

examples. This suggests that TF-ATTACK can 496

effectively mislead LLMs without altering human 497

judgment. Regarding language fluency, the scores 498

of our adversarial examples are comparable to the 499

original inputs, with a minor score difference of 500

no more than 0.3 across both datasets. Moreover, 501

the semantic similarity scores between the original 502

inputs and our generated adversarial examples 503

stand at 0.93 for IMDB and 0.82 for MR, 504

respectively. Overall, TF-ATTACK successfully 505

preserves these three essential attributes. More 506

details about the human evaluation process and 507

additional results are provided in Appendix F. 508

5 Analysis 509

Generalization to More Victim Models Table 6 510

shows that TF-ATTACK not only has better attack 511

effects against WordCNN and WordLSTM, but 512

also misleads BERT and Baichuan, which are 513
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Dataset Con↑ Flu↑ Simhum ↑

IMDB

Original 0.96 4.6 1.00
TextFooler 0.86 4.1 0.85
BERT-Attack 0.82 4.3 0.91
TF-ATTACK 0.91 4.6 0.91

AG’s News

Original 0.85 4.6 1.00
TextFooler 0.77 3.9 0.84
BERT-Attack 0.78 3.7 0.84
TF-ATTACK 0.76 4.3 0.81

Table 5: Human evaluation results regarding human
prediction consistency (Con), language fluency (Flu),
and semantic similarity (Simhum).

Victim models A-rate↑ Mod↓ Sim↑ Trans↓

WordCNN 96.3 9.1 0.84 78.5
WordLSTM 92.8 9.3 0.85 75.1
BERT 90.6 9.9 0.81 70.2
LLaMA 91.8 13.1 0.74 68.6
Baichuan 92.5 11.8 0.75 71.4

Table 6: TF-ATTACK against other models.

more robust models. For example, on the IMDB514

datasets, the attack success rate is up to 92.5%515

against Baichuan with a modification rate of only516

about 11.8% and a high semantic similarity of 0.75.517

Furthermore, the model generated by the Victim518

model created a decrease in accuracy to 71.4% on519

various black-box models of different scales.520

Adversarial Training We further investigate to521

improve the robustness of victim models via522

adversarial training using the generated adversarial523

samples. Specifically, we fine-tune the victim524

model with both original training datasets and525

our generated adversaries and evaluate it on the526

same test set. More details are in Appendix E. As527

shown in Table 7, compared to the results with528

the original training datasets, adversarial training529

with our generated adversaries can maintain close530

accuracy, while improving performance on attack531

success rates, modification rates, and semantic532

similarity. The victim models with adversarial533

training are more difficult to attack, which indicates534

that our generated adversaries have the potential535

to serve as supplementary corpora to enhance the536

robustness of victim models.537

Against Defense Entropy threshold defense (Yao538

et al., 2023) has been used to defend against the539

attack on LLMs recently. It employs the entropy540

of the first token prediction to refuse responding.541

Figure 5 demonstrates the probability of top-10542

tokens in the first generated word of LLaMA.543

It can be observed that the raw inputs usually544

generates the first token with low entropy (i.e., the545

probability of argmax token is much higher, and546

Dataset Acc↑ A-rate↑ Mod↓ Sim↑

Yelp 97.4 81.3 8.5 0.73
+Adv Train 95.9 65.7 12.3 0.67

IMDB 97.2 86.1 4.6 0.81
+Adv Train 95.5 70.2 7.3 0.78

SST-2 97.1 89.7 14.3 0.85
+Adv Train 92.2 68.6 16.8 0.83

Table 7: Results of adversarial training.
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Figure 5: The probability of top-10 tokens in the
first generated word in SA-LLaMA (a). The defense
performance with various entropy thresholds (b)

