

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARC-DECODE: RISK-BOUNDED ACCEPTANCE FOR SAMPLING-BASED SPECULATIVE DECODING

Anonymous authors

Paper under double-blind review

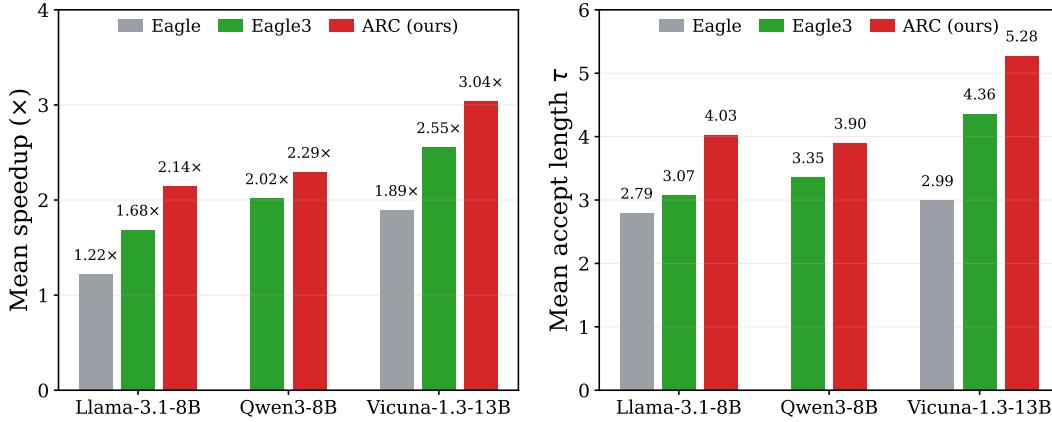


Figure 1: Average **speedup** (left) and average **accept length τ** (right) across tasks (means over MT-Bench, HumanEval, GSM8K, and Alpaca) for each model–method pair, under matched sampling settings. ARC-Decode (**ours**) consistently attains higher speedups at longer acceptance.

ABSTRACT

As larger language models deliver stronger capabilities, their autoregressive inference becomes increasingly expensive. *Speculative decoding* accelerates generation by letting a fast draft process propose tokens that the target model verifies in parallel. Yet under sampling ($T > 0$), observed speedups consistently lag behind those under greedy decoding: verification expends compute on low-value branches, and the [classical lossless verification rule](#) rejects drafts that would induce only negligible changes in the next-step conditional distribution. A key limitation under sampling is this **over-rejection of low-risk drafts, which depresses acceptance rates and limits acceleration**. To address this gap, we propose **ARC-Decode** (Acceptance with Risk Control), a training-free method that augments speculative decoding and requires no extra forward passes. Our method ensures [relaxed](#) acceptance while guaranteeing that accepting non-top-1 drafts causes only negligible next-step distributional shifts, as measured by Jensen–Shannon divergence. ARC-Decode combines (i) confidence-based pre-verification filtering that preserves high-probability branches while enforcing prefix closure and leaf safety, and (ii) a risk-bounded acceptance criterion using an analytic upper bound on the next-step distribution shift from embedding and logit differences. Integrated into the state-of-the-art EAGLE-3 pipeline, ARC-Decode increases accept length per cycle and reduces verification compute, achieving up to **1.6 \times** end-to-end speedup over EAGLE-3 under sampling with negligible quality change across benchmarks.

FIX

1 INTRODUCTION

Modern large language models (LLMs) demonstrate strong capabilities across tasks such as search, code generation, and dialogue (Chowdhery et al., 2023; Achiam et al., 2023). These gains follow scaling trends in model size, data, and compute, with models like Qwen3-Max ([Qwen, 2025](#)) exceeding one trillion parameters. Yet inference remains bottlenecked by autoregressive next-token

054 generation, enforcing sequential decoding and incurring high latency and cost (Shazeer, 2019).
 055 Reasoning-oriented workloads (Xu et al., 2025), such as GPT-01, often produce longer and more
 056 complex contexts, increasing inference latency and motivating more efficient decoding. *Speculative*
 057 *decoding*(SD) addresses this by using a lightweight draft model to propose multiple tokens, which
 058 the target model verifies in parallel (Sun et al., 2023; Fu et al., 2024; Zhou et al., 2024; Li et al.,
 059 2024a). This transforms sequential generation into a partially parallel process, allowing a single for-
 060 ward pass to produce several outputs. By offloading draft generation and reducing memory-bound
 061 operations, SD lowers latency while maintaining the target model’s generation behavior through
 062 verification. (Chen et al., 2023; Miao et al., 2024).

FIX

063 While SD achieves notable speedups, we observe a significant gap between greedy and sampling
 064 modes, a discrepancy absent in standard autoregressive decoding. This gap widens as the sampling
 065 temperature increases. Medusa (Cai et al., 2024) reports that higher temperatures reduce SD effi-
 066 ciency due to increased rejection, even when the draft and target distributions match. Xia et al.
 067 (2024) likewise find consistent drops in acceleration as temperature rises. Across recent methods,
 068 including Speculative Sampling (Leviathan et al., 2023), EAGLE (Li et al., 2024a), HASS (Zhang
 069 et al., 2025), and EAGLE-3 (Li et al., 2025), the relative speedup under typical sampling (e.g., $T = 1$)
 070 can drop by over **20%**. This is concerning, as modern LLM applications typically rely on sampling-
 071 based generation for diversity and controllability. To understand this inefficiency, we analyze the
 072 EAGLE-3 decoding pipeline. We find that many rejected draft tokens are semantically and logically
 073 equivalent to accepted ones and yield nearly identical conditional distributions for subsequent steps
 074 (Section 3.1), **suggesting that the classical lossless verification rule discards many safe draft tokens**
 075 **and limits speedup**. These rejections reduce acceptance length and ultimately constrain the speedup
 076 potential of speculative decoding. These observations raise a natural question:
 077

FIX

Can we safely increase draft token acceptance without compromising generation quality?

078 To address this inefficiency, we propose ARC-Decode, a training-free and plug-in speculative de-
 079 coding method that improves acceptance length under sampling regimes without additional forward
 080 passes. ARC-Decode introduces two key components: (i) an entropy-guided pre-verification prun-
 081 ing strategy that filters low-value draft branches using a calibrated, structure-preserving criterion
 082 (Section 3.2); and (ii) a risk-bounded **relaxed** acceptance rule that provably controls next-step distri-
 083 butional divergence (Section 3.3). Both components are designed to operate solely with verify-time
 084 information such as target logits, tied embeddings, and precomputed uncertainty scores. This en-
 085 sures the method remains efficient and compatible with existing speculative sampling methods.

086 We apply our method to EAGLE-3 and observe consistent improvements in acceptance length and
 087 throughput across diverse models and tasks. On the Alpaca task with LLaMA3.1-8B, our method
 088 achieves up to **1.6 \times** speedup, and without degradation in generation quality across tasks. These
 089 results suggest that ARC-Decode can effectively enhance generation speed under sampling while
 090 reliably maintaining output quality. Our contributions are summarized as follows.

- 091 • We introduce an **entropy-guided pruning strategy** that scores draft branches using a
 092 depth-aware confidence measure combining cumulative log-probability and target entropy,
 093 effectively filtering low-value tokens while preserving valid speculative paths.
- 094 • We propose a **risk-bounded relaxed acceptance method** that certifies next-step safety via
 095 a Lipschitz-based JS bound estimated from local logit margins and pairwise embedding
 096 distances, and accepts tokens when the safety score exceeds a tunable threshold θ .
- 097 • Experiments across multiple benchmarks and models show that our method consistently
 098 improves decoding speed under sampling while preserving generation quality, delivering
 099 plug-and-play acceleration in the open-source speculative decoding pipeline EAGLE-3.

100

101 2 RELATED WORK

102

103 **Speculative decoding** serves as an effective approach for accelerating autoregressive inference by
 104 decoupling generation into a fast draft stage and a parallel verification stage. Early variants adopt
 105 either specialized draft models (Xia et al., 2023) or scaled-down versions of the target model (spec-
 106 ulative decoding, 2023; Leviathan et al., 2023). These typically follow a serial draft-then-verify
 107 strategy, where tokens are proposed sequentially and verified in parallel (Zhang et al., 2024). An-
 other line of work enhances draft efficiency via tree-based decoding with improved representations.

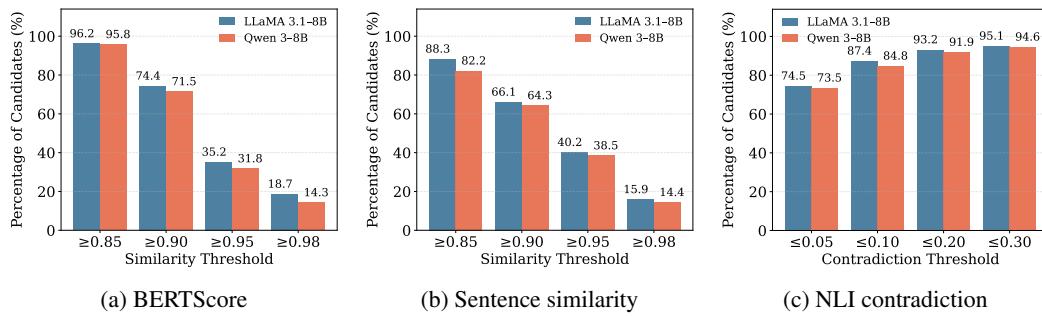


Figure 2: Agreement analysis on MT-Bench at temperature $T = 1$. We compare continuations seeded by rejected draft tokens against the baseline continuation seeded by the accepted token within EAGLE-3, using two backbones: Llama-3.1-8B and Qwen-3-8B. Panels: (a) BERTScore, (b) sentence similarity, (c) NLI contradiction score. The concentration of high-agreement and low-contradiction cases indicates many rejections would not materially change subsequent generation.

