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Figure 1: Average speedup (left) and average accept length τ (right) across tasks (means over MT-
Bench, HumanEval, GSM8K, and Alpaca) for each model–method pair, under matched sampling
settings. ARC-Decode (ours) consistently attains higher speedups at longer acceptance.

ABSTRACT

As larger language models deliver stronger capabilities, their autoregressive in-
ference becomes increasingly expensive. Speculative decoding accelerates gener-
ation by letting a fast draft process propose tokens that the target model verifies
in parallel. Yet under sampling (T > 0), observed speedups consistently lag be-
hind those under greedy decoding: verification expends compute on low-value
branches, and the classical lossless verification rule rejects drafts that would in-
duce only negligible changes in the next-step conditional distribution. A key limi-
tation under sampling is this over-rejection of low-risk drafts, which depresses
acceptance rates and limits acceleration. To address this gap, we propose ARC- FIX
Decode (Acceptance with Risk Control), a training-free method that augments
speculative decoding and requires no extra forward passes. Our method ensures
relaxed acceptance while guaranteeing that accepting non–top-1 drafts causes only
negligible next-step distributional shifts, as measured by Jensen–Shannon diver-
gence. ARC-Decode combines (i) confidence-based pre-verification filtering that
preserves high-probability branches while enforcing prefix closure and leaf safety,
and (ii) a risk-bounded acceptance criterion using an analytic upper bound on the
next-step distribution shift from embedding and logit differences. Integrated into
the state-of-the-art EAGLE-3 pipeline, ARC-Decode increases accept length per
cycle and reduces verification compute, achieving up to 1.6× end-to-end speedup
over EAGLE-3 under sampling with negligible quality change across benchmarks.

1 INTRODUCTION

Modern large language models (LLMs) demonstrate strong capabilities across tasks such as search,
code generation, and dialogue (Chowdhery et al., 2023; Achiam et al., 2023). These gains follow
scaling trends in model size, data, and compute, with models like Qwen3-Max (Qwen, 2025) ex-
ceeding one trillion parameters. Yet inference remains bottlenecked by autoregressive next-token
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generation, enforcing sequential decoding and incurring high latency and cost (Shazeer, 2019).
Reasoning-oriented workloads (Xu et al., 2025), such as GPT-o1, often produce longer and more
complex contexts, increasing inference latency and motivating more efficient decoding. Speculative FIX
decoding(SD) addresses this by using a lightweight draft model to propose multiple tokens, which
the target model verifies in parallel (Sun et al., 2023; Fu et al., 2024; Zhou et al., 2024; Li et al.,
2024a). This transforms sequential generation into a partially parallel process, allowing a single for-
ward pass to produce several outputs. By offloading draft generation and reducing memory-bound
operations, SD lowers latency while maintaining the target model’s generation behavior through
verification. (Chen et al., 2023; Miao et al., 2024).

While SD achieves notable speedups, we observe a significant gap between greedy and sampling
modes, a discrepancy absent in standard autoregressive decoding. This gap widens as the sampling
temperature increases. Medusa (Cai et al., 2024) reports that higher temperatures reduce SD effi-
ciency due to increased rejection, even when the draft and target distributions match. Xia et al.
(2024) likewise find consistent drops in acceleration as temperature rises. Across recent methods,
including Speculative Sampling (Leviathan et al., 2023), EAGLE (Li et al., 2024a), HASS (Zhang
et al., 2025), and EAGLE-3 (Li et al., 2025), the relative speedup under typical sampling (e.g., T = 1)
can drop by over 20%. This is concerning, as modern LLM applications typically rely on sampling-
based generation for diversity and controllability. To understand this inefficiency, we analyze the
EAGLE-3 decoding pipeline. We find that many rejected draft tokens are semantically and logically
equivalent to accepted ones and yield nearly identical conditional distributions for subsequent steps
(Section 3.1), suggesting that the classical lossless verification rule discards many safe draft tokens
and limits speedup. These rejections reduce acceptance length and ultimately constrain the speedup FIX
potential of speculative decoding. These observations raise a natural question:

Can we safely increase draft token acceptance without compromising generation quality?

To address this inefficiency, we propose ARC-Decode, a training-free and plug-in speculative de-
coding method that improves acceptance length under sampling regimes without additional forward
passes. ARC-Decode introduces two key components: (i) an entropy-guided pre-verification prun-
ing strategy that filters low-value draft branches using a calibrated, structure-preserving criterion
(Section 3.2); and (ii) a risk-bounded relaxed acceptance rule that provably controls next-step distri-
butional divergence (Section 3.3). Both components are designed to operate solely with verify-time
information such as target logits, tied embeddings, and precomputed uncertainty scores. This en-
sures the method remains efficient and compatible with existing speculative sampling methods.

We apply our method to EAGLE-3 and observe consistent improvements in acceptance length and
throughput across diverse models and tasks. On the Alpaca task with LLaMA3.1-8B, our method
achieves up to 1.6× speedup, and without degradation in generation quality across tasks. These
results suggest that ARC-Decode can effectively enhance generation speed under sampling while
reliably maintaining output quality. Our contributions are summarized as follows.

• We introduce an entropy-guided pruning strategy that scores draft branches using a
depth-aware confidence measure combining cumulative log-probability and target entropy,
effectively filtering low-value tokens while preserving valid speculative paths.

• We propose a risk-bounded relaxed acceptance method that certifies next-step safety via
a Lipschitz-based JS bound estimated from local logit margins and pairwise embedding
distances, and accepts tokens when the safety score exceeds a tunable threshold θ.

• Experiments across multiple benchmarks and models show that our method consistently
improves decoding speed under sampling while preserving generation quality, delivering
plug-and-play acceleration in the open-source speculative decoding pipeline EAGLE-3.

2 RELATED WORK

Speculative decoding serves as an effective approach for accelerating autoregressive inference by
decoupling generation into a fast draft stage and a parallel verification stage. Early variants adopt
either specialized draft models (Xia et al., 2023) or scaled-down versions of the target model (spec-
ulative decoding, 2023; Leviathan et al., 2023). These typically follow a serial draft-then-verify
strategy, where tokens are proposed sequentially and verified in parallel (Zhang et al., 2024). An-
other line of work enhances draft efficiency via tree-based decoding with improved representations.

2
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Figure 2: Agreement analysis on MT-Bench at temperature T = 1. We compare continuations
seeded by rejected draft tokens against the baseline continuation seeded by the accepted token
within EAGLE-3, using two backbones: Llama-3.1-8B and Qwen-3-8B. Panels: (a) BERTScore,
(b) sentence similarity, (c) NLI contradiction score. The concentration of high-agreement and low-
contradiction cases indicates many rejections would not materially change subsequent generation.