the probability of other tokens is much lower). As 547

shown in Figure 5, the adversarial samples from 548

TF-ATTACK perform better than BERT-Attack 549

with higher entropy. Attack samples generated 550

through TF-ATTACK fare better against entropy- 551

based filters compared to traditional text adversarial 552

attack methods, indicating that the samples created 553

by TF-ATTACK are harder to defend against. 554

6 Conclusion 555

In this paper, we examined the limitations of 556

current adversarial attack methods, particularly 557

their issues with transferability and efficiency when 558

applied to Large Language Models (LLMs). To 559

address these issues, we introduced TF-ATTACK, a 560

new approach that uses an external overseer model 561

to identify key sentence components and allows 562

for parallel processing of adversarial substitutions. 563

Our experiments on six benchmarks demonstrate 564

that TF-ATTACK outperforms current methods, 565

significantly improving both transferability and 566

speed. Furthermore, the adversarial examples 567

made by TF-ATTACK do not significantly affect 568

the performance of model after it has been 569

trained to resist attacks, thus strengthening its 570

defenses. We believe that TF-ATTACK is a 571

significant improvement in creating strong defenses 572

against adversarial attacks on LLMs, with potential 573

benefits for future research in this field. 574
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Limitations575

Our experiments were solely conducted on six576

selected datasets for two NLP tasks, all of which577

were English corpora. Furthermore, due to resource578

constraints in LLM research, our experimental579

results primarily relied on fine-tuning LLaMA-580

2-7B and Baichuan-2-7B as the base, without581

exploring LLMs or other open-source base models.582

Consequently, we lack evaluations on other types583

of LLMs, such as ELECTRA (Clark et al., 2020),584

XLNET (Yang et al., 2019) and other LLMs.585

Hence, our work lacks validation in terms of586

generalization and transferability across multi-task,587

multi-model, and multi-lingual aspects.588

Ethics Statement589

We declare that this article is in accordance with the590

ethical standards of ACL Code of Ethics. Any third-591

party tools used in this work are licensed by their592

authors. All crowd-workers participating in the593

experiments are paid according to the local hourly594

wages.595
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A Other Related Work792

A.1 Synchronization Work793

Prompt-Attack(Xu et al., 2023) leverages the794

exceptional comprehension of LLMs and diverges795

from traditional adversarial methods. It employs a796

manual approach of constructing rule-based prompt797

inputs, requiring LLMs to output adversarial798

attack samples that can deceive itself and meet799

the modification rule conditions. This attack800

method achieved fully automatic and efficient801

generation of attack samples using the local802

model. However, the drawback is that the model803

may not perform the whole attacking process804

properly, resulting in mediocre attack effectiveness.805

Additionally, different prompts can significantly806

influence the quality of the model-generated attack807

samples. These generated attack samples, though808

somewhat transferable, fail to consider the model’s809

internal reasoning, resulting in excessively high810

modification rates.811

Our work shares similarities in that we both812

leverage the understanding capabilities of LLMs.813

However, we solely employ ChatGPT’s language814

abstraction for Importance Level suggestions,815

maintaining the attack process within traditional816

text adversarial methods. Furthermore, our work is817

more focused on enhancing the transferability of818

attack samples and speeding up the attack, making819

them more widely applicable. This differs from820

the motivation of Prompt-Attack, which aims at the821

automated generation of samples that can deceive822

the model itself using LLMs.823

B Attack Algorithm824

The attacking process is shown in Algorithm825

1. Since aft is chosen through a probability826

distribution, the method is encouraged to explore827

more possible paths of substitutions. The instant828

result rt is obtained from victim model after once829

substitution actions.830

Once the attack finish condition is meet, the831

method will terminate this current step and output832

the answer to check whether it is succeeded.833

The expected return of substitutions is defined as834

follows:835

J(θ) = E[G(τ)] (3)836

Thus the result is calculated by ouput of model and837

can be expressed as follows:838

∇J(θ) = 1

M

M∑
m=1

∇ log πθ(τ
(m))G(τ (m)) (4)839

Dataset Train Test Avg Len Classes

Yelp 560k 38k 152 2
IMDB 25k 25k 215 2

AG’s News 120k 7.6k 73 4
MR 9k 1k 20 2

SST-2 7k 1k 17 2

Table 8: Overall statistics of datasets.

