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ABSTRACT

Training large models like GPT-3 requires a large amount of data, as well as abun-
dant computation resources. While collaborative learning (e.g., federated learning)
provides a promising paradigm to harness collective data from many participants,
performing training for large models remains a major challenge for participants
with limited resources. We introduce MSfusion, an effective and efficient collabo-
rative learning framework, tailored for training large models on resource-constraint
devices through model splitting. Specifically, a double shifting model splitting
scheme is designed such that in each training round, each participant is assigned a
subset of model parameters to train over local data, and aggregates with sub-models
of other peers on common parameters. While model splitting significantly reduces
the computation and communication costs of individual participants, additional
novel designs on adaptive model overlapping and contrastive loss functions help
MSfusion to maintain training effectiveness, against model shift across partic-
ipants. Extensive experiments on image and NLP datasets illustrate significant
advantages of MSfusion in performance and efficiency for training large models,
and its strong scalability: computation cost of each participant reduces significantly
as the number of participants increases.

1 INTRODUCTION

The contemporary technological landscape, characterized by the emergence and rapid evolution of
large models, has ushered in a transformative era for machine learning and artificial intelligence.
Large language models (LLMs), exemplified by GPT-3 and its counterparts, trained on vast corpora of
billions of tokens, have captivated the global community with their remarkable capabilities, including
human-like text generation, language translation, question answering, and document summarization
Radford et al. (2018); Zhao et al. (2023). However, the practical training of these models is hamstrung
by substantial computational and data requirements.

Consider the following real-world scenario: multiple companies, each armed with its own resource-
limited servers (or cloud instances) and the private data collected from their respective clients,
aspire to harness the advantages of large models. The objective, therefore, is to leverage the
existing computational power of their servers collaboratively to train a high-performance large model.
Additionally, due to privacy and cost considerations, the introduction of an additional central server is
unsuitable for these companies. Conventional distributed learning methods like FedAVG McMahan
et al. (2017) is not applicable as it is not practical to perform local SGD on large models, given the
memory and computation constraints on companies’ local servers. As demonstrated in Dey et al.
(2023), utilizing only 10% of a large language model during training can result in up to a 100-fold
reduction in Floating Point Operations (FLOPs), translating to substantial cost savings. Motivated
by this, we ask the following question: Is it possible for these companies to collaboratively train a
high-performance large model over their private data, with each company training a sub-model as a
split from the full model?

To address the above question, we propose MSfusion, a novel collaborative learning framework
that utilizes model splitting to enable effective and efficient training of large models over resource-
constraint participants. MSfusion leverages a network of decentralized participants, each equipped
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with its unique dataset, to independently extract and train split models from a larger model, effectively
managing resource constraints. A novel double shifting splitting scheme is proposed to ensure
extensive coverage of the global full model by the participants. An overlap aggregation method is
introduced to further reduce communication needs. Moreover, an adaptive splitting mechanism is
introduced to dynamically adjust the overlap of model parameters across participants as training
progresses, expediting model convergence. A contrastive objective is designed to mitigate model drift
caused by heterogeneous data distributions and differences in participants’ sub-models.

MSfusion, as a combination of model and data parallelism, not only reduces computation and
communication costs, but also enhances the model performance via utilizing diverse datasets across
multiple participants. We implement MSfusion and evaluate it over various image and NLP
datasets. Extensive experiments demonstrate the substantial advantages of MSfusion in model
performance and computation and communication efficiencies, over SOTA distributed learning
methods using model splitting. MSfusion also exhibits strong scalability such that to achieve
some target accuracy, the required split model size (hence computation/communication load) of each
participant decreases significantly as the number participants increases. We view this as a key enabler
for more resource-constraint participant to contribute to and benefit from training of large models.

2 RELATED WORKS

2.1 DECENTRALIZED LEARNING

Decentralized learning, in contrast to its centralized counterpart, pursues a consensus model through
peer-to-peer communication, eliminating the reliance on a central server. This approach offers distinct
advantages in terms of communication efficiency and data privacy preservation when compared to
Centralized Federated Learning (CFL) Shi et al. (2023); Li et al. (2022). In an exemplary serverless,
peer-to-peer Federated Learning (FL) implementation, Roy et al. (2019) introduced BrainTorrent,
which has found application in dynamic peer-to-peer FL environments, particularly in medical
contexts. Dai et al. (2022) proposed a novel approach employing personalized sparse masks to train
personalized models, reducing communication costs by filtering out parameter weights with minimal
influence on the gradient.

2.2 KD-BASED METHOD

Knowledge Distillation (KD) based methods offer a solution wherein the complex knowledge
encapsulated in a large model (server model) is imparted to a smaller, more tractable model (client
model). Methods such as FedET in Cho et al. (2022) have demonstrated some efficiency of KD.
The defining strength of KD-based methods lies in their ability to train more compact models,
approximating the performance of their larger counterparts with substantially less computational
overhead. Nonetheless, achieving competitive accuracy typically necessitates access to public datasets
that align in domain and scope with the client data Lin et al. (2020). A critical constraint of KD-based
methods is the necessity for a central server, both for computational intensity and compatibility
with decentralized architectures and secure aggregation protocols, rendering them less suited to the
decentralized collaborative settings introduced in this study.

