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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has emerged as a promis-
ing paradigm for enhancing the reasoning capabilities of large language models
(LLMs). In this context, models explore reasoning trajectories and exploit roll-
outs with correct answers as positive signals for policy optimization. However,
these rollouts might involve flawed patterns such as answer-guessing and jump-
in-reasoning. Such flawed-positive rollouts are rewarded identically to fully cor-
rect ones, causing policy models to internalize these unreliable reasoning patterns.
In this work, we first conduct a systematic study of flawed-positive rollouts in
RL and find that they enable rapid capability gains during the early optimization
stage, while constraining reasoning capability later by reinforcing unreliable pat-
terns. Building on these insights, we propose Flawed-Aware Policy Optimization
(FAPO), which presents a parameter-free reward penalty for flawed-positive roll-
outs, enabling the policy to leverage them as useful shortcuts in the warm-up stage,
securing stable early gains, while gradually shifting optimization toward reliable
reasoning in the later refinement stage. To accurately and comprehensively detect
flawed-positive rollouts, we introduce a generative reward model (GenRM) with a
process-level reward that precisely localizes reasoning errors. Experiments show
that FAPO is effective in broad domains, improving outcome correctness, process
reliability, and training stability without increasing the token budget

1 INTRODUCTION

Large language models (LLMs) with strong reasoning capabilities, such as OpenAl o-series (Ope-
nAll 2024} 2025), Deepseek R1 (Guo et al., [2025), have sparked significant attention in reinforce-
ment learning with verifiable rewards (RLVR) (Shao et al.| 2024)). In this paradigm, models are op-
timized through rule-based outcome rewards, typically a binary signal indicating whether the final
answer is correct, in verifiable tasks like mathematical reasoning (Yu et al., 2025} [Team et al., 2025)
and code generation (Xiaomi et al.,2025). During RL training, the model explores diverse reasoning
trajectories and exploits those with correct final answers as positive signals for policy optimization.
This exploration—exploitation paradigm enables LLMs to evolve strong reasoning behaviors, such as
planning, which in turn facilitate generalization across a wide range of domains (Huan et al., 2025)).

However, certain flawed reasoning patterns could also be reinforced during policy optimization.
Recent studies (Zheng et al.l [2024; Kalai et al., |2025) have revealed notable flawed reasoning pat-
terns in current LLMs, such as answer-guessing and jump-in-reasoning (Wang et al.| 2025)), where
models reach correct answers through shortcuts. This presents a fundamental challenge for RLVR,
i.e., rule-based outcome rewards assign identical positive signals to both flawed-positive and fully
correct rollouts, thereby potentially reinforcing unreliable reasoning. This raises an urgent need for
(1) analyzing the distribution and impact of flawed positives throughout the RL process, and (2)
developing effective mitigation strategies to ensure efficient and reliable reasoning.

To this end, we first conduct a preliminary study to investigate the prevalence and impact of flawed
positives in the RL process. Our findings indicate that flawed positives persist steadily throughout
training: (1) in the early stages, when models are not yet capable of producing fully correct roll-
outs, flawed positives serve as shortcuts to correct answers, accelerating capability gains; and (2)
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Figure 1: Flawed-positive ratio and performance comparison between FAPO models and their base-
lines, showing steadily decreasing flawed-positive ratios and consistent performance gains during
RL training. Experiments cover both 7B and 32B models on AIME24, AIME25, and GPQA-
Diamond. For evaluation, we repeat the evaluation set k times and report Avg @k for results stability.

once the model can generate fully correct rollouts, these flawed positives may hinder learning by
reinforcing unreliable reasoning patterns. Thus, the optimal role of flawed positives is to act as step-
ping stones toward reliable reasoning. Building on these insights, we propose Flawed-Aware Policy
Optimization (FAPO), which presents a parameter-free reward penalty to flawed-positive rollouts.
FAPO establishes a natural self-exploration learning trajectory: the model initially exploits flawed
positives for knowledge, but as its capabilities advance, the training objective gradually shifts toward
genuine problem-solving, improving both the training efficiency and reasoning reliability. Further-
more, to accurately and comprehensively detect these flawed positives, we introduce a generative
reward model with a process reward, which enables the model to locate intermediate process errors.

Experimental results highlight the strong potential of FAPO. For flawed positive detection, our
trained model, FAPO-GenRM-4B, achieves substantial gains on both our newly constructed bench-
mark, FlawedPositiveBench, and the public ProcessBench (Zheng et al., |2024). When integrated
into the final RL process (results in Figure[I)), FAPO effectively penalizes flawed-positive rollouts,
reducing unreliable reasoning patterns (left subfigure, the decreasing flawed positive ratio), while
delivering remarkable improvements across AIME24, AIME25, and GPQA-Diamond (Rein et al.,
2024) (other three subfigures), with clear advantages at nearly all intermediate evaluation check-
points. Overall, FAPO offers clear advantages: it enhances outcome correctness, improves process
reliability, and training efficiency and stability, all without increasing the token budget.

2  PRELIMINARY: UNVEILING FLAWED POSITIVES IN RL TRAINING

2.1 PROBLEM DEFINITION AND MOTIVATION

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024) is an efficient policy
gradient method for LLM reinforcement learning that estimates advantages in a group-relative man-
ner without relying on a learned value model. For a given question ¢, the behavior policy generates
a group of G rollouts {0;}% ,, evaluates their rewards {R;}$ ,, and normalizes them to obtain

per-token advantage estimates A; ;:

P Ti— mean({R;}& )
vt std({R; }&))

(D

The policy model is then updated by maximizing the following clipped surrogate objective:
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where (g, a) denotes a question-answer pair sampled from the data distribution D, g, is the old
policy, and e controls the clipping range in importance sampling (Schulman et al.|[2017)) for stability.
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In this work, we adopt several effective strategies such as clip-higher, token-level loss, and overlong
reward shaping (Yu et al.l 2025)), to ensure stable and efficient policy optimization.

J(0) = E(qa)ND {0:}S, ~rmay, (1)
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In these algorithms, the reward R is the primary supervision signal that guides the policy optimiza-
tion, and existing RLVR approaches (Yang et al., 2025} [Liu et al.| [2025b) commonly employ a
rule-based outcome reward to mitigate reward hacking (Gao et al., |2023; |Weng} [2024), i.e.,

1, If Z(o,a*)

4
—1, Otherwise ’ @)

RRrivr = Rue(0,a”) = {
where Z (0, a*) is an indicator function that returns True if the predicted answer extracted from
rollout o matches the ground-truth answer a*, and False otherwise.

Flawed Positive Issues Recent studies (Zheng et al., 2024} Zhang et al., 2025b) have identified
notable flawed-positive issues in current LLMs, in some cases even accounting for a ratio of up to
50%, where models may reach correct final answers through unreliable reasoning patterns such as
answer-guessing and jump-in-reasoning (Wang et al.| |2025)). This poses a fundamental challenge for
reinforcement learning: rule-based reward functions assign positive signals to flawed-positive roll-
outs, thereby reinforcing unreliable reasoning patterns and ultimately limiting the model’s perfor-
mance ceiling. Formally, given a question ¢ and reasoning trajectory x = [z1, 2, . . ., Z,,] generated
by policy 7, with predicted answer a., the rollout is flawed positive if

G =a"and 3t € {1,2,...,n} s.t. step z; is logically invalid. (5)

While prior works have primarily revealed the prevalence of these issues in benchmark evaluations,
their underlying mechanisms and impact on the RL process remain largely underexplored.

