
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAPO: FLAWED-AWARE POLICY OPTIMIZATION FOR
EFFICIENT AND RELIABLE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has emerged as a promis-
ing paradigm for enhancing the reasoning capabilities of large language models
(LLMs). In this context, models explore reasoning trajectories and exploit roll-
outs with correct answers as positive signals for policy optimization. However,
these rollouts might involve flawed patterns such as answer-guessing and jump-
in-reasoning. Such flawed-positive rollouts are rewarded identically to fully cor-
rect ones, causing policy models to internalize these unreliable reasoning patterns.
In this work, we first conduct a systematic study of flawed-positive rollouts in
RL and find that they enable rapid capability gains during the early optimization
stage, while constraining reasoning capability later by reinforcing unreliable pat-
terns. Building on these insights, we propose Flawed-Aware Policy Optimization
(FAPO), which presents a parameter-free reward penalty for flawed-positive roll-
outs, enabling the policy to leverage them as useful shortcuts in the warm-up stage,
securing stable early gains, while gradually shifting optimization toward reliable
reasoning in the later refinement stage. To accurately and comprehensively detect
flawed-positive rollouts, we introduce a generative reward model (GenRM) with a
process-level reward that precisely localizes reasoning errors. Experiments show
that FAPO is effective in broad domains, improving outcome correctness, process
reliability, and training stability without increasing the token budget.1

1 INTRODUCTION

Large language models (LLMs) with strong reasoning capabilities, such as OpenAI o-series (Ope-
nAI, 2024; 2025), Deepseek R1 (Guo et al., 2025), have sparked significant attention in reinforce-
ment learning with verifiable rewards (RLVR) (Shao et al., 2024). In this paradigm, models are op-
timized through rule-based outcome rewards, typically a binary signal indicating whether the final
answer is correct, in verifiable tasks like mathematical reasoning (Yu et al., 2025; Team et al., 2025)
and code generation (Xiaomi et al., 2025). During RL training, the model explores diverse reasoning
trajectories and exploits those with correct final answers as positive signals for policy optimization.
This exploration–exploitation paradigm enables LLMs to evolve strong reasoning behaviors, such as
planning, which in turn facilitate generalization across a wide range of domains (Huan et al., 2025).

However, certain flawed reasoning patterns could also be reinforced during policy optimization.
Recent studies (Zheng et al., 2024; Kalai et al., 2025) have revealed notable flawed reasoning pat-
terns in current LLMs, such as answer-guessing and jump-in-reasoning (Wang et al., 2025), where
models reach correct answers through shortcuts. This presents a fundamental challenge for RLVR,
i.e., rule-based outcome rewards assign identical positive signals to both flawed-positive and fully
correct rollouts, thereby potentially reinforcing unreliable reasoning. This raises an urgent need for
(1) analyzing the distribution and impact of flawed positives throughout the RL process, and (2)
developing effective mitigation strategies to ensure efficient and reliable reasoning.

To this end, we first conduct a preliminary study to investigate the prevalence and impact of flawed
positives in the RL process. Our findings indicate that flawed positives persist steadily throughout
training: (1) in the early stages, when models are not yet capable of producing fully correct roll-
outs, flawed positives serve as shortcuts to correct answers, accelerating capability gains; and (2)

1Code is available at https://anonymous.4open.science/r/FAPO-RL.

1

https://anonymous.4open.science/r/FAPO-RL

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Training Steps

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Pe
rc

en
ta

ge
 (%

)

Flawed Positive Ratio

Baseline-7B
FAPO-7B (Ours)

0 50 100 150 200
Training Steps

0

5

10

15

20

25

30

35

40 +4.7 Avg. Tokens = 1545

Avg. Tokens = 1657

AIME24 (Avg@32)

Baseline-7B
FAPO-7B (Ours)

0 200 400
Training Steps

5

10

15

20

25

30

35 +3.1 Avg. Tokens = 2778

Avg. Tokens = 2960

AIME25 (Avg@32)

Baseline-32B
FAPO-32B (Ours)

0 200 400
Training Steps

40

42

44

46

48

50

52

54

56 +1.5 Avg. Tokens = 1657

Avg. Tokens = 1599

GPQA-Diamond (Avg@4)

Baseline-32B
FAPO-32B (Ours)

Figure 1: Flawed-positive ratio and performance comparison between FAPO models and their base-
lines, showing steadily decreasing flawed-positive ratios and consistent performance gains during
RL training. Experiments cover both 7B and 32B models on AIME24, AIME25, and GPQA-
Diamond. For evaluation, we repeat the evaluation set k times and report Avg@k for results stability.

once the model can generate fully correct rollouts, these flawed positives may hinder learning by
reinforcing unreliable reasoning patterns. Thus, the optimal role of flawed positives is to act as step-
ping stones toward reliable reasoning. Building on these insights, we propose Flawed-Aware Policy
Optimization (FAPO), which presents a parameter-free reward penalty to flawed-positive rollouts.
FAPO establishes a natural self-exploration learning trajectory: the model initially exploits flawed
positives for knowledge, but as its capabilities advance, the training objective gradually shifts toward
genuine problem-solving, improving both the training efficiency and reasoning reliability. Further-
more, to accurately and comprehensively detect these flawed positives, we introduce a generative
reward model with a process reward, which enables the model to locate intermediate process errors.

Experimental results highlight the strong potential of FAPO. For flawed positive detection, our
trained model, FAPO-GenRM-4B, achieves substantial gains on both our newly constructed bench-
mark, FlawedPositiveBench, and the public ProcessBench (Zheng et al., 2024). When integrated
into the final RL process (results in Figure 1), FAPO effectively penalizes flawed-positive rollouts,
reducing unreliable reasoning patterns (left subfigure, the decreasing flawed positive ratio), while
delivering remarkable improvements across AIME24, AIME25, and GPQA-Diamond (Rein et al.,
2024) (other three subfigures), with clear advantages at nearly all intermediate evaluation check-
points. Overall, FAPO offers clear advantages: it enhances outcome correctness, improves process
reliability, and training efficiency and stability, all without increasing the token budget.

2 PRELIMINARY: UNVEILING FLAWED POSITIVES IN RL TRAINING

2.1 PROBLEM DEFINITION AND MOTIVATION

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024) is an efficient policy
gradient method for LLM reinforcement learning that estimates advantages in a group-relative man-
ner without relying on a learned value model. For a given question q, the behavior policy generates
a group of G rollouts {oi}Gi=1, evaluates their rewards {Ri}Gi=1, and normalizes them to obtain
per-token advantage estimates Âi,t:

Âi,t =
ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (1)

The policy model is then updated by maximizing the following clipped surrogate objective:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(ot|q, o<t)

πθold(ot|q, o<t)
Âi,t, clip(

πθ(ot|q, o<t)

πθold(ot|q, o<t)
, 1− ϵ, 1 + ϵ)Âi,t

]}
,

(2)

where (q, a) denotes a question-answer pair sampled from the data distribution D, πθold is the old
policy, and ϵ controls the clipping range in importance sampling (Schulman et al., 2017) for stability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In this work, we adopt several effective strategies such as clip-higher, token-level loss, and overlong
reward shaping (Yu et al., 2025), to ensure stable and efficient policy optimization.

J (θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

[
πθ(ot|q, o<t)

πθold(ot|q, o<t)
Âi,t, clip(

πθ(ot|q, o<t)

πθold(ot|q, o<t)
, 1− ϵl, 1 + ϵh)Âi,t

]}
.

(3)

In these algorithms, the reward R is the primary supervision signal that guides the policy optimiza-
tion, and existing RLVR approaches (Yang et al., 2025; Liu et al., 2025b) commonly employ a
rule-based outcome reward to mitigate reward hacking (Gao et al., 2023; Weng, 2024), i.e.,

RRLVR = Rrule(o, a
∗) =

{
1, If I(o, a∗)
−1, Otherwise

, (4)

where I(o, a∗) is an indicator function that returns True if the predicted answer extracted from
rollout o matches the ground-truth answer a∗, and False otherwise.

Flawed Positive Issues Recent studies (Zheng et al., 2024; Zhang et al., 2025b) have identified
notable flawed-positive issues in current LLMs, in some cases even accounting for a ratio of up to
50%, where models may reach correct final answers through unreliable reasoning patterns such as
answer-guessing and jump-in-reasoning (Wang et al., 2025). This poses a fundamental challenge for
reinforcement learning: rule-based reward functions assign positive signals to flawed-positive roll-
outs, thereby reinforcing unreliable reasoning patterns and ultimately limiting the model’s perfor-
mance ceiling. Formally, given a question q and reasoning trajectory x = [x1, x2, . . . , xn] generated
by policy π, with predicted answer âπ , the rollout is flawed positive if

âπ = a∗ and ∃ t ∈ {1, 2, . . . , n} s.t. step xt is logically invalid. (5)

While prior works have primarily revealed the prevalence of these issues in benchmark evaluations,
their underlying mechanisms and impact on the RL process remain largely underexplored.

