
Feasibility-Driven Trust Region Bayesian Optimization 1

Anonymous1 2

1
Anonymous Institution 3

Abstract Bayesian optimization is a powerful tool for solving real-world optimization tasks under 4

tight evaluation budgets, making it well-suited for applications involving costly simulations 5

or experiments. However, many of these tasks are also characterized by the presence of 6

expensive constraints whose analytical formulation is unknown and often defined in high- 7

dimensional spaces where feasible regions are small, irregular, and difficult to identify. In 8

such cases, a substantial portion of the optimization budget may be spent just trying to locate 9

the first feasible solution, limiting the effectiveness of existing methods. In this work, we 10

present a Feasibility-Driven Trust Region Bayesian Optimization (FuRBO) algorithm. FuRBO 11

iteratively defines a trust region from which the next candidate solution is selected, using 12

information from both the objective and constraint surrogate models. Our adaptive strategy 13

allows the trust region to shift and resize significantly between iterations, enabling the 14

optimizer to rapidly refocus its search and consistently accelerate the discovery of feasible 15

and good-quality solutions. We empirically demonstrate the effectiveness of FuRBO through 16

extensive testing on the full BBOB-constrained COCO benchmark suite, comparing it against 17

state-of-the-art baselines for constrained black-box optimization across varying levels of 18

constraint severity and problem dimensionalities ranging from 2 to 40. 19

1 Introduction 20

The global optimization of black-box objective functions under expensive, black-box constraints— 21

where both are only accessible via costly point-wise evaluations—is a fundamental problem in fields 22

such as machine learning (ML), engineering design, robotics, and natural sciences. For instance, 23

in automated machine learning [Hutter et al., 2019], black-box optimization techniques, and in 24

particular Bayesian optimization (BO) [Garnett, 2023], are commonly used to tune hyperparameters 25

of ML models to maximize predictive performance under strict constraints on model inference time, 26

memory footprint, or energy consumption. This setup is common in frameworks like Auto-sklearn 27

[Feurer et al., 2022], AutoKeras [Jin et al., 2023], or custom pipelines for neural architecture search 28

under deployment constraints [Cai et al., 2019]. Constrained BO is also widely used in crashwor- 29

thiness optimization [Raponi et al., 2019, Du et al., 2023] to efficiently tune design parameters for 30

objectives like weight or energy absorption, under constraints such as intrusion depth or peak 31

acceleration. In these settings, evaluating either the objective or constraints can be costly and 32

time-consuming, often relying on physical experiments or computationally intensive simulations. 33

The challenge of efficiently addressing black-box constrained problems is further amplified 34

in high-dimensional settings [Powell, 2019], meaning problem settings with dozens of decision 35

variables in the context of BO. In fact, as the volume of the search space increases, sampling 36

becomes sparse, surrogate models like Gaussian process regression models become harder to fit due 37

to the reduced correlation between points, optimization landscapes become more complex, with 38

many local optima and constraint boundaries that are trickier to approximate, and feasible regions 39

become narrow and non-convex islands in a vast space. A large portion of evaluations may land in 40

infeasible zones, and even identifying a single feasible point may consume a large portion—or even 41

all—of the available evaluation budget. This renders many existing BO methods ineffective. 42

Our contribution. Our work builds directly upon the Scalable Constrained Bayesian Optimiza- 43

tion (SCBO) algorithm [Eriksson and Poloczek, 2021], which introduced a scalable trust-region-based 44

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

framework for constrained BO in high-dimensional settings. SCBO demonstrated that localizing 45

the search using dynamically-adapted trust regions, rather than relying on global surrogate op- 46

timization, offers both scalability and performance benefits. However, the trust regions defined 47

by SCBO make only partial use of the information deriving from the modeling of the problem 48

constraints, specifically to center the trust region and select the next candidate solutions, demon- 49

strating particular effectiveness in the case where feasible regions are relatively easy to find—a 50

condition that often does not hold in the most challenging constrained problems. We hence propose 51

the Feasibility-Driven Trust Region Bayesian Optimization (FuRBO) algorithm, specifically designed 52

to tackle high-dimensional constrained optimization problems where finding any feasible point 53

is itself difficult. FuRBO retains the core idea of adaptive trust regions but shifts the focus to 54

feasibility-first exploration relying on the constraint isocontor predicted by the surrogate model. 55

To construct the trust region, FuRBO leverages both the objective and constraint surrogate models. 56

At each iteration, FuRBO samples a multivariate normal distribution of points, which we will 57

refer to as inspectors, over the constraint landscape, centered on the best candidate found so far. 58

These inspectors are used to estimate the likely location and shape of the feasible region. The 59

most promising inspectors—ranked based on both the objective and constraint models—determine 60

the position, shape, and size of the trust region for the next search step. Within this feasibility- 61

guided trust region, it then applies Thompson sampling on the objective and constraint models to 62

identify new promising points to query. Through a series of comprehensive experiments on the 63

full BBOB-constrained COCO benchmark suite [Dufossé et al., 2022], containing problems with 64

increasing constraint complexity, we show that FuRBO, thanks to its landscape-aware mechanism 65

that uses inspector sampling to guide the search toward promising feasible regions, either ties 66

or outperforms other state-of-the-art alternatives for constrained BO, with evident superiority in 67

settings in which feasibility is rare and hence difficult to locate. 68

Reproducibility: The code for reproducing our experiments, along with the whole set of figures, 69

are available on GitHub
1
. 70

2 Related Work 71

Bayesian optimization (BO) [Garnett, 2023] is a sample-efficient, model-based optimization frame- 72

work for solving expensive black-box problems where function evaluations are costly or time- 73

consuming. On continuous search spaces, a Gaussian Process (GP) is commonly used in BO to 74

define a prior distribution over the unknown objective function, capturing assumptions about its 75

smoothness and variability. The process begins with an initial set of evaluated points (also known 76

as Design of Experiments [Forrester et al., 2008]) typically selected through random sampling or 77

space-filling designs. Once data from the initial evaluations is available, the GP is conditioned 78

on these observations to yield a posterior distribution, which provides an approximation of the 79

unknown objective function along with uncertainty estimates. An acquisition function (AF) is 80

then used to decide where to evaluate next by balancing exploration (sampling in regions of high 81

uncertainty) and exploitation (sampling where high objective values are likely). This iterative 82

process continues until the evaluation budget is exhausted or convergence is reached. 83

Constrained BO extends the classical BO framework to settings where one must optimize an 84

objective function subject to one or more unknown or expensive-to-evaluate constraints. This is 85

common in real-world scenarios, such as engineering design or hyperparameter tuning, where 86

feasible solutions must satisfy safety, performance, or resource limits. Despite most work on BO 87

has focused on unconstrained scenarios, some extensions to constrained optimization problems 88

have been introduced in the last years. The constrained expected improvement (CEI), introduced 89

by Schonlau et al. [1998b] and popularized by Gardner et al. [2014], is the earliest and most widely 90

used technique for handling constraints in BO. It extends the standard Expected Improvement (EI) 91

1https://anonymous.4open.science/r/FuRBO/README.md

2

https://anonymous.4open.science/r/FuRBO/README.md

AF to handle constraints by multiplying the improvement with the probability that a candidate 92

solution is feasible. This allows the algorithm to prioritize sampling in regions that are not only 93

promising in terms of objective value but also likely to satisfy the given constraints. 94

The Predictive Entropy Search with Constraints (PESC) AF by Hernández-Lobato et al. [2016] 95

focuses in particular on problems with decoupled constraints, in which subsets of the objective and 96

constraint functions may be evaluated independently. It extends the entropy search AF by not only 97

reducing uncertainty about the location of the global optimum, but doing so under the constraint 98

that the solution must also be feasible. 99

Picheny et al. [2016] proposed SLACK, which augments the standard constrained Bayesian 100

optimization framework with slack variables to reformulate equality constraints as inequalities. 101

By combining this with an augmented Lagrangian approach and EI, they demonstrated improved 102

performance in problems with equality constraints. 103

Ariafar et al. [2019] advanced the augmented Lagrangian framework by integrating the Al- 104

ternating Direction Method of Multipliers (ADMM), allowing a more scalable and structured 105

optimization of constrained black-box problems. Their method also uses EI to select query points 106

and is particularly suited to problems with multiple and decoupled constraints. 107