Recent methods (He et al., 2024; Cai et al., 2024; Li et al., 2024a) propose multiple divergent continuations and verify them in parallel via tree attention, significantly boosting decoding throughput. To further improve draft quality, follow-up works (Zhang et al., 2025; Li et al., 2024b) use shallow draft models incorporating target model hidden states or token-level guidance for accurate and efficient multi-token prediction. **EAGLE-3** (Li et al., 2025) advances EAGLE-2 by abandoning feature-prediction constraints in favor of direct token modeling and multi-layer feature fusion, yielding higher accept length. It has been integrated into open-source frameworks such as SGLang (Zheng et al., 2024) and vLLM (Kwon et al., 2023), and is therefore adopted as our baseline.

Limitations of Lossless Verification. Despite advances in speculative decoding, recent work questions the necessity of strict token-level verification. **MEDUSA** (Cai et al., 2024) introduces an entropy- and probability-based acceptance mechanism that avoids exact token matching with the target model. This approach improves acceptance and efficiency while preserving quality, particularly under high-temperature sampling where traditional verification yields low acceleration due to diverse outputs. **Relaxed verification** has therefore emerged as an alternative direction, allowing safe but non-identical draft tokens to be accepted when deviations are sufficiently controlled. **Judge Decoding** (Bachmann et al., 2025) observes that even with strong draft models such as GPT-4o or LLaMA-405B, accepted spans remain short under strict verification because fluent completions that only slightly diverge from the target model are frequently rejected. This exposes a key limitation of rigid token-level matching. Judge Decoding trains a compact verifier to assess token plausibility, relaxing the acceptance criterion to allow fluent but non-identical outputs. **Fuzzy Speculative Decoding** (Holsman et al., 2025) further relaxes losslessness using a divergence threshold, though it requires computing draft–target divergence at each verified position. Together, these works highlight the limitations of strict lossless verification. ARC-Decide addresses these limitations under sampling via compute-saving pre-verification pruning and a risk-bounded next-step acceptance rule.

3 ARC-DECODE

This section introduces **ARC-Decide**. §3.1 analyzes speculative sampling, showing that verification dominates runtime and that many rejected drafts have negligible effect on later generation. §3.2 presents an entropy-guided pruning module, and §3.3 introduces a risk-bounded relaxed acceptance rule determining which draft tokens may be safely accepted at verification.

FIX

New

FIX

3.1 BOTTLENECKS IN SPECULATIVE DECODING UNDER SAMPLING

To identify bottlenecks, we profile the EAGLE-3 speculative decoding pipeline on MT-Bench (LLama-3.1-8B). Verification dominates runtime (70%; Table 1), reflecting substantial inefficiency: much compute evaluates drafts later discarded under exact matching. To assess whether these rejections are often harmless, we conduct a brief analysis via continuation experiments comparing accepted tokens with rejected alternatives. For each verification position, we force each rejected token and generate 1024-

Table 1: Runtime breakdown on MT-Bench (LLama-3.1-8B, $T=1$).

Pipeline phase	Share (%)
Prefill	3.3
Draft generation	23.5
Verification (forward pass)	70.4
Rejection sampling	2.8

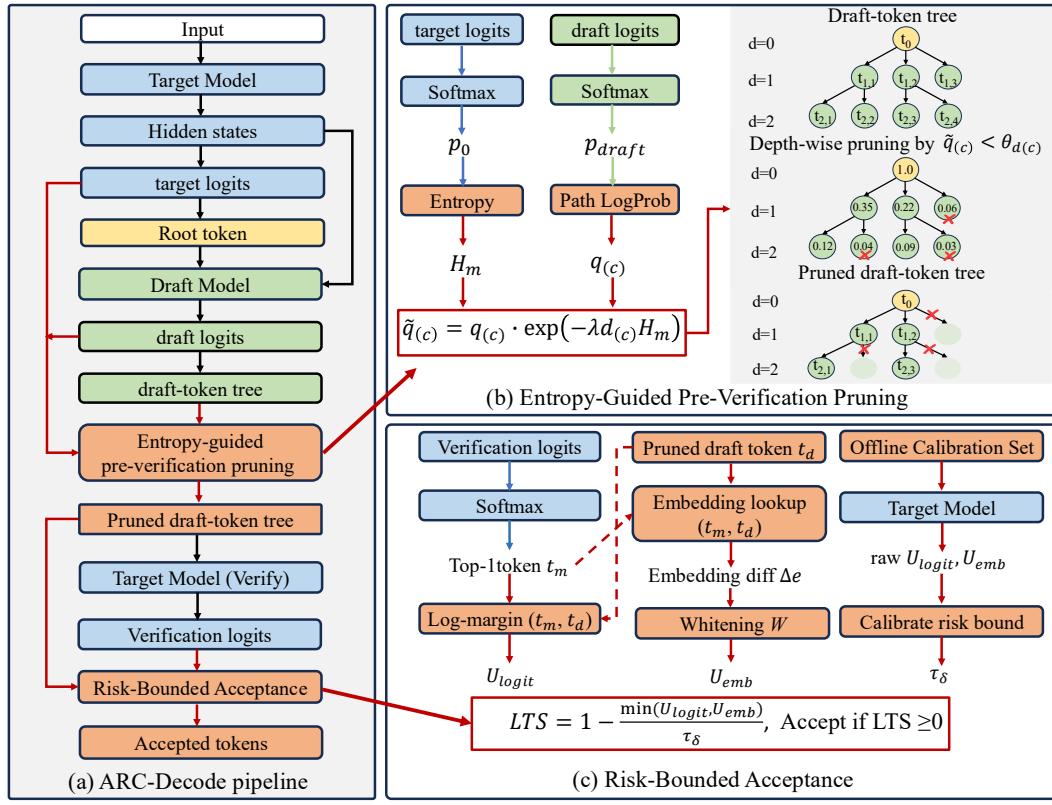


Figure 3: Diagram of the ARC-Decide inference pipeline for speculative sampling. (a) An speculative sampling pipeline with ARC-Decide steps highlighted (orange boxes). (b) *Entropy-Guided Pre-Verification Pruning*: combine entropy H_m with path mass $q(c)$ to form $\tilde{q}(c)$, then prune using per-depth thresholds with prefix closure; pruned nodes are faded. (c) *Risk-Bounded Acceptance*: from verification logits and (t_m, t_d) , compute embedding- and logit-side bounds. Compare the tighter bound against the calibrated tolerance τ_δ via LTS. A draft token is accepted when $LTS \geq 0$.

token continuations under identical settings. To quantify semantic agreement, we measure agreement via BERTScore (Zhang et al., 2020), MPNet-base-v2 cosine similarity (Song et al., 2020), and DeBERTa-v2 NLI contradiction (He et al., 2021), standard metrics for semantic consistency adopted in related works (Laban et al., 2022; Yang et al., 2024). The resulting distributions concentrate in high-agreement and low-contradiction regions (Fig. 2); over 70% of rejection positions satisfy this criterion, and more than half contain at least one seemingly harmless candidate.

FIX

These findings indicate that under sampling, strict lossless verification discards many drafts whose acceptance would not affect subsequent continuations by our qualitative metrics, motivating a risk-bounded *relaxed* acceptance rule (§3.3). This continuation analysis is purely qualitative and not used in our acceptance criterion, which relies solely on next-step divergence bounds.

3.2 ENTROPY-GUIDED PRE-VERIFICATION PRUNING

To reduce the verification forward-pass overhead identified in §3.1, we prune low-value branches after drafting but before calling the target model (pipeline in Fig.3(a), pruning in Fig.3(b)).