Recent methods (He et al., 2024; Cai et al., 2024; Li et al., 2024a) propose multiple divergent contin-
uations and verify them in parallel via tree attention, significantly boosting decoding throughput. To
further improve draft quality, follow-up works (Zhang et al., 2025; Li et al., 2024b) use shallow draft
models incorporating target model hidden states or token-level guidance for accurate and efficient
multi-token prediction. EAGLE-3 (Li et al., 2025) advances EAGLE-2 by abandoning feature- FIX
prediction constraints in favor of direct token modeling and multi-layer feature fusion, yielding
higher accept length. It has been integrated into open-source frameworks such as SGLang (Zheng
et al., 2024) and vLLM (Kwon et al., 2023), and is therefore adopted as our baseline.

Limitations of Lossless Verification. Despite advances in speculative decoding, recent work ques-
tions the necessity of strict token-level verification. MEDUSA (Cai et al., 2024) introduces an
entropy- and probability-based acceptance mechanism that avoids exact token matching with the
target model. This approach improves acceptance and efficiency while preserving quality, particu-
larly under high-temperature sampling where traditional verification yields low acceleration due to
diverse outputs. Relaxed verification has therefore emerged as an alternative direction, allowing
safe but non-identical draft tokens to be accepted when deviations are sufficiently controlled. Judge
Decoding (Bachmann et al., 2025) observes that even with strong draft models such as GPT-4o or
LLaMA-405B, accepted spans remain short under strict verification because fluent completions that
only slightly diverge from the target model are frequently rejected. This exposes a key limitation
of rigid token-level matching. Judge Decoding trains a compact verifier to assess token plausibil-
ity, relaxing the acceptance criterion to allow fluent but non-identical outputs. Fuzzy Speculative New
Decoding (Holsman et al., 2025) further relaxes losslessness using a divergence threshold, though
it requires computing draft–target divergence at each verified position. Together, these works high-
light the limitations of strict lossless verification. ARC-Decode addresses these limitations under
sampling via compute-saving pre-verification pruning and a risk-bounded next-step acceptance rule.

3 ARC-DECODE

This section introduces ARC-Decode. §3.1 analyzes speculative sampling, showing that verification
dominates runtime and that many rejected drafts have negligible effect on later generation. §3.2
presents an entropy-guided pruning module, and §3.3 introduces a risk-bounded relaxed acceptance
rule determining which draft tokens may be safely accepted at verification. FIX

3.1 BOTTLENECKS IN SPECULATIVE DECODING UNDER SAMPLING

Table 1: Runtime breakdown on MT-
Bench (Llama-3.1-8B, T=1).

Pipeline phase Share (%)

Prefill 3.3
Draft generation 23.5
Verification (forward pass) 70.4
Rejection sampling 2.8

To identify bottlenecks, we profile the EAGLE-3 spec-
ulative decoding pipeline on MT-Bench (Llama-3.1-8B).
Verification dominates runtime (70%; Table 1), reflecting
substantial inefficiency: much compute evaluates drafts
later discarded under exact matching. To assess whether
these rejections are often harmless, we conduct a brief
analysis via continuation experiments comparing accepted
tokens with rejected alternatives. For each verification po-
sition, we force each rejected token and generate 1024-
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Figure 3: Diagram of the ARC-Decode inference pipeline for speculative sampling. (a) An specu-
lative sampling pipeline with ARC-Decode steps highlighted (orange boxes). (b) Entropy-Guided
Pre-Verification Pruning: combine entropy Hm with path mass q(c) to form q̃(c), then prune using
per-depth thresholds with prefix closure; pruned nodes are faded. (c) Risk-Bounded Acceptance:
from verification logits and (tm, td), compute embedding- and logit-side bounds. Compare the
tighter bound against the calibrated tolerance τδ via LTS. A draft token is accepted when LTS ≥ 0.

token continuations under identical settings. To quantify semantic agreement, we measure agree-
ment via BERTScore (Zhang et al., 2020), MPNet-base-v2 cosine similarity (Song et al., 2020), and
DeBERTa-v2 NLI contradiction (He et al., 2021), standard metrics for semantic consistency adopted
in related works (Laban et al., 2022; Yang et al., 2024). The resulting distributions concentrate in
high-agreement and low-contradiction regions (Fig. 2); over 70% of rejection positions satisfy this
criterion, and more than half contain at least one seemingly harmless candidate. FIX

These findings indicate that under sampling, strict lossless verification discards many drafts whose
acceptance would not affect subsequent continuations by our qualitative metrics, motivating a risk-
bounded relaxed acceptance rule (§3.3). This continuation analysis is purely qualitative and not used
in our acceptance criterion, which relies solely on next-step divergence bounds.

3.2 ENTROPY-GUIDED PRE-VERIFICATION PRUNING

To reduce the verification forward-pass overhead identified in §3.1, we prune low-value branches
after drafting but before calling the target model (pipeline in Fig.3(a), pruning in Fig.3(b)).

Consider one speculation cycle with a draft tree whose nodes are indexed by c ∈ {0, . . . , S − 1},
with depth d(c) ∈ {0, 1, . . . } and parent pointer par(c). Let ℓ(c) be the cumulative log-probability
of the draft prefix ending at node c, we define an entropy-aware confidence score as

q̃(c) = exp
(
ℓ(c)

)
· exp

(
− λ d(c)Hm

)
, λ ≥ 0, (1)

where the multiplicative factor reflects that acceptance risk grows with predictive uncertainty and
distance from the cycle root. Using a single uncertainty scalar Hm has two advantages. It is obtained
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from the target prefill at no extra cost and uniformly rescales all nodes at the same depth, preserving
within-depth rankings while tightening thresholds under uncertainty. Concretely, we take Hm as the
normalized entropy of the target model’s one-step distribution at the cycle root. Let V denote the
vocabulary with size V = |V|, and p0 be the target one-step distribution at the root:

Hm =
−
∑

v∈V p0(v) log p0(v)

log V
∈ (0, 1]. (2)

Higher uncertainty or larger depth reduces q̃(c), making the pruning more conservative. To choose
thresholds, we use per-depth mass coverage under a risk budget δ ∈ (0, 1): allocate nonnegative
{εd} with

∑
d εd ≤ δ, and for each depth d select the smallest θd so that the kept set Kd = {c :

d(c) = d, q̃(c) ≥ θd} covers a (1− εd) fraction of the depth-d mass:∑
c∈Kd

q̃(c) ≥ (1− εd)
∑

c: d(c)=d

q̃(c). (3)

We then form the kept set K under two structural constraints, ensuring global consistency of the
retained draft tree. The first enforces prefix closure: every kept node retains all its ancestors, pre-
venting inconsistencies from independent ranking and ensuring each surviving position lies on a
valid root-to-leaf path within K. For leaf safety, we use per-depth leaf thresholds τd no smaller than
the corresponding depth thresholds, i.e., τd ≥ θd for all depths d. The constraints are defined as

c ∈ K ⇐⇒
(
q̃(c) ≥ θd(c)

)
∧
(
d(c) = 0 ∨ par(c) ∈ K

)
,

leaf(c) ∧ q̃(c) < τd(c) =⇒ c /∈ K.
(4)

If a kept parent would otherwise lose all children, we reinsert its highest-q̃ child to preserve for-
ward extensibility and keep at least one valid continuation path. These constraints prevent stranded
prefixes and maintain a contiguous high-mass backbone. This training-free pruning removes low-
probability branches, reduces verification compute, and provides a structure-preserving input to the
next stage. The procedure remains distinct from heuristics that adjust draft length during drafting.