Ungredda and Branke [2021] proposed a variant of the Knowledge Gradient (KG) AF—called 108

the constrained Knowledge Gradient (cKG)—to handle constrained optimization problems. In cKG, 109

feasibility is incorporated into the Bayesian lookahead by weighting the expected utility from the 110

objective GP with the estimated probability of feasibility from the constraint GPs, guiding the 111

search toward points that are both promising and likely to be feasible. 112

All of these methods were not designed with high-dimensional problems in mind and of- 113

ten struggle with scalability. This limitation is addressed in the design of the SCBO (Scalable 114

Constrained Bayesian Optimization) framework by Eriksson et al. [2019], which introduced a 115

surrogate-based framework that models the objective and each constraint separately, allowing 116

for greater flexibility and modularity in the modeling process. It uses trust regions as a core 117

component, using them to search for new candidate solutions locally, in regions with predicted 118

high feasibility and optimality, allowing for robust scalability to high-dimensional constrained 119

spaces. Despite the introduction of new methods in recent years (see the survey by Amini et al. 120

[2025] for a comprehensive overview), SCBO remains a state-of-the-art approach for constrained 121

high-dimensional BO. Unlike most methods reviewed, despite SCBO being developed in response 122

to practical challenges, its performance has been rigorously benchmarked also on standard test 123

problems. This has contributed to its robustness, establishing SCBO as a standalone optimization 124

framework that is also accessible through the well-known BoTorch [Balandat et al., 2020] package. 125

For this reason, we developed our method, FuRBO, building on SCBO as a foundation, but redefining 126

the trust region design procedure to more effectively address problems with narrow, hard-to-find 127

feasible regions. 128

3 Problem Formulation 129

We consider the problem of minimizing a black-box objective function 𝑓 : Ω → R subject to 130

multiple constraints. The goal is to identify an optimal design point 𝑥∗ ∈ Ω ⊂ R𝐷 that maximizes 131

the objective while satisfying all constraints: 132

𝑥∗ = arg min

𝑥∈Ω
𝑓 (𝑥)

subject to 𝑐𝑘 (𝑥) ≤ 0, ∀𝑘 ∈ {1, . . . , 𝐾}
(1)

Alongside the objective, the constraint functions 𝑐𝑘 : Ω → R return a vector c(𝑥) = 133

[𝑐1(𝑥), . . . , 𝑐𝐾 (𝑥)] that quantifies the feasibility of a sample. A point is considered to be feasi- 134

ble if it belongs to the set Ωfeas = {𝑥 ∈ Ω | 𝑐𝑘 (𝑥) ≤ 0 ∀𝑘 ∈ {1, . . . , 𝐾}}. 135

3

We assume a limited evaluation budget of 10𝐷 function evaluations, reflecting the practical 136

setting of real-world applications where each evaluation is costly and only a small number of queries 137

is affordable. This low-budget scenario is precisely where BO methods are most effective. After 138

using the total evaluation budget, the algorithm recommends a solution 𝑥best ∈ Ω. If 𝑥best ∈ F , we 139

measure the quality of a recommendation by loss, i.e., the simple regret, under feasibility conditions: 140

𝑙 (𝑥best) = 𝑓 (𝑥best) − 𝑓 (𝑥∗), where 𝑥∗ is the global optimum of the problem. If 𝑥𝑟 ∉ F , the solution is 141

considered infeasible and its maximum constraint violation (𝑉max(𝑥) = max𝑖=1,...,𝐾 max{0, 𝑐𝑘 (𝑥)}) 142

is returned instead. 143

4 Feasibility-Driven Trust Region Bayesian Optimization 144

To overcome some of the limitations of optimizing highly constrained problems, we propose a 145

new algorithm: the Feasible Trust Region Bayesian Optimization (FuRBO). Our method shares the 146

idea of using trust regions for BO introduced by Eriksson et al. [2019]. However, instead of using 147

the best-evaluate sample to define only the center of the trust region, we identify its position and 148

extension using the information available from the approximation models of both the objective and 149

constraint functions. What distinguishes our approach from SCBO is the formulation of the trust 150

region. We therefore begin by outlining the SCBO framework, followed by a detailed explanation 151

of how the trust region is defined in FuRBO. 152

4.1 SCBO algorithm 153

The SCBO framework extends the TuRBO algorithm [Eriksson et al., 2019] to address problems 154

with black-box constraints, by preserving most of the algorithm structure. It begins by evaluating 155

an initial design and fitting Gaussian Process (GP) models to the objective 𝑓 (𝑥) and constraints 156

𝑐𝑘 (𝑥) for 𝑘 = 1, . . . , 𝐾 . A trust region (TR) is initialized around the best feasible point; if none is 157

found, it is centered at the point with the smallest constraint violation. 158

The algorithm then iteratively proceeds until the evaluation budget is exhausted. In each 159

iteration, a batch of𝑞 candidate points is identified within the current trust region using a Thompson 160

Sampling (TS) [Thompson, 1933] AF: to return each of the 𝑞 points, after sampling a large set of 161

𝑟 candidate solutions within the TR, a realization {(ˆ𝑓 (𝑥𝑖), 𝑐1(𝑥𝑖), ..., 𝑐𝐾 (𝑥𝑖)) |1 ≤ 𝑖 ≤ 𝑟 } from the 162

posterior of both objective and constraints is sampled, and the candidate with maximum utility 163

among those that are predicted to be feasible is added to the batch. 164

Once the batch of 𝑞 points is selected, the algorithm evaluates both the objective and constraint 165

functions at these locations. The TR is then updated: its center is moved to the best feasible point 166

found so far, some success/failure counters (𝑛𝑠 , 𝑛𝑓) are updated, and the TR size 𝐿 (same for all 167

dimensions) is adjusted if either 𝑛𝑠 or 𝑛𝑓 reach some threshold for the update, 𝜏𝑠 and 𝜏𝑓 , respectively. 168

If 𝐿 becomes smaller than a predefined threshold 𝐿min, the whole procedure is reinitialized. 169

At the end of the optimization, SCBO recommends the best feasible point found, i.e., the point 170

with the smallest objective value among those satisfying all constraints 𝑐𝑘 (𝑥) ≤ 0, for 𝑘 = 1, . . . , 𝐾 . 171

We point the reader to the original paper by Eriksson and Poloczek [2021] for more details. 172

4.2 FuRBO algorithm 173

The main novelty of FuRBO is the definition of the TR. The other optimization steps are shared 174

with SCBO [Eriksson and Poloczek, 2021]. Nevertheless, for the sake of completeness, we present 175

in this section the entire optimization flow. We provide an illustration of the update procedure for 176

the TR in Figure 1 and the pseudocode of the entire FuRBO framework in Algorithm 1. 177

As shown in line 1 of Algorithm 1, FuRBO begins by sampling the entire search space Ω, 178

following the standard initialization procedure of vanilla BO. It then evaluates the sample points 179

on the true objective and constraint functions, hence generating a set S = {(𝑥𝑖 , 𝑓 (𝑥𝑖), c(𝑥𝑖))}𝑁𝑖=1
of 180

evaluated points. Here, c(𝑥𝑖) = [𝑐1(𝑥𝑖), . . . , 𝑐𝐾 (𝑥𝑖)] is a vector with as many components as the 181

4

Figure 1: One iteration of FuRBO. The leftmost panel shows the true objective and constraint isocon-

tours, with the global optimum in red. The next two panels show surrogate models of the

objective (top) and aggregated constraint (bottom), built from evaluated points (black dots);

the current best solution is marked in red. Inspectors (white crosses) are sampled around this

point and ranked by feasibility and objective value. The top P% (orange crosses) define the

TR (red square), using both objective and constraint models. A new candidate (orange dot) is

proposed within the TR, and the model are updated after evaluation (rightmost panel).

number of constraints defining the problem. Let F = {𝑥𝑖 ∈ S | 𝑐𝑘 (𝑥𝑖) ≤ 0,∀𝑘 = 1, . . . , 𝐾} be the 182

feasible set, i.e., the subset of feasible points in S according to all the constraints. Let
¯F = S \ F 183

be its complement. At each iteration of the optimization procedure, until the evaluation budget is 184

exhausted, the following steps are performed. 185

Rank samples. For all feasible samples 𝑥𝑖 ∈ F , define the ranking by the true objec- 186

tive value 𝑓 (𝑥𝑖) (lower is better for minimization). Let the feasible samples be sorted such 187

that 𝑓 (𝑥 feas
1
) ≤ 𝑓 (𝑥 feas

2
) ≤ · · · ≤ 𝑓 (𝑥 feas|F |). For the infeasible samples, we first normalize 188

each constraint dimension over all infeasible points: 𝑐𝑘 (𝑥𝑖) =
𝑐𝑘 (𝑥𝑖)

max |𝑐𝑘 (𝑥𝑖) | for 𝑥𝑖 ∈
¯F , 𝑘 = 189

1, . . . , 𝐾 . We adopt this definition of normalization to preserve the boundary between feasibil- 190

ity and infeasibility. We then define the maximum normalized constraint violation per sample 191