2.2 FLAWED POSITIVE ANALYSIS IN REINFORCEMENT LEARNING

Flawed Positives are Prevalent in Initial Checkpoints We first examine flawed positive issues
in current LLMs, as they establish the starting conditions for subsequent RL optimization. We
evaluate three representative models: Qwen2.5-Math-7B-Base (Yang et al.,|2024b), Llama3.3-70B-
Instruct (Dubey et al., 2024), and Qwen3-1.7B (Yang et al., [2025), on the DAPO-Math dataset.
Following Zhang et al.| (2025b), we employ Qwen3-32B to determine whether the reasoning trajec-
tory contains unreliable reasoning patterns. As shown in Figure[2](a), flawed positives are prevalent
across various LLMs, accounting for 20%—40% of correct rollouts, highlighting the severity of this
issue. Beyond the automatic LLLM-as-a-judge evaluation, we also conduct a manual case study of
flawed-positive samples and analyze their underlying causes, which are provided in Appendix

Flawed Positives are Stepping Stones in Learning Reinforcement learning is often formulated as
an end-to-end optimization process driven by self-exploration towards self-improvement. To better
understand this process, and in particular the role of flawed-positive rollouts, we design a simulated
experiment in which the learning stage of each sample is approximated by its rollout accuracy.
Specifically, we use a model to generate multiple rollouts per sample, compute the corresponding
rollout accuracy, and then group all samples into different learning stages, as illustrated in Figure
(b). The results reveal a clear trend: flawed positives are most prevalent during the early learning
stages but diminish significantly as training progresses. This highlights their expected role as natural
stepping stones in the learning trajectory, allowing the model to initially reach correct answers before
gradually evolving the capability to produce fully correct solutions.

Flawed Positives Persist and Exert Twofold Effects We further train a pre-trained model,
Qwen2.5-Math-7B, with RL on DAPO-Math, and track its learning trajectory, as shown in Figure
(c). While the model’s rollout accuracy steadily improves, the flawed-positive ratio remains almost
constant at around 30%. This indicates that the optimization process struggles to shift from unre-
liable reasoning to genuine problem-solving. A major concern is that flawed positives receive the
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(a) Flawed Positives Across Various LLMs (c) Flawed-Positive Rollouts in RL Training
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Figure 2: Preliminary experiment results of flawed positives.

same rewards as correct solutions, thereby reinforcing unreliable reasoning patterns and hindering
progress. To further explore this, we conduct preliminary trials using Qwen3-32B to detect flawed
positives and assign them negative signals (same as negative rollouts) during training. Figure
(d) reports performance on AIME24 throughout the training process. Compared with the baseline
RLVR setting (blue line), penalizing flawed positives (orange line) yields significant performance
gains, though improvements emerge more gradually in the early stages. From the above findings,
we find flawed positives persist throughout training, and exert a twofold effect: (1) flawed positives
act as stepping stones, enabling the model to achieve rapid capability gains in the early stages,
and (2) their improper reward assignment can trap optimization in unreliable reasoning.

3 FAPO: FLAWED-AWARE POLICY OPTIMIZATION

Building on these insights, we propose Flawed-Aware Policy Optimization (FAPO) algorithm. For
flawed-positive detection, directly employing a strong LLM like Qwen3-32B is impractical and
computationally inefficient. Instead, we propose an RL algorithm to train a compact yet effective
generative reward model (GenRM). We then present an adaptive learning algorithm that dynamically
adjusts advantage assignment towards the current suitable optimization direction.

3.1 FLAWED POSITIVE DETECTION

Evaluating Flawed Positive Detection Capabilities of LLLMs To identify a suitable LLM that
can detect flawed positives both effectively and efficiently, we construct an evaluation set, Flawed-
PositiveBench, by collecting positive samples (including flawed ones) from ProcessBench (Zheng
et al.,[2024)). We then quantify the detection capability with the following three metrics:

#{00 = y* = FP} _ #ge =y =FP} 2
- , recall = I = —
#{99 = FP} #{y* = FP} 1/precision + 1/recall

where gy indicates whether the judge model 6 predicts a response as a flawed positive (FP), and y*
is the ground-truth label. Precision reflects the correctness of FP predictions, recall measures the
coverage of true FPs, and the F; score provides a balanced summary of both. As shown in Figure[3}
we observe that many models, such as Qwen3-4B-Instruct (Yang et al., [2025) and Qwen2.5-Math-
PRM-72B (Zhang et al.| [2025b)), exhibit an over-critic phenomenon: they achieve high recall but
suffer from low precision. Closer inspection reveals that these models often overemphasize minor
or unnecessary errors like unsimplified fractions. Overall, lightweight models struggle to provide

precision =

, (6)
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Figure 3: Performance of current state-of-the-art (SoTA) generative models and discriminative
PRMs. Detailed subset-level results and additional models are reported in Table Q

appropriate criticisms to detect flawed positives, while stronger models achieve better accuracy but
remain impractical for online RL use due to slow inference. These findings suggest that existing
models are not well-aligned in both detecting capabilities and inference efficiency.

Enhancing Detection Capabilities via Step-wise RL Optimization To enhance the detection
capability, we introduce a step-wise RL reward formulation. Starting from a generative model, we
develop the following RL strategies for training a generative reward model (GenRM):

RFAPO—GenRM = ROutcome+RProcess

1, If jp =y g gy =y =FP (D)

where Routcome = . Process — .
—1, Otherwise ’ 0, Otherwise

Building upon the outcome reward, we introduce a step-wise penalty, Rpyocess, for fine-grained and
step-wise optimization. Here, y and t* denote the predicted and ground-truth error indices, and n
is the total number of steps, ensuring Rpocess € [—1,0]. In flawed-positive cases, the penalty is
distance-sensitive: predictions closer to the true error receive higher rewards, while those farther
away incur stronger penalties. This design guides the model toward precise error localization and
fosters genuine error-detection ability, rather than mere guessing, based on the two key points:

* Learning beyond guessing: Flawed-positive rollouts also exist in the error detection task, partic-
ularly in the yes/no setting, where the model can often guess the label without truly identifying
errors. Such guessing rollouts offer little optimization benefit. To mitigate this, we introduce the
penalized step reward that guides the model toward genuine critic capabilities rather than guessing.

* Natural reward shift: In early training, the reward design naturally emphasizes prediction cor-
rectness, as improving Rpaseline Yields substantial gains (—1 — 1), whereas Rpycess provides only
limited gains (Rprocess € [—1, 0]). As correctness saturates, process optimization becomes increas-
ingly prioritized. This enables a smooth transition without additional controlling hyperparameters.