3.3 RISK-BOUNDED ACCEPTANCE

Empirically (see §3.1), many sampling-mode rejections produce continuations that stay close to the
baseline. This suggests room for relaxed acceptance if we can certify that accepting a candidate draft
token will not induce a non-negligible next-step shift. We therefore develop a δ-risk-bounded accep-
tance criterion (Fig. 3(c)) whose bound is calibrated once per backbone, depends only on verify-time
quantities, and requires no additional forward passes. Intuitively, the Local Tolerance Score (LTS)
uses embedding distance and logit margin to upper bound the induced next-step divergence, accept-
ing only candidates whose predicted shift fits within a tolerable risk budget. FIX

Problem statement. At verification time, consider position j under prefix C. Let t(j)d be the
drafted token and t

(j)
m the target model’s top-1 token under p(· | C). Here t

(j)
m acts only as a

reference for measuring the effect of substituting t
(j)
d . We assess the effect of substituting t

(j)
d for

t
(j)
m via the target model’s next-step conditional distributions:

qj+1 = p(· | C, t(j)d ), rj+1 = p(· | C, t(j)m ). (5)

Our objective is to upper bound the Jensen–Shannon divergence JS(qj+1, rj+1) at a chosen risk
level δ ∈ (0, 1), thereby enabling a principled acceptance test with probabilistic control.

Bounding next-step shift via embedding difference. With weight tying, let et ∈ Rd be the input
embedding of token t, and define the embedding difference:

∆e(j) = e
t
(j)
d

− e
t
(j)
m
. (6)

Let ΦC : Rd → RV map the embedding at step j to the target model’s next-step logits under prefix
C, where V is the vocabulary size. Following robustness analyses of transformers (Fazlyab et al.,
2019; Kim et al., 2021), we require smoothness only along the short path between the two token

5
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embeddings, because speculative decoding changes the model input by exactly one token at this
position. We therefore assume a local Lipschitz property along the segment between e

t
(j)
m

and e
t
(j)
d

:∥∥ΦC(et(j)d

)− ΦC(et(j)m
)
∥∥
2
≤ Lj ∥∆e(j)∥2, (7)

where Lj is a segment-wise average spectral bound estimated from held-out calibration traces (Ap-
pendix 1). Let VK be the size of the active vocabulary obtained from the union of top-K sets, and
let Lsm ∈ (0, 1] denote the ℓ2-Lipschitz constant of softmax (Kong et al., 2020). Applying softmax
to the logits difference and converting the resulting ℓ2 bound to total variation (TV) gives:

TV(qj+1, rj+1) ≤ 1
2

√
VK Lsm Lj ∥∆e(j)∥2. (8)

By adding a small uniform smoothing µ > 0 on the active support and applying the quadratic total
variation–to–Jensen–Shannon inequality from Pang et al. (2022), we obtain:

JS(qj+1, rj+1) ≤ ctv(µ) TV(qj+1, rj+1)
2 ≤ cs ∥∆e(j)∥22, (9)

where ctv(µ) = O(1/µ) and cs = ctv(µ)
(√

VKLsmLj

2

)2
. To stabilize the bound, we whiten the

embedding coordinates using W = diag(1/σ̂1, . . . , 1/σ̂d) with σ̂k estimated from calibration em-
beddings. We absorb the constants into a factor c′s and define the embedding-side bound as

U
(j)
emb = c′s

∥∥W ∆e(j)
∥∥2
2
. (10)

Logit margin bound. From the target logits at position j, let p̃ be post-processed probabilities
after the standard logits processor and an ϵ-clamp. Define the log-probability margin as

∆ℓ̃(j) = log p̃
(
t(j)m

)
− log p̃

(
t
(j)
d

)
. (11)

On a calibration set, we fit a scale paramete κ > 0 (e.g., via quantile regression) such that

Pr
[
JS(qj+1, rj+1) ≤ κ

(
∆ℓ̃(j)

)2 ] ≥ 1− δ. (12)

We then define a logit-side upper bound using a fixed safety factor α ≥ 1, so that

U
(j)
logit = ακ

(
∆ℓ̃(j)

)2
. (13)

LTS Risk-Bound Criterion. For each position j, we select the tighter of the two bounds as

U (j)(C, t
(j)
d ) = min

{
U

(j)
emb, U

(j)
logit

}
, Pr

[
JS(qj+1, rj+1) ≤ U (j)(C, t

(j)
d )

]
≥ 1−δ. (14)

Let τδ be the (1− δ) quantile of {U (j)} estimated on the calibration set and fixed thereafter. Define
the Local Tolerance Score (LTS) as

LTS(j)(C, t
(j)
d ) = 1 −

U (j)(C, t
(j)
d )

τδ
, (15)

which measures a safety margin relative to the risk budget (larger values indicate safer candidates).
During speculative sampling, ARC-Decode only decides whether a drafted token is safe to ac-
cept; all other aspects of the sampling procedure remain unchanged. A token is accepted whenever
LTS(j)(C, t

(j)
d ) ≥ θ (default θ = 0); otherwise the step simply follows the baseline. By Theorem 1, FIX

all accepted tokens satisfy Pr[JS(qj+1, rj+1) ≤ τδ] ≥ 1− δ. The criterion is training-free and plug-
in, using only verify-time target logits, tied embeddings, and calibrated constants. When combined
with the pre-verification filter (§3.2), it increases acceptance length while keeping next-step shifts
within a calibrated tolerance, yielding higher end-to-end efficiency in the sampling regime.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Backbones and baselines. We base our comparisons on four target models: Llama-3.1-8B-
Instruct, Qwen-3-8B, Vicuna-13B, and Llama-3.3-70B. ARC-Decode is built on top of the EAGLE- NEW
3 codebase and decoding pipeline (Li et al., 2025). We reuse the draft model and verification sched-
ule from EAGLE-3, but introduce two key modifications: an entropy-guided pre-verification pruning
step and a risk-bounded acceptance rule that replaces exact-match verification. All other decoding
settings remain unchanged. We compare ARC-Decode with the baselines EAGLE (Li et al., 2024a),
HASS (Zhang et al., 2025), Fuzzy Speculative Decoding (FSD) (Holsman et al., 2025), and EAGLE-
3, and report speedup relative to vanilla autoregressive decoding.
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Table 2: Experimental results on mt-bench, HumanEval, GSM8K, and Alpaca. Columns report
thrpt ↑ (throughput; tokens/s), τ ↑ (accept length), and speedup ↑ (end-to-end ratio vs. vanilla) for
different methods. Abbrev.: L 8B = Llama-3.1-8B, Q 8B = Qwen3-8B, V 13B = Vicuna-1.3-13B, L
70B = Llama-3.3-70B. For FSD, the parameter T denotes the risk threshold (not temperature).