2.3 MODEL PARTIAL TRAINING

The partial training (PT-based) paradigm presents a distributive strategy wherein the model is
fragmented across multiple servers, and each server is responsible for training a discrete segment
of the model Hong et al. (2022); Alam et al. (2023); Diao et al. (2021). This modular approach
considerably alleviates the computational demands on individual servers and fosters parallelized
training. A notable limitation of current PT-based methodologies is their confinement to CFL
frameworks, designed to reconcile computational disparities among clients. Such methods inherently
assume the participation of participant possessing the complete model during the training phase, a
presumption misaligned with the decentralized scenario envisaged in our work. And these participant
actually play a important role, without such participants these methods failed to obtain a good
performance shown in Section 5. Shulgin & Richtárik (2023) provide more detailed theoretical
understanding behind PT-based methods, further showing its potential.
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3 PROBLEM DEFINITION

Consider a collaborative learning system of N participants. Each participant n, n ∈ {1, ..., N}, has a
local dataset Dn = {(x(n)

i , y
(n)
i )}Mn

i=1 with Mn collected samples. The goal is to train a global model
W over all participants’ datasets, to solve the following optimization problem:

min
W

f(W ) =
1

N

N∑
n=1

f̂n(W ),

s.t. f̂n(W ) :=
1

Mn

Mn∑
i=1

L̂(W ; (x
(n)
i , y

(n)
i )).

(1)

Here f̂n(W ) is the local empirical risk of participant Si, for some loss function L̂.

We focus on the scenarios of collaborative training of large models (e.g., LLMs with billions of
parameters), where it is impractical for a participant to locally train W due to limited memory and
computation resources. We consider a model splitting framework, such that each participant trains
a smaller sub-model wn split from the global full model W (wn ⊆ W ). Based on this, the local
empirical risk for participant n becomes

fn(wn) :=
1

Mn

Mn∑
i=1

Ln(wn; (x
(n)
i , y

(n)
i )), (2)

where Ln is the local loss corresponding to the sub-model wn. After the participants finish their local
training, the obtained sub-models are fused into a global model. This model fusion can take place
over many rounds, and the sub-model trained at each participant can vary across rounds.

We define split model size of participant n, denoted by µn, as the ratio of the size of wn to the size of
W , i.e., µn = |wn|

|W | . In practice, µn is principally determined by the computation and communication
capabilities of the participant. While previous studies have often assumed the presence of a powerful
participant who can process the entire model, i.e., µn = 1, we focus primarily on the scenario where
a group of less capable participants collaborate to train an effective large model, where all participants
have comparable but small split model sizes, e.g., µn ≤ 0.5 for all n.

Training large models over the collaborative learning framework described above are faced with
following major challenges.

• Efficiency: Computation cost for local training and communication cost to exchange mod-
els/gradients are major efficiency bottlenecks when dealing with large models Chen et al. (2022);
Zhang et al. (2023). Although model splitting helps to alleviate this issue, doing it naively may
significantly reduce the model performance.

• Data and Model Heterogeneity: Like in the case of FL, the local data on different participants
tend to follow different distributions; in addition, the split portions of the global full model may
diverge among participants. As it is well known that data non-iidness leads to reduced model
performance Collins et al. (2021), the “model drift” caused by double heterogeneity of sub-model
and local data poses serious challenges on training effective large models.

• Scalability: To encourage participation of more resource-limited devices, it is desirable that as
the number of participants increases, a smaller split model size is required on each participant
to achieve a target accuracy. However, more participants exacerbates the issue of model drift,
potentially degrading the model performance. How to design model splitting to maintain model
performance with reduced split model size is hence crucial to achieving scalable collaborative
training.

4 MSFUSION

In this section, we introduce MSfusion, a model splitting approach to address the above challenges,
for effective and efficient collaborative training of large models. Figure 1 provides an overview of
proposed MSfusion. Algorithm 1 gives the pseudo-code of MSfusion.
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Figure 1: Overview of MSfusion.

4.1 DOUBLE SHIFTING SPLITTING SCHEME

We first introduce a novel splitting approach, dubbed Double Shifting Model Splitting Scheme (DSS),
as essential part of our MSfusion framework for achieving model partitioning among participants.
MSfusion employs a two-tier shifting model partitioning approach: one at the inter-participant
level and another at the inter-round level. This departs significantly from existing methodologies such
as Federated Dropout, which utilizes random splitting; HeteroFL and FjORD, which employ static
splitting; and FedRolex, which implements round-rolling splitting. Figure 2 shows the difference
between DSS and previous model splitting schemes.

Figure 2: Difference between DSS and previous model splitting schemes.

Inter-Participant Gap: During either the initiation phase of training or when there is a change in the
set of participants (either through joining or leaving) each participant is assigned an unique index
through consensus. For participants with adjacent indices, the starting nodes of their sub-models at
i-th hidden layer of the global full model is differed by the following gap

Gi =
Ki

N
× c, (3)

where Ki represents the size of i-th hidden layer, and c ∈ [0, 1] serves as an overlapping control
parameter. Consequently, the index of the starting node at participant n is nGi. This gap ensures that
the entirety of the global model W is adequately represented across all participants during a single
communication round. Moreover, it ensures overlap (shade part in Figure 2) between sub-models
assigned to adjacent participants.

Inter-Round Gap: Between successive communication rounds, each participant shifts the starting
node of its local sub-model by a gap ζ. This gap ensures that the parameters of the global model W
are uniformly optimized by individual participants. In MSfusion, ζ is set to 1.

For a participant with index n and a split model size µn, for the i-th hidden layer of the global full
model, the indices of the neurons (for fully-connected layers and hidden layers of attention heads of
transformers) or filters (for convolutional layers) contained in the sub-model wn in round r, denoted
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by φ
(r)
n,i, is presented as follows.