3.2 FLAWED POSITIVE PENALIZATION

With the GenRM detecting flawed positives, we then regulate their roles in the final RL optimization.
As discussed in Section [2.2] flawed positives should ideally facilitate rapid warm-up and then be
penalized to enable genuine problem-solving. However, the key challenge lies in how to balance
their encouragement and suppression and when to shift between these roles. To address this, we
introduce a reward-penalization mechanism with a group-relative advantage estimation:

Reapo(0,a"|0) = Rrivr(0,a™)+Ra(0,2%(0),
If Z(o,a*) and gg(0,a*) = FP
Otherwise

-

where R (0,a*|0) = {0 ’ ) 3
Aip = [ri — mean({R;}))] /std({Ri} ).

where Rgrpyr denotes the standard baseline (defined in Equation EI), and ) controls the penalization

strength. To better characterize the entire learning dynamics of FAPO, we provide a theoretical
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analysis in Appendix [A] which demonstrates how FAPO enables the natural optimization shift while
further stabilizing the RL training process. Concretely, when the current rollout stage contains « pro-
portion of positive samples and 8 proportion of negative samples, the optimization shifts from the
warm-up stage to the refinement stage once the learning progress p = % reaches % — 1. Moreover,

as optimization continues, when p > % — 1, the estimated advantage for positive samples becomes
downscaled, making the optimization more stable. In the process, the value of A\ determines the
timing of this optimization shift. We adopt a majority-guided strategy, where the optimization direc-
tion is determined by whether positive or negative samples dominate. This majority-guided strategy
yields psnire = 1, further detemining A = 1. We set A = 1 as the default setting. Overall, FAPO
provides a principled mechanism for guiding the optimization process, aligning with the ideal learn-
ing trajectory where the focus initially lies in producing correct solutions when model capability is
limited, and naturally shifts toward refining reliability once correct rollouts surpass incorrect ones.

4 EXPERIMENTS

4.1 TRAINING DETAILS

In this work, we validate the effectiveness of FAPO on Qwen2.5-Math-7B (Yang et al., [2024b) and
Qwen2.5-32B (Yang et al.,[2024a). We adopt GRPO (Shao et al.,|2024) with several commonly used
strategies, including clip-higher, token-level loss, and overlong reward shaping (Yu et al.,[2025), as
our baseline algorithm. Notably, FAPO can be easily transferred to any other RLVR method as
a drop-in replacement for rule-based outcome rewards. We conduct RL training using verl frame-
work (Sheng et al.,|2025)), and develop an asynchronous architecture that decouples rollout inference
and generative reward modeling, which substantially improves training efficiency.

FAPO-GenRM To train the GenRM model via reinforcement learning, we construct a flawed-
positive dataset, FAPO-Critic-85K. To ensure broad coverage, we employ a series of models from
the LLaMA and Qwen families, ranging from 7B to 70B, to generate multiple responses to questions
drawn from DAPO-Math-17K (Yu et al., [2025)). Based on these responses, we select the samples
with correct final answers and then employ Qwen3-32B to identify the inherent step-level error
location. This yields the final process-error dataset: Drapo.crisic = { (i, 74, i) }2.,, where t; denotes
the first error index of response r;, and and fully correct responses are included with ¢; = +oc for
convenience. This dataset is then used to train Qwen3-4B-Instruct (Yang et al., [2025) with the
reward defined in Equation /] and additional hyperparameter settings are provided in Appendix

FAPO-Reasoning The trained critic model, FAPO-GenRM-4B, is then used to detect and penalize
flawed positives in reinforcement learning for reasoning tasks, optimized with the reward defined in
Equation|[§] In practice, we deploy the GenRM as an external LLM service on a computing cluster,
where process rewards are obtained via remote API requests during RL training. To ensure effi-
ciency, we launch multiple server workers and employ a router to distribute requests with balanced
load across workers. This decoupled design enables asynchronous interaction between GenRM and
other RL components, substantially improving training efficiency and making the integration of
GenRM into large-scale RL training practically feasible. Further details on infrastructure design
and hyperparameter configurations are provided in Section and Appendix B} respectively.

4.2 EVALUATION SETUP

Flawed-Positive Detection We primarily evaluate GenRM on FlawedPositiveBench, whose con-
struction procedure and evaluation metrics are detailed in Section [3.1] as this benchmark directly
aligns with our research purpose. In addition, we also include ProcessBench (Zheng et al.| [2024),
which focuses on recognizing fully correct samples and precisely locating errors in incorrect re-
sponses. We report the harmonic mean of the accuracies on correct and erroneous samples. Further-
more, we incorporate several state-of-the-art (SoTA) discriminative and generative models as strong
baselines for comprehensive comparison.

Reasoning Evaluation We conduct a comprehensive evaluation covering AIME24 (Math),
AIME25 (Math), and GPQA-Diamond (General Domain) (Rein et al., |2024). Rather than lim-
iting the analysis to a single selected checkpoint, we present all intermediate evaluation outcomes
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Figure 4: Performance of FAPO-GenRM and FAPO-Reasoning during training. Top row: compari-
son between FAPO-GenRM and the baseline outcome reward models (setup in Equation|(/7)). Bottom
row: comparison between FAPO-Reasoning and the baseline setting (setup in Equation Detailed
results in a broader domain can be seen in Table |Z| and Table El

throughout the RL process. This not only illustrates the performance gains achieved during the train-
ing process but also highlights the stability and scalability of the optimization procedure, thereby
providing stronger evidence of the effectiveness and robustness of our approach.

4.3 MAIN RESULTS

FAPO-GenRM Performance The top row of Figure[d]illustrates the training dynamics of FAPO-
GenRM. The model exhibits significant performance gains in the early stages and continues to im-
prove as training progresses. For subsequent use, however, we select an early checkpoint, as it
delivers strong results with shorter responses, which is crucial for maintaining efficiency when in-
tegrating GenRM into RL training. Figure [3| compares our trained model against state-of-the-art
discriminative and generative baselines. Built upon Qwen3-4B-Instruct, our approach achieves sub-
stantial improvements on both FlawedPositiveBench and ProcessBench, even outperforming the
teacher model Qwen3-32B, further demonstrating the effectiveness of our approach. Additional
results of our model and other strong baselines can be checked in Table[2]

FAPO-Reasoning Performance Figure [T]and the bottom row of Figure ff] summarize the overall
performance of the FAPO reasoning models, which can be highlighted in the following aspects:

* Outcome Correctness: Across benchmarks, FAPO consistently maintains a clear advantage over
the baselines in both mathematical and general-domain tasks, demonstrating that detecting and
penalizing flawed positives leads to broad improvements in problem-solving ability.

* Process Reliability: We also measure the proportion of flawed positives. The results show that
FAPO responses exhibit a substantially lower flawed-positive ratio. Beyond the LLM-as-a-judge
approach using Qwen3-32B, we also launch a manual verification of unreliable reasoning patterns,
with details and results in Table[6] demonstrating the effectiveness of FAPO.

* Training Stability: By mitigating the impact of flawed positives, training stability is significantly
enhanced. The overall learning curves are smoother, and unlike the baselines, FAPO does not
exhibit a notable performance drop in the later stages of training.

* Token Budget: The improvements from FAPO do not require longer responses. While prior
work (Luo et al.l [2025; |An et al.| 2025) has shown that scaling up response length can yield
substantial gains, FAPO achieves improvements without relying on this factor.

4.4 ABLATION STUDY
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Effectiveness of FAPO-GenRM method Previous re-
sults have already demonstrated that our GenRM design
achieves state-of-the-art (S0TA) performance on the error
detection task (see Figure E]) Here, we further evaluate
its impact on the final RL process. Figure [5] compares
FAPO-GenRM with the base model (Qwen3-4B-Instruct)
during RL training. The results indicate that stronger de-
tection capability ultimately translates into improved per-
formance. This highlights two key points: (1) the pro-
posed FlawedPositiveBench provides a reliable measure
of detection ability that is well aligned with final perfor-
mance, and (2) flawed positive detection plays a crucial
role, where even small improvements can yield substan-
tial performance gains.