NEW

Model Method MT-bench HumanEval GSM8K Alpaca

thrpt τ speedup thrpt τ speedup thrpt τ speedup thrpt τ speedup

L 8B Eagle 41.6 3.16 1.15× 53.0 3.88 1.46× 52.1 2.31 1.17× 39.5 1.83 1.09×
L 8B HASS 50.2 2.65 1.38× 62.1 4.32 1.71× 44.8 2.33 1.24× 49.4 2.51 1.36×
L 8B Eagle3 66.1 3.35 1.84× 74.4 3.57 2.05× 51.7 2.52 1.43× 51.6 2.85 1.42×
L 8B ARC (ours) 87.1 4.49 2.40× 77.3 3.94 2.13× 63.7 3.71 1.76× 82.7 3.96 2.28×

Q 8B Eagle3 61.2 3.00 1.84× 68.1 3.36 2.06× 66.9 3.88 2.15× 67.3 3.18 2.01×
Q 8B ARC (ours) 81.6 4.28 2.45× 76.1 3.42 2.30× 68.2 4.13 2.19× 74.6 3.76 2.23×

V 13B Eagle 39.9 2.85 1.82× 43.5 2.97 1.98× 32.7 3.14 1.74× 45.7 3.01 2.03×
V 13B Eagle3 60.1 4.01 2.74× 57.6 3.96 2.62× 41.5 4.69 2.21× 59.3 4.78 2.64×
V 13B ARC (ours) 73.4 5.28 3.35× 71.4 4.74 3.25× 47.4 5.50 2.52× 68.1 5.58 3.03×

L 70B FSD (T=0.4) 6.32 1.52 1.39× 10.42 3.43 2.29× 7.69 2.48 1.69× 11.15 3.17 2.45×
L 70B FSD (T=0.6) 8.51 2.54 1.87× 10.74 3.56 2.36× 9.05 3.21 1.99× 13.15 3.91 2.89×
L 70B FSD (T=0.8) 8.10 2.37 1.78× 10.74 3.56 2.36× 9.60 3.66 2.11× 13.74 4.14 3.02×
L 70B EAGLE-3 15.24 4.04 3.35× 14.01 4.11 3.08× 12.56 4.37 2.76× 14.74 3.82 3.24×
L 70B ARC (ours) 16.38 4.90 3.60× 14.70 4.13 3.23× 12.83 4.68 2.82× 15.52 4.20 3.41×

Tasks. Following EAGLE and Spec-Bench (Xia et al., 2024), we evaluate four common tasks
under standard evaluation settings: multi-turn dialogue, code generation, mathematical reasoning,
and instruction following. We use MT-Bench (Zheng et al., 2023), HumanEval (Chen et al., 2021),
GSM8K (Cobbe et al., 2021), and Alpaca (Taori et al., 2023) as the corresponding benchmarks.

Metrics. We evaluate decoding using both efficiency and accuracy metrics. Efficiency includes:
throughput (tokens/s), i.e., wall-clock decoding speed; accepted length τ , the average number of
tokens accepted per verification; and speedup, the ratio over the autoregressive baseline. Accuracy
is measured by four representative tasks: MT-Bench (GPT-4o–scored 1–10), HumanEval (pass@1
accuracy), GSM8K (exact match score), and Alpaca (win rate vs. GPT-4-Turbo via AlpacaEval).

Implementation and hyperparameters. All experiments use a temperature of 1.0. For 8B–13B
models, evaluation is performed on a single NVIDIA A6000 GPU, while the 70B model is evalu-
ated on four A6000 GPUs. We expose two pruning hyperparameters: a per-depth mass-coverage
level ε = 0.05 (retaining the top 95% path mass at each depth) and an entropy weight λ = 1.0.
A global threshold θ = 0.3 is applied to the LTS score across all settings. The risk budget uses a
fixed (1−δ) = 0.95 quantile τδ , estimated on a held-out calibration set from which whitening statis-
tics and scaling constants are also computed; all of these remain fixed during testing. Speedup is
hardware-dependent, and acceptance length may vary slightly due to numerical differences. For con-
sistency, we follow the prompt and evaluation configurations of OpenCompass (Contributors, 2023).
Additional results (e.g., MMLU-Pro) and implementation details are provided in Appendix A.3.

4.2 EFFICIENCY AND ACCURACY RESULTS

Efficiency. Table 2 shows that ARC-DECODE consistently improves both acceptance length (τ ) and
end-to-end speedup across all backbones and tasks. Under matched decoding settings, our method
delivers higher throughput than EAGLE-3 and maintains stable gains across sampling workloads.
On Alpaca with Llama-3.1-8B, ARC-Decode reaches 2.28× speedup over vanilla, about 1.6× faster
than EAGLE-3; similar patterns appear on Vicuna-13B (e.g., HumanEval: 3.25× vs. 2.62×).

We also evaluate on the larger Llama-3.3-70B model. ARC-Decode attains up to 3.60× speedup
and higher acceptance lengths (e.g., τ=4.90 on MT-Bench), surpassing both EAGLE-3 (3.35×) and
the relaxed-acceptance baseline FSD, which remains below 2× across most settings. These results
indicate that the method scales effectively with model size and continues to improve efficiency.
Accuracy. To assess the impact of ARC on generation quality, we compare ARC with EAGLE-3 on
MT-Bench, HumanEval, GSM8K, and Alpaca under matched prompts, sampling hyperparameters
(e.g., temperature) and stopping criteria (Table 3). Despite replacing the verification policy, ARC
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Table 3: Benchmark performance of Eagle3 and ARC-Decode on MT-Bench, HumanEval, GSM8K,
and Alpaca. Metrics: MT-Bench: GPT-4o–judged score (1–10); HumanEval:pass@1(%); GSM8K:
EM (Exact Match, %); Alpaca: pairwise win rate (%) vs. GPT-4-Turbo (AlpacaEval).

Model Method MT-bench HumanEval GSM8K Alpaca
score ↑ pass@1 (%) ↑ EM (%) ↑ win rate (%) ↑

L 8B Eagle3 6.89 57.2 77.0 22.8
L 8B ARC (ours) 7.50 57.1 77.1 23.9

Q 8B Eagle3 6.97 66.3 75.3 16.3
Q 8B ARC (ours) 6.99 66.2 74.9 17.1

V 13B Eagle3 6.10 12.1 23.8 6.6
V 13B ARC (ours) 6.23 14.6 23.6 8.0

Table 4: Ablation on Llama-3.1-8B across four tasks. Columns: τ ↑ (accept length), speedup ↑
(end-to-end throughput relative to the vanilla autoregressive baseline), and ρ (pruned fraction, %).
“N/A” indicates settings without pruning. All results use temperature 1.0 and matched prompts.