𝑣 (𝑥𝑖) = max𝑘=1,...,𝐾 𝑐𝑘 (𝑥𝑖), and rank infeasible samples by ascending 𝑣 (𝑥𝑖) (smallest violation first): 192

𝑣 (𝑥 infeas
1
) ≤ 𝑣 (𝑥 infeas

2
) ≤ · · · ≤ 𝑣 (𝑥 infeas| ¯F |). Finally we concatenate the ordered feasible and infeasible 193

samples in Sranked =

[
𝑥 feas

1
, . . . , 𝑥 feas|F | , 𝑥

infeas

1
, . . . , 𝑥 infeas| ¯F |

]
. The procedure described in this step is 194

what defines the ranking metric 𝑟 in Algorithm 1. 195

Generate the inspectors. We select the top-ranked point as the best candidate solution 𝑥𝑏𝑒𝑠𝑡 so 196

far (line 2). Let I = {𝑥1, . . . , 𝑥𝑁 } ∼ N (𝑥best, 𝜎2𝐼𝐷) denote a population of inspector points, sampled 197

according to a multi-variate normal distribution around the current best candidate (line 4). 198

Definition of the TR. The inspector population in I is ranked as described in Step (1), but based 199

on the evaluated models M and {C𝑘 , ∀𝑘 = 1, . . . , 𝐾} of the objective and 𝐾 constraints. We hence 200

define the ranked list R over I as R = rank(I ;M, C𝑖) = sorted(I, by increasing 𝑟 (𝑥)) (line 5). 201

Then, we select the top 𝑃% inspectors: Ibest = {𝑥 ∈ R | rank(𝑥) ≤ ⌈𝑃 · 𝑁 ⌉} (line 6) and define the 202

TR as the smallest hyperrectangle that contains all points in Ibest. Let 𝑥min

𝑗 = min𝑥∈Ibest 𝑥 𝑗 and 203

𝑥max

𝑗 = max𝑥∈Ibest 𝑥 𝑗 , for 𝑗 = 1, . . . , 𝑑 , then TR =
∏𝑑

𝑗=1
[𝑥min

𝑗 , 𝑥max

𝑗] (line 7). 204

Find new candidate solutions, update sample set and posterior distributions. Following the 205

SCBO algorithm, we use TS over the surrogate models (M, C𝑘), restricted to the current TR, to 206

propose a batch of 𝑞 new points to evaluate (line 8). We then evaluate both the objective function 𝑓 207

5

Algorithm 1 FuRBO algorithm

Require: Success threshold 𝜏𝑠 , failure threshold 𝜏𝑓 , success counter 𝑛𝑠 , failure counter 𝑛𝑓 , batch size
𝑞, inspector percentage 𝑃%, sample set S = ∅, surrogate model of the objective M, surrogate

model of the constraints C𝑘 , initial variance of the multivariate normal distribution 𝜎2
, search

space Ω, initial trust region TR = Ω, Thompson sampling AF TS, function to optimize 𝑓 ,

constraint functions 𝑐𝑘 , ranking metric 𝑟

1: Evaluate initial design, update S and train surrogate models (M, C𝑘)
2: 𝑥best ← arg min𝑥∈𝑋 𝑟 (𝑥 ; 𝑓 , 𝑐𝑘) ⊲ Update best candidate solution

3: while Optimization Budget Not Exhausted do
4: I ← Sample from N (𝑥best, 𝜎2𝐼𝐷) ⊲ Sample the normally distributed inspector population

5: R← rank(I ;M, C𝑘) ⊲ Rank inspectors based on (M, C𝑘)
6: Ibest ← Top 𝑃% of sorted I ⊲ Select the best inspectors ranked according toR
7: TR←define_TR(Ibest) ⊲ Define TR as the smallest hyperrectangle containing Ibest
8: 𝑋next ← 𝑇𝑆 ((M, C𝑘),TR, 𝑞) ⊲ Propose next 𝑞 configurations to evaluate within the TR

9: 𝑌 ← 𝑓 (𝑋next) ⊲ Evaluate objective function on the new points

10: 𝐶𝑘 ← 𝑐𝑘 (𝑋next) ⊲ Evaluate constraint functions on the new points

11: S ← S ∪ {(𝑋next, 𝑌 ,𝐶𝑘)} ⊲ Update sample set

12: Fit surrogate models (M, C𝑘) over Ω
13: Update 𝑛𝑠 and 𝑛𝑓
14: if 𝑛𝑠 = 𝜏𝑠 or 𝑛𝑓 = 𝜏𝑓 then ⊲ Check if thresholds for 𝜎2

update is reached

15: 𝜎2 ← adjust(𝜎2) ⊲ Double/halve the variance of the distribution

16: end if
17: 𝑥best ← arg min𝑥∈𝑋 𝑟 (𝑥 ; 𝑓 , 𝑐𝑘) ⊲ Update best candidate solution

18: end while
19: Return 𝑥best ⊲ Return best solution

and the constraint functions 𝑐𝑘 at the proposed batch points 𝑋next (lines 9-10). We update the set 208

of evaluated samples S (line 11) and we refit the surrogate modelsM and C𝑘 over the full search 209

space Ω using the updated sample set S (line 12). 210

We use the radius of the multivariate normal distribution to dynamically adjust the scale of 211

the search around 𝑥best. In the distribution I ∼ N (𝑥best, 𝜎2𝐼𝐷), we initialize 𝜎 = 1. Given that the 212

domain Ω is normalized to [0, 1]𝐷 in our implementation, the initial distribution of samples covers 213

the entire domain, regardless of the exact position of 𝑥best. Similarly to SCBO, two counters are 214

maintained to track optimization progress (line 13): 𝑛𝑠 , the number of successes (iterations where 215

the best solution improves), and 𝑛𝑓 , the number of failures (iterations without improvement). At 216

each iteration, the radius is updated based on the following rules (lines 14-15): it is doubled if 217

𝑛𝑠 = 𝜏𝑠 it is halved if 𝑛𝑓 = 𝜏𝑓 , it remains unchanged otherwise. After each update, both counters are 218

reset (𝑛𝑠 ← 0, 𝑛𝑓 ← 0). The thresholds 𝜏𝑠 and 𝜏𝑓 are user-defined hyperparameters controlling the 219

frequency of zoom-in/zoom-out behavior. A very small radius indicates stagnation or convergence. 220

Optimization will be stopped or restarted when 𝜎 ≤ 𝜖 , with 𝜖 chosen by the user. 221

5 Experiments 222

5.1 Experimental Setup 223

We evaluate the performance of FuRBO agains the following state-of-the-art methods: Scalable 224

Constrained Bayesian Optimization (SCBO) by Eriksson and Poloczek [2021], constrained Expected 225

Improvement (cEI) introduced by Schonlau et al. [1998a], Constrained Optimization by Linear Ap- 226

proximation (COBYLA) from Powell [1994], constrained Covariance Matrix Adaptation Evolution 227

Strategy (CMA-ES) by Hansen [2006], and a Random Search (for the URLs of the used implemen- 228

6

tations, see the References; our code is available on GitHub
2
). We compare these algorithms on 229

the constrained black-box optimization benchmarking (BBOB-constrained) suite from the COCO 230

package [Hansen et al., 2021]. The results of the constrained BBOB benchmark for FuRBO and 231

SCBO are discussed in Sec. 5.2.1. The results comparing FuRBO to multiple baselines are discussed 232

in Sec. 5.2.2. 233

Constrained BBOB.We use the COCO/BBOB-constrained benchmark [Hansen et al., 2021], 234

comprising 4,860 constrained black-box functions generated by combining 9 base functions, 6 con- 235

straint sets of increasing severity, 6 dimensions, and 15 instances [Dufossé and Atamna, 2022]. The 236

functions are defined on a continuous search space and present different landscape characteristics 237

(separable, ill-conditioned, multi-modal functions). For our evaluation, we use the full suite to 238

compare FuRBO with its closest relative, SCBO. We consider 3 instances and 10 repetitions with 239

different random seed per function-constraint combination in dimensions 2, 10, and 40. 240