φ
(r)
n,i=

{
{Gn,i,r,Gn,i,r + 1, . . . ,Gn,i,r + ⌊µnKi⌋ − 1} if Gn,i,r + ⌊µnKi⌋ ≤ Ki,
{Gn,i,r,Gn,i,r + 1, . . . ,Ki − 1} ∪ {0, 1, . . . ,Gn,i,r + ⌊µnKi⌋ − 1−Ki} else.

(4)
Here Gn,i,r = nGn,i + rζ is the combined Inter-Participants and Inter-Round Gap. Note that in DSS
the split model size µ dictates the number of output channels/neurons for the corresponding layer,
which subsequently influences the number of input channels/neurons for the succeeding layer. To
preserve dimensional consistency, DSS is intentionally not applied to the input and final output layers
of the model. Detail analysis for DSS are provided in Appendix A.1.

4.2 OVERLAP AGGREGATION

The introduction of MSfusion brought with it a transformative change in model splitting by
leveraging the DSS. A notable innovation is the implementation of a stable, controllable overlap,
expressed as Ψ(r)

{n,n+1},i = w
(r)
n,i ∩ w

(r)
n+1,i. Such an overlap encapsulates the intersection of adjacent

participant models, distinctly differentiating MSfusion from prior methodologies.

Traditional methods, such as static and round-rolling splits, consistently retain overlaps equal to the
smaller-sized participant models, so that in each communication round only this small part of global
model W is collaboratively aggregated. While the random splitting method yields overlaps that are
unstable for participants to utilize. MSfusion, however, simplifies overlap recognition between
participants and provides robust control with the overlapping control parameter, c. This overlap rate
can be precisely quantified as: δ{n,n+1} = 1− c

µN (c < µN) for two adjacent participant with the
same µ. And for random two participant δ ∈ [0, 1− c

µN ](c < µN).

Overlap Aggregation: Differenct from FedAvg McMahan et al. (2017), where server aggregation
rely on the complete models submitted by clients. MSfusion mandates only the overlapping
segments for transmission among connected participants. That is for each two connected participant
only send and receive the overlapping part between them. And this can be formalized as the following
overlapping average in MSfusion:

θ∗n,[l,i] =
1

S + 1

∑
si∈S

(θrsi,[l,i] + θrn,[l,i]) (5)

where θrn,[l,i] donates the i−th parameter of layer l of server n from wr
n, S ∈ N is the connected

participants holding θrn,[l,i]. This tailored aggregation around overlaps considerably diminishes
communication overheads, offering an efficient conduit for training LLMs in a distributed manner.

MSfusion’s initial setup hinges on a consensus regarding the participant index and µn, ensuring
ease in determining overlaps. During subsequent training iterations, each participant only train its
split model obtained from DSS, the global full model is not stored. Instead, an efficient fusion
mechanism within MSfusion fetches the requisite global model. Participants engage with adjacent
peers to access missing parameters (∁KiΘ

(r)
n,i), and combing these with aggregated overlap parameters

thus effectively obtaining the global full model W for further inference.

Dynamic Overlap to Boost Convergence: We design adaptive overlap strategy to further speed
up the convergence of MSfusion. In each 10 rounds(r mod 10 = 0), MSfusion updating the c
according to

c = c0(1− (r/R)p∗) (6)
Where c0 is the given initial control parameter, p is the final stage parameter, R is the total round
number. Since there is inter-round gap c is not updated per-round. At the training onset, a constant
value of c0 = 1 is chosen to yield a smaller overlap rate δ, enabling participants to encompass more
of the global full model, thereby accelerating training. As training progresses, c is tapered to amplify
δ, emphasizing collaborative fine-tuning. It’s imperative to underscore that a larger δ isn’t always
advantageous, given its direct implications on communication overhead and global model coverage.

4.3 CONTRASTIVE OBJECTIVE

In the considered collaborative learning framework, data on different participants often have distinct
distributions, leaning to model shift after local training. In addition, model splitting across partici-
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Algorithm 1: MSfusion
Input: Multi-server set Nn, model split rate µn, local dataset Dn, initial global full model W 0,

final stage parameter p.
Output: Server maintained split model w∗

n, trained the global full model W ∗.

Initiation:
Assign an index to each participant based on network topology by consensus.
Per-Server Operations:
while round r < R do

if r mod 10 = 0 then
Update c = c0(1− (r/R)p) in Gn,i,r;

Split local wr
n from W r by DSS (4) with Gn,i,r;

Transmit θrn,[l,i] to all connected servers holding i−th parameter;
Receive θrsi,[l,i] from S connected servers holding i−th parameter;
Aggregate local parameters based on (5)
Update w∗

n based on θ∗n,[l,i], and representations z ← wr
n, z∗ ← w∗

n, zr−1 ← wr−1
n .

Sample batch b = {(xi, yi)}Bi=1 from Dn;
The combined loss: Ln = ℓn + λℓncon, the contrastive loss (7)
Update: wr+1

n ← wr
n − η∇Ln

Receive round gap model parameter θr+1
s,[l,i] from connected server.

Global Model Combination:
Transmit θRn,[l,i] ∈ wR

n to connected server lacking i−th parameter;
Receive θRs,[l,j] ∈ ∁WwR

n from connected server holding j−th parameter;
Combine θRn,[l,i] with θRs,[l,j] to obtain the global combined model W ∗.

pants further exacerbate this drift, potentially undermining model performance. In the MSfusion
framework, the local aggregated model at each participant can be viewed as a potent surrogate for
the global full model. This feature inherently lends itself to the adoption of a contrastive learning
strategy Chen et al. (2020); He et al. (2020). Nevertheless, a direct application of contrastive FL
methods from systems like MOON Li et al. (2021) or CreamFL Yu et al. (2023) is untenable, since it
is computationally infeasible to run global-local model contrast at the scale of full model size.