Method MT-Bench HumanEval GSM8K Alpaca

τ speedup ρ τ speedup ρ τ speedup ρ τ speedup ρ

EAGLE-3 2.92 1.71× N/A 3.57 2.05× N/A 2.52 1.32× N/A 2.85 1.42× N/A
ARC (prune-only) 2.96 1.74× 24.2 3.62 2.04× 16.1 2.64 1.35× 15.9 2.86 1.42× 21.4
ARC (LTS-only) 4.21 2.28× N/A 3.85 2.08× N/A 3.65 1.72× N/A 3.82 2.06× N/A

attains accuracy on par with EAGLE-3 across all reported configurations and tasks, with parity on
most metrics and occasional small gains (e.g., Llama-3.1-8B on MT-Bench: 7.50 vs. 6.89; Vicuna-
13B on MT-Bench: 6.23 vs. 6.10). Overall, ARC preserves generation quality while delivering
efficiency gains, exhibiting stable behavior across backbones, datasets, and decoding settings.

4.3 ABLATION STUDIES

We conduct ablations on Llama-3.1-8B at T = 1.0 across all four tasks, evaluating prune-only
(entropy-guided pre-verification pruning; no LTS) and LTS-only (risk-bounded acceptance; no prun-
ing) under identical prompts, stopping criteria, and decoding settings. Results are in Table 4.

Prune-only. Speedup gains over EAGLE-3 are limited: since verification runs in parallel, latency
remains similar. Pruning removes low-mass branches before verification, reducing compute and
filtering low-quality paths, particularly effective for wide trees or high-entropy contexts.

LTS-only. LTS is the primary driver of speedup: it increases τ and throughput on all tasks by cer-
tifying drafted tokens that remain within the calibrated tolerance. In full ARC-Decode frawework,
pruning removes low-confidence branches before verification, while LTS extends accepted prefixes,
reducing cycles per token and maximizing end-to-end efficiency.

4.4 SENSITIVITY ANALYSES

Temperature sensitivity. We evaluate ARC-Decode across temperatures T ∈
{0.1, 0.3, 0.5, 0.7, 0.9} (Fig. 4). As T increases, both accept length τ and speedup gradually
decline (e.g., MT-Bench: τ : 5.72→4.78; speedup: 3.13×→2.66×). Higher temperatures flatten
the target distribution, raise entropy, and enlarge the effective branching factor, making pruning
more conservative and reducing draft–target alignment. We additionally include EAGLE-3 (gray
curves). ARC-Decode outperforms EAGLE-3 at every temperature on all benchmarks, and the gap
widens as T grows. When T is low, generation is nearly deterministic and both methods behave
similarly. As T increases, sampling variability widens the discrepancy between the draft and target NEW
distributions, making exact-match acceptance increasingly unreliable. EAGLE-3 therefore becomes
brittle under high-temperature sampling, whereas ARC-Decode’s risk-bounded criterion remains
more robust and continues to certify plausible drafts. Overall, ARC-Decode delivers consistently
higher τ and speedup and degrades far more gracefully under high-temperature sampling.
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(d) Alpaca
Figure 4: Temperature sensitivity of ARC on Llama-3.1-8B across four tasks. We report accept
length τ (blue) and speedup (orange), measured relative to the vanilla autoregressive baseline under
temperatures T ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Gray curves denote the EAGLE-3 baseline.
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(d) Alpaca
Figure 5: Sensitivity to LTS threshold θ on Llama-3.1-8B across four tasks: accept length τ (blue)
and speedup (orange), reported relative to a vanilla autoregressive baseline. All runs use matched
prompts and stopping criteria; θ ∈ {0.3, 0.5, 0.7, 0.9}.

LTS-threshold sensitivity. We evaluate the LTS threshold θ on Llama-3.1-8B, sweeping θ ∈
0.3, 0.5, 0.7, 0.9 and report τ and speedup in Fig. 5. As θ increases, both metrics decline, with
a sharp drop between 0.7 and 0.9. Since LTS = 1 − U/τδ , a token is accepted only when
U ≤ (1− θ)τδ . At higher θ values (e.g., θ > 0.7), this constraint becomes stringent, requiring very
small embedding and logit differences for acceptance. This tight acceptance criterion disproportion-
ately penalizes otherwise valid drafts with minor discrepancies, leading to reduced τ . Because θ
acts as a safety margin and no accuracy degradation was observed, we adopt θ = 0.3 as a default.

ARC-Decode consistently improves speed across diverse tasks and backbones while preserving gen-
eration accuracy. As shown in Table 4, ablation studies demonstrate that LTS is the main driver
of efficiency, significantly boosting acceptance length and throughput without additional computa-
tion. Pruning alone contributes moderate gains by removing low-mass paths, and further enhances
speedup when combined with LTS. Sensitivity analysis (Fig. 4, 5) confirms the robustness of ARC-
Decode across temperatures and threshold choices. Speedup gradually declines with increasing
temperature or stricter thresholds, but remains consistently strong in practical settings. These re-
sults validate the flexibility and stability of ARC-Decode across key generation parameters. Further
implementation details, calibration setup, and extended results are included in Appendix A.3.

5 CONCLUSION

Speculative decoding accelerates LLM inference by proposing draft tokens in parallel and verifying
them with the target model. While effective under greedy decoding, its performance degrades under
sampling. This work follows the emerging line of relaxed speculative decoding, which aims to retain
more informative drafted tokens while keeping the target distribution under control. To address
this, we present ARC-Decode, a training-free, plug-in method that enlarges accepted prefixes with
calibrated next-step risk. It combines (i) entropy-guided pre-verification pruning with prefix closure,
which removes low-confidence draft branches while preserving extendable paths, and (ii) a Local
Tolerance Score that accepts drafts when an analytic upper bound on next-step JS divergence falls
below a calibrated threshold. Integrated into EAGLE-3, ARC-Decode increases acceptance length
and yields up to 1.6× speedup over EAGLE-3 on MT-Bench, HumanEval, GSM8K, and Alpaca
across multiple backbones, without measurable accuracy loss. Ablations verify the contributions
of pruning and LTS, and sensitivity analysis shows robustness across temperatures. Overall, ARC-
Decode provides consistent speedups under sampling without sacrificing accuracy.
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6 REPRODUCIBILITY STATEMENT

We provide details to support reproducibility:

• Method and Inference Setup: Sections §3 and §4 describe all model variants, decoding
configurations (e.g., temperature, top-k, draft depth), and evaluation protocols.