2.2 FLAWED POSITIVE ANALYSIS IN REINFORCEMENT LEARNING

Flawed Positives are Prevalent in Initial Checkpoints We first examine flawed positive issues
in current LLMs, as they establish the starting conditions for subsequent RL optimization. We
evaluate three representative models: Qwen2.5-Math-7B-Base (Yang et al., 2024b), Llama3.3-70B-
Instruct (Dubey et al., 2024), and Qwen3-1.7B (Yang et al., 2025), on the DAPO-Math dataset.
Following Zhang et al. (2025b), we employ Qwen3-32B to determine whether the reasoning trajec-
tory contains unreliable reasoning patterns. As shown in Figure 2 (a), flawed positives are prevalent
across various LLMs, accounting for 20%–40% of correct rollouts, highlighting the severity of this
issue. Beyond the automatic LLM-as-a-judge evaluation, we also conduct a manual case study of
flawed-positive samples and analyze their underlying causes, which are provided in Appendix G.

Flawed Positives are Stepping Stones in Learning Reinforcement learning is often formulated as
an end-to-end optimization process driven by self-exploration towards self-improvement. To better
understand this process, and in particular the role of flawed-positive rollouts, we design a simulated
experiment in which the learning stage of each sample is approximated by its rollout accuracy.
Specifically, we use a model to generate multiple rollouts per sample, compute the corresponding
rollout accuracy, and then group all samples into different learning stages, as illustrated in Figure 2
(b). The results reveal a clear trend: flawed positives are most prevalent during the early learning
stages but diminish significantly as training progresses. This highlights their expected role as natural
stepping stones in the learning trajectory, allowing the model to initially reach correct answers before
gradually evolving the capability to produce fully correct solutions.

Flawed Positives Persist and Exert Twofold Effects We further train a pre-trained model,
Qwen2.5-Math-7B, with RL on DAPO-Math, and track its learning trajectory, as shown in Figure 2
(c). While the model’s rollout accuracy steadily improves, the flawed-positive ratio remains almost
constant at around 30%. This indicates that the optimization process struggles to shift from unre-
liable reasoning to genuine problem-solving. A major concern is that flawed positives receive the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Qwen2.5-Math-7B
(Pre-Trained Model)

Llama3.3-70B-Instruct
(Non-Thinking Model)

Qwen3-1.7B
(Thinking Model)

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

14.0

39.1

67.6

4.2

16.2 15.5

30.2

41.5

22.9

(a) Flawed Positives Across Various LLMs

Accuracy (Positive) Rate
Flawed Positive Rate
FP Ratio (= FP Rate / Acc Rate)

0 25 50 75 100 125 150 175 200
Training Steps

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

(c) Flawed-Positive Rollouts in RL Training

Rollout Accuracy Rate
Flawed Positive Rate
FP Ratio (= FP Rate / Acc Rate)

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
Model's Per-sample Confidence (= Correct / Total Trials)

10

20

30

40

50

60

70

80

Fl
aw

ed
 P

os
iti

ve
 R

at
io

 (%
) 68

63
57

54
51

49
46

34

54 52
48

44

38
33

27

16

(b) Flawed Positives Across Model's Confidence

Llama3.3-70B-Instruct Qwen3-1.7B (Think)

0 25 50 75 100 125 150 175 200
Training Steps

5

10

15

20

25

30

35

AI
M

E
24

 A
cc

ur
ac

y
(%

)

(d) Flawed Positives Mitigation Trials in RL Training

Baseline-7B (Flawed Positives → Positives)
Trial-7B (Flawed Positives → Negatives)
FAPO-7B (Ours, Adaptive Learning Strategy)

Figure 2: Preliminary experiment results of flawed positives.

same rewards as correct solutions, thereby reinforcing unreliable reasoning patterns and hindering
progress. To further explore this, we conduct preliminary trials using Qwen3-32B to detect flawed
positives and assign them negative signals (same as negative rollouts) during training. Figure 2
(d) reports performance on AIME24 throughout the training process. Compared with the baseline
RLVR setting (blue line), penalizing flawed positives (orange line) yields significant performance
gains, though improvements emerge more gradually in the early stages. From the above findings,
we find flawed positives persist throughout training, and exert a twofold effect: (1) flawed positives
act as stepping stones, enabling the model to achieve rapid capability gains in the early stages,
and (2) their improper reward assignment can trap optimization in unreliable reasoning.

3 FAPO: FLAWED-AWARE POLICY OPTIMIZATION

Building on these insights, we propose Flawed-Aware Policy Optimization (FAPO) algorithm. For
flawed-positive detection, directly employing a strong LLM like Qwen3-32B is impractical and
computationally inefficient. Instead, we propose an RL algorithm to train a compact yet effective
generative reward model (GenRM). We then present an adaptive learning algorithm that dynamically
adjusts advantage assignment towards the current suitable optimization direction.

3.1 FLAWED POSITIVE DETECTION

Evaluating Flawed Positive Detection Capabilities of LLMs To identify a suitable LLM that
can detect flawed positives both effectively and efficiently, we construct an evaluation set, Flawed-
PositiveBench, by collecting positive samples (including flawed ones) from ProcessBench (Zheng
et al., 2024). We then quantify the detection capability with the following three metrics:

precision =
#{ŷθ = y∗ = FP}

#{ŷθ = FP}
, recall =

#{ŷθ = y∗ = FP}
#{y∗ = FP}

,F1 =
2

1/precision + 1/recall
, (6)

where ŷθ indicates whether the judge model θ predicts a response as a flawed positive (FP), and y∗

is the ground-truth label. Precision reflects the correctness of FP predictions, recall measures the
coverage of true FPs, and the F1 score provides a balanced summary of both. As shown in Figure 3,
we observe that many models, such as Qwen3-4B-Instruct (Yang et al., 2025) and Qwen2.5-Math-
PRM-72B (Zhang et al., 2025b), exhibit an over-critic phenomenon: they achieve high recall but
suffer from low precision. Closer inspection reveals that these models often overemphasize minor
or unnecessary errors like unsimplified fractions. Overall, lightweight models struggle to provide

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ProcessBench
(Avg. F1)

FlawedPositiveBench
(F1)

FlawedPositiveBench
(Precision)

FlawedPositiveBench
(Recall)

Token Usage
(Avg. Tokens)

83.3
(+6.2)

89.4
(+8.2) 87.5

91.4

77.1
81.2

69.4

97.9

82.0

87.8
85.1

90.8

76.8

81.8

74.3

91.0

FAPO-GenRM-4B (Ours)
Qwen3-4B-Instruct-2507 (Base Model)

Qwen3-32B (Teacher Model)
Qwen2.5-Math-PRM-72B (Discriminative SoTA)

1799
(-69)

1868

1593

Figure 3: Performance of current state-of-the-art (SoTA) generative models and discriminative
PRMs. Detailed subset-level results and additional models are reported in Table 2.

appropriate criticisms to detect flawed positives, while stronger models achieve better accuracy but
remain impractical for online RL use due to slow inference. These findings suggest that existing
models are not well-aligned in both detecting capabilities and inference efficiency.

Enhancing Detection Capabilities via Step-wise RL Optimization To enhance the detection
capability, we introduce a step-wise RL reward formulation. Starting from a generative model, we
develop the following RL strategies for training a generative reward model (GenRM):

RFAPO-GenRM = ROutcome+RProcess

where ROutcome =

{
1, If ŷθ = y∗

−1, Otherwise
, RProcess =

{
− |t̂θ−t∗|

n , If ŷθ = y∗ = FP
0, Otherwise

.
(7)

Building upon the outcome reward, we introduce a step-wise penalty, RProcess, for fine-grained and
step-wise optimization. Here, t̂θ and t∗ denote the predicted and ground-truth error indices, and n
is the total number of steps, ensuring RProcess ∈ [−1, 0]. In flawed-positive cases, the penalty is
distance-sensitive: predictions closer to the true error receive higher rewards, while those farther
away incur stronger penalties. This design guides the model toward precise error localization and
fosters genuine error-detection ability, rather than mere guessing, based on the two key points:

• Learning beyond guessing: Flawed-positive rollouts also exist in the error detection task, partic-
ularly in the yes/no setting, where the model can often guess the label without truly identifying
errors. Such guessing rollouts offer little optimization benefit. To mitigate this, we introduce the
penalized step reward that guides the model toward genuine critic capabilities rather than guessing.

• Natural reward shift: In early training, the reward design naturally emphasizes prediction cor-
rectness, as improving RBaseline yields substantial gains (−1 → 1), whereas RProcess provides only
limited gains (RProcess ∈ [−1, 0]). As correctness saturates, process optimization becomes increas-
ingly prioritized. This enables a smooth transition without additional controlling hyperparameters.