where [τ (1), τ (2), ..., τ (M)] are M samples of 840

trajectories. The discount factor γ enables both 841

long-term and immediate effects to be taken into 842

account and trajectories with shorter lengths are 843

encouraged. 844

We use all the test sets of each dataset and 845

he average convergence time is approximately 846

between 2-16 hours, related to the length of the 847

input. When attacking large batches of samples, 848

the impact of training cost is negligible compared 849

to the cumulative attack time cost. During training, 850

We adopt random strategies and short-sighted 851

strategies in the initial stage for early exploration 852

and to obtain better seeds. 853

C Datasets 854

We conduct experiments on the following datasets 855

of Text Classification and detailed statistics are 856

displayed in Table 8: 857

• Yelp(Zhang et al., 2015): A dataset for 858

binary sentiment classification on reviews, 859

constructed by considering stars 1 and 2 860

negative, and 3 and 4 positive. 861

• IMDB: A document-level movie review 862

dataset for binary sentiment analysis. 863

• MR(Pang and Lee, 2005): A sentence-level 864

binary classification dataset collected from 865

Rotten Tomatoes movie reviews. 866

• AG’s News(Zhang et al., 2015): A collection 867

of news articles. There are four topics in 868

this dataset: World, Sports, Business, and 869

Science/Technology. 870

• SST-2 (Socher et al., 2013): The Stanford 871

Sentiment Treebank task originates from re- 872

views and is a binary sentiment classification 873

dataset, where the task is to determine whether 874

a given sentence conveys a positive or negative 875

sentiment. 876
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Algorithm 1 TF-ATTACK Algorithm

1: Initialization: agent πθ with parameters θ, β,
sentences number M

2: for i← 1 to M do
3: using ensemble-prompt on GPT-4 to get

Important Level L
4: while not receive termination signal do
5: for t← 1 to K do
6: get words st1 ∽ stβ from level-t
7: compute πθ((a

f
t , a

s
t )|st) ∽ πθ(a

f
t |st)

8: Using SimCSE to get Possible Substi-
tutes st1 ∽ stβ

9: compute reward rt
10: update t← t+ 1
11: end for
12: end while
13: initialize G(τ) ← 0
14: for j ← T to 1 do
15: G(τ)← γG(τ) + rj
16: accumulate Jj(θ)
17: end for
18: update θ ← θ + α∇J(θ)
19: end for

D Implementation Constraint877

In order to make the comparison fairer, we set878

the following constraints for TF-ATTACK as well879

as all baselines: (1) Max modification rate: To880

better maintain semantic consistency, we only keep881

adversarial samples with less than 40% of the882

words to be perturbed. (2) Part-of-speech (POS):883

To generate grammatical and fluent sentences, we884

use NLTK tools3 to filter candidates that have885

a different POS from the target word. This886

constraint is not employed on BERT-Attack. (3)887

Stop words preservation: the modification of888

stop words is disallowed and this constraint helps889

avoid grammatical errors. (4) Word embedding890

distance: For Textfooler, we only keep candidates891

with word embedding cosine similarity higher than892

0.5 from synonyms dictionaries (Mrkšić et al.,893

2016). For mask-fill methods, following BERT-894

Attack, we filter out antonyms (Li et al., 2020b)895

via the same synonym dictionaries for sentiment896

classification tasks and textual entailment tasks.897

E Tuning with Adversaries898

Table 11 displays adversarial training results of899

all datasets. Overall, after fine-turned with both900

3https://www.nltk.org/
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Figure 6: Importance score distribution of the same
sentence given by BERT-Attack on WordCNN and
WordLSTM.