• Hyperparameters: All relevant hyperparameters used in decoding are reported in Sec-
tion §4 and Appendix A.3.

• Datasets: All datasets used in our experiments are publicly available. Usage details, pre-
processing steps, and licensing information are summarized in Section §4.

• Theoretical Derivations: Assumptions, derivations, and proofs for theoretical results are
included in Section §3 and Appendix A.1.

• Code: We will release the codebase upon publication to facilitate reproducibility.
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A APPENDIX

A.1 GUARANTEE AND PROOF

Setup and notation. At verification position j under accepted prefix C, let

qj+1 = p(· | C, t(j)d ), rj+1 = p(· | C, t(j)m )

denote the target model’s next–step conditionals after substituting a draft token t
(j)
d for the model

top-1 token t
(j)
m . We measure discrepancy by JS(qj+1, rj+1). With weight tying, let et∈Rd be the

input embedding of token t and ∆e(j) = e
t
(j)
d

− e
t
(j)
m

. Let ΦC : Rd→RV map the token embedding
at step j to the next–step logits. On the active vocabulary obtained by the union of top-K sets we
apply a small uniform smoothing µ > 0 and renormalize.

Assumptions. (i) Distributional Stability Under Embedding Perturbation. We adopt a standard
local Lipschitz regularity assumption: the embedding-level perturbation introduced at verification
position j induces a controlled and stable change in the next-step distribution. This distributional
stability is sufficient for deriving the JS bound:∥∥ΦC(et(j)d

)− ΦC(et(j)m
)
∥∥
2
≤ Lj ∥∆e(j)∥2, (16)

where Lj denotes a local Lipschitz sensitivity coefficient estimated from calibration, providing a
tight upper bound on how embedding perturbations propagate to the next-step logits.

(ii) Softmax Lipschitz Continuity. The softmax operator is Lsm ∈ (0, 1]–Lipschitz in ℓ2, ensuring
that a small logit perturbation leads to a proportionally bounded change in the output distribution.
On the restricted support of size VK , we additionally use ∥x∥1 ≤

√
VK∥x∥2 to move from an ℓ2

bound on logits to an ℓ1 (TV) bound on probabilities.

(iii) Smoothed TV–JS quadratic bound. Following standard results on the local behavior of f -
divergences under lower-bounded densities (Arjovsky et al., 2017), if the mixture m = 1

2 (q + r)
satisfies mini mi ≥ µ, then the JS divergence admits a stable quadratic upper bound in terms of TV:

JS(q, r) ≤ ctv(µ) TV(q, r)2, ctv(µ) ≤ 1
2µ . (17)

This condition ensures that the JS discrepancy grows quadratically with small perturbations.

(iv) Calibration–test consistency. Since both calibration traces and test-time positions are generated
by the same target model under matched decoding settings, their conditional distributions (e.g.,
conditioned on depth or root entropy) are aligned. Consequently, the empirical (1 − δ2) quantile
computed on the calibration set can be directly reused at test time as a valid risk-control threshold.

Embedding-side deterministic bound. Combining Equation (16) with assumptions yields

JS(qj+1, rj+1) ≤ cs ∥∆e(j)∥22, cs ≡ ctv(µ)
(√

VK Lsm

2

)2

L
2

j . (18)

After applying diagonal whitening W = diag(1/σ̂1, . . . , 1/σ̂d) on a held-out calibration set and
absorbing constants into c′s, the embedding-side surrogate used by LTS becomes

U
(j)
emb = c′s

∥∥W ∆e(j)
∥∥2
2
, (19)

which provides a deterministic, position-wise upper bound on the next-step JS divergence.

Logit-side high-probability bound. At verification stage, let p̃ denote the post-processed prob-
abilities after the standard logits processor and an ϵ-clamp, which ensures numerical stability for
small margins. Define the verify-time log-probability margin

∆ℓ̃(j) = log p̃
(
t(j)m

)
− log p̃

(
t
(j)
d

)
. (20)

Using calibration traces drawn under the decoding setup, we fit a constant κ > 0 such that

Pr
[
JS(qj+1, rj+1) ≤ κ (∆ℓ̃(j))2

]
≥ 1− δ1. (21)

With a fixed conservative safety factor α≥1, the resulting logit-side surrogate used at inference is

U
(j)
logit = ακ (∆ℓ̃(j))2. (22)
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Combined bound and empirical quantile. To obtain a practical acceptance rule at verification
time, we combine the embedding- and logit-side surrogates into a single per-position upper bound:

U (j) = min
{
U

(j)
emb, U

(j)
logit

}
. (23)

On the calibration traces, we compute the empirical (1− δ2) quantile τδ2 of {U (j)} and fix it for all
subsequent inference. By calibration–test consistency (Assumption (iv)),

Pr
[
U (j) > τδ2

]
≤ δ2, j ∈ Jtest, (24)

The Local Tolerance Score (LTS) gate therefore accepts at position j whenever U (j) ≤ τδ2 .
Theorem 1 (Risk bounds under LTS gating). Suppose Equation (21) holds on the calibration set
with level δ1, and the verification rule accepts whenever min{U (j)

emb, U
(j)
logit} ≤ τδ2 . Let τ = τδ2 .

Then for any verification position j ∈ Jtest the following hold:

(i) Conditional risk bound (per acceptance).

Pr
[
JS(qj+1, rj+1) > τ

∣∣ U (j) ≤ τ
]
≤ δ1.

(ii) Unconditional tail bound.

Pr
[
JS(qj+1, rj+1) > τ

]
≤ δ1 + δ2.

Proof. Let A = {U (j)
emb ≤ τ}, B = {U (j)

emb > τ, U
(j)
logit ≤ τ}, and C = {U (j) > τ}. By

construction the acceptance event is the disjoint union A ∪B.

(i) Conditional bound. On A we have deterministically JS ≤ U
(j)
emb ≤ τ by equation 19, hence

Pr(JS > τ | A) = 0. On B, using equation 21 and the fact that α ≥ 1,

Pr
(
JS ≤ U

(j)
logit ≤ τ | B

)
≥ 1− δ1,

and therefore Pr(JS > τ | B) ≤ δ1. Using total probability over A ∪B proves the claim.

(ii) Unconditional bound. Bounding Pr(JS > τ) is obtained by:

Pr(JS > τ) = Pr(JS > τ,A) + Pr(JS > τ,B) + Pr(JS > τ,C).

The contribution from A is zero by determinism. The part involving B is controlled by the calibra-
tion bound δ1 Pr(B) ≤ δ1. For the component associated with C, equation 24 ensures

Pr(JS > τ,C) ≤ Pr(C) = Pr(U (j) > τ) ≤ δ2.

Combining these bounds yields the unconditional guarantee δ1 + δ2.

Corollaries and practical variants. (i) Bucketed calibration. If calibration and test traces are
only conditionally exchangeable given features (e.g., depth, root entropy, prompt length), perform
the above procedure per bucket; the guarantees then hold conditionally within each bucket.