3.2 FLAWED POSITIVE PENALIZATION

With the GenRM detecting flawed positives, we then regulate their roles in the final RL optimization.
As discussed in Section 2.2, flawed positives should ideally facilitate rapid warm-up and then be
penalized to enable genuine problem-solving. However, the key challenge lies in how to balance
their encouragement and suppression and when to shift between these roles. To address this, we
introduce a reward-penalization mechanism with a group-relative advantage estimation:

RFAPO(o, a
∗|θ) = RRLVR(o, a

∗)+R∆(o,a∗|θ),

where R∆(o, a
∗|θ) =

{
−λ, If I(o, a∗) and ŷθ(o, a

∗) = FP
0, Otherwise

,

Âi,t =
[
ri − mean({Ri}Gi=1)

]
/std({Ri}Gi=1).

(8)

where RRLVR denotes the standard baseline (defined in Equation 4), and λ controls the penalization
strength. To better characterize the entire learning dynamics of FAPO, we provide a theoretical

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

analysis in Appendix A, which demonstrates how FAPO enables the natural optimization shift while
further stabilizing the RL training process. Concretely, when the current rollout stage contains α pro-
portion of positive samples and β proportion of negative samples, the optimization shifts from the
warm-up stage to the refinement stage once the learning progress ρ = α

β reaches 2
λ − 1. Moreover,

as optimization continues, when ρ > 4
λ − 1, the estimated advantage for positive samples becomes

downscaled, making the optimization more stable. In the process, the value of λ determines the
timing of this optimization shift. We adopt a majority-guided strategy, where the optimization direc-
tion is determined by whether positive or negative samples dominate. This majority-guided strategy
yields ρshift = 1, further detemining λ = 1. We set λ = 1 as the default setting. Overall, FAPO
provides a principled mechanism for guiding the optimization process, aligning with the ideal learn-
ing trajectory where the focus initially lies in producing correct solutions when model capability is
limited, and naturally shifts toward refining reliability once correct rollouts surpass incorrect ones.

4 EXPERIMENTS

4.1 TRAINING DETAILS

In this work, we validate the effectiveness of FAPO on Qwen2.5-Math-7B (Yang et al., 2024b) and
Qwen2.5-32B (Yang et al., 2024a). We adopt GRPO (Shao et al., 2024) with several commonly used
strategies, including clip-higher, token-level loss, and overlong reward shaping (Yu et al., 2025), as
our baseline algorithm. Notably, FAPO can be easily transferred to any other RLVR method as
a drop-in replacement for rule-based outcome rewards. We conduct RL training using verl frame-
work (Sheng et al., 2025), and develop an asynchronous architecture that decouples rollout inference
and generative reward modeling, which substantially improves training efficiency.

FAPO-GenRM To train the GenRM model via reinforcement learning, we construct a flawed-
positive dataset, FAPO-Critic-85K. To ensure broad coverage, we employ a series of models from
the LLaMA and Qwen families, ranging from 7B to 70B, to generate multiple responses to questions
drawn from DAPO-Math-17K (Yu et al., 2025). Based on these responses, we select the samples
with correct final answers and then employ Qwen3-32B to identify the inherent step-level error
location. This yields the final process-error dataset: DFAPO-Critic = {(qi, ri, ti)}Ni=1, where ti denotes
the first error index of response ri, and and fully correct responses are included with ti = +∞ for
convenience. This dataset is then used to train Qwen3-4B-Instruct (Yang et al., 2025) with the
reward defined in Equation 7, and additional hyperparameter settings are provided in Appendix B.

FAPO-Reasoning The trained critic model, FAPO-GenRM-4B, is then used to detect and penalize
flawed positives in reinforcement learning for reasoning tasks, optimized with the reward defined in
Equation 8. In practice, we deploy the GenRM as an external LLM service on a computing cluster,
where process rewards are obtained via remote API requests during RL training. To ensure effi-
ciency, we launch multiple server workers and employ a router to distribute requests with balanced
load across workers. This decoupled design enables asynchronous interaction between GenRM and
other RL components, substantially improving training efficiency and making the integration of
GenRM into large-scale RL training practically feasible. Further details on infrastructure design
and hyperparameter configurations are provided in Section 4.5 and Appendix B, respectively.

4.2 EVALUATION SETUP

Flawed-Positive Detection We primarily evaluate GenRM on FlawedPositiveBench, whose con-
struction procedure and evaluation metrics are detailed in Section 3.1, as this benchmark directly
aligns with our research purpose. In addition, we also include ProcessBench (Zheng et al., 2024),
which focuses on recognizing fully correct samples and precisely locating errors in incorrect re-
sponses. We report the harmonic mean of the accuracies on correct and erroneous samples. Further-
more, we incorporate several state-of-the-art (SoTA) discriminative and generative models as strong
baselines for comprehensive comparison.

Reasoning Evaluation We conduct a comprehensive evaluation covering AIME24 (Math),
AIME25 (Math), and GPQA-Diamond (General Domain) (Rein et al., 2024). Rather than lim-
iting the analysis to a single selected checkpoint, we present all intermediate evaluation outcomes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200 300

84

85

86

87

88

89

90

91

Pe
rc

en
ta

ge
 (%

)

Selected Checkpoint
FlawedPositiveBench (F1)

GenORM-4B
FAPO-GenRM-4B

0 100 200 300
80

82

84

86

88
FlawedPositiveBench (Precision)

GenORM-4B
FAPO-GenRM-4B

0 100 200 300

86

88

90

92

94

FlawedPositiveBench (Recall)

GenORM-4B
FAPO-GenRM-4B

0 100 200 300

2250

2500

2750

3000

3250

3500

3750

4000

Av
g.

 T
ok

en
s

Rollout Length ()

GenORM-4B
FAPO-GenRM-4B

0 100 200 300 400 500
Training Steps

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 (%

)

+3.5

AIME24 (Avg@32)

Baseline-32B
FAPO-32B (Ours)

0 100 200 300 400 500
Training Steps

5

10

15

20

25

30

35 +3.1

AIME25 (Avg@32)

Baseline-32B
FAPO-32B (Ours)

0 100 200 300 400 500
Training Steps

40

42

44

46

48

50

52

54

56 +1.5

GPQA-Diamond (Avg@4)

Baseline-32B
FAPO-32B (Ours)

AIME24 AIME25 GPQA-Diamond
Benchmark Name

15.5

10.9

45.7

7.1

1.7

42.0

Flawed Positive Ratio ()
Baseline-32B
FAPO-32B (Ours)

Figure 4: Performance of FAPO-GenRM and FAPO-Reasoning during training. Top row: compari-
son between FAPO-GenRM and the baseline outcome reward models (setup in Equation 7). Bottom
row: comparison between FAPO-Reasoning and the baseline setting (setup in Equation 8). Detailed
results in a broader domain can be seen in Table 2 and Table 3.

throughout the RL process. This not only illustrates the performance gains achieved during the train-
ing process but also highlights the stability and scalability of the optimization procedure, thereby
providing stronger evidence of the effectiveness and robustness of our approach.

4.3 MAIN RESULTS

FAPO-GenRM Performance The top row of Figure 4 illustrates the training dynamics of FAPO-
GenRM. The model exhibits significant performance gains in the early stages and continues to im-
prove as training progresses. For subsequent use, however, we select an early checkpoint, as it
delivers strong results with shorter responses, which is crucial for maintaining efficiency when in-
tegrating GenRM into RL training. Figure 3 compares our trained model against state-of-the-art
discriminative and generative baselines. Built upon Qwen3-4B-Instruct, our approach achieves sub-
stantial improvements on both FlawedPositiveBench and ProcessBench, even outperforming the
teacher model Qwen3-32B, further demonstrating the effectiveness of our approach. Additional
results of our model and other strong baselines can be checked in Table 2.

FAPO-Reasoning Performance Figure 1 and the bottom row of Figure 4 summarize the overall
performance of the FAPO reasoning models, which can be highlighted in the following aspects:

• Outcome Correctness: Across benchmarks, FAPO consistently maintains a clear advantage over
the baselines in both mathematical and general-domain tasks, demonstrating that detecting and
penalizing flawed positives leads to broad improvements in problem-solving ability.

• Process Reliability: We also measure the proportion of flawed positives. The results show that
FAPO responses exhibit a substantially lower flawed-positive ratio. Beyond the LLM-as-a-judge
approach using Qwen3-32B, we also launch a manual verification of unreliable reasoning patterns,
with details and results in Table 6, demonstrating the effectiveness of FAPO.

• Training Stability: By mitigating the impact of flawed positives, training stability is significantly
enhanced. The overall learning curves are smoother, and unlike the baselines, FAPO does not
exhibit a notable performance drop in the later stages of training.

• Token Budget: The improvements from FAPO do not require longer responses. While prior
work (Luo et al., 2025; An et al., 2025) has shown that scaling up response length can yield
substantial gains, FAPO achieves improvements without relying on this factor.

4.4 ABLATION STUDY

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Training Steps

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

AIME24 (Avg@32)

Baseline-7B (w/o GenRM)
FAPO-7B
(w/ Baseline GenRM)
FAPO-7B
(w/ FAPO-GenRM)

Figure 5: GenRM effectiveness.