Consider one speculation cycle with a draft tree whose nodes are indexed by $c \in \{0, \dots, S-1\}$, with depth $d(c) \in \{0, 1, \dots\}$ and parent pointer $\text{par}(c)$. Let $\ell(c)$ be the cumulative log-probability of the draft prefix ending at node c , we define an entropy-aware confidence score as

$$\tilde{q}(c) = \exp(\ell(c)) \cdot \exp(-\lambda d(c) H_m), \quad \lambda \geq 0, \quad (1)$$

where the multiplicative factor reflects that acceptance risk grows with predictive uncertainty and distance from the cycle root. Using a single uncertainty scalar H_m has two advantages. It is obtained

from the target prefill at no extra cost and uniformly rescales all nodes at the same depth, preserving within-depth rankings while tightening thresholds under uncertainty. Concretely, we take H_m as the normalized entropy of the target model’s one-step distribution at the cycle root. Let \mathcal{V} denote the vocabulary with size $V = |\mathcal{V}|$, and p_0 be the target one-step distribution at the root:

$$H_m = \frac{-\sum_{v \in \mathcal{V}} p_0(v) \log p_0(v)}{\log V} \in (0, 1]. \quad (2)$$

Higher uncertainty or larger depth reduces $\tilde{q}(c)$, making the pruning more conservative. To choose thresholds, we use *per-depth mass coverage* under a risk budget $\delta \in (0, 1)$: allocate nonnegative $\{\varepsilon_d\}$ with $\sum_d \varepsilon_d \leq \delta$, and for each depth d select the smallest θ_d so that the kept set $\mathcal{K}_d = \{c : d(c) = d, \tilde{q}(c) \geq \theta_d\}$ covers a $(1 - \varepsilon_d)$ fraction of the depth- d mass:

$$\sum_{c \in \mathcal{K}_d} \tilde{q}(c) \geq (1 - \varepsilon_d) \sum_{c: d(c)=d} \tilde{q}(c). \quad (3)$$

We then form the kept set \mathcal{K} under two structural constraints, ensuring global consistency of the retained draft tree. The first enforces *prefix closure*: every kept node retains all its ancestors, preventing inconsistencies from independent ranking and ensuring each surviving position lies on a valid root-to-leaf path within \mathcal{K} . For *leaf safety*, we use per-depth leaf thresholds τ_d no smaller than the corresponding depth thresholds, i.e., $\tau_d \geq \theta_d$ for all depths d . The constraints are defined as

$$\begin{aligned} c \in \mathcal{K} &\iff (\tilde{q}(c) \geq \theta_{d(c)}) \wedge (d(c) = 0 \vee \text{par}(c) \in \mathcal{K}), \\ \text{leaf}(c) \wedge \tilde{q}(c) < \tau_{d(c)} &\implies c \notin \mathcal{K}. \end{aligned} \quad (4)$$

If a kept parent would otherwise lose all children, we reinsert its highest- \tilde{q} child to preserve forward extensibility and keep at least one valid continuation path. These constraints prevent stranded prefixes and maintain a contiguous high-mass backbone. This training-free pruning removes low-probability branches, reduces verification compute, and provides a structure-preserving input to the next stage. The procedure remains distinct from heuristics that adjust draft length during drafting.

3.3 RISK-BOUNDED ACCEPTANCE

Empirically (see §3.1), many sampling-mode rejections produce continuations that stay close to the baseline. [This suggests room for relaxed acceptance if we can certify that accepting a candidate draft token will not induce a non-negligible next-step shift](#). We therefore develop a δ -risk-bounded acceptance criterion (Fig. 3(c)) whose bound is calibrated once per backbone, depends only on verify-time quantities, and requires no additional forward passes. [Intuitively, the Local Tolerance Score \(LTS\) uses embedding distance and logit margin to upper bound the induced next-step divergence, accepting only candidates whose predicted shift fits within a tolerable risk budget.](#)

FIX

Problem statement. At verification time, consider position j under prefix C . Let $t_d^{(j)}$ be the drafted token and $t_m^{(j)}$ the target model’s top-1 token under $p(\cdot | C)$. [Here \$t_m^{\(j\)}\$ acts only as a reference for measuring the effect of substituting \$t_d^{\(j\)}\$](#) . We assess the effect of substituting $t_d^{(j)}$ for $t_m^{(j)}$ via the target model’s next-step conditional distributions:

$$q_{j+1} = p(\cdot | C, t_d^{(j)}), \quad r_{j+1} = p(\cdot | C, t_m^{(j)}). \quad (5)$$

Our objective is to upper bound the Jensen–Shannon divergence $\text{JS}(q_{j+1}, r_{j+1})$ at a chosen risk level $\delta \in (0, 1)$, thereby enabling a principled acceptance test with probabilistic control.

Bounding next-step shift via embedding difference. With weight tying, let $e_t \in \mathbb{R}^d$ be the input embedding of token t , and define the embedding difference:

$$\Delta e^{(j)} = e_{t_d^{(j)}} - e_{t_m^{(j)}}. \quad (6)$$

Let $\Phi_C : \mathbb{R}^d \rightarrow \mathbb{R}^V$ map the embedding at step j to the target model’s next-step logits under prefix C , where V is the vocabulary size. Following robustness analyses of transformers (Fazlyab et al., 2019; Kim et al., 2021), we require smoothness only along the short path between the two token

embeddings, because speculative decoding changes the model input by exactly one token at this position. We therefore assume a local Lipschitz property along the segment between $e_{t_m^{(j)}}$ and $e_{t_d^{(j)}}$:

$$\|\Phi_C(e_{t_d^{(j)}}) - \Phi_C(e_{t_m^{(j)}})\|_2 \leq \bar{L}_j \|\Delta e^{(j)}\|_2, \quad (7)$$

where \bar{L}_j is a segment-wise average spectral bound estimated from held-out calibration traces (Appendix 1). Let V_K be the size of the active vocabulary obtained from the union of top- K sets, and let $L_{\text{sm}} \in (0, 1]$ denote the ℓ_2 -Lipschitz constant of softmax (Kong et al., 2020). Applying softmax to the logits difference and converting the resulting ℓ_2 bound to total variation (TV) gives:

$$\text{TV}(q_{j+1}, r_{j+1}) \leq \frac{1}{2} \sqrt{V_K} L_{\text{sm}} \bar{L}_j \|\Delta e^{(j)}\|_2. \quad (8)$$

By adding a small uniform smoothing $\mu > 0$ on the active support and applying the quadratic total variation-to-Jensen-Shannon inequality from Pang et al. (2022), we obtain:

$$\text{JS}(q_{j+1}, r_{j+1}) \leq c_{\text{tv}}(\mu) \text{TV}(q_{j+1}, r_{j+1})^2 \leq c_s \|\Delta e^{(j)}\|_2^2, \quad (9)$$

where $c_{\text{tv}}(\mu) = \mathcal{O}(1/\mu)$ and $c_s = c_{\text{tv}}(\mu) \left(\frac{\sqrt{V_K} L_{\text{sm}} \bar{L}_j}{2} \right)^2$. To stabilize the bound, we whiten the embedding coordinates using $W = \text{diag}(1/\hat{\sigma}_1, \dots, 1/\hat{\sigma}_d)$ with $\hat{\sigma}_k$ estimated from calibration embeddings. We absorb the constants into a factor c'_s and define the embedding-side bound as

$$U_{\text{emb}}^{(j)} = c'_s \|W \Delta e^{(j)}\|_2^2. \quad (10)$$

Logit margin bound. From the target logits at position j , let \tilde{p} be post-processed probabilities after the standard logits processor and an ϵ -clamp. Define the log-probability margin as

$$\Delta \tilde{\ell}^{(j)} = \log \tilde{p}(t_m^{(j)}) - \log \tilde{p}(t_d^{(j)}). \quad (11)$$

On a calibration set, we fit a scale parameter $\kappa > 0$ (e.g., via quantile regression) such that

$$\Pr \left[\text{JS}(q_{j+1}, r_{j+1}) \leq \kappa (\Delta \tilde{\ell}^{(j)})^2 \right] \geq 1 - \delta. \quad (12)$$

We then define a logit-side upper bound using a fixed safety factor $\alpha \geq 1$, so that

$$U_{\text{logit}}^{(j)} = \alpha \kappa (\Delta \tilde{\ell}^{(j)})^2. \quad (13)$$

LTS Risk-Bound Criterion. For each position j , we select the tighter of the two bounds as

$$U^{(j)}(C, t_d^{(j)}) = \min \left\{ U_{\text{emb}}^{(j)}, U_{\text{logit}}^{(j)} \right\}, \quad \Pr \left[\text{JS}(q_{j+1}, r_{j+1}) \leq U^{(j)}(C, t_d^{(j)}) \right] \geq 1 - \delta. \quad (14)$$

Let τ_δ be the $(1 - \delta)$ quantile of $\{U^{(j)}\}$ estimated on the calibration set and fixed thereafter. Define the *Local Tolerance Score* (LTS) as

$$\text{LTS}^{(j)}(C, t_d^{(j)}) = 1 - \frac{U^{(j)}(C, t_d^{(j)})}{\tau_\delta}, \quad (15)$$

which measures a safety margin relative to the risk budget (larger values indicate safer candidates).

During speculative sampling, ARC-Decode only decides whether a drafted token is safe to accept; all other aspects of the sampling procedure remain unchanged. A token is accepted whenever

$\text{LTS}^{(j)}(C, t_d^{(j)}) \geq \theta$ (default $\theta = 0$); otherwise the step simply follows the baseline. By Theorem 1, all accepted tokens satisfy $\Pr[\text{JS}(q_{j+1}, r_{j+1}) \leq \tau_\delta] \geq 1 - \delta$. The criterion is training-free and plugin, using only verify-time target logits, tied embeddings, and calibrated constants. When combined with the pre-verification filter (§3.2), it increases acceptance length while keeping next-step shifts within a calibrated tolerance, yielding higher end-to-end efficiency in the sampling regime.

FIX

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Backbones and baselines. We base our comparisons on four target models: Llama-3.1-8B-Instruct, Qwen-3-8B, Vicuna-13B, and [Llama-3.3-70B](#). ARC-Decode is built on top of the EAGLE-3 codebase and decoding pipeline (Li et al., 2025). We reuse the draft model and verification schedule from EAGLE-3, but introduce two key modifications: an entropy-guided pre-verification pruning step and a risk-bounded acceptance rule that replaces exact-match verification. All other decoding settings remain unchanged. We compare ARC-Decode with the baselines EAGLE (Li et al., 2024a), HASS (Zhang et al., 2025), [Fuzzy Speculative Decoding \(FSD\)](#) (Holsman et al., 2025), and EAGLE-3, and report speedup relative to vanilla autoregressive decoding.