In MSfusion, we apply contrastive learning on sub-models to curb the divergence between a
participant’s local model and the corresponding aggregated model. For any input x, MSfusion
extracts its local representation ẑn from the current sub-model wr

n that being updated, the aggregation
representation z∗n from the local aggregated model w∗

n, and the previous representation zr−1
n from

the sub-model of last round wr−1
n . Note there exist a inter-round gap shift between sub-models in

consecutive rounds. We focus on representations on the common part between wr
n and wr−1

n . We
construct the contrastive loss in MSfusion as follows:

ℓncon = − log
exp{[(ẑn)T · z∗n]/τ}

exp{[(ẑn)T · z∗n]/τ}+ exp{[(ẑn)T · zr−1
n ]/τ}

, (7)

where τ is the temperature coefficient to control the penalties on hard negative pairs Wang & Liu
(2021). This loss metric is optimized to align the local split model’s representation closely with that
of the local aggregated model, thereby curtailing participant model drift.

The overall objective for any participant n when given an input (x, y) is framed as:
Ln = ℓn(w

r
n;x, y) + λℓncon. (8)

Here ℓn is cross-entropy loss, λ is the coefficient governing the weight of the contrastive loss.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of MSfusion on various benchmark datasets,
spanning both image classification and natural language processing tasks. For more experiments
details (parameter size, data partition, and model architecture) and results are given in Appendix A.2.
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Datasets We conduct our evaluations on two distinct task categories: image classification and
natural language processing. For image classification, our method is subjected to rigorous testing on
three widely recognized datasets: CIFAR10, CIFAR100, and TinyImageNet. For natural language
processing (NLP) tasks, our evaluation leverages the PennTreebank, WikiText2 and WikiText103
dataset. To gauge performance on NLP tasks, we employ the perplexity metric, with lower values
signifying better performance.

Models To underscore the versatility of our approach across varied architectures, we employ both
convolutional and transformer models in our experiments. In image classification tasks, a modified
ResNet18 following Diao et al. (2021) is employed. Furthermore, the transformative potential of
MSfusion is exemplified through its adeptness in handling LLMs. To this end, transformer models
are the backbone of our NLP tasks. The global full model parameter size for transformers applied to
NLP tasks is 7.32M for PennTreebank, 19.3M for WikiText2 and 139.01M for WikiText103.

Data Heterogeneity In the image classification tasks, we introduce data heterogeneity by deliberately
skewing the label distribution among participants. This non-iid characteristic is attained by assigning
each participant a distinct subset of H classes. Specifically, for CIFAR10, we set H = 5, for
CIFAR100, H = 20, and for TinyImageNet, H = 40. Moreover, for WikiText2, we naturally
generate non-IID data distribution through dataset partitioning among participants. Additionally, we
reduce the vocabulary size from 33,728 to approximately 3,000 words for each participant.

Spilt model size Throughout our study, we predominantly focus on participants with either uniform
small model splits µn ∈ {6.25%, 10%, ..., 62.5%}. The global full model represents an unsplit,
complete model. There is no participant with µn = 1. This is a notable advantage compared to
previous works with heterogeneous settings. While a participant training the global full model plays
an important role in their experiments, it is not present in our case due to large model size. To create
local sub-models, we adjust the number of kernels in convolution layers for ResNet18 while keeping
the output layer nodes constant. For Transformer models, we vary the number of nodes in the hidden
layers of the attention heads.

Baselines We compare MSfusion against SOTA PT-based model-heterogeneous FL methods
including HeteroFLDiao et al. (2021) and FedRolexAlam et al. (2023), as well as SOTA KD-based
FL method Fed-ETCho et al. (2022). To ensure equitable comparisons, we maintain uniformity in
parameters across all PT-based baselines, including learning rate, and the number of communication
rounds. For ring topology tests, we compare MSfusion with D-PSGD Lian et al. (2017) and the
state-of-the-art Dis-PFL Dai et al. (2022).

Table 1: Global model accuracy and computation cost comparison. For NLP tasks, since Fed-ET
cannot be directly used for language modeling tasks, result is marked as N/A. FLOPs denotes the
floating operations for each participant per round. 10 participants with 100% selected rate.

CIFAR10 CIFAR100 TinyImageNet

Methods iid non-iid FLOPs µn iid non-iid FLOPs µn iid non-iid FLOPs µn

HeteroFL 40.50 ± 1.2 37.36 ± 0.6 35.76M 25% 19.49 ± 0.9 12.11 ± 0.7 35.76M 25% 11.08 ± 0.6 14.54 ± 0.4 1.75B 62.5%
FedRolex 76.98 ± 0.7 66.41 ± 0.8 35.76M 25% 42.33 ± 0.8 36.61 ± 1.0 35.76M 25% 37.05 ± 1.1 20.63 ± 0.8 1.75B 62.5%
Fed-ET 83.42 ± 0.3 81.13 ± 0.3 1.09B N/A 41.61 ± 0.4 35.78 ± 0.5 1.09B N/A 29.61 ± 0.4 19.78 ± 0.6 6.12 B N/A
MSfusion S 78.74 ± 0.6 71.21 ± 0.4 6.95M 10% 43.77 ± 0.5 37.01 ± 0.7 6.95M 10% 12.62 ± 0.7 11.45 ± 0.5 79.79M 12.5%
MSfusion M 83.04 ± 0.3 75.71 ± 0.4 22.33M 18.75% 50.04 ± 0.5 44.11 ± 0.4 22.33M 18.75% 39.61 ± 0.6 20.91 ± 0.6 297.0M 25%
MSfusion L 87.37 ± 0.5 81.91 ± 0.3 151.7M 50% 60.63 ± 0.4 47.21 ± 0.5 151.7M 50% 51.41 ± 0.4 24.67 ± 0.3 1.255B 50%