For comparisons against all the mentioned baselines, we select three representative functions 241

from the suite: Sphere (separable), Bent Cigar (ill-conditioned), and Rotated Rastrigin (multi-modal) 242

in 10 dimensions, each with medium-complex constraint structures. The same experimental setup 243

(initial design size 3D for the BO-based algorithms and total budget 30D) is applied to all algorithms. 244

Baselines Setup. FuRBO and SCBO are evaluated on these functions, each repeated 10 times 245

with different initial designs and random seeds. The initial design size is 3D, the batch size is 3D, and 246

the total evaluation budget is 30D, where D is the problem dimension. FuRBO uses a trust region 247

defined from the top 10% of inspectors sampled around the current best solution. The multivariate 248

normal sampling radius 𝜎 is initialized to 1, doubled when the success counter reaches 𝜏𝑠 = 2, and 249

halved when the failure counter reaches 𝜏𝑓 = 3. Optimization restarts if 𝜎 reaches a minimum 250

threshold 𝜖 = 5 × 10
−8
. CMA-ES and COBYLA are initialized using the default hyperparameter 251

settings recommended by their respective implementations [Hansen et al., 2019, Virtanen et al., 252

2020]. For random sampling, we use a uniform distribution over the search space. 253

Performance metrics. We evaluate performance in terms of loss (simple regret), averaging over 254

30 runs with one standard error, and CPU time. Any feasible solution is preferred over infeasible 255

ones, which are assigned the worst observed objective value for a specific problem setting across 256

all compared methods [Hernández-Lobato et al., 2017]. CMA-ES and COBYLA are initialized from 257

the best point from the initial sample set generated for the BO methods. 258

Hardware and Runtime. All experiments are conducted on an Intel i9-12900K 3.20GHz CPU. To 259

provide an example of FuRBO runtime, the compute time for the constrained BBOB 10D functions 260

spanned from 5.2 sec to 250 sec on CPU, depending on the complexity of the function landscape 261

and the severity of the constraint. This gave a total of 33 h on CPU. 262

5.2 Results 263

5.2.1 Constrained BBOB in 10D. Figure 2 presents the loss (simple regret) convergence curves for 264

FuRBO and SCBO across the full constrained BBOB suite in 10 dimensions. Both algorithms are 265

run with a batch size 𝑞 = 3𝐷 , and total evaluation budget of 30𝐷 to mimic real-world scenarios 266

where function evaluations rely on very expensive procedures that can be run on parallel nodes (in 267

Appendix E.3 we provide an ablation study on the batch size 𝑞). 268

Overall, FuRBO consistently outperforms SCBO on problems with a higher number of con- 269

straints and active constraints (rightmost columns), indicating its superior performance in severely 270

constrained scenarios. Notably, for configurations with 17 or more constraints, FuRBO achieves 271

faster convergence and lower final regret. For simpler problems (leftmost columns with 1–3 con- 272

straints), FuRBO performs comparably to SCBO, and in some cases the two methods are nearly 273

indistinguishable in terms of convergence speed and final performance. The exact final perfor- 274

mances of FuRBO and SCBO are reported in Table 2 in Appendix A, where we also assess statistical 275

2https://anonymous.4open.science/r/FuRBO

7

https://anonymous.4open.science/r/FuRBO

Figure 2: Loss convergence curve on the full constrained BBOB suite at 10D. Results are averaged

across 3 instances with 10 repetitions each. The plot shows the mean loss with shaded areas

indicating one standard error. FuRBO consistently outperforms SCBO on more severely

constrained problems and performs comparably on easier ones.

significance using the Wilcoxon rank-sum test. The analysis confirms that FuRBO achieves signifi- 276

cantly better performance on the majority of the 10D problems. Similar figures to Figure 2, but 277

for 2 and 40 dimensions are available in Appendix C. While FuRBO and SCBO perform similarly 278

in 2D, FuRBO shows clear superiority in 40D, where it succeeds in finding feasible solutions in 279

cases where SCBO fails within the given evaluation budget. However, in the most strongly con- 280

strained scenarios, FuRBO also struggles to identify feasible regions, suggesting that the chosen 281

hyperparameter settings may be not optimal for such cases. We will further investigate this. 282

The improvement observed in highly constrained cases highlights the effectiveness of FuRBO’s 283

feasibility-aware TR strategy. Unlike SCBO, FuRBO defines its TR based on the area predicted to 284

be most promising, considering both feasibility and optimality predicted by the surrogate models 285

over the entire domain, rather than relying solely on the best evaluated sample. This allows the 286

TR to shift more freely across the domain and adapt its size dynamically: it contracts or expands 287

according to the predicted distribution of high-quality, feasible regions. As a result, FuRBO is better 288

8

Figure 3: Convergence comparison of FuRBO against SCBO, C-EI, COBYLA, CMA-ES, and random

sampling on 𝑓sphere, 𝑓bent_cigar, and 𝑓rast_rot in 10D. Curves show the mean loss over 10 repeti-

tions of the same instance, with shaded regions indicating one standard error.

able to zoom in on narrow feasible areas and escape local minima, offering faster convergence and 289

more robust performance in complex, constrained landscapes. 290

5.2.2 Comparison to SOTA Baselines. Figure 3 shows the convergence of FuRBO compared to SCBO, 291

CEI, COBYLA, CMA-ES, and random sampling on three representative BBOB-constrained functions 292

in 10 dimensions: Sphere, Bent Cigar, and Rotated Rastrigin. In order to have a comparable setup for 293

all methods, we consider a batch size 𝑞 = 1 for the BO methods (FuRBO, SCBO, and CEI), meaning 294

that only one candidate solution is returned by the AF and evaluated at each iteration. 295

FuRBO consistently achieves the lowest final loss and fastest convergence across all cases, 296

closely followed by SCBO. This highlights that the new definition of the TR introduced in FuRBO 297

is more beneficial when multiple solutions, potentially spread within the TR, are returned at each 298

iteration. On the ill-conditioned 𝑓bent_cigar problem, CEI converges to low-loss regions faster than 299

all baselines, however, FuRBO demonstrates greater exploitation capabilities by converging to a 300

solution with a statistically significant lower value of the objective function. For the multimodal 301

𝑓rast_rot, FuRBO again outperforms the rest, directly followed by SCBO. CMA-ES and random 302

sampling perform poorly across all functions, highlighting the benefit of using surrogate models in 303

severely constrained and expensive settings. These results are confirmed in Table 4 in Appendix A. 304

6 Conclusions 305

We introduced FuRBO, a trust-region-based BO algorithm for severely constrained black-box 306

problems. Building on the SCBO framework, it redefines the trust region using a feasibility-aware 307

ranking of samples drawn from a multivariate normal distribution around the current best point. 308

This allows FuRBO to dynamically adapt the location and size of the trust region based on global 309

surrogate information about both the objective and constraint functions, accelerating convergence 310

and improving exploitation of narrow feasible regions. 311

Our experiments on the BBOB-constrained benchmark suite demonstrate that FuRBO consis- 312

tently outperforms or matches the performance of existing state-of-the-art methods, particularly in 313

scenarios involving tight or complex constraints. However, FuRBO also comes with a few limitations 314

and directions for future work. First, the inspector-based ranking and trust region construction 315

introduce additional model evaluations, making the algorithm computationally more expensive 316

than other baselines, thus most appropriate when function evaluations are costly and dominate the 317

runtime. Second, FuRBO still faces challenges in high-dimensional, heavily constrained problems, 318

where it sometimes fails to find feasible regions. Finally, while benchmark results are promising, 319

validation on real-world applications is still missing and will be a key direction for future work. 320

9

References 321

S. Amini, I. Vannieuwenhuyse, and A. Morales-Hernández. Constrained Bayesian Optimization: A 322

Review. IEEE Access, 13:1581–1593, 2025. ISSN 2169-3536. doi: 10.1109/ACCESS.2024.3522876. 323

S. Ariafar, J. Coll-Font, D. Brooks, and J. Dy. ADMMBO: Bayesian Optimization with Unknown 324

Constraints using ADMM. Journal of Machine Learning Research, 20(123):1–26, 2019. ISSN 325

1533-7928. 326

M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A 327

Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural Information 328

Processing Systems 33, 2020. URL http://arxiv.org/abs/1910.06403. 329

H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct Neural Architecture Search on Target Task and 330

Hardware, Feb. 2019. 331

X. Du, J. Liang, J. Lei, J. Xu, and P. Xie. A radial-basis function mesh morphing and Bayesian 332

Optimization framework for vehicle crashworthiness design. Structural and Multidisciplinary 333