NEW

Table 2: Experimental results on *mt-bench*, *HumanEval*, *GSM8K*, and *Alpaca*. Columns report $thrpt \uparrow$ (throughput; tokens/s), $\tau \uparrow$ (accept length), and $speedup \uparrow$ (end-to-end ratio vs. vanilla) for different methods. Abbrev.: L 8B = Llama-3.1-8B, Q 8B = Qwen3-8B, V 13B = Vicuna-1.3-13B, L 70B = Llama-3.3-70B. For FSD, the parameter T denotes the risk threshold (not temperature).

NEW

Model	Method	MT-bench			HumanEval			GSM8K			Alpaca		
		thrpt	τ	speedup									
L 8B	Eagle	41.6	3.16	1.15 \times	53.0	3.88	1.46 \times	52.1	2.31	1.17 \times	39.5	1.83	1.09 \times
L 8B	HASS	50.2	2.65	1.38 \times	62.1	4.32	1.71 \times	44.8	2.33	1.24 \times	49.4	2.51	1.36 \times
L 8B	Eagle3	66.1	3.35	1.84 \times	74.4	3.57	2.05 \times	51.7	2.52	1.43 \times	51.6	2.85	1.42 \times
L 8B	ARC (ours)	87.1	4.49	2.40 \times	77.3	3.94	2.13 \times	63.7	3.71	1.76 \times	82.7	3.96	2.28 \times
Q 8B	Eagle3	61.2	3.00	1.84 \times	68.1	3.36	2.06 \times	66.9	3.88	2.15 \times	67.3	3.18	2.01 \times
Q 8B	ARC (ours)	81.6	4.28	2.45 \times	76.1	3.42	2.30 \times	68.2	4.13	2.19 \times	74.6	3.76	2.23 \times
V 13B	Eagle	39.9	2.85	1.82 \times	43.5	2.97	1.98 \times	32.7	3.14	1.74 \times	45.7	3.01	2.03 \times
V 13B	Eagle3	60.1	4.01	2.74 \times	57.6	3.96	2.62 \times	41.5	4.69	2.21 \times	59.3	4.78	2.64 \times
V 13B	ARC (ours)	73.4	5.28	3.35 \times	71.4	4.74	3.25 \times	47.4	5.50	2.52 \times	68.1	5.58	3.03 \times
L 70B	FSD ($T=0.4$)	6.32	1.52	1.39 \times	10.42	3.43	2.29 \times	7.69	2.48	1.69 \times	11.15	3.17	2.45 \times
L 70B	FSD ($T=0.6$)	8.51	2.54	1.87 \times	10.74	3.56	2.36 \times	9.05	3.21	1.99 \times	13.15	3.91	2.89 \times
L 70B	FSD ($T=0.8$)	8.10	2.37	1.78 \times	10.74	3.56	2.36 \times	9.60	3.66	2.11 \times	13.74	4.14	3.02 \times
L 70B	EAGLE-3	15.24	4.04	3.35 \times	14.01	4.11	3.08 \times	12.56	4.37	2.76 \times	14.74	3.82	3.24 \times
L 70B	ARC (ours)	16.38	4.90	3.60 \times	14.70	4.13	3.23 \times	12.83	4.68	2.82 \times	15.52	4.20	3.41 \times

Tasks. Following EAGLE and Spec-Bench (Xia et al., 2024), we evaluate four common tasks under standard evaluation settings: multi-turn dialogue, code generation, mathematical reasoning, and instruction following. We use MT-Bench (Zheng et al., 2023), HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021), and Alpaca (Taori et al., 2023) as the corresponding benchmarks.

Metrics. We evaluate decoding using both **efficiency** and **accuracy** metrics. Efficiency includes: throughput (tokens/s), i.e., wall-clock decoding speed; accepted length τ , the average number of tokens accepted per verification; and speedup, the ratio over the autoregressive baseline. Accuracy is measured by four representative tasks: MT-Bench (GPT-4o-scored 1–10), HumanEval (pass@1 accuracy), GSM8K (exact match score), and Alpaca (win rate vs. GPT-4-Turbo via AlpacaEval).

Implementation and hyperparameters. All experiments use a temperature of 1.0. For 8B–13B models, evaluation is performed on a single NVIDIA A6000 GPU, while the 70B model is evaluated on four A6000 GPUs. We expose two pruning hyperparameters: a per-depth mass-coverage level $\varepsilon = 0.05$ (retaining the top 95% path mass at each depth) and an entropy weight $\lambda = 1.0$. A global threshold $\theta = 0.3$ is applied to the LTS score across all settings. The risk budget uses a fixed $(1 - \delta) = 0.95$ quantile τ_δ , estimated on a held-out calibration set from which whitening statistics and scaling constants are also computed; all of these remain fixed during testing. Speedup is hardware-dependent, and acceptance length may vary slightly due to numerical differences. For consistency, we follow the prompt and evaluation configurations of OpenCompass (Contributors, 2023). Additional results (e.g., MMLU-Pro) and implementation details are provided in Appendix A.3.

4.2 EFFICIENCY AND ACCURACY RESULTS

Efficiency. Table 2 shows that ARC-DECODE consistently improves both acceptance length (τ) and end-to-end speedup across all backbones and tasks. Under matched decoding settings, our method delivers higher throughput than EAGLE-3 and maintains stable gains across sampling workloads. On Alpaca with Llama-3.1-8B, ARC-Decode reaches **2.28** \times speedup over vanilla, about **1.6** \times faster than EAGLE-3; similar patterns appear on Vicuna-13B (e.g., *HumanEval*: 3.25 \times vs. 2.62 \times).

We also evaluate on the larger Llama-3.3-70B model. ARC-Decode attains up to **3.60** \times speedup and higher acceptance lengths (e.g., $\tau=4.90$ on MT-Bench), surpassing both EAGLE-3 (**3.35** \times) and the relaxed-acceptance baseline FSD, which remains below **2** \times across most settings. These results indicate that the method scales effectively with model size and continues to improve efficiency.

Accuracy. To assess the impact of ARC on generation quality, we compare ARC with EAGLE-3 on MT-Bench, HumanEval, GSM8K, and Alpaca under matched prompts, sampling hyperparameters (e.g., temperature) and stopping criteria (Table 3). Despite replacing the verification policy, ARC

378 Table 3: Benchmark performance of Eagle3 and ARC-Decode on *MT-Bench*, *HumanEval*, *GSM8K*,
 379 and *Alpaca*. Metrics: *MT-Bench*: GPT-4o-judged score (1–10); *HumanEval*: pass@1(%); *GSM8K*:
 380 EM (Exact Match, %); *Alpaca*: pairwise win rate (%) vs. GPT-4-Turbo (AlpacaEval).

Model	Method	MT-bench score \uparrow	HumanEval pass@1 (%) \uparrow	GSM8K EM (%) \uparrow	Alpaca win rate (%) \uparrow
L 8B	Eagle3	6.89	57.2	77.0	22.8
L 8B	ARC (ours)	7.50	57.1	77.1	23.9
Q 8B	Eagle3	6.97	66.3	75.3	16.3
Q 8B	ARC (ours)	6.99	66.2	74.9	17.1
V 13B	Eagle3	6.10	12.1	23.8	6.6
V 13B	ARC (ours)	6.23	14.6	23.6	8.0

391 Table 4: Ablation on Llama-3.1-8B across four tasks. Columns: τ \uparrow (accept length), *speedup* \uparrow
 392 (end-to-end throughput relative to the vanilla autoregressive baseline), and ρ (pruned fraction, %).
 393 “N/A” indicates settings without pruning. All results use temperature 1.0 and matched prompts.

Method	MT-Bench			HumanEval			GSM8K			Alpaca		
	τ	speedup	ρ	τ	speedup	ρ	τ	speedup	ρ	τ	speedup	ρ
EAGLE-3	2.92	1.71 \times	N/A	3.57	2.05 \times	N/A	2.52	1.32 \times	N/A	2.85	1.42 \times	N/A
ARC (prune-only)	2.96	1.74 \times	24.2	3.62	2.04 \times	16.1	2.64	1.35 \times	15.9	2.86	1.42 \times	21.4
ARC (LTS-only)	4.21	2.28 \times	N/A	3.85	2.08 \times	N/A	3.65	1.72 \times	N/A	3.82	2.06 \times	N/A

401 attains accuracy on par with EAGLE-3 across all reported configurations and tasks, with parity on
 402 most metrics and occasional small gains (e.g., Llama-3.1-8B on MT-Bench: 7.50 vs. 6.89; Vicuna-
 403 13B on MT-Bench: 6.23 vs. 6.10). Overall, ARC preserves generation quality while delivering
 404 efficiency gains, exhibiting stable behavior across backbones, datasets, and decoding settings.

4.3 ABLATION STUDIES

408 We conduct ablations on Llama-3.1-8B at $T = 1.0$ across all four tasks, evaluating *prune-only*
 409 (entropy-guided pre-verification pruning; no LTS) and *LTS-only* (risk-bounded acceptance; no pruning)
 410 under identical prompts, stopping criteria, and decoding settings. Results are in Table 4.

412 **Prune-only.** Speedup gains over EAGLE-3 are limited: since verification runs in parallel, latency
 413 remains similar. Pruning removes low-mass branches before verification, reducing compute and
 414 filtering low-quality paths, particularly effective for wide trees or high-entropy contexts.