PennTreebank WikiText2 WikiText103
Methods Perplexity FLOPs µn Perplexity FLOPs µn Perplexity FLOPs µn

HeteroFL 55.97 ± 5.4 148.6M 75% 579.05 ± 8.4 1.08B 75% 784.21 ± 23 111.9B 75%
FedRolex 61.52 ± 6.8 148.6M 75% 547.32 ± 45 1.08B 75% 697.42 ± 33 111.9B 75%
Fed-ET N/A N/A N/A
MSfusion S 9.09 ± 0.7 36.2M 21.875% 44.33 ± 3.6 198.5M 18.75% 13.21 ± 1.1 32.6B 21.875%
MSfusion M 8.02 ± 0.5 41.8M 25% 5.28 ± 0.4 290.1M 25% 8.92 ± 0.6 37.3B 25%
MSfusion L 3.11 ± 0.2 91.4M 50% 3.59 ± 0.2 633.2M 50% 6.31 ± 0.4 74.4B 50%

5.1 PERFORMANCE

Performance and computational cost comparisons between MSfusion and the aforementioned
baselines are summarized in Table. 1. Performance metrics are evaluated by testing this unsplit
global model on the testing dataset. To ensure equitable comparisons with centralized methods, we
apply fully connected topology for MSfusion in these experiments. For Fed-ET, we also calculate the
computation cost of the server and average it across participants.

Table. 1 reveals that, particularly for CIFAR100 and CIFAR10 datasets, MSfusion S outperforms
HeteroFL and FedRolex with only 10% of the full model per participant, which is less than 1/5 of
the computational cost. Increasing the local split model size directly enhances overall performance,
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though it comes at the cost of increased computation. MSfusion M achieves competitive perfor-
mance compared to SOTA KD-based method and outperforms all baselines in the more complex
TinyImageNet dataset. MSfusion L outperforms Fed-ET in all datasets while costing only 1/5
of the computation. Additionally, it’s important to note that MSfusion does not require a central
server and does not rely on public data, in contrast to KD-based methods. In NLP tasks, MSfusion
significantly outperforms HeteroFL and FedRolex. The suboptimal performance of HeteroFL and
FedRolex in collaborative training larger models is due to untrained global model parameters and ex-
acerbated model drift, issues unaddressed in their splitting-focused methodologies. This emphasizes
the advantage of MSfusion in handling larger models more effectively.

Figure 3: Performance comparisons on non-IID CIFAR10, CIFAR100 and WikiText2 datasets.

Detailed mode size perforamnce comparsion for CIFAR10, CIFAR100 and WikiText2 are shown in
Figure. 3. The perofrmance advantage of MSfusion is obvious espcially for the smaller split model
size due to the more efficient DSS scheme. To achieve a target accuracy, much less split model size
is required for MSfusion, means much less computation and communication cost is required for
all participants. Like for CIFAR10, for a target 70% accuracy performance, FedRolex require about
45% split model size which cost 116M FLOPs, while MSfusion only require 12.5% split model
size which only cost 9.83M FLOPs. That is more that 10 times more computation power for each
participants to training a same size global model with ruffly the same performance.

Methods CIFAR10 ACC FLOPs WikiText2 PPL FLOPs

HeteroFL 37.36 ± 0.6 35.76M 579.05 ± 8.4 1.08B
FedRolex 66.41 ± 0.8 35.76M 547.32 ± 4.5 1.08B
MSfusion w/o Con 73.16 ± 0.5 20.32M 9.57 ± 2.1 257.2M
MSfusion w/o Dyn 73.31 ± 0.5 22.33M 7.35 ± 1.5 290.1M
MSfusion w/o Con & Dyn 70.17 ± 0.8 20.32M 11.24 ± 2.3 257.2M
MSfusion 75.71 ± 0.5 22.33M 5.276 ± 0.4 290.1M

Table 2: Ablation studies.

An ablation study on CIFAR10 and Wiki-
Text2 with µ = 18.75% is given in Table.2.
It shows the accuracy and computation com-
parison for MSfusion, MSfusionwithout
contrastive objective (w/o Con), MSfusion
without dynamic overlap (w/o Dyn), and
MSfusion without both (w/o Con & Dyn).
The results showcase MSfusion’s superior performance over all baseline variants. Specifically,
in NLP tasks, the performance gain of MSfusion is more significant. This is mainly attributed
to the larger relative size of local model parameters within the transformer architecture, further
amplifying the model drift problem. This demonstrate that the proposed contrastive objective and
dynamic overlap techniques play key role in ensuring the effectiveness of MSfusion training, with
a marginal increase in computational cost. Moreover, MSfusion without contrastive objective can
still outperform all PT-based methods with much less computation cost.

Figure 4: Performance of MSfusion for different numbers of participants.

5.2 SCALABILITY

In order to assess scalability, we conducted experiments where we held the training data size constant
for participants, each assigned a fixed 1/20 portion of the training data (while the test data for
the global full model remained unchanged). We then evaluated the performance of MSfusion
and FedRolex with varying numbers of participants, all employing the same split model size for
collaborative training of a larger global full model. The results, presented in Figure. 4, demonstrate
that MSfusion consistently outperforms the SOTA FedRolex across various participant counts.
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Notably, FedRolex faces challenges in ensuring scalability, particularly when dealing with small split
model sizes, as it does not adequately address the issue of model drift. To achieve a target level of
performance, as number of participants increases, the required split model size on each participant
reduces significantly. For instance for CIFAR10, to achieve 70% accuracy, the split model size
reduces from 50% with 5 participants to merely 10% with 20 participants. This makes MSfusion a
key enabler for resource-limited devices to contribute to and benefit from collaborative training.