original training datasets and adversaries, victim 901

model is more difficult to attack. Compared 902

to original results, accuracy of all datasets is 903

barely affected, while attack success rate meets an 904

obvious decline. Meanwhile, attacking model with 905

adversarial training leads to higher modification 906

rate, further demonstrating adversarial training may 907

help improve robustness of victim models. 908

F Supplementary Results 909

Figure 6 shows the different Importance Score 910

distribution of the same sentence given by BERT- 911

Attack on WordCNN and WordLSTM. 912

At the beginning of manual evaluation, we 913

provided some data to allow crowdsourcing 914

workers to unify the evaluation standards. We 915

also remove the data with large differences 916

when calculating the average value to ensure the 917

reliability and accuracy of the evaluation results. 918

More manual evaluation results are shown in Table 919

12. 920

In 14, we evaluate the effectiveness of attack 921

order. Utilizing a random attack sequence leads 922

to a reduction in the success rate of attacks and 923

a significant increase in the modification rate, as 924

well as severe disruption of sentence similarity. 925

This implies that each attack path is random, and a 926

substantial amount of inference overhead is wasted 927

on futile attempts. Although we adhere to the 928

threshold constraints of the traditional adversarial 929

text attack domain, the text can still be successfully 930

attacked. However, under conditions of high 931

modification rates and low similarity, the text 932

has been altered significantly from its original 933

semantics, contravening the purpose of the task. 934

Furthermore, a random attack sequence incurs a 935

substantial additional cost in terms of attack speed, 936

resulting in a nearly doubled time delay. 937
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Prompt
Rank each word in the input sentence into five levels based on its determining influence on the overall
sentiment of the sentence.
Determine the impact of each word on the overall sentiment of the sentence and categorise it into 5 levels.
Rank the words from most to least influential in terms of their impact on the emotional tone of the sentence
at 5 levels.
Please classify each word into five levels, based on their importance to the overall emotional classification
of the utterance.
Assign each word to one of five levels of importance based on its contribution to the overall sentiment:
Very High, High, Moderate, Low, Very Low.

Table 9: Different prompts used on ChatGPT to generate Important Level

Method Text (MR; Negative) Result Mod↓ Sim↑ Flu↑

Original It cuts to the knot of what it actually means to face your
scares, and to ride the overwhelming metaphorical wave that
life wherever it takes you.

- - - 5

TextFooler It cuts to the core of what it actually means to face your fears,
and to ride the big metaphorical wave that life wherever it takes
you.

Success 15.8 0.86 5

BERT-Attack It cuts to the core of what it truly means to confront your
fears, and to surf the overpowering metaphorical wave that life
wherever it leads you.

Failure 25.9 0.69 3

TF-ATTACK
It nuts to the core of what it indeed means to confront your
frights,qkXp and to ride the overwhelm metaphorical wave that
lie wherever takes you.

Success 14.6 0.59 4

Table 10: Adversaries generated by TF-ATTACK and baselines in MR dataset. The replaced words are highlighted
in blue. Failure indicates the adversary fails to attack the victim model and success means the opposite.

Dataset Acc↑ A-rate↑ Mod↓ Sim↑

Yelp 97.4 81.3 8.5 0.73
+Adv Train 95.9 65.7 12.3 0.67

IMDB 97.2 86.1 4.6 0.81
+Adv Train 95.5 70.2 7.3 0.78

AG-NEWS 95.3 77.1 15.3 0.83
+Adv Train 85.1 75.3 23.3 0.61

MR 95.9 83.2 11.1 0.53
+Adv Train 91.7 71.8 14.6 0.67

SST-2 97.1 89.7 14.3 0.85
+Adv Train 92.2 68.6 16.8 0.83

Table 11: Adversarial training results.