Optimization, 66(3):64, Mar. 2023. ISSN 1615-1488. doi: 10.1007/s00158-023-03496-x. 334

P. Dufossé and A. Atamna. Benchmarking several strategies to update the penalty parameters in 335

AL-CMA-ES on the BBOB-constrained testbed. In Proceedings of the Genetic and Evolutionary 336

Computation Conference Companion, pages 1691–1699, 2022. 337

P. Dufossé, N. Hansen, D. Brockhoff, P. R. Sampaio, A. Atamna, andA. Auger. The BBOB-Constrained 338

COCO Test Suite. 2022. 339

D. Eriksson andM. Poloczek. Scalable constrained Bayesian optimization. In International conference 340

on artificial intelligence and statistics, pages 730–738. PMLR, 2021. doi: 10.48550/arXiv.2002.08526. 341

D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. Scalable global optimization via 342

local bayesian optimization. Advances in neural information processing systems, 32, 2019. doi: 10. 343

48550/arXiv.1910.01739. URL https://github.com/pytorch/botorch/blob/main/tutorials/ 344

scalable_constrained_bo/scalable_constrained_bo.ipynb. 345

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-Sklearn 2.0: Hands-free 346

AutoML via Meta-Learning, Oct. 2022. 347

A. I. J. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Modelling - A 348

Practical Guide. John Wiley & Sons Ltd., 2008. ISBN 978-0-470-06068-1. 349

J. Gardner, M. Kusner, Zhixiang, K. Weinberger, and J. Cunningham. Bayesian Optimization with 350

Inequality Constraints. In Proceedings of the 31st International Conference on Machine Learning, 351

pages 937–945. PMLR, June 2014. 352

R. Garnett. Bayesian Optimization. Cambridge University Press, 2023. 353

N. Hansen. The CMA evolution strategy: a comparing review. Towards a new 354

evolutionary computation: Advances in the estimation of distribution algorithms, pages 355

75–102, 2006. URL https://github.com/CMA-ES/pycma/blob/development/notebooks/ 356

notebook-usecases-constraints.ipynb. 357

N. Hansen, Y. Akimoto, and P. Baudis. CMA-ES/pycma on Github. Zenodo, Feb. 2019. 358

10

http://arxiv.org/abs/1910.06403
https://github.com/pytorch/botorch/blob/main/tutorials/scalable_constrained_bo/scalable_constrained_bo.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/scalable_constrained_bo/scalable_constrained_bo.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/scalable_constrained_bo/scalable_constrained_bo.ipynb
https://github.com/CMA-ES/pycma/blob/development/notebooks/notebook-usecases-constraints.ipynb
https://github.com/CMA-ES/pycma/blob/development/notebooks/notebook-usecases-constraints.ipynb
https://github.com/CMA-ES/pycma/blob/development/notebooks/notebook-usecases-constraints.ipynb

N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. B. and. COCO: a platform for comparing 359

continuous optimizers in a black-box setting. Optimization Methods and Software, 36(1):114–144, 360

2021. doi: 10.1080/10556788.2020.1808977. 361

J. M. Hernández-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman, and Z. Ghahramani. A General 362

Framework for Constrained Bayesian Optimization using Information-based Search, Sept. 2016. 363

J. M. Hernández-Lobato, J. Requeima, E. O. Pyzer-Knapp, and A. Aspuru-Guzik. Parallel and 364

Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space, 365

June 2017. 366

F. Hutter, L. Kotthoff, and J. Vanschoren. Automated Machine Learning: Methods, Systems, Challenges. 367

Springer Nature, 2019. 368

H. Jin, F. Chollet, Q. Song, and X. Hu. Autokeras: An automl library for deep learning. Journal of 369

Machine Learning Research, 24(6):1–6, 2023. URL http://jmlr.org/papers/v24/20-1355.html. 370

V. Picheny, R. B. Gramacy, S. M. Wild, and S. L. Digabel. Bayesian optimization under mixed 371

constraints with a slack-variable augmented Lagrangian, May 2016. 372

M. J. Powell. A direct search optimization method that models the objective and constraint functions 373

by linear interpolation. Springer, 1994. URL https://docs.scipy.org/doc/scipy/reference/ 374

generated/scipy.optimize.minimize.html#scipy.optimize.minimize. 375

W. B. Powell. A unified framework for stochastic optimization. European Journal of Operational 376

Research, 275(3):795–821, June 2019. ISSN 03772217. doi: 10.1016/j.ejor.2018.07.014. 377

E. Raponi, M. Bujny, M. Olhofer, N. Aulig, S. Boria, and F. Duddeck. Kriging-assisted topology 378

optimization of crash structures. Computer Methods in Applied Mechanics and Engineering, 348: 379

730–752, May 2019. ISSN 0045-7825. doi: 10.1016/j.cma.2019.02.002. 380

M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in con- 381

strained optimization of computer models. Lecture notes-monograph series, pages 11– 382

25, 1998a. URL https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_ 383

botorch_only/closed_loop_botorch_only.ipynb. 384

M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained opti- 385

mization of computer models. In New Developments and Applications in Experimental De- 386

sign, volume 34, pages 11–26. Institute of Mathematical Statistics, Jan. 1998b. doi: 10. 387

1214/lnms/1215456182. URL https://github.com/pytorch/botorch/blob/main/tutorials/ 388

closed_loop_botorch_only/closed_loop_botorch_only.ipynb. 389

W. R. Thompson. On the Likelihood that One Unknown Probability Exceeds Another in View 390

of the Evidence of Two Samples. Biometrika, 25(3/4):285–294, 1933. ISSN 0006-3444. doi: 391

10.2307/2332286. 392

J. Ungredda and J. Branke. Bayesian Optimisation for Constrained Problems, May 2021. 393

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, 394

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, 395

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, 396

J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, 397

A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 398

1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 399

2020. doi: 10.1038/s41592-019-0686-2. 400

11

http://jmlr.org/papers/v24/20-1355.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/closed_loop_botorch_only/closed_loop_botorch_only.ipynb

Submission Checklist 401

1. For all authors. . . 402

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 403

contributions and scope? [Yes] 404

(b) Did you describe the limitations of your work? [Yes] See Section ??. 405

(c) Did you discuss any potential negative societal impacts of your work? [Yes] No potential 406

negative societal impacts of our work are expected. 407

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 408

(see https://2022.automl.cc/ethics-accessibility/) [Yes] 409

2. If you ran experiments. . . 410

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 411

benchmarks, data (sub)sets, available resources, etc.)? [Yes] We did use the same evaluation 412

protocol for all methods being compared. 413

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 414

search spaces, hyperparameter tuning details and results, etc.)? [Yes] 415

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 416

for the impact of randomness in your methods or data? [Yes] 417

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds 418

or splits)? [Yes] 419

(e) Did you report the statistical significance of your results? [Yes] 420

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes] 421

(g) Did you compare performance over time and describe how you selected the maximum 422

runtime? [Yes] 423

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 424

gpus, internal cluster, or cloud provider)? [Yes] 425

(i) Did you run ablation studies to assess the impact of different components of your approach? 426

[Yes] We have ablation studies on the DoE size, the percentage of inspectors, and the batch 427

size. 428

3. With respect to the code used to obtain your results. . . 429

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 430

results, including all dependencies (e.g., requirements.txt with explicit versions), random 431

seeds, an instructive README with installation instructions, and execution commands (either 432

in the supplemental material or as a url)? [Yes] Everything is included in the GitHub 433

repository. 434

(b) Did you include a minimal example to replicate results on a small subset of the experiments 435

or on toy data? [Yes] We provided a tutorial for the proposed framework as a jupyter 436

notebook in the GitHub repository. 437

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 438

and understand your code? [Yes] 439

12

https://2022.automl.cc/ethics-accessibility/

(d) Did you include the raw results of running your experiments with the given code, data, and 440

instructions? [Yes] 441

(e) Did you include the code, additional data, and instructions needed to generate the figures 442

and tables in your paper based on the raw results? [Yes] 443

4. If you used existing assets (e.g., code, data, models). . . 444

(a) Did you cite the creators of used assets? [Yes] 445

(b) Did you discuss whether and how consent was obtained from people whose data you’re 446

using/curating if the license requires it? [Yes] 447

(c) Did you discuss whether the data you are using/curating contains personally identifiable 448

information or offensive content? [Yes] 449

5. If you created/released new assets (e.g., code, data, models). . . 450

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A] 451

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 452

GitHub or Hugging Face)? [N/A] 453

6. If you used crowdsourcing or conducted research with human subjects. . . 454

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 455

cable? [N/A] 456

(b) Did you describe any potential participant risks, with links to institutional review board 457