5.3 TOPOLOGY

In scenarios with limited network resources, the utilization of a ring topology becomes a viable
option. Figure. 5 (a) illustrates the distinctions between the ring topology and the fully-connected
network topology. To utilize MSfusion in ring topology, the participants with nearest network
topologies, the indexing is designed to be proximate, thereby facilitating optimal communication. We
examine the performance of MSfusion under these two different network topologies, as detailed in
Figure. 5 (b). It is worth noting that the Global Model Combination step in MSfusion occurs every
10 communication rounds, primarily for evaluating the performance of the global full model on the
testing dataset (this is exclusively for testing purposes and is not required during actual training). Our
findings reveal that MSfusion effectively facilitates a scalable collaborative training process while
maintaining a high level of performance under ring topology.

Methods ACC COMM FLOPs

Dis-PFL 52.57 ± 0.3 44.8MB 700.1M
D-PSGD 13.38 ± 0.5 89.7MB 830.3M
MSfusion(ini) 56.57 ± 0.6 2.48MB 22.33M
MSfusion(ter) 56.57 ± 0.6 3.21MB 22.33M

Table 3: Local efficiency comparison for
ring topology.

Since in both Dis-PFL and D-PSGD, each participant
retains a local model, and accuracy is calculated as the
average of local model accuracy over their respective lo-
cal datasets. To ensure a fair comparison, MSfusion
leverages local maintained global full model accuracy
over the local dataset, which is then averaged across all
participants to determine local accuracy. The results,
depicted in Figure. 5 (c), shown MSfusion is able to
converge significantly faster while outperforming Dis-PFL. Thanks to its efficient Dynamic Split
Scheduling (DSS) scheme, MSfusion achieves competitive performance in less than one-third of
the computation time. A comprehensive overview of local efficiency, specifically for CIFAR-100,
is provided in Table. 3. Notably, owing to the application of dynamic overlap in MSfusion, there
exists a slight discrepancy in communication costs between the initiation and termination of training.
Both values are provided, with the communication cost during training falling within this range.
These findings underscore that MSfusion entails only 1/20 to 1/15 of the communication cost and
1/20 of the computation cost, a testament to its efficient overlap averaging methodology.

Figure 5: (a) Illustrations of ring and fully-Collected Nework topology. (b) Performance difference
for MSfusion under ring and fully-Collected (µ = 50% for all participants). (c)Performance
comparison under ring topology (MSfusion µ = 25% for all participants).

6 CONCLUSION

In this paper, we have introduced and evaluated MSfusion, a solution designed to address challenges
in collaboratively training large models. Through its decentralized approach and an ensemble of
techniques like the DSS scheme and overlap aggregation method, MSfusion strikes a balance
between performance and efficiency. Its adaptive overlap strategy coupled with a tailored contrastive
objective further sets it apart by ensuring convergence speed and mitigating model drift, respectively.
Our empirical results underscore the potential of MSfusion to collaboratively training large models,
offering a good way for organizations striving to maximize performance while judiciously managing
resources.
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A APPENDIX

A.1 MATHEMATICAL REASONING FOR DSS

In this paper we mainly analysis the intution mathematical reasoning behind our proposed
MSfusion.

For the collaborative learning problem considered in the (2) with N participants and each with its
own dataset Dn = {(x(n)

i , y
(n)
i )}Mn

i=1 ∈ Rd × R . It can be summarized as the following problem:

min
W

f(W ) =
1

N

N∑
n=1

fn(wn)

s.t. fn(wn) :=
1

K

K∑
i=1

Ln(wn; (xi, yi))

wn ⊆W

(9)

In order to better investigating the DSS scheme, the definition of unbiased compressor is introduced
following Beznosikov et al. (2020); Shulgin & Richtárik (2023).

Definition 1. Let ζ ≥ 1 and ∀x ∈ Rd, for a (possibly random) mapping C : Rd → Rd, we say C is
unbiased compressor operators (C ∈ U(ζ)) if the following holds:

E[C(x)] = x, E
[
∥C(x)∥2

]
≤ ζ∥x∥2 (10)

Like for a random splitting scheme splitting q ∈ [d] := {1, ..., d} splitting the full model W , it can
be viewed as a operator achieving the following

CRandom (W ) := CRandW =
d

q

∑
i∈Q

eie
⊤
i W (11)

where in random splitting scheme Q ⊆ [d] is q random sampling (a subset of [d] of cardininality
q random chosen uniformly), e1, ..., ed are standard unit basis vectors, and CRandom (W ) belongs to
U(dq ), for a smaller size of split model (lower q), the higher the variance ζ of the compressor.

The Stochastic Gradient Descent (SGD) for participant n with local model wr
n in round r can be

written as:
wr+1

n := wr
n − η∇Ln(w

r
n) (12)

where η is the step size. In this paper, we consider the splitting scheme offers a sketch compressor
Cr

n ∈ Rd × R to achieve sketching on global full model W . And the split submodel computation
can be represented as the following:

W r+1 = Cr
nW

r − ηCr
n∇Ln(C

r
nW

r) (13)

The sketch Cr
n requires to be symmetric positive semi-definite matrix. The ideal of (13) is to reduce

the cost of directly computation on full model W r since the compressor Cr
n ensure the update lies in

a lower dimensional subspace. Each participant only compute its own the split model wr
n = Cr

nW
r,

and we need this split model can effectively representing the global full model.