Effectiveness of FAPO-GenRM method Previous re-
sults have already demonstrated that our GenRM design
achieves state-of-the-art (SoTA) performance on the error
detection task (see Figure 3). Here, we further evaluate
its impact on the final RL process. Figure 5 compares
FAPO-GenRM with the base model (Qwen3-4B-Instruct)
during RL training. The results indicate that stronger de-
tection capability ultimately translates into improved per-
formance. This highlights two key points: (1) the pro-
posed FlawedPositiveBench provides a reliable measure
of detection ability that is well aligned with final perfor-
mance, and (2) flawed positive detection plays a crucial
role, where even small improvements can yield substan-
tial performance gains.

0 50 100 150 200
Training Steps

10

20

30

40

AI
M

E
24

 A
cc

ur
ac

y
(%

)

Baseline-7B
FAPO-7B (Ours)

900

1000

1100

1200

1300

1400

R
ol

lo
ut

 L
en

gt
h

(T
ok

en
s)

Figure 6: Self-correction Analysis.

Impact of Self-Correction Capability Self-correction
is an important evolved mechanism in RL, allowing rea-
soning models to recover from initial mistakes and even-
tually reach correct answers. Nevertheless, when cor-
rectness depends heavily on long rollouts, it could also
be regarded as a form of flawed positives. While self-
correction facilitates progress in the early stages of learn-
ing, it becomes less desirable once the model can solve
problems directly, where fully correct rollouts not only
ensure reliability but also promote more efficient reason-
ing. To illustrate this phenomenon, Figure 6 visualizes
rollout length during training: both FAPO and the base-
line initially depend on self-correction, but over time,
FAPO shifts toward fully correct rollouts, resulting in
shorter rollouts, more efficient reasoning, and consistent performance gains. These results indi-
cate that FAPO preserves the benefit of learning from self-corrected rollouts at the beginning, but
gradually shifts toward prioritizing fully correct rollouts in later stages.

4.5 DISCUSSION: GENRM APPLICATION IN FUTURE RL SYSTEMS

Introducing generative reward models (GenRMs) may have a considerable impact on the whole RL
process, influencing both algorithmic effectiveness and infrastructure efficiency. In this section, we
discuss the application potential of GenRMs (with FAPO as an example) in future RL systems,
considering perspectives from both algorithmic development and infrastructure design.

0 50 100 150 200
Training Steps

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

AIME24 (Avg@32)

Baseline-7B
FAPO-7B
(StepReward)
FAPO-7B

Figure 7: Step reward ablation.

Algorithmic Challenge: Reward Hacking The pri-
mary algorithmic challenge of deploying GenRM in
large-scale RL systems lies in reward hacking, where
the policy exploits imperfections in the reward signal to
achieve high scores without genuinely performing the
intended reasoning task. This issue is especially pro-
nounced with complex, fine-grained reward signals pro-
duced by reward models, as they provide more opportuni-
ties for the policy to discover shortcuts for maximizing re-
wards. For example, we experiment with a process-based
reward that assigns scores according to the proportion of
correct steps before the first detected error. However, this
design results in a form of reward hacking: the model
tends to output only those reasoning steps in which it has
very high confidence, while skipping uncertain ones altogether. As shown in Figure 7, although the
step-ratio reward delivers some capability gains at the early stage compared to the baseline, the sub-
sequent progress stalls due to reward hacking. This behavior causes an obvious jump-in-reasoning
phenomenon, which is undesirable as it undermines the reliability of the reasoning process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPU-1

Rollout Infer Actor TrainGenRM Infer

GPU-2

IDLE Time

GPU-1 1

5GPU-2 1-8

GPU-3 5

2 3 4

1 6

6 7 8

2 3 7 8 4

One-Step Iteration

Decouple GenRM
from Rollout & Actor

13

GPU-1 1

5GPU-2

GPU-3 5

2 3 4

1 6

6 7 8

2 3 7 8 4 10

9 10

9

GPU-4 previous step

11

1,2,3,5,6,7,8,9

12

13 14

11

......
......
......

......

Fully-Async RL

Two-Step Iteration

One-Step Iteration

4: Long-Tail Sample

Figure 8: GenRM infrastructure design.

Infrastructure Challenge: Long-tail Problem
The long-tail problem has long been a key bottle-
neck in scaling large-scale RL systems (Liang et al.,
2018), where GPUs often remain idle during the
generation of long-tail samples. A concern with
GenRM is that it introduces an additional genera-
tion stage, further aggravating this inefficiency. To
make FAPO practical for large-scale RL systems, we
adopt the following efforts: (1) Asynchronous de-
sign: We decouple GenRM from rollout inference
and actor training, reducing GPU idle time. While a
fully synchronous design may offer a better system-
level solution (Fu et al., 2025), this lies beyond the
primary research focus of our work, and we leave
this as an important future work. (2) GenRM training: FAPO employs an overlong reward strategy
in training and treats token budget as a key criterion in final checkpoint selection. With these efforts,
the training time of FAPO is increased by less than 20% relative to the baseline.

5 RELATED WORK

LLM Reinforcement Learning Reinforcement learning has emerged as a promising paradigm for
advancing LLM reasoning capabilities (Xu et al., 2025a; Zhang et al., 2025a), with the long-term
vision of Artificial Superintelligence. Recent milestones (Guo et al., 2025; OpenAI, 2025) demon-
strate that RL in verifiable tasks (Liu et al., 2025c; He et al., 2025; Feng et al., 2025) enables models
to develop reasoning patterns such as planning and tool usage, which in turn foster generalization
across broader domains (Huan et al., 2025; Seed et al., 2025). While verifiable rewards provide
only binary feedback, learning progresses gradually. Building on this direction, we explore the role
of flawed positives in this process and introduce the Flawed-Aware Policy Optimization (FAPO)
algorithm, which promotes a more natural learning trajectory and enables efficient and reliable RL.

Reward Models in Reinforcement Learning Reward models offer a promising approach to ad-
dressing the limitations of rule-based rewards, which can be broadly categorized into generative
(GenRMs) and discriminative reward models (DisRMs). Current GenRMs mainly serve as flexible
verifiers (Xu et al., 2025b; Chen et al., 2025) that augment rule-based systems when correctness
cannot be reliably assessed by predefined rules (Liu et al., 2025a; Zhao et al., 2025). In addition to
verifiable reasoning tasks, GenRMs are also applied in non-verifiable tasks, providing subjective and
rubric-based rewards (Mahan et al., 2024; Zhang et al., 2024; Zhou et al., 2025). In contrast, DisRMs
typically output fine-grained, dense rewards at every decision step, such as token-level (Rafailov
et al., 2023; Cui et al., 2025), step-level (Lightman et al., 2023; Wang et al., 2023; Ding et al., 2025),
and turn-level (Qian et al., 2025; Dong et al., 2025), to support more precise optimization. However,
the complexity of such dense rewards also makes them vulnerable to reward hacking (Gao et al.,
2023), as policies may exploit spurious shortcuts instead of learning the intended behaviors (Weng,
2024), limiting their application in large RL systems. To address this challenge, FAPO introduces
an interpretable framework that trains GenRMs to detect flawed positives and provide nuanced, in-
terpretable rewards. Both empirical experiments (Appendix 4) and theoretical analysis (Section A)
demonstrate that FAPO exhibits strong robustness against reward hacking and scales effectively.

6 CONCLUSION

This paper introduces the Flawed-Aware Policy Optimization (FAPO) algorithm to enhance effi-
ciency and reliability in LLM RL. We first reveal the role of flawed-positive rollouts: they accelerate
capability gains in the early stage but ultimately constrain reasoning quality by reinforcing unreliable
patterns. To reconcile this trade-off, FAPO applies a parameter-free reward adjustment that lever-
ages flawed positives as shortcuts during warm-up while progressively steering optimization toward
reliable reasoning. In addition, we develop a generative reward model (GenRM) with process-level
signals to accurately detect and localize reasoning errors. Both empirical experiments and theoreti-
cal analysis demonstrate the effectiveness of FAPO in future large-scale RL systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that this work adheres to ethical research practices. All data and LLMs used are publicly
available (including API access) and properly cited, with no involvement of human subjects. The
Use of LLM statement is illustrated in Appendix E.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of the results reported in this paper. Details
of the algorithm design are provided in Section 3, while the infrastructure setup is described in
Section 4. Additional information, including the dataset, training hyperparameters, and evaluation
setups, is presented in Section 4 and Appendix B. All these details can be tracked in our code
implementation (the supplementary material and the anonymous GitHub repository).

REFERENCES

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scal-
ing reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li,
Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evalua-
tions. arXiv preprint arXiv:2504.10481, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Yuyang Ding, Xinyu Shi, Juntao Li, Xiaobo Liang, Zhaopeng Tu, and Min Zhang. Scan:
Self-denoising monte carlo annotation for robust process reward learning. arXiv preprint
arXiv:2509.16548, 2025.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
arXiv preprint arXiv:2507.19849, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

10

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
understanding transferability of llm reasoning. arXiv preprint arXiv:2507.00432, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Adam Tauman Kalai, Ofir Nachum, Santosh S Vempala, and Edwin Zhang. Why language models
hallucinate. arXiv preprint arXiv:2509.04664, 2025.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International conference on machine learning, pp. 3053–3062. PMLR, 2018.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu,
Wenwei Zhang, Derek F Wong, Songyang Zhang, et al. Compassverifier: A unified and robust
verifier for llms evaluation and outcome reward. arXiv preprint arXiv:2508.03686, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl
synergy. arXiv preprint arXiv:2506.13284, 2025c.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023.