Impact of Self-Correction Capability Self-correction
is an important evolved mechanism in RL, allowing rea-
soning models to recover from initial mistakes and even-
tually reach correct answers. Nevertheless, when cor-
rectness depends heavily on long rollouts, it could also
be regarded as a form of flawed positives. While self-
correction facilitates progress in the early stages of learn-
ing, it becomes less desirable once the model can solve
problems directly, where fully correct rollouts not only
ensure reliability but also promote more efficient reason-
ing. To illustrate this phenomenon, Figure [6] visualizes
rollout length during training: both FAPO and the base-
line initially depend on self-correction, but over time,
FAPO shifts toward fully correct rollouts, resulting in
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Figure 6: Self-correction Analysis.

shorter rollouts, more efficient reasoning, and consistent performance gains. These results indi-
cate that FAPO preserves the benefit of learning from self-corrected rollouts at the beginning, but
gradually shifts toward prioritizing fully correct rollouts in later stages.

4.5 DISCUSSION: GENRM APPLICATION IN FUTURE RL SYSTEMS

Introducing generative reward models (GenRMs) may have a considerable impact on the whole RL
process, influencing both algorithmic effectiveness and infrastructure efficiency. In this section, we
discuss the application potential of GenRMs (with FAPO as an example) in future RL systems,
considering perspectives from both algorithmic development and infrastructure design.

Algorithmic Challenge: Reward Hacking The pri-
mary algorithmic challenge of deploying GenRM in
large-scale RL systems lies in reward hacking, where
the policy exploits imperfections in the reward signal to
achieve high scores without genuinely performing the
intended reasoning task. This issue is especially pro-
nounced with complex, fine-grained reward signals pro-
duced by reward models, as they provide more opportuni-
ties for the policy to discover shortcuts for maximizing re-
wards. For example, we experiment with a process-based
reward that assigns scores according to the proportion of
correct steps before the first detected error. However, this
design results in a form of reward hacking: the model
tends to output only those reasoning steps in which it has
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Figure 7: Step reward ablation.

very high confidence, while skipping uncertain ones altogether. As shown in Figure[7] although the
step-ratio reward delivers some capability gains at the early stage compared to the baseline, the sub-
sequent progress stalls due to reward hacking. This behavior causes an obvious jump-in-reasoning
phenomenon, which is undesirable as it undermines the reliability of the reasoning process.
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Infrastructure Challenge: Long-tail Problem Rollout Infer [_] GenRM Infer ActorTrain [ IDLE Time
The long-tail problem has long been a key bottle-  spu-1 T ]

neck in scaling large-scale RL systems (Liang et al.,  Pu-2 :

2018), where GPUs often remain idle during the oy [ Tal sempe

generation of long-tail samples. A concern with —_— =
GenRM is that it 1ntr0duc§s an gdfhthﬂgl genera-

tion stage, further aggravating this inefficiency. To - .
make FAPO practical for large-scale RL systems, we  opq 177551 3 T
adopt the following efforts: (1) Asynchronous de- ey 5678 o |16 [ 13 [ 14| ..
sign: We decouple GenRM from rollout inference  eru-3 [[s[ifs]2[ 3 [7[8] 3 [a[w0 [#1 [13] -
and actor training, reducing GPU idle time. While a  epu-a | peviowser [ | 12356789
fully synchronous design may offer a better system-
level solution (Fu et all [2025), this lies beyond the Figure 8: GenRM infrastructure design.
primary research focus of our work, and we leave

this as an important future work. (2) GenRM training: FAPO employs an overlong reward strategy
in training and treats token budget as a key criterion in final checkpoint selection. With these efforts,
the training time of FAPO is increased by less than 20% relative to the baseline.

Decouple GenRM
from Rollout & Actor

5 RELATED WORK

LLM Reinforcement Learning Reinforcement learning has emerged as a promising paradigm for
advancing LLM reasoning capabilities (Xu et al., 2025a; Zhang et al., 2025a), with the long-term
vision of Atrtificial Superintelligence. Recent milestones (Guo et al.l 2025} (OpenAl, |2025)) demon-
strate that RL in verifiable tasks (Liu et al.| [2025¢j He et al.,2025; |[Feng et al.,2025) enables models
to develop reasoning patterns such as planning and tool usage, which in turn foster generalization
across broader domains (Huan et all 2025} |Seed et all [2025)). While verifiable rewards provide
only binary feedback, learning progresses gradually. Building on this direction, we explore the role
of flawed positives in this process and introduce the Flawed-Aware Policy Optimization (FAPO)
algorithm, which promotes a more natural learning trajectory and enables efficient and reliable RL.

Reward Models in Reinforcement Learning Reward models offer a promising approach to ad-
dressing the limitations of rule-based rewards, which can be broadly categorized into generative
(GenRMs) and discriminative reward models (DisRMs). Current GenRMs mainly serve as flexible
verifiers (Xu et al., [2025b; (Chen et al., 2025) that augment rule-based systems when correctness
cannot be reliably assessed by predefined rules (Liu et al., [2025a; [Zhao et al.| 2025)). In addition to
verifiable reasoning tasks, GenRMs are also applied in non-verifiable tasks, providing subjective and
rubric-based rewards (Mahan et al.,|2024; Zhang et al.|[2024}|Zhou et al.|[2025)). In contrast, DisRMs
typically output fine-grained, dense rewards at every decision step, such as token-level (Rafailov
et al.,|2023;|Cui et al.,|2025)), step-level (Lightman et al., 2023;|Wang et al., 2023 |Ding et al.,|2025)),
and turn-level (Qian et al.,2025; Dong et al.,[2025), to support more precise optimization. However,
the complexity of such dense rewards also makes them vulnerable to reward hacking (Gao et al.,
2023), as policies may exploit spurious shortcuts instead of learning the intended behaviors (Weng,
2024), limiting their application in large RL systems. To address this challenge, FAPO introduces
an interpretable framework that trains GenRMs to detect flawed positives and provide nuanced, in-
terpretable rewards. Both empirical experiments (Appendix 4)) and theoretical analysis (Section
demonstrate that FAPO exhibits strong robustness against reward hacking and scales effectively.

6 CONCLUSION

This paper introduces the Flawed-Aware Policy Optimization (FAPO) algorithm to enhance effi-
ciency and reliability in LLM RL. We first reveal the role of flawed-positive rollouts: they accelerate
capability gains in the early stage but ultimately constrain reasoning quality by reinforcing unreliable
patterns. To reconcile this trade-off, FAPO applies a parameter-free reward adjustment that lever-
ages flawed positives as shortcuts during warm-up while progressively steering optimization toward
reliable reasoning. In addition, we develop a generative reward model (GenRM) with process-level
signals to accurately detect and localize reasoning errors. Both empirical experiments and theoreti-
cal analysis demonstrate the effectiveness of FAPO in future large-scale RL systems.
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A THEORETICAL ANALYSIS OF FAPO ALGORITHM

To better understand the effectiveness of FAPO and the whole learning process, we present a theoret-
ical analysis. We begin by comparing FAPO with baseline settings to illustrate how the optimization
direction shifts during the RL process and how the corresponding advantage estimation evolves. In
this context, A plays a crucial role in controlling the optimization dynamics. Building on this, we
further introduce a parameter-free, majority-guided optimization strategy.