In fact, in earlier experiments Table 13, we938

attempted to use local LLMs or other different939

architectures of LLMs as selectors for attack order940

but found that open-source LLMs base models such941

as 7B, 13B, or even 30B could not understand our942

instructional intent well in this specific scenario,943

no matter Base models or Chat models. If we were944

to introduce a specially designed task fine-tuning945

process to achieve this functionality, it would not946

Dataset Con↑ Flu↑ Simhum ↑

IMDB

Original 0.96 4.6 1.00
TextFooler 0.86 4.1 0.85
BERT-Attack 0.82 4.3 0.91
TF-ATTACK 0.91 4.6 0.91

AG’s News

Original 0.85 4.6 1.00
TextFooler 0.77 3.9 0.84
BERT-Attack 0.78 3.7 0.84
TF-ATTACK 0.76 4.3 0.81

Table 12: Manual evaluation results comparing the
original input and generated adversary by attack method
of human prediction consistency (Con), language
fluency (Flu), and semantic similarity (Simhum).

ASR↑ LLaMA-2b LLaMA-2c ChatGPT Claude

Prompt1 / / 86.54% 85.46%
Prompt2 / 12.28% 88.68% 78.64%
Prompt3 / / 79.74% 71.07%
Prompt4 / 11.22% 84.36% 73.76%
Prompt5 13.67% / 83.16% 77.81%

Table 13: The results of TF-ATTACK by different
Prompts on different models.
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Method A-rate Mod↓ Sim↑ Time Cost ↓

BA-IS 84.2 9.9 0.78 11.1
TF-IS 86.3 10.4 0.77 10.4
BA-IL 86.9 9.2 0.83 3.3
TF-IL 87.7 9.9 0.81 2.7
BA-RD 75.3 18.4 0.47 27.6
TF-RD 77.8 17.4 0.51 25.9

Table 14: Automatic evaluation results of attack
success rate (A-rate), modification rate (Mod), semantic
similarity (Sim) and time cost (Time Cost) on SA-
LLaMA. ↑ represents the higher the better and ↓ means
the opposite. The best results are bolded, and the
second-best ones are underlined. BA means BERT-
Attack and TF means our method. IS means Important
Score, IF means Important Level and RD means random
attacking.