Yu Wang, Nan Yang, Liang Wang, and Furu Wei. Examining false positives under inference scaling
for mathematical reasoning. arXiv preprint arXiv:2502.06217, 2025.

Lilian Weng. Reward hacking in reinforcement learning. lilianweng.github.io, Nov 2024. URL
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/.

LLM Xiaomi, Bingquan Xia, Bowen Shen, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang,
Huaqiu Liu, Jiebao Xiao, Jinhao Dong, et al. Mimo: Unlocking the reasoning potential of lan-
guage model–from pretraining to posttraining. arXiv preprint arXiv:2505.07608, 2025.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025a.

Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
reasoning. arXiv preprint arXiv:2505.14625, 2025b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025a.

12

https://lilianweng.github.io/posts/2024-11-28-reward-hacking/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Yulai Zhao, Haolin Liu, Dian Yu, SY Kung, Haitao Mi, and Dong Yu. One token to fool llm-as-a-
judge. arXiv preprint arXiv:2507.08794, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical rea-
soning. arXiv preprint arXiv:2412.06559, 2024.

Yang Zhou, Sunzhu Li, Shunyu Liu, Wenkai Fang, Jiale Zhao, Jingwen Yang, Jianwei Lv,
Kongcheng Zhang, Yihe Zhou, Hengtong Lu, et al. Breaking the exploration bottleneck: Rubric-
scaffolded reinforcement learning for general llm reasoning. arXiv preprint arXiv:2508.16949,
2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS OF FAPO ALGORITHM

To better understand the effectiveness of FAPO and the whole learning process, we present a theoret-
ical analysis. We begin by comparing FAPO with baseline settings to illustrate how the optimization
direction shifts during the RL process and how the corresponding advantage estimation evolves. In
this context, λ plays a crucial role in controlling the optimization dynamics. Building on this, we
further introduce a parameter-free, majority-guided optimization strategy.

In the context of LLM RL, we typically maximize the following clipped surrogate objective:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(ot|q, o<t)

πθold(ot|q, o<t)
Âi,t, clip(

πθ(ot|q, o<t)

πθold(ot|q, o<t)
, 1− ϵ, 1 + ϵ)Âi,t

]}
,

(9)

with advantage estimated in a group-relative manner:

Ri =

{
1, If oi is correct
−1, Otherwise

, Âi,t =
ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, (10)

In this context, µFAPO = mean({Ri}Gi=1) determines the sign of the advantage Âi,t, which in turn
dictates the current optimization direction while std({Ri}Gi=1) can be regarded as a scaling factor.
FAPO introduces the following modification to the reward function:

RGRPO =

{
1, If o is correct
−1, Otherwise

penalty−−−−→ RFAPO =


1, If o is fully correct
1− λ If o is correct yet flawed
−1, Otherwise

. (11)

We assume that the current sample contains n rollouts, with a proportion of α fully correct positives
and a proportion of β negatives, leaving 1 − α − β as flawed positives. Since GRPO does not
distinguish between fully correct and flawed positives, the resulting advantage estimation is:

µGRPO = mean({Ri}ni=1) =
1× (1− β)n+ (−1)× βn

n
= 1− β − β = 1− 2β,

σ2
GRPO = std({Ri}ni=1)

2 = (1−µGRPO)
2×(1−β)n+(−1−µGRPO)

2×βn
n

= (1− β)(1− µGRPO)
2 + β(1 + µGRPO)

2,

(12)

while the advantage estimation of FAPO is

µFAPO = mean({Ri}ni=1) =
1×(αn)+(1−λ)×(n−αn−βn)+(−1)×βn

n

= α+ (1− λ)(1− α− β)− β

= α− α(1− λ)− β − β(1− λ) + 1− λ

= 1− 2β − (1− α− β)λ

= µGRPO − (1− α− β)λ,

σ2
FAPO = std({Ri}ni=1)

2 = (1−µFAPO)
2×αn+(1−λ−µFAPO)

2×(n−αn−βn)+(−1−µFAPO)
2×βn

n

= α(1− µFAPO)
2 + (1− α− β)(1− λ− µFAPO)

2 + β(1 + µFAPO)
2,

(13)

For σ2
FAPO, we let γ = 1− α− β, so σ2

FAPO = σ2
GRPO − γλ, then

σ2
FAPO = α(1− µFAPO)

2 + (1− α− β)(1− λ− µFAPO)
2 + β(1 + µFAPO)

2

= α(1− µGRPO + γλ)2 + γ(1− µGRPO + γλ− λ)2 + β(1 + µGRPO − γλ)2

= [α(1− µGRPO)
2 + γ(1− µGRPO)

2 + β(1 + µGRPO)
2]

+ [2αγλ(1− µGRPO) + 2γ(1− µGRPO)(γλ− λ)− 2β(1 + µGRPO)γλ]

+ [αγ2λ2 + γ(γ − 1)2λ2 + βγ2λ2]

= A+B + C

(14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We break σ2
FAPO down into three sub-expressions (A, B, C) and simplify them separately.

A = α(1− µGRPO)
2 + γ(1− µGRPO)

2 + β(1 + µGRPO)
2

= (1− β)(1− µGRPO)
2 + β(1 + µGRPO)

2 → ∵ γ = 1− α− β

= σ2
GRPO

B = 2αγλ(1− µGRPO) + 2γ(1− µGRPO)(γλ− λ)− 2β(1 + µGRPO)γλ

= 2γλ[α(1− µGRPO)− (1− µGRPO)(1− γ)− β(1 + µGRPO)]

= 2γλ[2αβ − 2β(α+ β)− β(2− 2β)] → ∵ γ = 1− α− β, µGRPO = 1− 2β

= 2γλ · (−2β) = −4γλβ

C = αγ2λ2 + γ(γ − 1)2λ2 + βγ2λ2

= (1− γ)γ2λ2 + γ(1− γ)2λ2 → ∵ γ = 1− α− β

=γ(1− γ)λ2

B + C = − 4γλβ + γ(1− γ)λ2 = γλ(λ(α+ β)− 4β) → ∵ λ = 1− α− β

= λγ(1− γ)(λ− 4β

α+ β
) = λγ(1− γ)(λ− 4

α/β + 1
)

(15)

Thus, µFAPO and σ2
FAPO can be expressed in terms of µGRPO and σ2

GRPO:{
µFAPO = µGRPO − λγ

σ2
FAPO = σ2

GRPO + λγ(1− γ)(λ− 4
α/β+1)

(16)

When Optimization Direction Shift We assume a complete learning process that begins with the
model unable to solve any problems, i.e., β = 1. As training progresses, β gradually decreases
while α increases. The shift in optimization direction occurs when:

ÂFlawed =
1− λ− µFAPO

σFAPO
< 0

⇔ µFAPO > 1− λ

⇔ µFAPO = αλ− β(2− λ) + 1− λ > 1− λ

⇔ λ >
2β

α+ β
=

2

α/β + 1

⇔ α

β
>

2

λ
− 1

(17)

How Scaling Factor Changes The scaling factor σ2
FAPO changes over σ2

GRPO is:

σ2
FAPO − σ2

GRPO = λγ(1− γ)(λ− 4

α/β + 1
)

when
α

β
<

4

λ
− 1 ⇒ σ2

FAPO < σ2
GRPO

when
α

β
>

4

λ
− 1 ⇒ σ2

FAPO > σ2
GRPO

(18)

Summary: The Whole Optimization Process of FAPO We introduce ρ = α
β to characterize

the current optimization state, which increases monotonically from 0. For a pre-defined and fixed
λ, the learning process drives ρ upward. Once ρ exceeds 2

λ − 1, the optimization direction shifts
from reaching the correct answer (warm-up stage) toward reinforcing reliable reasoning (refinement
stage). As ρ continues to increase and surpasses 4

λ−1, the scaling factor σ rises accordingly, making
the advantage estimation more conservative (i.e., |ÂFAPO| < |ÂGRPO|, for flawed-positive and fully
correct rollouts). This conservativeness helps to stabilize training by preventing overly aggressive
updates, while still ensuring that correct and reliable rollouts are consistently prioritized.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Determining λ From the above analysis, the reward assignment parameter λ plays a central role in
determining when the optimization shift is applied, whether conservative or aggressive. In practice,
we adopt a majority-guided strategy, which provides both intuitiveness and effectiveness. In the
early stage of training, when negative samples with proportion β dominate, flawed positives are
assigned positive advantages, enabling the model to acquire the ability to produce correct answers
quickly. As training progresses and fully correct rollouts become the majority (i.e., α > β), the
optimization naturally shifts toward reinforcing reliable reasoning. Formally:

ρshift =
α

β
= 1 ⇒ λ =

2

ρshift + 1
= 1. (19)

Therefore, we set λ = 1 as the default configuration in FAPO.