In the context of LLM RL, we typically maximize the following clipped surrogate objective:

Jareo(0) = E(g.a)~D,(0:}2, ~roy (1)

G |oi ] 9
1 1 [ mo(oilg0<) 7 . mo(0r]q; 0<1) 7 H ®)
— min | ——————<A; ;,clip(——————=,1 —¢,1 + €) A; ,
G ; ‘02| tz:; { |:7r0‘,m(0t|q,0<t) ! p(,’Teum(ot‘q’O<t) ) !
with advantage estimated in a group-relative manner:
1, If o, is correct - r; —mean({R;}%.)
Ri = . ’ it = G ; (10)
—1, Otherwise ’ std({Ri}5,)

In this context, ppapo = mean({Ri}iG:l) determines the sign of the advantage /Ali,t, which in turn
dictates the current optimization direction while std({R;}%.,) can be regarded as a scaling factor.
FAPO introduces the following modification to the reward function:

1, If ois fully correct
Rpapo = ¢ 1 — X If oiscorrect yet flawed . (11)
-1, Otherwise

1, If oiscorrect penalty
—_—

R = .
ORPO {—17 Otherwise

We assume that the current sample contains n rollouts, with a proportion of « fully correct positives
and a proportion of 3 negatives, leaving 1 — o — [ as flawed positives. Since GRPO does not
distinguish between fully correct and flawed positives, the resulting advantage estimation is:
1x(1-=Fn+(-1)xpn
pereo = mean({R;}i ) = ( ) - =D =1-p-p=1-25,
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while the advantage estimation of FAPO is
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We break o2,po down into three sub-expressions (A, B, C) and simplify them separately.
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_ 2
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Thus, prapo and oZ,po can be expressed in terms of pGreo and o3gpo:
JHEAPO = HGRPO — AY (16)
oEapo = Ogreo + AY(1 = 7)(A = ﬁ)

When Optimization Direction Shift We assume a complete learning process that begins with the
model unable to solve any problems, i.e., 3 = 1. As training progresses, J gradually decreases
while « increases. The shift in optimization direction occurs when:

1 — A\ — uparo
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How Scaling Factor Changes The scaling factor 02,po changes over o&gpg is:

4
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4

when
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2 2
> N 1 = ogapo > 0Greo

Summary: The Whole Optimization Process of FAPO We introduce p = % to characterize
the current optimization state, which increases monotonically from 0. For a pre-defined and fixed
A, the learning process drives p upward. Once p exceeds % — 1, the optimization direction shifts
from reaching the correct answer (warm-up stage) toward reinforcing reliable reasoning (refinement
stage). As p continues to increase and surpasses % —1, the scaling factor o rises accordingly, making
the advantage estimation more conservative (i.e., AFAPO| < |AGRPO , for flawed-positive and fully

correct rollouts). This conservativeness helps to stabilize training by preventing overly aggressive
updates, while still ensuring that correct and reliable rollouts are consistently prioritized.
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Determining A From the above analysis, the reward assignment parameter A plays a central role in
determining when the optimization shift is applied, whether conservative or aggressive. In practice,
we adopt a majority-guided strategy, which provides both intuitiveness and effectiveness. In the
early stage of training, when negative samples with proportion 5 dominate, flawed positives are
assigned positive advantages, enabling the model to acquire the ability to produce correct answers
quickly. As training progresses and fully correct rollouts become the majority (i.e., « > f3), the
optimization naturally shifts toward reinforcing reliable reasoning. Formally:

« 2

=—=1=2 A= ——= 19
Pehift B Pshife + 1 (19)

Therefore, we set A = 1 as the default configuration in FAPO.

B IMPLEMENTATION DETAILS

FAPO-Reasoning Table [I] summarizes the training configurations and hyperparameters of our
generative reward model (GenRM) and final reasoning models. For GenRM training, we follow the
practice of |An et al.| (2025) by using a higher rollout temperature to encourage exploration. For
reasoning model training, most settings are consistent with DAPO (Yu et al., 2025)), except that we
reduce the number of rollouts from 16 to 8 to accelerate overall training speed.

Table 1: Training configurations and hyperparameters of our experiments.

FAPO-GenRM-4B Baseline & FAPO-7B  Baseline & FAPO-32B

Data Configuration

Global Batch Size 512 512 512
Base Model Qwen3-4B-Instruct Qwen2.5-Math-7B Qwen2.5-32B
Rollout Inference

Rollout Num per Prompt 16 8 8
Temperature 1.2 1.0 1.0
Top-p 1.0 1.0 1.0
Top-k -1 -1 -1
Max Prompt Length 5120 2048 2048
Max Response Length 8192 8192 20480
Overlong Buffer Length 4096 4096 4096
Overlong Penalty Factor 1.0 1.0 1.0
Actor Training

PPO Mini Batch Size 32 32 32
Advantage Estimation Type GRPO GRPO GRPO
Clipping €iow 0.2 0.2 0.2
Clipping €nigh 0.28 0.28 0.28
Optimizer Adam Adam Adam
Learning Rate 1076 1076 1076
Weight Decay 0.1 0.1 0.1
(B1, B2) (0.9,0.999) (0.9,0.999) (0.9,0.999)
Gradient norm clipping 1.0 1.0 1.0
Learning Rate Scheduler constant constant constant
Warmup Steps 10 10 10
Evaluation Setup

Temperature 0.6 1.0 1.0
Top-p 0.95 0.7 0.7
Top-k -1 -1 -1
Max Generation Length 8192 8192 20480
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Overview of Agent Reward Loop
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Figure 9: Infrastructure Design of Reward Loop
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FAPO-GenRM FAPO-GenRM is trained using the FAPO-critic dataset, where the ground truth
label is generated by Qwen-32B. To mitigate the label noise in the data and train FAPO-GenRM
robustly, we propose the following strategies:

* Consensus filtering: During data synthesis, we sample each instance three times. A sample is
kept only if all three generations yield consistent outcomes (i.e., the process errors occur at exactly
the same positions). As a result, the retained samples tend to be highly reliable and have strong
internal agreement.

* Robust Training Objective: Our designed training objective (in Equation [/) are robust to the
subtle errors missed by the teacher. The reward supervision signal is a soft noise-robust label,
the student can still receive an appropriate reward even when the annotated error location deviates
slightly from the true error.

Reward Loop Design Figure [9] shows the infrastructure design of the reward loop, a partially
asynchronous infrastructure for reward computation. Reward Loop is designed for:

* Make reward computation more efficient: each rollout sample is sent to the reward model
immediately after it is generated, without waiting for the full batch rollouts to finish.

* Make user customized reward function more flexible: the design of the Reward Loop provides
substantial flexibility for implementing custom reward functions and supports both DiSRM and
GenRM.

This implementation is based on the veRL agent loop (Sheng et al.}[2025)) and has been open-sourced
(relevant implementation can be checked in our supplementary materials).

C ADDITIONAL RESULTS AND DISCUSSION

Additional Results of FAPO-GenRM Table [2] shows a detailed comparison of our FAPO-
GenRM-4B model with other publicly available discriminative and generative reward models.
Building upon Qwen3-4B-Instruct, our model achieves substantial improvements in both Flawed-
PositiveBench and ProcessBench (Zheng et al.,2024), even surpassing Qwen3-32B and the discrim-
inative SOTA model Qwen2.5-Math-PRM-72B (Zhang et all,[2025b).

Additional Results of FAPO-Reasoning Strong generalization ability is one of the key advan-
tages of reinforcement learning (Huan et all, [2025). We then extend the evaluation of FAPO to
additional tasks, including two more mathematical domains (MATH (Hendrycks et al [2021)) and
AMC) and code reasoning (LiveCodeBench 2024)). The overall results are shown in the
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Table 2: FAPO-GenRM results in FlawedPositiveBench and ProcessBench.