We mainly discuss the case where the global full model size is smaller than split model times
participants number (1 ≤ µN ). In this situation, the Inter-Participant gap in DSS scheme ensures
that the global full model W can be fully covered by participants in each round. That is in round r,
we have inter-participant compressor

Cr
part :=

1

n

n∑
i=1

Cr
i = I (14)

where I is the identity matrix. And this means that in each round viewed from all the participants, the
(13) is equivalent to the (12).
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For the inter-round gap in DSS scheme ensures that the parameters of the global model W are
uniformly optimized by individual participants. That is for participant n, there exist r∗ to let the
inter-round compressor

Cn
round :=

1

q∗

r∗∑
i=1

Ci
n = I (15)

where q∗ ∈ [d] is determined by the split model rate µ. And this means means that for each
participants viewed from finite round r∗, the (13) is equivalent to the (12).

Since from the Definition. 1, E
[
∥C(x)∥2

]
≤ ζ∥x∥2, the overlapping parts can be viewed as an other

unbiased overlapping compressor Cn
over:

Cn
over := N ·

∑
j∈S

eπj
e⊤πj

(16)

where πj is subset of [d] determined by the overlapping part between participant j and participant n,
and in MSfusion this can be controled by c in dyc. S ⊆∈ N is a set of participants connected with
n and have overlapping part.

Then we will make some commonly used assumptions to facilitate the analysis.
Assumption 1. The local loss function Ln is L-smooth and u strongly convex. That is ∀x, y ∈ Rd,
there exist a positive semi-definite matrix ∃L ∈ Rd × Rd

Ln(y) ≤ Ln(x) + ⟨∇Ln(x), y − x⟩+ L

2
∥y − x∥22 (17)

and a positive semi-definite matrix ∃u ∈ Rd × Rd

Ln(y) ≥ Ln(x) + ⟨∇Ln(x), y − x⟩+ u

2
∥y − x∥22 (18)

Assumption 2. In each communication round r, all the participant can computes the true gradient
Cr

n∇Ln(C
r
nW

r) through its local submodel wr
n = Cr

nW
r.

To better study properties for DSS, we simplify the problem (9) into a quadratic problem

f(W ) =
1

N

N∑
n=1

fi(wn), fn(wn) ≡
1

2
w⊤

n Lnwn − w⊤
n bi (19)

And under this simplification, f(x) is L-smooth, and ∇f = Lx − b with L = 1
n

∑N
n=1 Li and

b = 1
n

∑N
n=1 bi.

We mainly examine the case of bi ≡ 0, in this situation, the overall updating can be written as:

1

N

N∑
n=1

Cr
n∇fi(Cr

nwn) =
1

N

N∑
n=1

Cr
nLiC

r
nwn = B

r
wr

n (20)

Proved in Shulgin & Richtárik (2023), we have the following theorem.
Theorem 1. Consider a distributed learning setting with learning process shown in (20) for a
quadratic problem (19) with L ≻ 0 and bi ≡ 0. Then for A := 1

2E[LB
r
+ L

r
B] ≻ 0, there exists a

constant ξ > 0
E[Br

LB
r
] ⪯ ξA (21)

and for a step size η(0 < η < 1
ξ ) the iterates satisfy the following:

1

R

R−1∑
r=0

E
[
∥∇f (wr

n)∥
2

L
−1

AL
−1

]
≤

2
(
f
(
w0

n

)
− E

[
f
(
wR

n

)])
ηR

(22)

and

E
[
∥wr

n − w∗
n∥

2
L

]
≤

(
1− ηλmin

(
L
− 1

2AL
− 1

2

))k

∥wr
n − w∗

n∥
2
L (23)

where λmin() denotes minimum eigenvalue, w∗
n := argmin f(wn).
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By applying Theorem 1, inter-participant compressor where Cr
part = I, we have B

r
= L, B

r
LB

r
=

L
3

and A = L
2 ≻ 0. So the (21) is satisfied for constant ξ = λmax(L). And with a step size η = 1

ξ ,
from (22) we have

1

R

R−1∑
r=0

∥∇f(wr
n)∥

2
I ≤

2λmax(L)(f
(
w0

n

)
− f

(
wR

n

)
)

R
(24)

Which means with inter-participant compressor viewed from all the participants the problem will
converge. And the analysis is the same for inter-round compressor.

Then is the analysis for overlapping compressor Cn
over. For the case each participant with same

split model size µ, we have fn(w
r
n) = 1

2w
r
n
⊤Lwr

n with L ≡ Ln. If we define a diagonal matrix
D = diag(L). And then 19 can be changed into

fn(D
− 1

2wr
n) =

1

2
(D− 1

2wr
n)

⊤L(D− 1
2wr

n) =
1

2
(wr

n)
⊤
(D− 1

2LD− 1
2 )wr

n =
1

2
(wr

n)
⊤
L̂wr

n (25)

where L̂ ≻ 0 as L ≻ 0, and diag(L̂) = I. Since for each participant the overlapping rate with
other participant is the same. Here we mainly analysis the overlapping part between each two
neighbor participant with biggest overlapping rate, then for overlapping compressor at each round r
we have Cr

n = N · eπr
n
e⊤πr

n
, where πr

n is the overlapping part between n and its neighbor with biggest
overlapping rate. So we have

E
[
B

r
]
= E

[
1

N

N∑
n=1

Cr
nL̂iC

r
n

]
= N · diag(L̂) = NI (26)