B IMPLEMENTATION DETAILS

FAPO-Reasoning Table 1 summarizes the training configurations and hyperparameters of our
generative reward model (GenRM) and final reasoning models. For GenRM training, we follow the
practice of An et al. (2025) by using a higher rollout temperature to encourage exploration. For
reasoning model training, most settings are consistent with DAPO (Yu et al., 2025), except that we
reduce the number of rollouts from 16 to 8 to accelerate overall training speed.

Table 1: Training configurations and hyperparameters of our experiments.

FAPO-GenRM-4B Baseline & FAPO-7B Baseline & FAPO-32B

Data Configuration

Global Batch Size 512 512 512
Base Model Qwen3-4B-Instruct Qwen2.5-Math-7B Qwen2.5-32B

Rollout Inference

Rollout Num per Prompt 16 8 8
Temperature 1.2 1.0 1.0
Top-p 1.0 1.0 1.0
Top-k -1 -1 -1
Max Prompt Length 5120 2048 2048
Max Response Length 8192 8192 20480
Overlong Buffer Length 4096 4096 4096
Overlong Penalty Factor 1.0 1.0 1.0

Actor Training

PPO Mini Batch Size 32 32 32
Advantage Estimation Type GRPO GRPO GRPO
Clipping ϵlow 0.2 0.2 0.2
Clipping ϵhigh 0.28 0.28 0.28
Optimizer Adam Adam Adam
Learning Rate 10−6 10−6 10−6

Weight Decay 0.1 0.1 0.1
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Gradient norm clipping 1.0 1.0 1.0
Learning Rate Scheduler constant constant constant
Warmup Steps 10 10 10

Evaluation Setup

Temperature 0.6 1.0 1.0
Top-p 0.95 0.7 0.7
Top-k -1 -1 -1
Max Generation Length 8192 8192 20480

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

AgentLoopWorker

AgentLoopWorker

AgentLoopWorker

AgentLoopWorker

RewardManagerWorker

RewardManagerWorker

RewardManagerWorker

RewardManagerWorker

Rollout
QuestionsRollout

QuestionsRollout
Questions

Rollout Data

Rollout Data

Rollout Data

Rollout Data

User-Customized
Reward Function

Rollout Services

Actor Rollout
Server

Server Handle
(Remote)

Actor Rollout
Server

Server Handle
(Remote)

Reward Rollout
Server

Reward Rollout
Server

Server Router

Standalone

Data Stream Pipeline
Rollout & Reward

Rollout & Reward

Rollout & Reward

Rollout & Reward

Overview of Agent Reward Loop

Figure 9: Infrastructure Design of Reward Loop

FAPO-GenRM FAPO-GenRM is trained using the FAPO-critic dataset, where the ground truth
label is generated by Qwen-32B. To mitigate the label noise in the data and train FAPO-GenRM
robustly, we propose the following strategies:

• Consensus filtering: During data synthesis, we sample each instance three times. A sample is
kept only if all three generations yield consistent outcomes (i.e., the process errors occur at exactly
the same positions). As a result, the retained samples tend to be highly reliable and have strong
internal agreement.

• Robust Training Objective: Our designed training objective (in Equation 7) are robust to the
subtle errors missed by the teacher. The reward supervision signal is a soft noise-robust label,
the student can still receive an appropriate reward even when the annotated error location deviates
slightly from the true error.

Reward Loop Design Figure 9 shows the infrastructure design of the reward loop, a partially
asynchronous infrastructure for reward computation. Reward Loop is designed for:

• Make reward computation more efficient: each rollout sample is sent to the reward model
immediately after it is generated, without waiting for the full batch rollouts to finish.

• Make user customized reward function more flexible: the design of the Reward Loop provides
substantial flexibility for implementing custom reward functions and supports both DiSRM and
GenRM.

This implementation is based on the veRL agent loop (Sheng et al., 2025) and has been open-sourced
(relevant implementation can be checked in our supplementary materials).

C ADDITIONAL RESULTS AND DISCUSSION

Additional Results of FAPO-GenRM Table 2 shows a detailed comparison of our FAPO-
GenRM-4B model with other publicly available discriminative and generative reward models.
Building upon Qwen3-4B-Instruct, our model achieves substantial improvements in both Flawed-
PositiveBench and ProcessBench (Zheng et al., 2024), even surpassing Qwen3-32B and the discrim-
inative SoTA model Qwen2.5-Math-PRM-72B (Zhang et al., 2025b).

Additional Results of FAPO-Reasoning Strong generalization ability is one of the key advan-
tages of reinforcement learning (Huan et al., 2025). We then extend the evaluation of FAPO to
additional tasks, including two more mathematical domains (MATH (Hendrycks et al., 2021) and
AMC) and code reasoning (LiveCodeBench (Jain et al., 2024)). The overall results are shown in the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: FAPO-GenRM results in FlawedPositiveBench and ProcessBench.

Model FlawedPositiveBench ProcessBench

Precision Recall F1 Avg. F1

Discriminative Process Models (7B-70B)

Qwen2.5-Math-PRM-7B 76.6 83.5 79.9 70.5
Qwen2.5-Math-PRM-72B 74.3 91.0 81.8 76.8

Generative Critic Models (7B-70B)

Qwen2.5-Math-7B-Instruct 58.0 43.8 49.9 19.9
Qwen2.5-7B-Instruct 50.0 66.2 57.0 38.9
Qwen3-1.7B (Think) 73.4 75.1 74.2 56.0
Qwen3-4B-Instruct 69.4 97.9 81.2 77.1
Qwen3-4B (Think) 89.2 84.3 82.0 79.6
Qwen3-32B (Think) 85.1 90.8 87.8 82.0

FAPO-GenRM-4B (Ours) 87.5 91.4 89.4 83.3

Table 3. FAPO outperforms the baseline in code reasoning tasks and achieves consistent improve-
ments across a broad range of tasks.

Table 3: FAPO-Reasoning results in more evaluation benchmarks.

Model Math Code General Avg.AIME24 AIME25 AMC MATH LiveCodeBench GPQA-Diamond

Baseline-32B 38.9 29.5 85.0 72.8 28.6 51.0 51.0
FAPO-32B 42.4 33.5 91.6 74.6 33.6 53.1 54.8

FAPO application in large-scale RL systems Introducing an extra generative reward model will
bring a burden to the systems. We then quantify the burden and explore the potential application of
FAPO in large-scale RL systems. We provide a more detailed breakdown of the time distribution
across different RL stages in Table 4.

Table 4: Time distribution across different RL stages in different settings.

Model Rollout
(Infer) Rollout Len FAPO-GenRM

(Infer) GenRM Len Policy Update
(Train) Nodes

FAPO-7B 42% 1.1k 18% 3.0k 33% 4
FAPO-32B 60% 2.3k 14% 3.2k 20% 8
Qwen3-4B 72% 12.0k 10% 3.8k 14% 16

The relative inference cost for long-cot models actually decreases, specifically: (1) Rollout: Long-
CoT models exhibit a strong long-tail issue: the generation time is bounded by the longest trajectory
in the batch. Therefore, rollout time increases significantly as the model generates longer traces
(e.g., 12k tokens for Qwen3-4B). (2)GenRM: In contrast, GenRM inference time does not increase
with longer trajectories. We observe that the GenRM output length stays nearly constant across
models (e.g., 3.2k → 3.8k). (3) Policy update: This stage accounts for a relatively small portion of
the total cost and primarily scales with model size rather than trajectory length. Overall, the root
cause is that the critic task for FAPO-GenRM does not require a very long response length.

Ablation study of hyper-parameter λ λ is the only key hyper-parameter introduced in the FAPO
algorithm. We explore the parameter tuning based on the FAPO-7B setting, with results illustrated
in Table 5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Hyper-parameter tuning of λ.

Setting Performance

Baseline-7B (ρ = +∞ ⇒ λ = 0) 32.1
FAPO with ρ = 2 ⇒ λ = 1/3 34.6
FAPO with ρ = 1 ⇒ λ = 1 (default setting) 36.8
FAPO with ρ = 1/2 ⇒ λ = −1/3 39.6

We can conclude that:

• Flaw-aware learning consistently improves performance, as all configurations outperform the
baseline.

• Achieving the best performance require tuning the parameter λ. In the 7B setting, a more ag-
gressive strategy leads to larger gains. The configuration with ρ = 1/2, which corresponds to
an optimization shift where about one third of the rollouts are fully correct, achieves the best
performance.

So overall, flaw-aware learning leads to performance gains, but achieving the best performance
requires tuning the parameter λ. That said, FAPO introduces only this single additional parameter,
which makes the tuning process relatively easy.