\ FlawedPositiveBench \ ProcessBench
Model
‘ Precision Recall Fi ‘ Avg. Fq
Discriminative Process Models (7B-70B)
Qwen2.5-Math-PRM-7B 76.6 83.5 79.9 70.5
Qwen2.5-Math-PRM-72B 74.3 91.0 81.8 76.8
Generative Critic Models (7B-70B)

Qwen2.5-Math-7B-Instruct 58.0 43.8 49.9 19.9
Qwen2.5-7B-Instruct 50.0 66.2 57.0 38.9
Qwen3-1.7B (Think) 73.4 75.1 74.2 56.0
Qwen3-4B-Instruct 69.4 97.9 81.2 77.1
Qwen3-4B (Think) 89.2 84.3 82.0 79.6
Qwen3-32B (Think) 85.1 90.8 87.8 82.0
FAPO-GenRM-4B (Ours) \ 87.5 91.4 89.4 \ 83.3

Table 3] FAPO outperforms the baseline in code reasoning tasks and achieves consistent improve-
ments across a broad range of tasks.

Table 3: FAPO-Reasoning results in more evaluation benchmarks.

Model Math Code General Av
AIME24 AIME25 AMC MATH | LiveCodeBench | GPQA-Diamond &

Baseline-32B 38.9 29.5 85.0 72.8 28.6 51.0 51.0

FAPO-32B 42.4 33.5 91.6 74.6 33.6 53.1 54.8

FAPO application in large-scale RL systems Introducing an extra generative reward model will
bring a burden to the systems. We then quantify the burden and explore the potential application of
FAPO in large-scale RL systems. We provide a more detailed breakdown of the time distribution
across different RL stages in Table[d]

Table 4: Time distribution across different RL stages in different settings.

Model Rollout Rollout Len FAPO-GenRM GenRM Len Policy U.pdate Nodes
(Infer) (Infer) (Train)

FAPO-7B 42% 1.1k 18% 3.0k 33% 4

FAPO-32B 60% 2.3k 14% 3.2k 20% 8

Qwen3-4B 72% 12.0k 10% 3.8k 14% 16

The relative inference cost for long-cot models actually decreases, specifically: (1) Rollout: Long-
CoT models exhibit a strong long-tail issue: the generation time is bounded by the longest trajectory
in the batch. Therefore, rollout time increases significantly as the model generates longer traces
(e.g., 12k tokens for Qwen3-4B). (2)GenRM: In contrast, GenRM inference time does not increase
with longer trajectories. We observe that the GenRM output length stays nearly constant across
models (e.g., 3.2k — 3.8k). (3) Policy update: This stage accounts for a relatively small portion of
the total cost and primarily scales with model size rather than trajectory length. Overall, the root
cause is that the critic task for FAPO-GenRM does not require a very long response length.

Ablation study of hyper-parameter A )\ is the only key hyper-parameter introduced in the FAPO
algorithm. We explore the parameter tuning based on the FAPO-7B setting, with results illustrated
in Table
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Table 5: Hyper-parameter tuning of \.

Setting | Performance
Baseline-7B (p = +o00 = A =0) 32.1
FAPOwithp=2= XA=1/3 34.6
FAPO with p = 1 = A = 1 (default setting) 36.8
FAPOwithp=1/2=X=-1/3 39.6

We can conclude that:

* Flaw-aware learning consistently improves performance, as all configurations outperform the
baseline.

* Achieving the best performance require tuning the parameter A. In the 7B setting, a more ag-
gressive strategy leads to larger gains. The configuration with p = 1/2, which corresponds to
an optimization shift where about one third of the rollouts are fully correct, achieves the best
performance.

So overall, flaw-aware learning leads to performance gains, but achieving the best performance
requires tuning the parameter A. That said, FAPO introduces only this single additional parameter,
which makes the tuning process relatively easy.

Human Verification on the reliability of FAPO-32B Beyond the previous LLM-as-a-judge eval-
uation with Qwen3-32B, we further conduct a detailed human verification to assess the process
reliability of FAPO-32B. Specifically, we randomly sample 20 positive cases with correct final an-
swers and manually examine whether they contain unreliable reasoning patterns, with the results
summarized in Table [§] Through this analysis, we observe that (1) multiple-choice questions ex-
hibit a noticeably higher proportion of flawed positives compared to math word problems, where
the final answer is often a symbolic expression; and (2) our method consistently outperforms the
baseline under both LLM-as-a-judge and human verification, further demonstrating its effectiveness
in mitigating flawed-positive issues.

Table 6: LLM-as-a-judge and human verification of flawed positive ratio.

Model AIME24 AIME25 GPQA-Diamond
oce (Math Word Problem)  (Math Word Problem)  (Multi-Choice Problem)
Baseline-32B
(LLM-as-a-judge) 15.5 109 45.7
FAPO-32B
(LLM-as-a-judge) 7.1(-84) 17 (-:9.2) 420 (-3.7)
Baseline-32B
(Human-Verification) 4/20 1/20 10/20
FAPO-32B
(Human-Verification) 2/20 0/20 7/20

How Flawed Learning contributes to Performance Gains In section[2.2] we demonstrate that
the flawed positive acts as a role of stepping stones to performance gains, and Figure 2] (d) illustrates
the correlation between them. Here, we provide a more complete explanation of how mitigating
flawed positives leads to performance gains.

» Early Stages: Flawed Behavior — More Correct Rollouts: Prior studies (Zheng et al., |2024;
Wang et al.l [2025)) have shown that flawed reasoning often acts as a shortcut to the correct final
answer. This bias, inherited from pre-training (Kalai et al.,[2025), leads to certain flawed rollouts.
Thus, in the early phase of RL, flawed positives naturally increase the number of correct final
answer rollouts.
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» Early Stages: More Correct Rollouts — Early performance gains: A larger pool of cor-
rect rollouts yields more positive rewards, providing stronger supervision and driving exploitation
early in training. This effect can be directly observed in train-time reward statistics in Table[7}

* Later Stages: Penalizing flawed behavior — Fewer flawed rollouts: Our theoretical analysis
demonstrates the optimization distribution shift: flawed rollouts receive negative advantage, pro-
gressively reducing the model’s tendency to produce flawed processes. This trend is reflected in
Figure[T] (left), where the proportion of flawed positives decreases steadily as training progresses.

* Later Stages: Fewer flawed rollouts — Performance gains: As flawed rollouts diminish, the
model allocates more rollout chances to fully correct trajectories. Consequently, the RL loop
receives a higher density of genuinely useful reward signals, as reflected in Table [8] improving
final performance.

Table 7: Early-stage train-time rewards (view  Table 8: Later-stage train-time rewards (view
flawed rollout as positive rollout). flawed rollout as negative rollout).

Step | 10 20 30 40 50 Step | 120 140 160 180 200

Baseline-7B | 0.14 0.27 0.29 034 036 Baseline-7B | 0.35 037 036 040 0.39
FAPO-7B 018 033 037 042 044 FAPO-7B 038 040 041 044 045

Model Selection in FAPO Experiments We explain the model selection in both FAPO-GenRM
and FAPO-Reasoning:

* Model Selection in FAPO-GenRM: We adopt Qwen3-4B-Instruct as the base model for GenRM
training, considering three factors: (1) it demonstrates strong instruction-following and basic
error-detection capability (as shown in Table [2), making it a suitable initialization for RL; (2)
its relatively small size ensures efficient training and faster inference, with Instruct models pro-
ducing shorter responses than think-style models; (3) it avoids potential concerns of knowledge
leakage into the final RL process that may arise if the base model is overly strong.