(irb) approvals, if applicable? [N/A] 458

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 459

on participant compensation? [N/A] 460

7. If you included theoretical results. . . 461

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 462

(b) Did you include complete proofs of all theoretical results? [N/A] 463

13

A Statistical Evaluation 464

Here, we show the exact loss values reached by the algorithms at the end of the evaluation budget. 465

Table 1 presents the mean and standard error of the final objective values achieved by FuRBO 466

and SCBO across constrained BBOB problems in 2D. Table 2 and Table 3 show similar results for 467

dimensions 10 and 40, respectively. The results span increasing levels of constraint severity—ranging 468

from 1 to 9 + ⌊9𝐷/2⌋ constraints with varying numbers of active constraints and diverse problem 469

landscapes (e.g., separable, ill-conditioned, multimodal). The best performance per setting is 470

highlighted in bold, and statistical significance (via the Wilcoxon rank-sum test) is indicated in 471

gray shading. 472

Table 1: Mean and standard error of the final performance across constrained BBOB problems in

2D. Best result is highlighted in bold. Statistical significance is assessed using the Wilcoxon

rank-sum test. Results in gray indicate when one algorithm statistically outperforms the

other.

Constraints: 1 (Active: 1) Constraints: 3 (Active: 2) Constraints: 9 (Active: 6)

FuRBO SCBO FuRBO SCBO FuRBO SCBO

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 0.210 0.040 0.527 0.079 2.218 0.231 4.000 0.561 4.181 0.721 6.794 0.987

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 0.210 0.038 0.249 0.054 8.843 1.067 16.295 2.378 19.783 2.363 49.156 7.773

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 0.018 0.003 0.040 0.006 1.615 0.255 2.711 0.397 2.748 0.261 4.518 0.413

𝑓𝑒𝑙𝑙𝑖_𝑟𝑜𝑡 1.213 0.242 1.723 0.339 11.792 2.008 18.158 3.125 16.756 1.427 50.838 4.230

𝑓𝑑𝑖𝑠𝑐𝑢𝑠 0.645 0.169 0.550 0.086 6.643 0.688 13.904 0.971 20.132 4.756 46.491 8.410

𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 1.270 0.555 1.196 0.226 1.052 0.212 1.844 0.329 55.458 11.197 123.389 14.978

𝑓𝑑𝑖 𝑓 𝑓 _𝑝𝑜𝑤𝑒𝑟 2.828 1.185 3.306 1.054 10.584 3.024 7.576 1.116 14.498 2.651 16.235 2.274

𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 93.082 16.884 93.329 11.818 57.056 10.020 71.572 12.851 76.061 17.027 88.406 12.570

𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡 73.645 9.311 82.339 9.907 46.497 10.778 73.251 11.686 56.962 11.597 54.464 5.800

Constraints: 9 + ⌊3𝐷/4⌋ (Active: 6 + ⌊𝐷/2⌋) Constraints: 9 + ⌊3𝐷/2⌋ (Active: 6 + D) Constraints: 9 + ⌊9𝐷/2⌋ (Active: 6 + 3D)

FuRBO SCBO FuRBO SCBO FuRBO SCBO

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 5.744 1.631 14.549 2.023 6.572 1.152 14.143 2.994 6.274 0.804 7.488 0.928

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 12.433 1.263 22.620 2.009 24.394 2.351 42.980 3.945 39.976 7.470 67.786 9.901

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 3.328 0.307 8.648 0.772 5.537 0.470 8.703 0.829 5.183 0.622 17.188 1.581

𝑓𝑒𝑙𝑙𝑖_𝑟𝑜𝑡 33.862 4.473 63.640 7.423 23.085 3.515 46.577 8.061 19.182 2.509 49.176 6.168

𝑓𝑑𝑖𝑠𝑐𝑢𝑠 182.689 53.678 346.352 111.304 24.937 1.916 83.970 10.258 20.889 3.112 56.955 7.429

𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 60.131 5.471 94.093 16.005 89.175 18.078 104.077 10.872 94.550 28.501 427.606 341.950

𝑓𝑑𝑖 𝑓 𝑓 _𝑝𝑜𝑤𝑒𝑟 28.864 4.662 20.930 2.344 12.032 1.548 23.973 3.615 16.172 4.186 20.328 2.068

𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 120.532 16.204 102.261 14.164 46.561 7.852 65.294 6.302 113.930 16.120 194.695 12.615

𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡 111.154 12.988 92.853 11.593 82.750 16.000 136.416 12.411 52.617 10.019 81.268 8.328

We observe that, nearly on all problems and across all levels of constraint severity, FuRBO 473

outperforms or matches SCBO, often by a statistically significant margin. Notably: 474

• The superiority of FuRBO becomes evident as the dimensionality of the problem and the severity 475

of the constraint increases. 476

• In dimension 2, despite the final loss values achieved by SCBO are sometimes better under mild 477

constraints, the performance is nevere statistically better than the one of FuRBO. 478

• In dimension 2 and 10, under the most stringent settings FuRBO demonstrates robust better 479

performance, significantly outperforming SCBO, where SCBO also exhibits a larger variance. 480

• In dimension 40, both FuRBO and SCBO fail to converge effectively for highly severe constraint 481

settings (9 + ⌊3𝐷/2⌋ and 9 + ⌊9𝐷/2⌋ constraints). However, FuRBO manages to find feasible 482

solutions for 9 + ⌊3𝐷/4⌋ constraints on nearly all benchmarks, while SCBO systematically fails. 483

These findings highlight FuRBO’s superior adaptability in severely constrained scenarios, thanks 484

to its feasibility-aware TR strategy. Also, the consistent performance across diverse problem types 485

and constraint severities suggest that the algorithm generalizes well, effectively balancing global 486

exploration with local refinement. 487

14

Table 2: Mean and standard error of the final performance across constrained BBOB problems in

10D. Best result is highlighted in bold. Statistical significance is assessed using the Wilcoxon

rank-sum test. Results in gray indicate when one algorithm statistically outperforms the other.

If a feasible solution is not returned, the results are marked as not available (n/a).

Constraints: 1 (Active: 1) Constraints: 3 (Active: 2) Constraints: 9 (Active: 6)

FuRBO SCBO FuRBO SCBO FuRBO SCBO

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 21.964 1.388 138.804 10.956 58.790 5.696 219.152 15.692 198.514 18.634 585.673 39.943

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 5.831 0.481 19.519 1.359 138.762 20.431 231.414 24.137 512.837 34.019 1.083e+03 61.844

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 0.122 0.022 0.087 0.017 12.195 1.571 21.249 1.870 212.422 16.858 618.493 86.203

𝑓𝑒𝑙𝑙𝑖_𝑟𝑜𝑡 13.956 1.076 22.265 1.618 105.630 13.958 139.813 14.482 611.267 71.576 1.583e+03 142.554

𝑓𝑑𝑖𝑠𝑐𝑢𝑠 0.523 0.098 0.638 0.087 18.162 2.627 31.136 3.379 288.711 17.185 765.207 71.978

𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 156.625 11.214 1.011e+03 96.125 385.712 53.371 1.810e+03 142.890 1.453e+03 140.637 5.233e+03 480.111

𝑓𝑑𝑖 𝑓 𝑓 _𝑝𝑜𝑤𝑒𝑟 113.271 10.430 456.299 30.881 121.649 9.565 470.231 29.952 196.147 13.799 693.546 72.736

𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 769.783 18.940 913.273 19.361 887.369 32.102 1.209e+03 62.581 1.128e+03 40.189 2.517e+03 379.334

𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡 674.252 20.913 858.090 15.381 767.100 23.015 1.056e+03 33.444 958.011 34.706 2.033e+03 181.885

Constraints: 9 + ⌊3𝐷/4⌋ (Active: 6 + ⌊𝐷/2⌋) Constraints: 9 + ⌊3𝐷/2⌋ (Active: 6 + D) Constraints: 9 + ⌊9𝐷/2⌋ (Active: 6 + 3D)

FuRBO SCBO FuRBO SCBO FuRBO SCBO

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 543.153 116.179 3.729e+03 114.165 369.019 15.963 1.805e+03 160.573 2.976e+03 643.900 9.106e+03 215.199