Human Verification on the reliability of FAPO-32B Beyond the previous LLM-as-a-judge eval-
uation with Qwen3-32B, we further conduct a detailed human verification to assess the process
reliability of FAPO-32B. Specifically, we randomly sample 20 positive cases with correct final an-
swers and manually examine whether they contain unreliable reasoning patterns, with the results
summarized in Table 6. Through this analysis, we observe that (1) multiple-choice questions ex-
hibit a noticeably higher proportion of flawed positives compared to math word problems, where
the final answer is often a symbolic expression; and (2) our method consistently outperforms the
baseline under both LLM-as-a-judge and human verification, further demonstrating its effectiveness
in mitigating flawed-positive issues.

Table 6: LLM-as-a-judge and human verification of flawed positive ratio.

Model AIME24
(Math Word Problem)

AIME25
(Math Word Problem)

GPQA-Diamond
(Multi-Choice Problem)

Baseline-32B
(LLM-as-a-judge) 15.5 10.9 45.7

FAPO-32B
(LLM-as-a-judge) 7.1 (-8.4) 1.7 (-9.2) 42.0 (-3.7)

Baseline-32B
(Human-Verification) 4 / 20 1 / 20 10 / 20

FAPO-32B
(Human-Verification) 2 / 20 0 / 20 7 / 20

How Flawed Learning contributes to Performance Gains In section 2.2, we demonstrate that
the flawed positive acts as a role of stepping stones to performance gains, and Figure 2 (d) illustrates
the correlation between them. Here, we provide a more complete explanation of how mitigating
flawed positives leads to performance gains.

• Early Stages: Flawed Behavior → More Correct Rollouts: Prior studies (Zheng et al., 2024;
Wang et al., 2025) have shown that flawed reasoning often acts as a shortcut to the correct final
answer. This bias, inherited from pre-training (Kalai et al., 2025), leads to certain flawed rollouts.
Thus, in the early phase of RL, flawed positives naturally increase the number of correct final
answer rollouts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Early Stages: More Correct Rollouts → Early performance gains: A larger pool of cor-
rect rollouts yields more positive rewards, providing stronger supervision and driving exploitation
early in training. This effect can be directly observed in train-time reward statistics in Table 7.

• Later Stages: Penalizing flawed behavior → Fewer flawed rollouts: Our theoretical analysis
demonstrates the optimization distribution shift: flawed rollouts receive negative advantage, pro-
gressively reducing the model’s tendency to produce flawed processes. This trend is reflected in
Figure 1 (left), where the proportion of flawed positives decreases steadily as training progresses.

• Later Stages: Fewer flawed rollouts → Performance gains: As flawed rollouts diminish, the
model allocates more rollout chances to fully correct trajectories. Consequently, the RL loop
receives a higher density of genuinely useful reward signals, as reflected in Table 8, improving
final performance.

Table 7: Early-stage train-time rewards (view
flawed rollout as positive rollout).

Step 10 20 30 40 50

Baseline-7B 0.14 0.27 0.29 0.34 0.36
FAPO-7B 0.18 0.33 0.37 0.42 0.44

Table 8: Later-stage train-time rewards (view
flawed rollout as negative rollout).

Step 120 140 160 180 200

Baseline-7B 0.35 0.37 0.36 0.40 0.39
FAPO-7B 0.38 0.40 0.41 0.44 0.45

Model Selection in FAPO Experiments We explain the model selection in both FAPO-GenRM
and FAPO-Reasoning:

• Model Selection in FAPO-GenRM: We adopt Qwen3-4B-Instruct as the base model for GenRM
training, considering three factors: (1) it demonstrates strong instruction-following and basic
error-detection capability (as shown in Table 2), making it a suitable initialization for RL; (2)
its relatively small size ensures efficient training and faster inference, with Instruct models pro-
ducing shorter responses than think-style models; (3) it avoids potential concerns of knowledge
leakage into the final RL process that may arise if the base model is overly strong.

• Model Selection in FAPO-Reasoning: We follow the same setup as DAPO (Yu et al., 2025)
and use Qwen2.5-Math-7B and Qwen2.5-32B as base models, as (1) the learning curves of pre-
trained models clearly illustrate the entire exploration–exploitation trajectory starting from near-
zero performance, whereas RL-finetuned Instruct models often exhibit instability; (2) these two
models also strike a good balance between response length and training speed.

D LIMITATIONS AND FUTURE WORK

Our work presents several limitations that point to promising future directions, both in algorithmic
effectiveness and infrastructure design. On the algorithmic side, although this work trains on math-
ematical reasoning tasks, FAPO has strong potential in broader settings such as multi-choice tasks,
multi-turn interactions, and agent-based RL, where flawed processes are often more pronounced and
problematic. We will also further validate the effectiveness of FAPO across a wider range of model
architectures (e.g., MoE) and larger model scales. On the infrastructure side, while our decoupled
design improves efficiency and inference speed, its applicability to fully asynchronous RL systems
remains uncertain, as we discussed in Section 4.5, specifically Table 1. We regard these as important
research directions in our future work.

E LLM USAGE

During the writing of this paper, AI assistants are employed to assist with minor language refine-
ment. Their suggestions are limited to enhancing clarity and readability, without influencing the
research design, experiments, or conclusions. All content was carefully reviewed, validated, and
revised by the authors to ensure accuracy and fidelity to the research.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F PROMPTS

Prompts for Flawed Positive Detection

Prompt for Outcome Reward Model (ORM):
The following is a math problem with its ground truth answer, along
with an AI solution:

[Math Problem]
{problem statement}

[Ground Truth]
{ground truth answer}

[AI Solution]
{AI Solution}

Your task is to review and critique the solution step by step, and
output whether the AI solution is correct.
Please reason step by step, put your final answer (i.e., ’True’ or
’False’) in \boxed{}

Prompt for Process Reward Model (PRM):
The following is a math problem with its ground truth answer, along
with an AI solution (split into paragraphs, enclosed with tags and
indexed from 0):

[Math Problem]
{problem statement}

[Ground Truth]
{ground truth answer}

[AI Solution]
<paragraph 0>...</paragraph 0>
<paragraph 1>...</paragraph 1>
......
<paragraph (n-1)>...</paragraph (n-1)>

Your task is to review and critique the solution paragraph by
paragraph. Once you identify an error in a paragraph, return the
index of the paragraph where the earliest error occurs. Otherwise,
return the index of -1 (which typically denotes ’not found’).
Please reason step by step, put your final answer (i.e., the index)
in \boxed{}

Prompts for Reasoning

Prompt for DAPO-Math-17K, AIME24, and AIME25:
{problem statement}

Please reason step by step, and put your final answer within
\boxed{}.

Prompt for GPQA-Diamond:
{problem statement}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}

Please reason step by step, and put your final answer (only the
choice letter) within \boxed{}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G FLAWED POSITIVE SAMPLES WITH HUMAN ANALYSIS

Flawed Positive Example 1

Question Source: AIME24
Question:
Alice chooses a set A of positive integers. Then Bob lists all
finite nonempty sets B of positive integers with the property that
the maximum element of B belongs to A. Bob’s list has 2024 sets.
Find the sum of the elements of A.

Generation Model: Qwen2.5-Math-7B (Pre-Trained Base Model)
Response:
We are given that Bob lists all finite nonempty sets B of positive
integers where the maximum element of B belongs to A. Bob’s list
contains 2024 such sets. We need to find the sum of the elements of
A.
Step-by-Step Reasoning:
1. Understanding the Problem:
- Let A = {a1, a2, . . . , an} where a1 < a2 < . . . < an.
- For each ai ∈ A, Bob lists all finite nonempty sets B such that
the maximum element of B is ai.
2. Counting the Sets for Each ai:
- For a given ai, the sets B can include any subset of the integers
less than ai, plus ai itself.
- The number of subsets of the integers less than ai is 2ai−1 (since
there are ai − 1 integers less than ai).
- However, since B must be nonempty, we subtract 1 from this count
(the empty set).
Therefore, the number of sets B for a given ai is:

2ai−1 − 1

3. Total Number of Sets:
- The total number of sets listed by Bob is the sum of the number of
sets for each ai:

n∑
i=1

(2ai−1 − 1) = 2024

- Simplifying, we get:
n∑

i=1

2ai−1 − n = 2024

n∑
i=1

2ai−1 = 2024 + n

4. Finding n:
- We need to find n such that the sum

∑n
i=1 2

ai−1 is minimized.
- The smallest possible values for ai are 1, 2, 3, . . . , n.
Let’s test with small values of n:
- For n = 1:

21−1 = 1 (too small)

- For n = 2:
21−1 + 22−1 = 1 + 2 = 3 (too small)

- For n = 3:

21−1 + 22−1 + 23−1 = 1 + 2 + 4 = 7 (too small)

- For n = 4:

21−1 + 22−1 + 23−1 + 24−1 = 1 + 2 + 4 + 8 = 15 (too small)

- For n = 5:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 = 1 + 2 + 4 + 8 + 16 = 31 (too small)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

- For n = 6:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 + 26−1 = 1 + 2 + 4 + 8 + 16 + 32 = 63 (too small)

- For n = 7:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 + 26−1 + 27−1 = 127 (too small)

- For n = 8:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 + 26−1 + 27−1 + 28−1 = 255 (too small)

- For n = 9:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 + 26−1 + 27−1 + 28−1 + 29−1 = 511 (too small)

- For n = 10:

21−1+22−1+23−1+24−1+25−1+26−1+27−1+28−1+29−1+210−1 = 1023 (too small)

- For n = 11:

21−1+22−1+23−1+24−1+25−1+26−1+27−1+28−1+29−1+210−1+211−1 = 2047 (too large)

Therefore, n = 10 is the correct value because:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 + 26−1 + 27−1 + 28−1 + 29−1 + 210−1 = 1023

And:
1023 + 10 = 1033 (which is too large)

So, we need to adjust n to be 10 and check the sum:

21−1 + 22−1 + 23−1 + 24−1 + 25−1 + 26−1 + 27−1 + 28−1 + 29−1 + 210−1 = 1023

And:
1023 + 10 = 1033 (which is too large)

Therefore, the correct n is 10, and the sum of the elements of A
is:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

Thus, the sum of the elements of A is:

55

Human Analysis: There are two clear mistakes in the AI’s response:

1. The number of sets B for a ai should be 2ai−1 (not 2ai−1 − 1).
This incorrect assumption leads to a completely flawed
derivation throughout the rest of the solution.