415 **LTS-only.** LTS is the primary driver of speedup: it increases τ and throughput on all tasks by cer-
 416 tifying drafted tokens that remain within the calibrated tolerance. In full ARC-Decode framework,
 417 pruning removes low-confidence branches before verification, while LTS extends accepted prefixes,
 418 reducing cycles per token and maximizing end-to-end efficiency.

4.4 SENSITIVITY ANALYSES

422 **Temperature sensitivity.** We evaluate ARC-Decode across temperatures $T \in$
 423 $\{0.1, 0.3, 0.5, 0.7, 0.9\}$ (Fig. 4). As T increases, both accept length τ and speedup gradually
 424 decline (e.g., MT-Bench: $\tau : 5.72 \rightarrow 4.78$; speedup: $3.13 \times \rightarrow 2.66 \times$). Higher temperatures flatten
 425 the target distribution, raise entropy, and enlarge the effective branching factor, making pruning
 426 more conservative and reducing draft-target alignment. We additionally include EAGLE-3 (gray
 427 curves). ARC-Decode outperforms EAGLE-3 at every temperature on all benchmarks, and the gap
 428 widens as T grows. When T is low, generation is nearly deterministic and both methods behave
 429 similarly. As T increases, sampling variability widens the discrepancy between the draft and target
 430 distributions, making exact-match acceptance increasingly unreliable. EAGLE-3 therefore becomes
 431 brittle under high-temperature sampling, whereas ARC-Decode’s risk-bounded criterion remains
 432 more robust and continues to certify plausible drafts. Overall, ARC-Decode delivers consistently
 433 higher τ and speedup and degrades far more gracefully under high-temperature sampling.

NEW

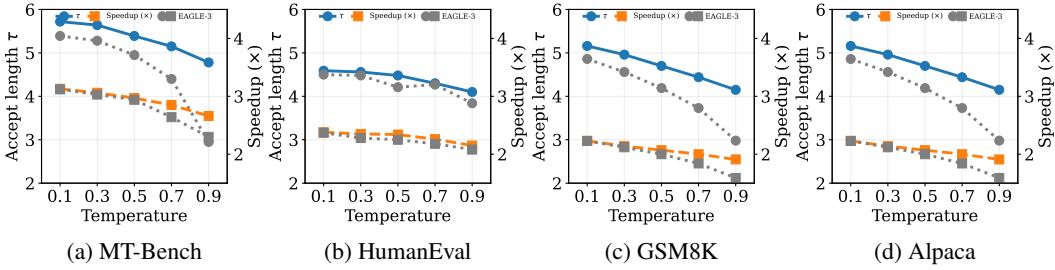


Figure 4: Temperature sensitivity of ARC on Llama-3.1-8B across four tasks. We report accept length τ (blue) and speedup (orange), measured relative to the vanilla autoregressive baseline under temperatures $T \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$. Gray curves denote the EAGLE-3 baseline.

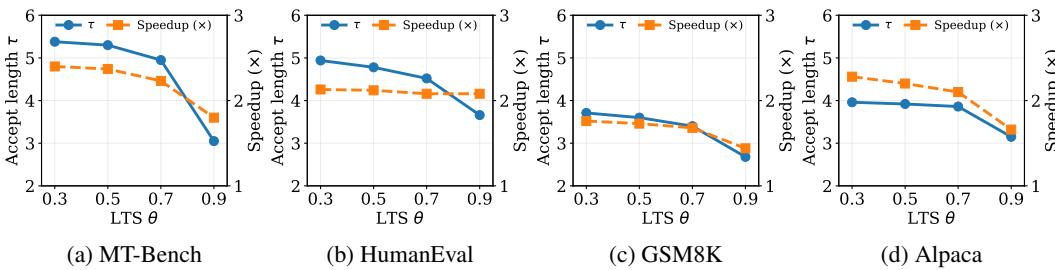


Figure 5: Sensitivity to LTS threshold θ on Llama-3.1-8B across four tasks: accept length τ (blue) and speedup (orange), reported relative to a vanilla autoregressive baseline. All runs use matched prompts and stopping criteria; $\theta \in \{0.3, 0.5, 0.7, 0.9\}$.

LTS-threshold sensitivity. We evaluate the LTS threshold θ on Llama-3.1-8B, sweeping $\theta \in 0.3, 0.5, 0.7, 0.9$ and report τ and speedup in Fig. 5. As θ increases, both metrics decline, with a sharp drop between 0.7 and 0.9. Since $LTS = 1 - U/\tau_\delta$, a token is accepted only when $U \leq (1 - \theta)\tau_\delta$. At higher θ values (e.g., $\theta > 0.7$), this constraint becomes stringent, requiring very small embedding and logit differences for acceptance. This tight acceptance criterion disproportionately penalizes otherwise valid drafts with minor discrepancies, leading to reduced τ . Because θ acts as a safety margin and no accuracy degradation was observed, we adopt $\theta = 0.3$ as a default.

ARC-Decide consistently improves speed across diverse tasks and backbones while preserving generation accuracy. As shown in Table 4, ablation studies demonstrate that LTS is the main driver of efficiency, significantly boosting acceptance length and throughput without additional computation. Pruning alone contributes moderate gains by removing low-mass paths, and further enhances speedup when combined with LTS. Sensitivity analysis (Fig. 4, 5) confirms the robustness of ARC-Decide across temperatures and threshold choices. Speedup gradually declines with increasing temperature or stricter thresholds, but remains consistently strong in practical settings. These results validate the flexibility and stability of ARC-Decide across key generation parameters. Further implementation details, calibration setup, and extended results are included in Appendix A.3.

5 CONCLUSION

Speculative decoding accelerates LLM inference by proposing draft tokens in parallel and verifying them with the target model. While effective under greedy decoding, its performance degrades under sampling. This work follows the emerging line of *relaxed* speculative decoding, which aims to retain more informative drafted tokens while keeping the target distribution under control. To address this, we present **ARC-Decide**, a training-free, plug-in method that enlarges accepted prefixes with calibrated next-step risk. It combines (i) entropy-guided pre-verification pruning with prefix closure, which removes low-confidence draft branches while preserving extendable paths, and (ii) a Local Tolerance Score that accepts drafts when an analytic upper bound on next-step JS divergence falls below a calibrated threshold. Integrated into EAGLE-3, ARC-Decide increases acceptance length and yields up to **1.6** \times speedup over EAGLE-3 on MT-Bench, HumanEval, GSM8K, and Alpaca across multiple backbones, without measurable accuracy loss. Ablations verify the contributions of pruning and LTS, and sensitivity analysis shows robustness across temperatures. Overall, ARC-Decide provides consistent speedups under sampling without sacrificing accuracy.

486 **6 REPRODUCIBILITY STATEMENT**
487488 We provide details to support reproducibility:
489

- 490 • **Method and Inference Setup:** Sections §3 and §4 describe all model variants, decoding
491 configurations (e.g., temperature, top- k , draft depth), and evaluation protocols.
- 492 • **Hyperparameters:** All relevant hyperparameters used in decoding are reported in Sec-
493 tion §4 and Appendix A.3.
- 494 • **Datasets:** All datasets used in our experiments are publicly available. Usage details, pre-
495 processing steps, and licensing information are summarized in Section §4.
- 496 • **Theoretical Derivations:** Assumptions, derivations, and proofs for theoretical results are
497 included in Section §3 and Appendix A.1.
- 498 • **Code:** We will release the codebase upon publication to facilitate reproducibility.

501 **REFERENCES**
502

503 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
504 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
505 report. *arXiv preprint arXiv:2303.08774*, 2023.

506 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
507 In *ICML*, 2017.

508 Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
509 Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas Kohler. Judge decoding: Faster
510 speculative sampling requires going beyond model alignment. In *ICLR*, 2025.

511 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
512 Medusa: Simple llm inference acceleration framework with multiple decoding heads. In *ICML*,
513 2024.

514 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
515 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint
516 arXiv:2302.01318*, 2023.

517 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
518 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
519 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

520 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
521 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
522 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
523 1–113, 2023.

524 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
525 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
526 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

527 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
528 <https://github.com/open-compass/opencompass>, 2023.

529 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
530 and accurate estimation of lipschitz constants for deep neural networks. In *NeurIPS*, 2019.

531 Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
532 ence using lookahead decoding. In *ICML*, 2024.

533 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
534 with disentangled attention. In *ICLR*, 2021.

540 Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
 541 decoding. In *ACL*, 2024.

542

543 Maximilian Holsman, Yukun Huang, and Bhuwan Dhingra. Fuzzy speculative decoding for a tun-
 544 able accuracy-runtime tradeoff. In *Findings of ACL*, pp. 26257–26273, 2025.

545

546 Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention. In
 547 *ICML*, 2021.

548

549 Weiwei Kong, Walid Krichene, Nicolas Mayoraz, Steffen Rendle, and Li Zhang. Rankmax: An
 550 adaptive projection alternative to the softmax function. In *NeurIPS*, 2020.

551

552 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 553 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 554 serving with pagedattention. In *SOSP*, 2023.

555

556 Philippe Laban, Tobias Schnabel, Paul N Bennett, and Marti A Hearst. Summac: Re-visiting nli-
 557 based models for inconsistency detection in summarization. *Transactions of the Association for
 558 Computational Linguistics*, 2022.

559

560 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 561 decoding. In *ICML*, 2023.