Then the 21 can be transformed as
ξÂ = ξNI ⪰ N2I (27)

which holds with ξ ≥ N . And the 22 can be converted to

∥∇f (wr
n)∥

2
L̂−1ÂL̂−1 ≥ Nλmin

(
L̂−1

)
∥∇f (wr

n)∥
2
I = Nλmax(L̂) ∥∇f (wr

n)∥
2
I (28)

So the convergence guarantee for the overlapping compressor is

1

R

R−1∑
r=0

∥∇f(wr
n)∥

2
I ≤

2λmax(L̂)(f
(
w0

n

)
− E

[
f
(
wR

n

)]
)

R
(29)

A.2 EXPERIMENT DETAILS AND MORE RESULTS

A.2.1 DATASETS DETAILS

CIFAR10 and CIFAR100 datasets each comprise 60,000 32x32 color images distributed across 10 and
100 classes, respectively, with 50,000 images used for training and 10,000 for testing. TinyImageNet,
a scaled-down counterpart of the renowned ImageNet dataset, encompasses 200 classes derived from
100,000 224x224 images.

A.2.2 DESCRIPTIONS OF HYPERPARAMETERS AND PLATFORM

For all the experiment, SGD optimizer is applied. The communication round for CIFAR10 and
CIFAR100 experiments is 500, for TinyImageNet, PennTreebank and WikiText2 experiments is
800, for WikiText103 experiments is 200. Local epoch for particitants is 1. τ = 0.5 like in Chen
et al. (2020). λ = 1 following Li et al. (2021). The initial conrol parameter c0 = 1, and final stage
parameter p = 0.75. Table. 4 present the parameter size, data partition, and model architecture for
each experiment.

Learning rate scheduler for MSfusion is CyclicLR scheduler which varies the learning rate between
the minimal and maximal thresholds. The learning rate values change in a cycle from more minor to
higher and vice versa. The reasons for choosing CyclicLR is the dynamic mechanisms in MSfusion.
The minimal thresholds is set 0.001, the maximal is set 0.0012, the cycle round is the same with the
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maximum communication round. Note to ensure equitable comparisons, we maintain uniformity
in parameters across all PT-based baselines(HeteroFL and FedRolex), including learning rate, and
the number of communication rounds. Other hyperparameters of FedRolex and HeteroFL is set by
following Alam et al. (2023).

All the experiments are conducted using PyTorch version 2.0 on a single machine equipped with
AMD EPYC 7542 CPU, 384GB of memory, and four NVIDIA 4090 GPUs.

Table 4: Experiments details.
CIFAR10 CIFAR100 TinyImageNet PennTreebank WikiText2 WikiText103

Data/Token size 50,000 50,000 100,000 929,500 2,088,600 103,227,000
Local data/token size
(10 participants) 5,000 5,000 10,000 92,950 208,860 10,322,700

Local epoch 1 1 1 1 1 1
Batch size 10 10 40 100 100 300
Model applied ResNet18 ResNet18 ResNet18 Transformer Transformer Transformer
Hidden size [64, 128, 256, 512] [64, 128, 256, 512] [64, 128, 256, 512] [512, 512, 512, 512] [512, 512, 512, 512] [256, 256, 256, 256]
Embedding Size N/A 256 256 256
Number of heads N/A 8 8 8
Dropout N/A 0.2 0.2 0.2
Sequence length N/A 64 64 64
Parameter size of
global full model 11.2M 11.2M 11.3M 7.32M 19.3M 139.01M

A.2.3 EFFECT OF INITIAL DYNAMIC GAP CONTROL PARAMETER

We also report the effect of initial dynamic gap control parameter c0, results are given in Figure. 6.
It can be shown that there is a huge performance difference between without inter-participant gap
(c0 = 0) and with inter-participant gap. Then the performance gradually increase until a optimal c∗0,
and this shown there is a trade-off between overlapping rate and global full model coverage each
round with all participants.

Figure 6: Effect of initial dynamic gap control parameter c0

A.2.4 HETEROGENEOUS SPLIT FUSION SETTING

We also discuss the heterogeneous split fusion setting where particitants’ server with different compu-
tation power are collaboratively training a large model. Specifically, in this paper, our heterogeneous
setting is more constrained with split model size for all participants is less than half of the global
full model (∀µn ≤ 0.5). Figure. 7 shows the heterogeneous split model size comparison with
(µn ∈ {0.5, 0.25, 0.1875, 0.125, 0.0625}), Figure. 8 shows the heterogeneous split model size
comparison with (µn ∈ {0.25, 0.1875, 0.125, 0.0625, 0.03125}). In these experiments, total of 10
participants are involved in the collaboratively training process, each 2 are assigned with a fixed
unique split model size from the list sets. It is clear that the proposed MSfusion way outperformed
STOA PT-based methods in the more constrained heterogeneous collaboratively learning settings
in both IID and non-IID data distributions with much faster converge speed and higher accuracy.
FedRolex and outperform HeteroFL with its round-rolling scheme, but the performance of FedRolex
is greatly dropped with smaller split model size in Figure. 8. While MSfusion can still maintain a
good performance thanks to its much more efficient DSS scheme. It can also be observed that the
model heterogeneous will greatly enhence the model drift between the particitants resulting greatly
influence the performance in the non-IID settings.
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Figure 7: Heterogeneous split model size comparison (µn ∈ {0.5, 0.25, 0.1875, 0.125, 0.0625})

Figure 8: Heterogeneous split model size comparison (µn ∈ {0.25, 0.1875, 0.125, 0.0625, 0.03125})
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