only require a large amount of manually labeled947

dataset but also incur even larger model training948

costs, which contradicts one of our motivations,949

accelerating adversarial attacks on large models.950

And we have supplemented the experimental951

results using Claude as a third-party selector, using952

the same Ensemble Prompt as ChatGPT. The953

experimental results have been added to Appendix.954

The following Table shows 100 samples attacked955

through different Prompts on different LLMs, ’/’956

represents that LLM can not correctly output the957

Important Level. Table 9 shows all the 5 prompts958

we use in experiments.959

G Case Study960

Table 15 shows adversaries produced by TF-961

ATTACK and the baselines. Overall, the962

performance of TF-ATTACK is significantly better963

than other methods. For this sample from the964

MR dataset, only TextFooler and TF-ATTACK965

successfully mislead the victim model, i.e.,966

changing the prediction from negative to positive.967

However, TextFooler modifies twice as many968

words as the TF-ATTACK, demonstrating our969

work has found a more suitable modification path.970

Adversaries generated by TextFooler and BERT-971

Attack are failed samples due to low semantic972

similarity. BERT-Attack even generates an invalid973

word “enamoted" due to its sub-word combination974

algorithm. We also ask crowd-workers to give a975

fluency evaluation.976

Results show TF-ATTACK obtains the highest977

score of 4 as the original sentence, while other978

adversaries are considered difficult to understand,979

indicating TF-ATTACK can generate more natural980

sentences. 981

Additionally, an example of our method failed 982

while other methods succeed, has been shown in 983

10. 984

H Multi-Disturb & Dynamic-Disturb 985

Building on the aforementioned method, to further 986

enhance the robustness of adversarial attack 987

samples, we strategically propose two tricks for 988

optimization. Following (Xu et al., 2023), we 989

use 9 ways of disturbance, including character- 990

level, word-level, and sentence-level disturbances 991

as follows. However, how to set the ratios of 992

these three types of disturbances largely determines 993

the quality of the transferability from generated 994

attack samples. Therefore, the following strategy 995

is proposed. 996

In the step of evaluating whether an attack 997

sample is effective, traditional attack methods 998

almost solely rely on the confidence of model 999

output, a practice that undoubtedly promotes 1000

overfitting of attack samples to the model 1001

architecture. Therefore, in the process of 1002

determining the effectiveness of a replacement, we 1003

introduce random disturbance to the decrease in 1004

model confidence. This may result in the loss of 1005

some already successfully attacked samples, but it 1006

also prevents the occurrence of the phenomenon 1007

where the attack stops after succeeding on this 1008

particular Victim model. Traditional methods rely 1009

heavily on model confidence, leading to overfitting. 1010

To counter this, we introduce random disturbances 1011

during effectiveness assessment, reducing model 1012

confidence. This might sacrifice past successful 1013

attacks but prevents reliance on the success of the 1014

victim model. 1015
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Method Text (MR; Negative) Result Mod↓ Sim↑ Flu↑

Original Davis is so enamored of her own creation that she can not see
how insufferable the character is. - - - 5

TextFooler Davis is well enamored of her own infancy that she could not
admire how infernal the idiosyncrasies is. Success 33.3 0.23 3

BERT-Attack Davis is often enamoted of her own generation that she can not
see how insuffoure the queen is. Failure 27.8 0.09 2

TF-ATTACK
Davis is so charmed of her own crekation that she can’t see how
indefensible the character is. @kjdjq2. Success 14.6 0.59 4

Table 15: Adversaries generated by TF-ATTACK and baselines in MR dataset. The replaced words are highlighted
in blue. Failure indicates the adversary fails to attack the victim model and success means the opposite.

Level Abbre. Perturbation Details

Character
C1 Choose at most two words in the sentence, and add letter to have typos.
C2 Change at most two letters in the sentence.
C3 Add at most two extraneous punctuation marks to the end of the sentence.

Word
W1 Replace at most two words in the sentence with synonyms.
W2 Delete at most two words in the sentence with synonyms.
W3 Add at most two semantically neutral words to the sentence.

Sentence
S1 Add a randomly generated short meaningless handle like @fasuv3.
S2 Change the syntactic structure and word order of the sentence.
S3 Paraphrase the sentence with ChatGPT.

Perturbation
level

<sample>
Label→

Prediction

Character
(C1)

Original: less dizzying than just dizzy, the jaunt is practically
over before it begins.
Adversarial: less dizzying than just dizxzy, the jaunt is practically
over before it begins.

negative→
positive

Character
(C3)

Original: if you believe any of this, i can make you a real deal
on leftover enron stock that will double in value a week from friday.
Adversarial: if you believe any of this, i can make you a real deal
on leftover enron stock that will double in value a week from friday. :)

negative→
positive

Word
(W2)

Original: if you believe any of this, i can make you a real deal on
leftover enron stock that will double in value a week from friday.
Adversarial: if you believe any of this, i can make you a real deal
on leftover enron stock that will double in value a week from friday.

negative→
positive

Word
(W3)

Original: when leguizamo finally plugged an irritating character
late in the movie.
Adversarial: when leguizamo finally effectively plugged an irritating
character late in the movie.

negative→
positive

Sentence
(S2)

Original: green might want to hang onto that ski mask, as robbery
may be the only way to pay for his next project.
Adversarial: green should consider keeping that ski mask, as it may
provide the necessary means to finance his next project.

negative→
positive

Sentence
(S3)

Original: with virtually no interesting elements for an audience to
focus on, chelsea walls is a triple-espresso endurance challenge.
Adversarial: despite lacking any interesting elements for an
audience to focus on, chelsea walls presents an exhilarating
triple-espresso endurance challenge.

negative→
positive
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