562

563 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
 564 rethinking feature uncertainty. In *ICML*, 2024a.

565

566 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
 567 guage models with dynamic draft trees. In *EMNLP*, 2024b.

568

569 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
 570 acceleration of large language models via training-time test. In *NeurIPS*, 2025.

571

572 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
 573 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
 574 guage model serving with tree-based speculative inference and verification. In *ASPLOS*, 2024.

575

576 Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could be
 577 reconcilable by (proper) definition. In *ICML*, 2022.

578

579 Qwen. Qwen3-max. <https://qwen.ai/blog?id=qwen3-max>, 2025.

580

581 Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint
 582 arXiv:1911.02150*, 2019.

583

584 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
 585 training for language understanding. In *NeurIPS*, 2020.

586

587 Online speculative decoding. Liu, xiaoxuan and hu, lanxiang and bailis, peter and cheung, alvin and
 588 deng, zhijie and stoica, ion and zhang, hao. In *ICML*, 2023.

589

590 Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
 591 Spectr: Fast speculative decoding via optimal transport. In *NeurIPS*, 2023.

592

593 Bangsheng Tang, Carl Chengyan Fu, Fei Kou, Grigory Sizov, Haoci Zhang, Jason Park, Jiawen
 594 Liu, Jie You, Qirui Yang, Sachin Mehta, et al. Efficient speculative decoding for llama at scale:
 595 Challenges and solutions. *arXiv preprint arXiv:2508.08192*, 2025.

596

597 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 598 Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

599

600 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 601 Ren, Aaran Arulraj, Xuan He, Ziyang Jiang, et al. Mmlu-pro: A more robust and challenging
 602 multi-task language understanding benchmark. In *NeurIPS*, 2024.

594 Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding:
 595 Exploiting speculative execution for accelerating seq2seq generation. In *EMNLP*, 2023.
 596

597 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
 598 Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
 599 of speculative decoding. In *ACL*, 2024.

600 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 601 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 602 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

603 Joonho Yang, Minjoon Cho, Taehee Heo, Dongha Kim, Kyung-Min Park, Donghyun Choi, and
 604 Kyunghyun Cho. Fizz: Factual inconsistency detection by zoom-in summary and zoom-out doc-
 605 ument. In *EMNLP*, 2024.

606 Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
 607 verify: Lossless large language model acceleration via self-speculative decoding. In *ACL*, 2024.

608 Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
 609 for speculative sampling. In *ICLR*, 2025.

610 Varsha Kishore Zhang, Kilian Q. Weinberger, Felix Wu, and Yoav Artzi. Bertscore: Evaluating text
 611 generation with bert. In *ICLR*, 2020.

612 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 613 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 614 chatbot arena. In *NeurIPS*, 2023.

615 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 616 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
 617 structured language model programs. In *NeurIPS*, 2024.

618 Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
 619 Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
 620 decoding via knowledge distillation. In *ICLR*, 2024.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A APPENDIX
649650 A.1 GUARANTEE AND PROOF
651652 **Setup and notation.** At verification position j under accepted prefix C , let

653
$$q_{j+1} = p(\cdot | C, t_d^{(j)}), \quad r_{j+1} = p(\cdot | C, t_m^{(j)})$$

654

655 denote the target model’s next-step conditionals after substituting a draft token $t_d^{(j)}$ for the model
656 top-1 token $t_m^{(j)}$. We measure discrepancy by $\text{JS}(q_{j+1}, r_{j+1})$. With weight tying, let $e_t \in \mathbb{R}^d$ be the
657 input embedding of token t and $\Delta e^{(j)} = e_{t_d^{(j)}} - e_{t_m^{(j)}}$. Let $\Phi_C : \mathbb{R}^d \rightarrow \mathbb{R}^V$ map the token embedding
658 at step j to the next-step logits. On the active vocabulary obtained by the union of top- K sets we
659 apply a small uniform smoothing $\mu > 0$ and renormalize.
660661 **Assumptions.** (i) *Distributional Stability Under Embedding Perturbation.* We adopt a standard
662 local Lipschitz regularity assumption: the embedding-level perturbation introduced at verification
663 position j induces a controlled and stable change in the next-step distribution. This distributional
664 stability is sufficient for deriving the JS bound:

665
$$\|\Phi_C(e_{t_d^{(j)}}) - \Phi_C(e_{t_m^{(j)}})\|_2 \leq \bar{L}_j \|\Delta e^{(j)}\|_2, \quad (16)$$

666

667 where \bar{L}_j denotes a local Lipschitz sensitivity coefficient estimated from calibration, providing a
668 tight upper bound on how embedding perturbations propagate to the next-step logits.669 (ii) *Softmax Lipschitz Continuity.* The softmax operator is $L_{\text{sm}} \in (0, 1]$ -Lipschitz in ℓ_2 , ensuring
670 that a small logit perturbation leads to a proportionally bounded change in the output distribution.
671 On the restricted support of size V_K , we additionally use $\|x\|_1 \leq \sqrt{V_K} \|x\|_2$ to move from an ℓ_2
672 bound on logits to an ℓ_1 (TV) bound on probabilities.673 (iii) *Smoothed TV-JS quadratic bound.* Following standard results on the local behavior of f -
674 divergences under lower-bounded densities (Arjovsky et al., 2017), if the mixture $m = \frac{1}{2}(q + r)$
675 satisfies $\min_i m_i \geq \mu$, then the JS divergence admits a stable quadratic upper bound in terms of TV:

676
$$\text{JS}(q, r) \leq c_{\text{tv}}(\mu) \text{TV}(q, r)^2, \quad c_{\text{tv}}(\mu) \leq \frac{1}{2\mu}. \quad (17)$$

677

678 This condition ensures that the JS discrepancy grows quadratically with small perturbations.

679 (iv) *Calibration-test consistency.* Since both calibration traces and test-time positions are generated
680 by the same target model under matched decoding settings, their conditional distributions (e.g.,
681 conditioned on depth or root entropy) are aligned. Consequently, the empirical $(1 - \delta_2)$ quantile
682 computed on the calibration set can be directly reused at test time as a valid risk-control threshold.
683684 **Embedding-side deterministic bound.** Combining Equation (16) with assumptions yields

685
$$\text{JS}(q_{j+1}, r_{j+1}) \leq c_s \|\Delta e^{(j)}\|_2^2, \quad c_s \equiv c_{\text{tv}}(\mu) \left(\frac{\sqrt{V_K} L_{\text{sm}}}{2} \right)^2 \bar{L}_j^2. \quad (18)$$

686

687 After applying diagonal whitening $W = \text{diag}(1/\hat{\sigma}_1, \dots, 1/\hat{\sigma}_d)$ on a held-out calibration set and
688 absorbing constants into c'_s , the embedding-side surrogate used by LTS becomes

689
$$U_{\text{emb}}^{(j)} = c'_s \|W \Delta e^{(j)}\|_2^2, \quad (19)$$

690

691 which provides a deterministic, position-wise upper bound on the next-step JS divergence.

692 **Logit-side high-probability bound.** At verification stage, let \tilde{p} denote the post-processed prob-
693 abilities after the standard logits processor and an ϵ -clamp, which ensures numerical stability for
694 small margins. Define the verify-time log-probability margin
695

696
$$\Delta \tilde{\ell}^{(j)} = \log \tilde{p}(t_m^{(j)}) - \log \tilde{p}(t_d^{(j)}). \quad (20)$$

697 Using calibration traces drawn under the decoding setup, we fit a constant $\kappa > 0$ such that

698
$$\Pr \left[\text{JS}(q_{j+1}, r_{j+1}) \leq \kappa (\Delta \tilde{\ell}^{(j)})^2 \right] \geq 1 - \delta_1. \quad (21)$$

699

700 With a fixed conservative safety factor $\alpha \geq 1$, the resulting logit-side surrogate used at inference is
701

702
$$U_{\text{logit}}^{(j)} = \alpha \kappa (\Delta \tilde{\ell}^{(j)})^2. \quad (22)$$

702 **Combined bound and empirical quantile.** To obtain a practical acceptance rule at verification
 703 time, we combine the embedding- and logit-side surrogates into a single per-position upper bound:
 704

$$705 \quad U^{(j)} = \min\{U_{\text{emb}}^{(j)}, U_{\text{logit}}^{(j)}\}. \quad (23)$$

706 On the calibration traces, we compute the empirical $(1 - \delta_2)$ quantile τ_{δ_2} of $\{U^{(j)}\}$ and fix it for all
 707 subsequent inference. By calibration–test consistency (Assumption (iv)),
 708

$$709 \quad \Pr[U^{(j)} > \tau_{\delta_2}] \leq \delta_2, \quad j \in \mathcal{J}_{\text{test}}, \quad (24)$$

710 The Local Tolerance Score (LTS) gate therefore accepts at position j whenever $U^{(j)} \leq \tau_{\delta_2}$.
 711

712 **Theorem 1** (Risk bounds under LTS gating). *Suppose Equation (21) holds on the calibration set
 713 with level δ_1 , and the verification rule accepts whenever $\min\{U_{\text{emb}}^{(j)}, U_{\text{logit}}^{(j)}\} \leq \tau_{\delta_2}$. Let $\tau = \tau_{\delta_2}$.
 714 Then for any verification position $j \in \mathcal{J}_{\text{test}}$ the following hold:*