(ii) Sequence-level control. For a sequence of T verification positions, applying a union bound to
the unconditional tail bound yields Pr

[
∃j ≤ T : JS(qj+1, rj+1) > τδ2

]
≤ T (δ1 + δ2). The overall

risk budget can be allocated across positions to keep a fixed target level.

(iii) Finite-sample correction. The empirical quantile can be replaced by a conservative binomial
(e.g., Clopper–Pearson or Wilson) bound to control δ2 in the small-calibration regime.

Remarks on constants and complexity. All constants (c′s, κ, τδ2) are estimated once on the cali-
bration set and then fixed. At inference, computing U

(j)
logit is O(1) and computing U

(j)
emb is O(Kd),

reusing verify-time quantities and requiring no extra forward passes.

Calibration stability. Because both surrogates depend only on the target model’s embedding space
and verify-time logits, which are intrinsic properties of the backbone, the calibrated constants trans-
fer across different domains and prompt styles used in our experiments. Intuitively, LTS controls
divergence in the model’s own next-step distribution; as long as the backbone, vocabulary, and
embedding geometry remain fixed, the underlying divergence structure remains unchanged. NEW
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Algorithm 1 Calibration of LTS (Local Tolerance Score) parameters

Require: target model f , tied embeddings E, logits processor g, calibration corpus Dcal, risk level
δ, vocab size K

1: Compute per-dimension inverse std from E and set W = diag(1/σ̂)
2: Initialize lists SJS, Semb, Slogit
3: for each sample (C, j) in Dcal do
4: Compute target distribution p̃ = g(f(C)) at position j
5: Let tm = argmax p̃ and choose a candidate td ̸= tm (e.g., uniformly among top-K excluding

tm)
6: Set Uemb,raw = ∥W (etd − etm)∥22, Ulogit,raw = (log p̃(tm)− log p̃(td))

2

7: Form next-step distributions qj+1 = f(C ⌢ td) and rj+1 = f(C ⌢ tm) restricted to the
top-K union of their supports

8: Compute JS over this union
9: Append JS to SJS, Uemb,raw to Semb, Ulogit,raw to Slogit

10: end for
11: c′s ← Quantile1−δ({JS/Uemb,raw})
12: ακ← Quantile1−δ({JS/Ulogit,raw})
13: For each item, define U

(j)
min = min{c′sU

(j)
emb,raw, ακU

(j)
logit,raw}

14: τδ ← Quantile1−δ({U
(j)
min})

15: return (W, c′s, ακ, τδ)

A.2 LTS IMPLEMENTATION DETAILS

Estimating constants used by the bound. We treat the theoretical inequalities in Equations (7),
(9) and (10) as given (see §A.1) and focus on how the required constants are calibrated once and
then reused at inference. For the segment-average Lipschitz factor Lj in Equation (7), we estimate
a surrogate on a held-out calibration set via finite differences along a few points s ∈ [0, 1] on
the segment e

t
(j)
m

+ s∆e(j), aggregated per bucket (e.g., by depth, root entropy, or ∥∆e∥2). A
high quantile of these bucketwise values yields a conservative estimate, absorbed into cs and c′s in
Equations (9) and (10). For the TV→JS coefficient ctv(µ), we fix the active-vocabulary size K
and smoothing µ > 0 and treat the resulting constant as tied to (K,µ). Since all quantities depend
only on the backbone’s embedding geometry and its next-step logits, the calibrated constants are
inherently per-backbone and do not vary with downstream task domains.

Calibration protocol and pseudocode. For verified position j, we compute: (i) a near-oracle
next-step divergence JS(qj+1, rj+1) on the top-K union, (ii) an embedding-side raw score
U

(j)
emb,raw = ∥W∆e(j)∥22 with diagonal whitening, and (iii) a logit-side raw score U

(j)
logit,raw =

(∆ℓ̃(j))2 from post-processed probabilities. The construction of token pairs in calibration is solely
for estimating local variation in the next-step distribution and does not prescribe how acceptance
decisions are made at inference time, ensuring context-agnostic applicability.

Deployment. At verification time we compute

U
(j)
emb = c′s ∥W∆e(j)∥22, U

(j)
logit = ακ (∆ℓ̃(j))2, U (j) = min{U (j)

emb, U
(j)
logit}.

Then LTS(j) = 1−U (j)/τδ , and acceptance occurs when LTS(j) ≥ θ. Since all calibrated constants
depend only on backbone-level geometric and probabilistic structure, the same parameters transfer
across different domains without retraining. No additional forward passes are required.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 EXPERIMENTAL DETAILS

Decoding and speculative setup. Unless noted otherwise, decoding uses temperature T = 1.0
with the unmodified EAGLE–3 verification schedule. We set the draft-tree depth to S = 6 and
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Table 5: Empirical tightness of the JS upper bound across four benchmarks. Coverage is the fraction
of accepted positions satisfying JS ≤ Umin; Wilson 95% confidence intervals are shown.

NEW
Task Coverage (JS ≤ Umin) 95% CI (Wilson)
MT-Bench 99.4% [98.7, 99.7]
HumanEval 95.7% [93.1, 98.4]
GSM8K 95.3% [91.7, 98.1]
Alpaca 97.6% [96.5, 98.4]

cap the number of drafted tokens per cycle at max draft tokens= 32, with top-k sampling
following the backbone defaults. For Qwen-3–8B we disable the optional “thinking” mode.

Choice of draft-length. Our hardware environment differs from the high-throughput settings used in
official EAGLE–3 evaluations: all experiments are run on NVIDIA RTX A6000 (48 GB), whose
memory bandwidth and compute throughput make large draft trees significantly more latency-
sensitive. As observed in prior analyses of speculative decoding efficiency Tang et al. (2025),
increasing the draft length enlarges the tree, KV-cache footprint, and attention/masking cost, and
these overheads are not always amortized on memory-bound GPUs. Under this constraint, a limit
of 32 drafted tokens yields more stable end-to-end latency while keeping the comparison between
EAGLE–3 and ARC-Decode fair by using a fixed tree size across all methods. FIX

ARC-Decode settings. We use a global LTS threshold θ = 0.3. All other ARC-Decode compo-
nents follow the configurations described in the main text and Appendix, with calibration performed
once and then frozen. All remaining decoding settings are kept identical to EAGLE-3.

Calibration set. We calibrate all ARC–Decode constants once per backbone using a 200-prompt
subset of the public OpenAssistant OASST1 dataset (English, single-turn). Prompts are uniformly
sampled (fixed seed) with target lengths in [32, 256], providing a diverse collection of local decoding
contexts while remaining disjoint from our evaluation domains. Calibration reuses the same decod-
ing traces produced during standard speculative verification and introduces no additional model
evaluations. All other decoding settings match those of EAGLE–3.