* Model Selection in FAPO-Reasoning: We follow the same setup as DAPO (Yu et al.l 2025)
and use Qwen2.5-Math-7B and Qwen2.5-32B as base models, as (1) the learning curves of pre-
trained models clearly illustrate the entire exploration—exploitation trajectory starting from near-
zero performance, whereas RL-finetuned Instruct models often exhibit instability; (2) these two
models also strike a good balance between response length and training speed.

D LIMITATIONS AND FUTURE WORK

Our work presents several limitations that point to promising future directions, both in algorithmic
effectiveness and infrastructure design. On the algorithmic side, although this work trains on math-
ematical reasoning tasks, FAPO has strong potential in broader settings such as multi-choice tasks,
multi-turn interactions, and agent-based RL, where flawed processes are often more pronounced and
problematic. We will also further validate the effectiveness of FAPO across a wider range of model
architectures (e.g., MoE) and larger model scales. On the infrastructure side, while our decoupled
design improves efficiency and inference speed, its applicability to fully asynchronous RL systems
remains uncertain, as we discussed in Section[d.3] specifically Table[T} We regard these as important
research directions in our future work.

E LLM USAGE

During the writing of this paper, Al assistants are employed to assist with minor language refine-
ment. Their suggestions are limited to enhancing clarity and readability, without influencing the
research design, experiments, or conclusions. All content was carefully reviewed, validated, and
revised by the authors to ensure accuracy and fidelity to the research.
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F PROMPTS

Prompts for Flawed Positive Detection

Prompt for Outcome Reward Model (ORM):
The following is a math problem with its ground truth answer, along
with an AI solution:

[Math Problem]
{problem statement}

[Ground Truth]
{ground truth answer}

[AT Solution]
{AI Solution}

Your task is to review and critique the solution step by step, and
output whether the AI solution is correct.

Please reason step by step, put your final answer (i.e., ’'True’ or
'False’) in \boxed{}

Prompt for Process Reward Model (PRM):

The following is a math problem with its ground truth answer, along
with an AT solution (split into paragraphs, enclosed with tags and
indexed from 0):

[Math Problem]
{problem statement}

[Ground Truth]
{ground truth answer}

[AI Solution]
<paragraph-0>...</paragraph_0>
<paragraph-1>...</paragraph_1>

<paragraph_(n-1)>...</paragraph_(n-1)>

Your task is to review and critique the solution paragraph by
paragraph. Once you identify an error in a paragraph, return the
index of the paragraph where the earliest error occurs. Otherwise,
return the index of -1 (which typically denotes ’'not found’).
Please reason step by step, put your final answer (i.e., the index)
in \boxed{}

\ J

Prompts for Reasoning

Prompt for DAPO-Math-17K, AIME24, and AIME25:
{problem statement}

Please reason step by step, and put your final answer within
\boxed{}.

Prompt for GPQA-Diamond:
{problem statement}

A. {Choice A}

B. {Choice_B}

C. {Choice.c}

D. {Choice.D}

Please reason step by step, and put your final answer (only the
choice letter) within \boxed{}.
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G FLAWED POSITIVE SAMPLES WITH HUMAN ANALYSIS

Flawed Positive Example 1

Question Source: AIME24

Question:

Alice chooses a set A of positive integers. Then Bob lists all
finite nonempty sets B of positive integers with the property that
the maximum element of B belongs to A. Bob’s list has 2024 sets.
Find the sum of the elements of A.

Generation Model: Qwen2.5-Math-7B (Pre-Trained Base Model)

Response:
We are given that Bob lists all finite nonempty sets B of positive
integers where the maximum element of B belongs to A. Bob’s list

contains 2024 such sets. We need to find the sum of the elements of
A.

Step-by-Step Reasoning:

1. Understanding the Problem:

- Let A={ai,a2,...,a,} where a1 <az<...<ap.

- For each a; € A, Bob lists all finite nonempty sets B such that
the maximum element of B is a;.

2. Counting the Sets for Each aq;:

- For a given a;, the sets B can include any subset of the integers
less than a;, plus a; itself.

— The number of subsets of the integers less than a; is 2%~ (since
there are a; —1 integers less than a;) .

- However, since B must be nonempty, we subtract 1 from this count
(the empty set).

Therefore, the number of sets B for a given a; is:

24—l _q

3. Total Number of Sets:
— The total number of sets listed by Bob is the sum of the number of

sets for each a;:
n

> ot —1) = 2024
=1

- Simplifying, we get:

i 207 _ = 92024
1=1

n
Z 2071 = 92024 + n
i=1

4. Finding n:

- We need to find n such that the sum 22;12W71

is minimized.

— The smallest possible values for a; are 1,2,3,...,n.
Let’s test with small values of n:
- For n=1:

o=t — 1 (too small)

- For n=2:
ot-t + 221 1+2=3 (too small)

- For n=3:
217 4227 493 =1 4244=7 (too small)
- For n=4:
217t 422 493 9t =14 24448=15 (too small)
- For n=>5:

ol=l 4 927l 4 9871 L o4l L 951 1194 4184+16=31 (too small)
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- For n=6:
2 02t ¥ ottt 95 1 9% -1 1 94 4184 16+32=63 (too small)
- For n=7T:
2 027t 9Pl Lottt L 957 4 987 L 9T — 197 (too small)

- For n=28:

21 92 o3 p ottt 957 L 9fh L 9Tl L 9871 — 955 (too small)
- For n=29:

2171 027 g3 Lottt L 957 967l L 9T L 9871 L 9971 — 511 (too small)

- For n=10:
21ty 98 ottt 9 L o6l 9Tl 9871 4 9971 4 91071 — 1023 (too small)
- For n=11:
217027l 937l otml 981y 96ty 9Tl 98- 1 99=1 1 910=1 4 ol1=1 — 9047 (too large)
Therefore, n=10 is the correct value because:

21T 227t 4037 Lottt g 9Bl b7t 4 9T 98 L 9971 4 91071 — 1023

And:
1023 + 10 = 1033 (which is too large)

So, we need to adjust n to be 10 and check the sum:
9l=1 4 92=1 4 93=1 L 94—l 4 951 4 96=1 4 o7—1 , 98=1 4 99=1 4 510-1 _ 1993

And:
1023+ 10 = 1033 (which is too large)

Therefore, the correct n is 10, and the sum of the elements of A
is:
1+24+34+44+54+64+74+8+9+10=55

Thus, the sum of the elements of A is:

Human Analysis: There are two clear mistakes in the AI’s response:

1. The number of sets B for a a; should be 2%~ ! (not 2%~ ! — 1),
This incorrect assumption leads to a completely flawed
derivation throughout the rest of the solution.

2. The correct set A should be {4,6,7,8,9,10,11}, instead of
{1,2,3,4,5,6,7,8,9,10}. From the solution process, it’s
clear that the AI guessed a value close to the target, rather
than identifying the exact condition required.

In summary, although the final answer happens to be correct, the
overall reasoning process is fundamentally flawed.

. J

Flawed Positive Example 2

Question Source: DAPO-Math-17K

Question:
Let a, b, ¢ be the three roots of the equation 2®—(k+1)2®+kz+12=0,
where k is a real number. If (a—2)*4(b—2)%4(c—2)® =18, find the

value of k.