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 1.534e+03 160.652 4.952e+03 630.699 2.584e+03 395.692 3.967e+03 400.501 3.446e+03 250.820 n/a n/a

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 258.470 29.091 809.796 103.165 196.186 9.024 909.622 108.059 535.789 44.294 811.818 10.493

𝑓𝑒𝑙𝑙𝑖_𝑟𝑜𝑡 1.056e+03 96.825 4.644e+03 601.538 680.446 45.009 6.133e+03 566.422 3.111e+03 587.884 1.347e+04 403.178

𝑓𝑑𝑖𝑠𝑐𝑢𝑠 424.307 31.046 5.358e+03 907.447 3.337e+03 567.569 7.617e+03 239.395 3.164e+03 243.911 n/a n/a

𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 1.955e+03 164.335 8.968e+03 1.072e+03 2.753e+03 204.529 1.023e+04 618.958 1.092e+04 1.831e+03 2.640e+04 758.083

𝑓𝑑𝑖 𝑓 𝑓 _𝑝𝑜𝑤𝑒𝑟 282.976 22.572 885.045 86.379 310.649 15.017 1.783e+04 6.714e+03 875.926 164.867 2.308e+03 59.269

𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 1.797e+03 258.449 3.554e+03 321.989 1.171e+03 25.633 2.911e+03 295.358 1.650e+03 36.467 4.308e+03 164.089

𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡 1.086e+03 70.368 2.582e+03 210.997 1.245e+03 64.740 4.105e+03 252.273 1.840e+03 136.922 n/a n/a

Table 3: Mean and standard error of the final performance across constrained BBOB problems in

40D. Best result is highlighted in bold. Statistical significance is assessed using the Wilcoxon

rank-sum test. Results in gray indicate when one algorithm statistically outperforms the other.

If a feasible solution is not returned, the results are marked as not available (n/a).

Constraints: 1 (Active: 1) Constraints: 3 (Active: 2) Constraints: 9 (Active: 6)

FuRBO SCBO FuRBO SCBO FuRBO SCBO

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 191.905 9.743 1.235e+03 74.848 891.213 56.888 2.195e+03 120.958 2.846e+03 187.348 4.947e+03 284.815

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 72.660 4.706 199.098 15.666 1.471e+03 251.414 1.594e+03 116.509 1.332e+03 135.523 4.121e+03 429.439

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 0.120 0.026 0.063 0.019 47.281 9.592 133.901 28.004 333.052 23.110 857.128 100.898

𝑓𝑒𝑙𝑙𝑖_𝑟𝑜𝑡 83.392 7.957 249.737 23.016 1.064e+03 67.244 1.602e+03 113.814 5.368e+03 424.582 1.046e+04 1.250e+03

𝑓𝑑𝑖𝑠𝑐𝑢𝑠 0.181 0.046 0.284 0.043 43.144 6.356 56.058 9.523 265.416 35.171 666.984 77.161

𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 1.770e+03 112.493 1.447e+04 720.873 1.704e+04 1.369e+03 3.033e+04 1.906e+03 5.530e+04 9.294e+03 1.130e+05 1.100e+04

𝑓𝑑𝑖 𝑓 𝑓 _𝑝𝑜𝑤𝑒𝑟 1.510e+03 80.505 2.793e+03 133.038 2.417e+03 200.116 6.807e+03 500.896 5.250e+03 759.436 2.413e+04 3.647e+03

𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 3.804e+03 146.398 4.959e+03 101.575 4.743e+03 138.682 6.602e+03 167.442 5.936e+03 197.260 8.826e+03 181.602

𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡 4.318e+03 99.437 5.109e+03 161.808 5.227e+03 174.590 6.311e+03 152.997 8.753e+03 447.437 1.484e+04 814.410

Constraints: 9 + ⌊3𝐷/4⌋ (Active: 6 + ⌊𝐷/2⌋) Constraints: 9 + ⌊3𝐷/2⌋ (Active: 6 + D) Constraints: 9 + ⌊9𝐷/2⌋ (Active: 6 + 3D)

FuRBO SCBO FuRBO SCBO FuRBO SCBO

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 6.150e+03 539.698 n/a n/a 5.735e+03 238.843 n/a n/a n/a n/a n/a n/a

𝑓𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 1.307e+04 1.064e+03 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 2.413e+03 263.602 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑒𝑙𝑙𝑖_𝑟𝑜𝑡 1.837e+04 1.347e+03 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑑𝑖𝑠𝑐𝑢𝑠 1.381e+04 524.696 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 7.508e+04 5.295e+03 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑑𝑖 𝑓 𝑓 _𝑝𝑜𝑤𝑒𝑟 8.737e+03 2.276e+03 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡 1.191e+04 821.514 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 4 reports the final performance of FuRBO and four other SOTA baselines: SCBO, CEI, 488

COBYLA, and CMA-ES, on three representative benchmark functions in 10D: 𝑓sphere, 𝑓bent_cigar, and 489

𝑓rast_rot. We omit random sampling because it never found a feasible solution in our comparison. 490

These chosen functions represent diverse landscape characteristics, from simple convex and sepa- 491

rable functions, to ill-conditioned and multimodal. We highlight the best-performing algorithm 492

in bold, with statistical significance (via a pairwise Wilcoxon rank-sum test) indicated by gray 493

shading. This means that we highlight in gray a method only if it statistically outperformed all the 494

others in a problem setting. 495

15

On 𝑓sphere, a smooth, convex, and separable problem, FuRBO clearly outperforms SCBO and 496

dramatically outpaces CEI, COBYLA, and CMA-ES. On the ill-conditioned 𝑓bent_cigar function, 497

FuRBO again leads with a significantly lower final objective value than all baselines, highlighting 498

its capacity to exploit narrow feasible valleys. For the multimodal 𝑓rast_rot, FuRBO maintains its 499

lead, demonstrating superior exploration of complex feasible regions and local minima. However, 500

the final loss value significantly increases compared to the two simpler functions. These results 501

further highlight FuRBO’s strength, not only over its direct competitor SCBO, but also against 502

well-established baselines fro constrained optimization from the literature. 503

Table 4: Mean and standard error of the final performance on the class representative functions in 10D.

The best result for each function is highlighted in bold. Statistical significance is assessed

using the Wilcoxon rank-sum test. Results in gray indicate when one algorithm statistically

outperforms all the others.

𝑓𝑠𝑝ℎ𝑒𝑟𝑒 𝑓𝑏𝑒𝑛𝑡_𝑐𝑖𝑔𝑎𝑟 𝑓𝑟𝑎𝑠𝑡_𝑟𝑜𝑡
Mean S.E. Mean S.E. Mean S.E.

FuRBO 7.286 0.580 68.944 5.132 760.095 38.507

SCBO 14.237 0.696 107.133 5.568 925.548 47.247

CEI 829.146 87.943 798.386 96.740 2093.581 270.394

COBYLA 126.358 86.315 5787.570 1536.906 1156.212 126.745

CMA-ES 1211.966 116.424 8874.131 1200.243 3331.974 350.704

B Scalability of FuRBO 504

Figure 4 illustrates the mean loss convergence of FuRBO and SCBO on three constrained BBOB 505

functions: 𝑓sphere, 𝑓bent_cigar, and 𝑓rast_rot, evaluated at a mid-severe constraint level (9 + ⌊3𝐷/4⌋ 506

constraints, out of which 6 + ⌊𝐷/2⌋ are active) in dimensions 2, 10, and 40. The results are averaged 507

across 3 problem instances and 10 repetitions each, with shaded areas representing one standard 508

error. 509

FuRBO demonstrates clear scalability advantages as dimensionality increases. In 2D, FuRBO and 510

SCBO perform similarly, with FuRBO showing slightly faster convergence in the early evaluations. 511

In 10D and 40D, FuRBO consistently outperforms SCBO, achieving lower final losses and faster 512

convergence. 513

We note that, particularly in higher dimensions, the convergence curves exhibit a step-wise 514

pattern. This behavior is due to the chosen batch size of 𝑞 = 3𝐷 and the way solutions within each 515

batch are automatically ordered by objective value (from worst to best) by the BoTorch package, 516

from which we took the SCBO implementation and on which we also base our own. As a result, 517

early points in each batch tend to be of lower quality and are often outperformed by previously 518

found solutions, leading to flat segments in the convergence curves. Instead, the last solutions 519

returned in the batch, which are of higher quality, typically bring an improvement. 520

16

Figure 4: Loss convergence curve on 𝑓sphere, 𝑓bent_cigar, and 𝑓rast_rot constrained BBOB functions at 10D

and mid-severe constraint level, for varying dimensionality of the problems. Results are

averaged across 3 instances with 10 repetitions each. The plot shows the mean loss with

shaded areas indicating one standard error. FuRBO clearly outperforms SCBO in 10D and

40D, while it shows comparable performance to SCBO in 2D, with slightly faster convergence.