A.3.2 EMPIRICAL VALIDATION OF LTS RISK COVERAGE

To evaluate the empirical tightness of the upper bounds used by LTS, we audit accepted positions
across four benchmarks (MT-Bench, HumanEval, GSM8K, Alpaca) using the Llama-3.1-8B back-
bone under the same decoding configuration as in §4. For each accepted draft token, we com-
pute the true next-step JS divergence JS(qt+1, |, pt+1) and compare it against the operational bound
Umin = minUemb, Ulogit. This analysis is performed offline from decoding traces and does not
affect inference. Across all datasets, the operational bound reliably over-approximates the true next-
step divergence, with coverage consistently above 95% and reaching 99.4% on MT-Bench. These
results confirm that Umin provides a stable and accurate surrogate for local distributional sensitivity,
supporting the validity of the risk-bounded acceptance rule used by ARC-Decode.

A.3.3 ADDITIONAL COMPARISON WITH MEDUSA AND JUDGE DECODING

We additionally compare ARC-Decode with two representative relaxed-acceptance baselines:
Medusa and Judge Decoding. For Medusa (Cai et al., 2024), we use the official pretrained
Medusa-1 and Medusa-2 checkpoints, trained on Vicuna-13B and Vicuna-13B-v1.5, respec-
tively. For Judge Decoding (Bachmann et al., 2025), since no pretrained model is available, we
re-implement its judge classifier following the procedure described in the original paper, pairing
the EAGLE-3 draft model with Llama-3.1-8B as the target model. All methods are evaluated on
MT-Bench and Alpaca under identical decoding hyperparameters and prompting setups, using a sin-
gle NVIDIA RTX A6000 GPU. Across both datasets and model scales, ARC-Decode yields higher
accept length and higher end-to-end speedup than Medusa and Judge Decoding.
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Table 6: Comparison with Medusa and Judge Decoding across two datasets.

NEWModel Method MT-Bench Alpaca

Accept Speedup Accept Speedup

Llama-3.1-8B
Judge 4.17 2.01 3.15 1.74
EAGLE-3 3.35 1.84 2.85 1.42
ARC (Ours) 4.49 2.40 3.96 2.28

Vicuna-13B

Medusa-1 2.58 2.13 2.62 2.16
Medusa-2 3.26 2.65 3.24 2.64
EAGLE-3 4.01 2.74 4.78 2.64
ARC (Ours) 5.28 3.35 5.58 3.03

Table 7: Performance on the challenging MMLU-Pro benchmark. ARC-Decode maintains accuracy
while providing higher accept length and speedup.

NEW
Method Accept Length Speedup Accuracy (%)
Vanilla — 1.00× 32.4
EAGLE-3 2.81 1.60× 32.3
ARC (Ours) 3.50 1.88× 32.3

A.3.4 EVALUATION ON A MORE CHALLENGING BENCHMARK: MMLU-PRO

To assess the robustness of ARC-Decode under substantially more difficult reasoning workloads,
we additionally evaluate all methods on MMLU-Pro (Wang et al., 2024), a large-scale benchmark
containing 12,032 queries and task difficulty than those used in our main experiments. We compare
vanilla Llama-3.1-8B, EAGLE-3, and ARC-Decode under identical decoding settings (tempera-
ture = 1.0, no chain-of-thought prompting, no few-shot examples).

Across this challenging dataset, ARC-Decode matches the accuracy of vanilla decoding and
EAGLE-3 while achieving higher accept length and greater end-to-end speedup. These results indi-
cate that ARC-Decode maintains output performance even on difficult, high-mismatch tasks.

A.3.5 COMPARISON WITH ALTERNATIVE PRUNING RULES

To assess the effect of different draft-tree pruning rules, we compare our entropy-guided pruning
(Sec.3.2) with several heuristic alternatives under the same EAGLE-3 setup (Qwen3-8B, temper-
ature 1.0) on MT-Bench, using a single NVIDIA RTXA6000 GPU. All methods share the same
verification rule of EAGLE-3, only the pruning policy differs.

• Entropy-guided (ours). Entropy–depth scoring with per-layer mass control, prefix-
closure, and leaf-safety.

• Depth. Linear depth-biased ranking.

• Depth-Exp. Exponential depth bias favoring deeper nodes.

• Accum-Prob. Cumulative branch probability along the root-to-node path.

Entropy-guided pruning achieves the highest acceptance length and throughput among all tested
strategies. Depth-based and cumulative-probability heuristics are less effective because they make
node-wise decisions without enforcing consistent root-to-leaf paths, which limits usable tree capac-
ity. In contrast, our rule maintains prefix-consistent paths and selects drafts more efficiently.

A.4 PROMPT TEMPLATES USED IN EVALUATION NEW

We follow the standard OpenCompass (Contributors, 2023) prompting setup. Prompts are rendered
using each model’s chat template as invoked internally by apply chat template() in Open-
Compass. Unless otherwise noted, all tasks use single-turn prompts without few-shot examples or
chain-of-thought prompting (and Qwen-3-8B is evaluated without the “thinking” mode).
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Table 8: Effect of alternative pruning strategies on Qwen3-8B+EAGLE-3 decoding (MT-Bench).

NEW
Pruning strategy Accept length ↑ Throughput (tok/s) ↑
Ours (entropy-guided) 2.70 56.4
Depth (best α) 2.53 51.2
Depth-Exp 2.53 51.1
Accum-Prob 2.57 51.8

MT-Bench. Rendered using the model’s chat template. System prompt:

You are a helpful, respectful and honest assistant.

HumanEval. System prompt:

You are a helpful, honest assistant. You write Python function bodies only (no def line
and no comments).

User prompt: the official prompt string from HumanEval.

GSM8K. We use the 4-shot prompt format. User message:

Question: {question}
Let’s think step by step
Answer:

Alpaca. System prompt:

You are a helpful, respectful and honest assistant.

User prompt: the instruction text from AlpacaEval.

MMLU-Pro. System prompt:

You are a helpful, respectful and honest assistant, using the given options to choose the
single best answer.

User prompt:

You are given a multiple-choice question. Choose the single best answer.
Question: {question}
Options: A. {opt1}, B. {opt2}, C. {opt3}, . . .

Answers are restricted to a single letter (A, B, C, ...).

A.5 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were used solely for grammar correction. All scientific content was devel-
oped and validated independently by the authors.

A.6 ETHICS STATEMENT

The research adheres to the ICLR Code of Ethics. All experiments use publicly available pretrained
language model weights and standard academic benchmarks, with no access to personally identifi-
able information or sensitive data. The work focuses on improving the computational efficiency of
autoregressive inference in large language models and does not introduce new capabilities that could
enable misuse. The proposed method is a training-free, plug-in optimization that does not modify
base model weights and constrains distributional shifts within a calibrated risk budget, thus posing
no additional risks related to fairness, safety, or societal impact.
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