715 (i) **Conditional risk bound (per acceptance).**

$$717 \quad \Pr[\text{JS}(q_{j+1}, r_{j+1}) > \tau \mid U^{(j)} \leq \tau] \leq \delta_1.$$

718 (ii) **Unconditional tail bound.**

$$720 \quad \Pr[\text{JS}(q_{j+1}, r_{j+1}) > \tau] \leq \delta_1 + \delta_2.$$

722 *Proof.* Let $A = \{U_{\text{emb}}^{(j)} \leq \tau\}$, $B = \{U_{\text{emb}}^{(j)} > \tau, U_{\text{logit}}^{(j)} \leq \tau\}$, and $C = \{U^{(j)} > \tau\}$. By
 723 construction the acceptance event is the disjoint union $A \cup B$.
 724

725 (i) **Conditional bound.** On A we have deterministically $\text{JS} \leq U_{\text{emb}}^{(j)} \leq \tau$ by equation 19, hence
 726 $\Pr(\text{JS} > \tau \mid A) = 0$. On B , using equation 21 and the fact that $\alpha \geq 1$,

$$727 \quad \Pr(\text{JS} \leq U_{\text{logit}}^{(j)} \leq \tau \mid B) \geq 1 - \delta_1,$$

729 and therefore $\Pr(\text{JS} > \tau \mid B) \leq \delta_1$. Using total probability over $A \cup B$ proves the claim.
 730

731 (ii) **Unconditional bound.** Bounding $\Pr(\text{JS} > \tau)$ is obtained by:

$$732 \quad \Pr(\text{JS} > \tau) = \Pr(\text{JS} > \tau, A) + \Pr(\text{JS} > \tau, B) + \Pr(\text{JS} > \tau, C).$$

733 The contribution from A is zero by determinism. The part involving B is controlled by the calibra-
 734 tion bound $\delta_1 \Pr(B) \leq \delta_1$. For the component associated with C , equation 24 ensures

$$735 \quad \Pr(\text{JS} > \tau, C) \leq \Pr(C) = \Pr(U^{(j)} > \tau) \leq \delta_2.$$

737 Combining these bounds yields the unconditional guarantee $\delta_1 + \delta_2$. \square

739 **Corollaries and practical variants.** (i) *Bucketed calibration.* If calibration and test traces are
 740 only conditionally exchangeable given features (e.g., depth, root entropy, prompt length), perform
 741 the above procedure per bucket; the guarantees then hold conditionally within each bucket.

742 (ii) *Sequence-level control.* For a sequence of T verification positions, applying a union bound to
 743 the unconditional tail bound yields $\Pr[\exists j \leq T : \text{JS}(q_{j+1}, r_{j+1}) > \tau_{\delta_2}] \leq T(\delta_1 + \delta_2)$. The overall
 744 risk budget can be allocated across positions to keep a fixed target level.

745 (iii) *Finite-sample correction.* The empirical quantile can be replaced by a conservative binomial
 746 (e.g., Clopper–Pearson or Wilson) bound to control δ_2 in the small-calibration regime.
 747

748 **Remarks on constants and complexity.** All constants $(c_s', \kappa, \tau_{\delta_2})$ are estimated once on the cali-
 749 bration set and then fixed. At inference, computing $U_{\text{logit}}^{(j)}$ is $O(1)$ and computing $U_{\text{emb}}^{(j)}$ is $O(Kd)$,
 750 reusing verify-time quantities and requiring no extra forward passes.
 751

752 *Calibration stability.* Because both surrogates depend only on the target model’s embedding space
 753 and verify-time logits, which are intrinsic properties of the backbone, the calibrated constants trans-
 754 fer across different domains and prompt styles used in our experiments. *Intuitively, LTS controls
 755 divergence in the model’s own next-step distribution; as long as the backbone, vocabulary, and
 embedding geometry remain fixed, the underlying divergence structure remains unchanged.*

NEW

756 **Algorithm 1** Calibration of LTS (Local Tolerance Score) parameters

757 **Require:** target model f , tied embeddings E , logits processor g , calibration corpus \mathcal{D}_{cal} , risk level
758 δ , vocab size K

759 1: Compute per-dimension inverse std from E and set $W = \text{diag}(1/\hat{\sigma})$

760 2: Initialize lists \mathcal{S}_{JS} , \mathcal{S}_{emb} , $\mathcal{S}_{\text{logit}}$

761 3: **for** each sample (C, j) in \mathcal{D}_{cal} **do**

762 4: Compute target distribution $\tilde{p} = g(f(C))$ at position j

763 5: Let $t_m = \arg \max \tilde{p}$ and choose a candidate $t_d \neq t_m$ (e.g., uniformly among top- K excluding
764 t_m)

765 6: Set $U_{\text{emb,raw}} = \|W(e_{t_d} - e_{t_m})\|_2^2$, $U_{\text{logit,raw}} = (\log \tilde{p}(t_m) - \log \tilde{p}(t_d))^2$

766 7: Form next-step distributions $q_{j+1} = f(C \setminus t_d)$ and $r_{j+1} = f(C \setminus t_m)$ restricted to the
767 top- K union of their supports

768 8: Compute JS over this union

769 9: Append JS to \mathcal{S}_{JS} , $U_{\text{emb,raw}}$ to \mathcal{S}_{emb} , $U_{\text{logit,raw}}$ to $\mathcal{S}_{\text{logit}}$

770 10: **end for**

771 11: $c'_s \leftarrow \text{Quantile}_{1-\delta}(\{\text{JS}/U_{\text{emb,raw}}\})$

772 12: $\alpha\kappa \leftarrow \text{Quantile}_{1-\delta}(\{\text{JS}/U_{\text{logit,raw}}\})$

773 13: For each item, define $U_{\min}^{(j)} = \min\{c'_s U_{\text{emb,raw}}^{(j)}, \alpha\kappa U_{\text{logit,raw}}^{(j)}\}$

774 14: $\tau_\delta \leftarrow \text{Quantile}_{1-\delta}(\{U_{\min}^{(j)}\})$

775 15: **return** $(W, c'_s, \alpha\kappa, \tau_\delta)$

776

777

778 A.2 LTS IMPLEMENTATION DETAILS

779

780 **Estimating constants used by the bound.** We treat the theoretical inequalities in Equations (7),
781 (9) and (10) as given (see §A.1) and focus on how the required constants are calibrated once and
782 then reused at inference. For the segment-average Lipschitz factor \bar{L}_j in Equation (7), we estimate
783 a surrogate on a held-out calibration set via finite differences along a few points $s \in [0, 1]$ on
784 the segment $e_{t_m^{(j)}} + s \Delta e^{(j)}$, aggregated per bucket (e.g., by depth, root entropy, or $\|\Delta e\|_2$). A
785 high quantile of these bucketwise values yields a conservative estimate, absorbed into c_s and c'_s in
786 Equations (9) and (10). For the TV \rightarrow JS coefficient $c_{\text{tv}}(\mu)$, we fix the active-vocabulary size K
787 and smoothing $\mu > 0$ and treat the resulting constant as tied to (K, μ) . Since all quantities depend
788 only on the backbone’s embedding geometry and its next-step logits, the calibrated constants are
789 inherently *per-backbone* and do not vary with downstream task domains.

790

791 **Calibration protocol and pseudocode.** For verified position j , we compute: (i) a near-oracle
792 next-step divergence $\text{JS}(q_{j+1}, r_{j+1})$ on the top- K union, (ii) an embedding-side raw score
793 $U_{\text{emb,raw}}^{(j)} = \|W \Delta e^{(j)}\|_2^2$ with diagonal whitening, and (iii) a logit-side raw score
794 $U_{\text{logit,raw}}^{(j)} = (\Delta \tilde{\ell}^{(j)})^2$ from post-processed probabilities. The construction of token pairs in calibration is solely
795 for estimating local variation in the next-step distribution and does not prescribe how acceptance
796 decisions are made at inference time, ensuring context-agnostic applicability.

797

798 **Deployment.** At verification time we compute

$$U_{\text{emb}}^{(j)} = c'_s \|W \Delta e^{(j)}\|_2^2, \quad U_{\text{logit}}^{(j)} = \alpha\kappa (\Delta \tilde{\ell}^{(j)})^2, \quad U^{(j)} = \min\{U_{\text{emb}}^{(j)}, U_{\text{logit}}^{(j)}\}.$$

801 Then $\text{LTS}^{(j)} = 1 - U^{(j)} / \tau_\delta$, and acceptance occurs when $\text{LTS}^{(j)} \geq \theta$. Since all calibrated constants
802 depend only on backbone-level geometric and probabilistic structure, the same parameters transfer
803 across different domains without retraining. No additional forward passes are required.

804

805 A.3 ADDITIONAL EXPERIMENTS

806

807 A.3.1 EXPERIMENTAL DETAILS

808

809 **Decoding and speculative setup.** Unless noted otherwise, decoding uses temperature $T = 1.0$
with the unmodified EAGLE-3 verification schedule. We set the draft-tree depth to $S = 6$ and

810
811 Table 5: Empirical tightness of the JS upper bound across four benchmarks. Coverage is the fraction
812 of accepted positions satisfying $JS \leq U_{\min}$; Wilson 95% confidence intervals are shown.