17

C Full Results on Constrained BBOB 521

In this section, we show the comparison between FuRBO and SCBO on the full constrained BBOB 522

test suite for dimension 10. 523

In 2D (Figure 5), both FuRBO and SCBO perform similarly across most functions and constraint 524

levels. 525

In 40D (Figure 6), the difference becomes more pronounced. FuRBO outperforms SCBO under 526

moderate constraint counts. This is particularly evident on the 9 constraints (6 active) column. 527

As the constraint severity increases, SCBO stops finding any feasible solutions, as indicated by 528

the constant convergence trend, while FuRBO continues to make progress. In more extreme cases 529

(9 + ⌊3𝐷/2⌋ or 9 + ⌊9𝐷/2⌋ constraints), both methods struggle to find feasible improvements within 530

the available evaluation budget. 531

Figure 5: Loss convergence curve on the full constrained BBOB suite at 2D. Results are averaged

across 3 instances with 10 repetitions each. The plot shows the mean loss with shaded areas

indicating one standard error. FuRBO and SCBO have comparable convergence trends.

18

Figure 6: Loss convergence curve on the full constrained BBOB suite at 40D. Results are averaged

across 3 instances with 10 repetitions each. The plot shows the mean loss with shaded

areas indicating one standard error. FuRBO is on par or outperforms SCBO for mild and

medium-severe constraints, while both methods fail in finding feasible solutions for strongly

constrained scenarios.

19

D CPU time 532

Figure 7: Average CPU time (in seconds) of FuRBO and SCBO across 10D all the constrained BBOB

functions under increasing numbers of constraints. The two methods have comparable

runtime, which increases with constraint severity.

20

Figure 7 presents the average CPU time required by FuRBO and SCBO in 10D, as the number of 533

constraints and problem complexity increase. The batch size set for both algorithms is 𝑞 = 3𝐷 . 534

Across all test functions, both methods show a similar scaling trend: runtime increases with 535

the number of constraints, as expected due to the additional computational burden of constraint 536

modeling and feasibility checking. FuRBO’s computational cost presents only marginal increases 537

compared to SCBO’s, as it performs additional calls to the objective and constraint approximation 538

models for the definition of the TR. 539

Figure 8 compares FuRBO and SCBO with other established baselines (CEI, COBYLA, and CMA- 540

ES) on three representative functions in 10D and medium-high constraint severity (9 + ⌊3𝐷/4⌋ 541

constraints, 6 + ⌊𝐷/2⌋ active). As expected, the surrogate-based methods (CEI, SCBO, and FuRBO) 542

are by far the most expensive. COBYLA and CMA-ES are significantly faster, but at the cost of 543

substantially poorer optimization performance (as shown in Figure 3 and Table 4). 544

Please note that the runtime tracked for FuRBO and SCBO for these settings seem in contrast 545

with the one shown in Figure 8, for the same dimensionality. This is motivated by the fact that here, 546

for comparison purposes, we are running all the methods (except CMA-ES, due to its inherently 547

parallel design) in serial mode. 548

In summary, FuRBO offers a favorable balance between performance and runtime, finding 549

better solutions than baselines like SCBO and CEI, while keeping computational overhead well 550

within practical limits. 551

Figure 8: Average CPU time (log scale) of FuRBO against other four baselines (SCBO, CEI, COBYLA,

and CMA-ES) on three representative 10D functions: 𝑓sphere, 𝑓bent_cigar, and 𝑓rast_rot. FuRBO

and SCBO have similar runtimes, while CEI is slightly more expensive. COBYLA and CMA-ES

are much faster but at the cost of reduced solution quality (see Table 4).

E Ablation Studies 552

In this Section, we provide ablation studies on three influential hyperparameters of FuRBO. The 553

size of the initial sample, the radius of the variance of the multi-variate normal distribution 𝜎 , and 554

the batch size 𝑞. All the studies in this section are performed on the 𝑓bent_cigar function with 24 555

constraints in dimension 10. 556

21

E.1 Initial Sample Size 557

Figure 9 presents a study on the impact of the size of the initial sample set, also referred to as 558

Design of Experiments (DoE), on optimization performance of FuRBO. We compare four DoE sizes 559

proportional to the problem dimensionality, specifically, 1D, 3D, 5D, and 10D initial points. 560

The results show that larger DoE sizes (e.g., 10D) tend to delay early convergence, as more 561

evaluations are used upfront for model initialization before optimization begins. In contrast, smaller 562

DoE sizes (1D–5D) enable comparable (and faster compared to the 10D size) progress by allowing 563

the iterative procedure to start earlier, without noticeably compromising the accuracy of the 564

approximation models of the objective and constraints, and thus preserving the effectiveness of the 565

landscape-aware mechanism for TR definition. 566

Figure 9: Study on the impact of the initial sample size on FuRBO in dimension 10 on the 𝑓bent_cigar
BBOB function with 24 constraints. Initial sample sizes equal to 1D, 3D, 5D and 10D are

compared. Experiments run on 𝑓bent_cigar BBOB function with 24 constraints.

E.2 Inspector Percentage 567

Figure 10 investigates the effect of the percentage 𝑃% of inspectors selected from the multivariate 568

normal distribution to define the TR in FuRBO. Specifically, we compare the performance on the 569

constrained 𝑓bent_cigar function (with 24 constraints) using selection rates of 1%, 5%, 10%, and 20%. 570

The results show that the algorithm performance deteriorate as this percentage increases. 571

However, we believe that these results highly depend on the landscape of the problem at hand. Very 572

small percentages (e.g., 1%) enable faster initial progress by quickly narrowing down to promising 573

regions, but they may limit the algorithm’s ability to explore diverse feasible areas. Conversely, 574

larger values (e.g., 20%) lead to slower progress, as the TR is influenced by a broader sample set, 575

which may dilute the effect of high-quality candidates. Given this sensitivity, it would be beneficial 576

to perform a dedicated hyperparameter optimization for this selection percentage to adapt it to the 577

problem at hand. 578

E.3 Batch size 579

Figure 11 examines the impact of batch size 𝑞 on FuRBO’s performance and computational cost. 580

We compare six batch configurations: sequential (1 sample per iteration), and parallel batches of 581

size 1D, 2D, 3D, 4D, and 5D. 582

22

Figure 10: Study on the impact of the percentage 𝑃% of inspectors selected from themultivariate normal

distribution to define the position and extension of the TR. The following percentages are

compared: 1%, 5%, 10%, and 20%. Experiments run on 𝑓bent_cigar BBOB function with 24

constraints.

Figure 11a shows that larger batch sizes generally lead to slower convergence as many samples 583

are evaluated per iteration without the model being updated. The sequential setting (batch size = 1) 584

achieves the fastest convergence in terms of evaluations, but as seen in Figure 11b, it incurs the 585

highest computational cost due to frequent model updates and definitions of the TR. 586

Conversely, increasing the batch size significantly reduces CPU time, with a 5D batch being 587

about 20 times faster than the sequential setup, while maintaining competitive final performance. 588

Thus, intermediate batch sizes from 2D to 4D seem to provide a favorable trade-off, offering 589

both efficiency and robust convergence behavior. FuRBO is therefore well-suited for optimization 590

problems that require parallel evaluations of the objective and constraint functions, particularly 591

when wall-clock time is a critical factor and parallel computing nodes are available. 592

23

(a) Loss. (b) CPU time.

Figure 11: Study on the impact of the batch size 𝑞 on the performance of FuRBO. The following

configurations are compared: 1 (sequential), 1D, 2D, 3D, 4D, and 5D samples per batch.

Experiments run on 𝑓bent_cigar BBOB function with 24 constraints.

24

	Introduction
	Related Work
	Problem Formulation
	Feasibility-Driven Trust Region Bayesian Optimization
	SCBO algorithm
	FuRBO algorithm

	Experiments
	Experimental Setup
	Results
	Constrained BBOB in 10D
	Comparison to SOTA Baselines

	Conclusions
	Statistical Evaluation
	Scalability of FuRBO
	Full Results on Constrained BBOB
	CPU time
	Ablation Studies
	Initial Sample Size
	Inspector Percentage
	Batch size