Response Generation Model: Llama-3.3-70B-Instruct (ShortCoT Model)
Response:

23



Under review as a conference paper at ICLR 2026

Step 1: Recall Vieta’s formulas for a cubic equation

Vieta’s formulas for a cubic equation x34fpx24fqm +r = 0 with roots
a, b, and ¢ state that: a+b+c = —p, ab+ bc+ ac = q, and abc = —r.
Applying these formulas to the given equation z® — (k+1)2z?+kz+12=0,
we get a+b+c=k+1, ab+bc+ac=k, and abc= —12.

Step 2: Expand the given expression using the identity for

(a—2)°+ (b—2)" + (c—2)°

The identity for (a — 2)® + (b — 2)®> 4+ (¢ — 2)® can be expanded as
(a® — 6a® 4+ 12a — 8) 4 (b* — 66> +12b — 8) + (c®* — 6¢> +12¢ — 8). This simplifies
to (@® 4+ +c) —6(a®+b2+2)+12(a+b+c)—24.

Step 3: Use the given equation to find a®+0+c

Since a, b, and ¢ are roots of the equation x3—(k%+1)x24—kx4—12::0, we
can express a®, v®, and ¢ in terms of a, b, ¢, and k. Substituting

z = a, b, and c into the equation gives a® = (k + 1)a® — ka — 12,
b = (k4 1)b* — kb — 12, and ¢ = (k+ 1)c? — kc — 12. Summing these gives
AP+ =Fk+1)(a®+0*+2)—k(a+b+c)—36.

Step 4: Find a?+b% + 2 using the sum of roots

From Vieta’s formulas, we know a + b+ ¢ = k+ 1. Squaring both sides
gives (a+b+c)® = (k+1)?, which expands to a®+ b* + ¢® + 2(ab + bc + ac) =
k> + 2k +1. Since ab + bc + ac = k, we can substitute this in to get

A+ +P+2k=k*+2k+1, simplifying to a2+ +c2=k%2+1.

Step 5: Substitute a’+b?+¢° into the expression for a® + b+ ¢°
Substituting a?+b?+c* = k*+1 into a®*+b*+c = (k+1)(a®+b*+c?)—k(a+b+c)—36
gives a®* + >+ = E+ D(Kk*+1) —k(k+ 1) —36. Simplifying yields
A4+ +E = +k+k+1-k* —k—36=Fk"—35.

Step 6: Substitute known values into the expanded expression for
(a—2)°+(b—2)°+(c—2)°

Given that (a — 2)® + (b — 2)® + (¢ — 2)> = —18, and using the expansion
from Step 2, we substitute a®+b0*+¢ =k*—-35 and a+b+c=k+1 into
the expression. We also need a? + b> + ¢* = k> + 1 from Step 4. The

expression becomes (k* —35) —6(k* +1) +12(k+1) — 24 = —18.

Step 7: Solve for k

Simplifying the equation (k® — 35) — 6(k* 4+ 1) + 12(k +1) — 24 = —18 gives
k3 —6k® +12k — 35 — 6+ 12k +12 — 24 = —18. Combining like terms yields
k®—6k*4+24k—53 = —18. Adding 18 to both sides gives k*—6k*+24k—35=0.
This is a cubic equation in terms of k.

Step 8: Solve the cubic equation for &k

To solve k®—6k®>4+24k—35=0, let’s try to factor it or find a rational
root. Checking for simple integer solutions, kK = 5 is found to be a
root (through trial and error or using the Rational Root Theorem),
as 5% —6(5)% +24(5) — 35 = 125 — 150 + 120 — 35 = 60. However, this was an
error in calculation: the correct calculation for & = 5 should be
5% — 6(5)% + 24(5) — 35 = 125 — 150 + 120 — 35 = 60, which is not correct. The
correct approach is to actually solve the equation correctly. Let’s
correct the step: We need to solve k®—6k*+24k—35=0. Trying k=5
correctly: 5% —6(5)%+24(5) — 35 = 125 — 150 + 120 — 35 = 60, which does not
equal 0, indicating an error in identifying & = 5 as a root. The
correct factorization or solution method must be applied.

Step 9: Correctly identify and solve for k

The error in Step 8 indicates a miscalculation in identifying a

root. The correct approach involves factoring or applying a method
like synthetic division if a rational root is suspected, or using
numerical methods. However, given the mistake in calculation

and approach, let’s reconsider the equation and directly evaluate
potential rational roots or use given conditions more effectively.

The final answer is:

Human Analysis: The correct simplified equation is k3 —6k*+12k —35 =
0, not k®—6k®+24k—35=0. This typo leads to an incorrect solution
of k. However, what’s quite peculiar is that despite the model’s

multiple failed attempts to correct itself, it ultimately guessed
k=5.
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Flawed Positive Example 3

Question Source: DAPO-Math-17K

Question:

Let a,b,c be distinct numbers such that the equations 22 4+azx+1=0 and
2?24+bx+c =0 have a common real root, and the equations 2’4+z+a=0 and
z2+cx+b=0 also have a common real root. Compute the sum a+b+c.

Response Generation Model: Qwen3-1.7B (LongCoT Model, Think Mode)
Response:
<think>...</think> (Think Content Omitted Here)

To solve the problem, we are given three distinct numbers a,b,c such

that:

- The equations z24ar+1=0 and z°+br+c=0 share a common real root,
- The equations 224+ 2+a=0 and 22 +cx+b=0 also share a common real
root.

We are to compute the value of a+b+c.

Step 1: Use the Common Root Condition
Let a be a real root of both equations 22 +ar+1=0 and 22 +bzx+c=0.
Substituting «:

a2+aa+1:0 (l)a2+ba+c:0 (2)
Subtracting (1) from (2):

1—c
b—a

b—a)a+(c—-1)=0=>a= (3)

Now, substitute a into (1) and (2) to express relationships between
a,b,c.

Step 2: Use the Second Pair of Equations
Let 8 be a real root of both 2> + ¢ + a = 0 and 22 + cx + b = 0.
Substituting f:

B 4+B+a=0 () +cB+b=0 (5)
Subtracting (4) from (5):
a—2>b

c=1)f+0b-a)=0=p="—— (6)
Step 3: Use the Relationship Between a and
From the problem, it is known that = é. Therefore:
a—>b 47}7:>(147 1—c
c—1 « T b—a
Also, from (6):
a—b
p= c—1

So: b 1 1
a— —c
8= ===
c—1 « b—a
This gives a relationship between a,b,c¢, and we proceed by assuming
a=1, which simplifies the algebra.
Step 4: Find a,b,c with a=1
Suppose a=1 is a common root of both pairs of equations.
From equation (1):

’+a-141=0=>14a+1=0=a=—2
Now, since a=1 is a root of equation (2):

P+b-14¢c=0=>14b+c=0=c=—-1-b
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Now, from the second pair of equations, B = 1 is a root of both z? +
z+a=0 and 22+ cx+b=0. Substitute z=1 into both equations:
P+l+a=0=1+1+(-2)=0=0 v
Pt+c1l+b=0=1+c+b=0=c+b=-1V
Thus, consistent.
Now, the sum:
a+b+c=-24+b+(-1-b)=-3

Final Answer
IH!

Human Analysis: The AI makes an unwarranted assumption that a = 1,
whereas in fact, deriving this requires a complex reasoning process.
Although the final answer is correct, the reasoning is flawed and
the correct value is reached coincidentally.
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