813	Task	Coverage ($JS \leq U_{\min}$)	95% CI (Wilson)	814
815	MT-Bench	99.4%	[98.7, 99.7]	816
816	HumanEval	95.7%	[93.1, 98.4]	817
817	GSM8K	95.3%	[91.7, 98.1]	818
818	Alpaca	97.6%	[96.5, 98.4]	819

NEW

820 cap the number of drafted tokens per cycle at `max_draft_tokens`= 32, with top- k sampling
821 following the backbone defaults. For Qwen-3-8B we disable the optional “thinking” mode.

822 *Choice of draft-length.* Our hardware environment differs from the high-throughput settings used in
823 official EAGLE-3 evaluations: all experiments are run on NVIDIA RTX A6000 (48 GB), whose
824 memory bandwidth and compute throughput make large draft trees significantly more latency-
825 sensitive. As observed in prior analyses of speculative decoding efficiency Tang et al. (2025),
826 increasing the draft length enlarges the tree, KV-cache footprint, and attention/masking cost, and
827 these overheads are not always amortized on memory-bound GPUs. Under this constraint, a limit
828 of 32 drafted tokens yields more stable end-to-end latency while keeping the comparison between
829 EAGLE-3 and ARC-Decode fair by using a fixed tree size across all methods.

FIX

830 **ARC-Decode settings.** We use a global LTS threshold $\theta = 0.3$. All other ARC-Decode compo-
831 nents follow the configurations described in the main text and Appendix, with calibration performed
832 once and then frozen. All remaining decoding settings are kept identical to EAGLE-3.

833 **Calibration set.** We calibrate all ARC-Decode constants once per backbone using a 200-prompt
834 subset of the public OpenAssistant OASST1 dataset (English, single-turn). Prompts are uniformly
835 sampled (fixed seed) with target lengths in [32, 256], providing a diverse collection of local decoding
836 contexts while remaining disjoint from our evaluation domains. Calibration reuses the same decod-
837 ing traces produced during standard speculative verification and introduces no additional model
838 evaluations. All other decoding settings match those of EAGLE-3.

839 A.3.2 EMPIRICAL VALIDATION OF LTS RISK COVERAGE

840 To evaluate the empirical tightness of the upper bounds used by LTS, we audit accepted positions
841 across four benchmarks (MT-Bench, HumanEval, GSM8K, Alpaca) using the Llama-3.1-8B back-
842 bone under the same decoding configuration as in §4. For each accepted draft token, we com-
843 pute the true next-step JS divergence $JS(q_{t+1}, |, p_{t+1})$ and compare it against the operational bound
844 $U_{\min} = \min U_{\text{emb}}, U_{\text{logit}}$. This analysis is performed offline from decoding traces and does not
845 affect inference. Across all datasets, the operational bound reliably over-approximates the true next-
846 step divergence, with coverage consistently above 95% and reaching 99.4% on MT-Bench. These
847 results confirm that U_{\min} provides a stable and accurate surrogate for local distributional sensitivity,
848 supporting the validity of the risk-bounded acceptance rule used by ARC-Decode.

849 A.3.3 ADDITIONAL COMPARISON WITH MEDUSA AND JUDGE DECODING

850 We additionally compare ARC-Decode with two representative relaxed-acceptance baselines:
851 *Medusa* and *Judge Decoding*. For Medusa (Cai et al., 2024), we use the official pretrained
852 Medusa-1 and Medusa-2 checkpoints, trained on Vicuna-13B and Vicuna-13B-v1.5, respec-
853 tively. For Judge Decoding (Bachmann et al., 2025), since no pretrained model is available, we
854 re-implement its judge classifier following the procedure described in the original paper, pairing
855 the EAGLE-3 draft model with Llama-3.1-8B as the target model. All methods are evaluated on
856 MT-Bench and Alpaca under identical decoding hyperparameters and prompting setups, using a sin-
857 gle NVIDIA RTX A6000 GPU. Across both datasets and model scales, ARC-Decode yields higher
858 accept length and higher end-to-end speedup than Medusa and Judge Decoding.

864
865
866 Table 6: Comparison with Medusa and Judge Decoding across two datasets.
867
868
869
870
871
872
873
874

Model	Method	MT-Bench		Alpaca	
		Accept	Speedup	Accept	Speedup
Llama-3.1-8B	Judge	4.17	2.01	3.15	1.74
	EAGLE-3	3.35	1.84	2.85	1.42
	ARC (Ours)	4.49	2.40	3.96	2.28
Vicuna-13B	Medusa-1	2.58	2.13	2.62	2.16
	Medusa-2	3.26	2.65	3.24	2.64
	EAGLE-3	4.01	2.74	4.78	2.64
	ARC (Ours)	5.28	3.35	5.58	3.03

875
876 NEW
877878 Table 7: Performance on the challenging MMLU-Pro benchmark. ARC-Decode maintains accuracy
879 while providing higher accept length and speedup.
880
881

Method	Accept Length	Speedup	Accuracy (%)
Vanilla	—	1.00×	32.4
EAGLE-3	2.81	1.60×	32.3
ARC (Ours)	3.50	1.88×	32.3

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999884
885 A.3.4 EVALUATION ON A MORE CHALLENGING BENCHMARK: MMLU-PRO886 To assess the robustness of ARC-Decode under substantially more difficult reasoning workloads,
887 we additionally evaluate all methods on **MMLU-Pro** (Wang et al., 2024), a large-scale benchmark
888 containing 12,032 queries and task difficulty than those used in our main experiments. We compare
889 vanilla Llama-3.1-8B, EAGLE-3, and ARC-Decode under identical decoding settings (temperature
890 = 1.0, no chain-of-thought prompting, no few-shot examples).891 Across this challenging dataset, ARC-Decode matches the accuracy of vanilla decoding and
892 EAGLE-3 while achieving higher accept length and greater end-to-end speedup. These results indicate
893 that ARC-Decode maintains output performance even on difficult, high-mismatch tasks.
894

895 A.3.5 COMPARISON WITH ALTERNATIVE PRUNING RULES

896 To assess the effect of different draft-tree pruning rules, we compare our entropy-guided pruning
897 (Sec.3.2) with several heuristic alternatives under the same EAGLE-3 setup (Qwen3-8B, temper-
898 ature 1.0) on MT-Bench, using a single NVIDIA RTXA6000 GPU. All methods share the same
899 verification rule of EAGLE-3, only the pruning policy differs.
900901

- **Entropy-guided (ours).** Entropy-depth scoring with per-layer mass control, prefix-
902 closure, and leaf-safety.
- **Depth.** Linear depth-biased ranking.
- **Depth-Exp.** Exponential depth bias favoring deeper nodes.
- **Accum-Prob.** Cumulative branch probability along the root-to-node path.

903 Entropy-guided pruning achieves the highest acceptance length and throughput among all tested
904 strategies. Depth-based and cumulative-probability heuristics are less effective because they make
905 node-wise decisions without enforcing consistent root-to-leaf paths, which limits usable tree capac-
906 ity. In contrast, our rule maintains prefix-consistent paths and selects drafts more efficiently.
907

913 A.4 PROMPT TEMPLATES USED IN EVALUATION

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
9799920 We follow the standard OpenCompass (Contributors, 2023) prompting setup. Prompts are rendered
921 using each model’s chat template as invoked internally by `apply_chat_template()` in Open-
922 Compass. Unless otherwise noted, all tasks use single-turn prompts without few-shot examples or
923 chain-of-thought prompting (and Qwen-3-8B is evaluated without the “thinking” mode).
924

918 Table 8: Effect of alternative pruning strategies on Qwen3-8B+EAGLE-3 decoding (MT-Bench).
919

920 Pruning strategy	921 Accept length \uparrow	922 Throughput (tok/s) \uparrow	923 NEW
924 Ours (entropy-guided)	2.70	56.4	
925 Depth (best α)	2.53	51.2	
926 Depth-Exp	2.53	51.1	
927 Accum-Prob	2.57	51.8	

928 **MT-Bench.** Rendered using the model’s chat template. System prompt:
929930 You are a helpful, respectful and honest assistant.
931932 **HumanEval.** System prompt:
933934 You are a helpful, honest assistant. You write Python **function bodies only** (no `def` line
935 and no comments).
936937 User prompt: the official `prompt` string from HumanEval.
938939 **GSM8K.** We use the **4-shot** prompt format. User message:
940941 Question: {question}
942 Let’s think step by step
943 Answer:
944945 **Alpaca.** System prompt:
946947 You are a helpful, respectful and honest assistant.
948949 User prompt: the instruction text from AlpacaEval.
950951 **MMLU-Pro.** System prompt:
952953 You are a helpful, respectful and honest assistant, using the given options to choose the
954 single best answer.
955956 User prompt:
957958 You are given a multiple-choice question. Choose the single best answer.
959960 Question: {question}
961 Options: A. {opt1}, B. {opt2}, C. {opt3}, ...
962963 Answers are restricted to a single letter (A, B, C, ...).
964965

A.5 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

966967 Large language models were used solely for grammar correction. All scientific content was developed
968 and validated independently by the authors.
969970

A.6 ETHICS STATEMENT

971972 The research adheres to the ICLR Code of Ethics. All experiments use publicly available pretrained
973 language model weights and standard academic benchmarks, with no access to personally identifiable
974 information or sensitive data. The work focuses on improving the computational efficiency of
975 autoregressive inference in large language models and does not introduce new capabilities that could
976 enable misuse. The proposed method is a training-free, plug-in optimization that does not modify
977 base model weights and constrains distributional shifts within a calibrated risk budget, thus posing
978 no additional risks related to fairness, safety, or societal impact.
979