2. The correct set A should be {4,6,7,8,9,10,11}, instead of
{1,2,3,4,5,6,7,8,9,10}. From the solution process, it’s
clear that the AI guessed a value close to the target, rather
than identifying the exact condition required.

In summary, although the final answer happens to be correct, the
overall reasoning process is fundamentally flawed.

Flawed Positive Example 2

Question Source: DAPO-Math-17K
Question:
Let a, b, c be the three roots of the equation x3− (k+1)x2+kx+12 = 0,
where k is a real number. If (a − 2)3 + (b − 2)3 + (c − 2)3 = −18, find the
value of k.

Response Generation Model: Llama-3.3-70B-Instruct (ShortCoT Model)
Response:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Step 1: Recall Vieta’s formulas for a cubic equation
Vieta’s formulas for a cubic equation x3 + px2 + qx + r = 0 with roots
a, b, and c state that: a + b + c = −p, ab + bc + ac = q, and abc = −r.
Applying these formulas to the given equation x3 − (k+1)x2 + kx+12 = 0,
we get a+ b+ c = k + 1, ab+ bc+ ac = k, and abc = −12.
Step 2: Expand the given expression using the identity for
(a− 2)3 + (b− 2)3 + (c− 2)3

The identity for (a − 2)3 + (b − 2)3 + (c − 2)3 can be expanded as
(a3 − 6a2 + 12a − 8) + (b3 − 6b2 + 12b − 8) + (c3 − 6c2 + 12c − 8). This simplifies
to (a3 + b3 + c3)− 6(a2 + b2 + c2) + 12(a+ b+ c)− 24.
Step 3: Use the given equation to find a3 + b3 + c3

Since a, b, and c are roots of the equation x3− (k+1)x2+kx+12 = 0, we
can express a3, b3, and c3 in terms of a, b, c, and k. Substituting
x = a, b, and c into the equation gives a3 = (k + 1)a2 − ka − 12,
b3 = (k + 1)b2 − kb − 12, and c3 = (k + 1)c2 − kc − 12. Summing these gives
a3 + b3 + c3 = (k + 1)(a2 + b2 + c2)− k(a+ b+ c)− 36.
Step 4: Find a2 + b2 + c2 using the sum of roots
From Vieta’s formulas, we know a + b + c = k + 1. Squaring both sides
gives (a + b + c)2 = (k + 1)2, which expands to a2 + b2 + c2 + 2(ab + bc + ac) =
k2 + 2k + 1. Since ab + bc + ac = k, we can substitute this in to get
a2 + b2 + c2 + 2k = k2 + 2k + 1, simplifying to a2 + b2 + c2 = k2 + 1.
Step 5: Substitute a2 + b2 + c2 into the expression for a3 + b3 + c3

Substituting a2+b2+c2 = k2+1 into a3+b3+c3 = (k+1)(a2+b2+c2)−k(a+b+c)−36
gives a3 + b3 + c3 = (k + 1)(k2 + 1) − k(k + 1) − 36. Simplifying yields
a3 + b3 + c3 = k3 + k + k2 + 1− k2 − k − 36 = k3 − 35.
Step 6: Substitute known values into the expanded expression for
(a− 2)3 + (b− 2)3 + (c− 2)3

Given that (a − 2)3 + (b − 2)3 + (c − 2)3 = −18, and using the expansion
from Step 2, we substitute a3 + b3 + c3 = k3 − 35 and a + b + c = k + 1 into
the expression. We also need a2 + b2 + c2 = k2 + 1 from Step 4. The
expression becomes (k3 − 35)− 6(k2 + 1) + 12(k + 1)− 24 = −18.
Step 7: Solve for k
Simplifying the equation (k3 − 35) − 6(k2 + 1) + 12(k + 1) − 24 = −18 gives
k3 − 6k2 + 12k − 35 − 6 + 12k + 12 − 24 = −18. Combining like terms yields
k3−6k2+24k−53 = −18. Adding 18 to both sides gives k3−6k2+24k−35 = 0.
This is a cubic equation in terms of k.
Step 8: Solve the cubic equation for k
To solve k3−6k2+24k−35 = 0, let’s try to factor it or find a rational
root. Checking for simple integer solutions, k = 5 is found to be a
root (through trial and error or using the Rational Root Theorem),
as 53 − 6(5)2 + 24(5) − 35 = 125 − 150 + 120 − 35 = 60. However, this was an
error in calculation: the correct calculation for k = 5 should be
53 − 6(5)2 + 24(5) − 35 = 125 − 150 + 120 − 35 = 60, which is not correct. The
correct approach is to actually solve the equation correctly. Let’s
correct the step: We need to solve k3 − 6k2 + 24k − 35 = 0. Trying k = 5
correctly: 53 − 6(5)2 + 24(5) − 35 = 125 − 150 + 120 − 35 = 60, which does not
equal 0, indicating an error in identifying k = 5 as a root. The
correct factorization or solution method must be applied.
Step 9: Correctly identify and solve for k
The error in Step 8 indicates a miscalculation in identifying a
root. The correct approach involves factoring or applying a method
like synthetic division if a rational root is suspected, or using
numerical methods. However, given the mistake in calculation
and approach, let’s reconsider the equation and directly evaluate
potential rational roots or use given conditions more effectively.
The final answer is: 5

Human Analysis: The correct simplified equation is k3 − 6k2 +12k− 35 =
0, not k3 − 6k2 + 24k − 35 = 0. This typo leads to an incorrect solution
of k. However, what’s quite peculiar is that despite the model’s
multiple failed attempts to correct itself, it ultimately guessed
k = 5.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Flawed Positive Example 3

Question Source: DAPO-Math-17K
Question:
Let a, b, c be distinct numbers such that the equations x2+ax+1 = 0 and
x2+bx+c = 0 have a common real root, and the equations x2+x+a = 0 and
x2 + cx+ b = 0 also have a common real root. Compute the sum a+ b+ c.

Response Generation Model: Qwen3-1.7B (LongCoT Model, Think Mode)
Response:
<think>...</think> (Think Content Omitted Here)

To solve the problem, we are given three distinct numbers a, b, c such
that:
- The equations x2+ax+1 = 0 and x2+bx+c = 0 share a common real root,
- The equations x2 + x+ a = 0 and x2 + cx+ b = 0 also share a common real
root.
We are to compute the value of a+ b+ c.

Step 1: Use the Common Root Condition
Let α be a real root of both equations x2 + ax+ 1 = 0 and x2 + bx+ c = 0.
Substituting α:

α2 + aα+ 1 = 0 (1)α2 + bα+ c = 0 (2)

Subtracting (1) from (2):

(b− a)α+ (c− 1) = 0 ⇒ α =
1− c

b− a
(3)

Now, substitute α into (1) and (2) to express relationships between
a, b, c.

Step 2: Use the Second Pair of Equations
Let β be a real root of both x2 + x + a = 0 and x2 + cx + b = 0.
Substituting β:

β2 + β + a = 0 (4)β2 + cβ + b = 0 (5)

Subtracting (4) from (5):

(c− 1)β + (b− a) = 0 ⇒ β =
a− b

c− 1
(6)

Step 3: Use the Relationship Between α and β
From the problem, it is known that β = 1

α
. Therefore:

a− b

c− 1
=

1

α
⇒ α =

1− c

b− a

Also, from (6):

β =
a− b

c− 1
So:

β =
a− b

c− 1
=

1

α
=

1− c

b− a

This gives a relationship between a, b, c, and we proceed by assuming
α = 1, which simplifies the algebra.

Step 4: Find a, b, c with α = 1
Suppose α = 1 is a common root of both pairs of equations.
From equation (1):

12 + a · 1 + 1 = 0 ⇒ 1 + a+ 1 = 0 ⇒ a = −2

Now, since α = 1 is a root of equation (2):

12 + b · 1 + c = 0 ⇒ 1 + b+ c = 0 ⇒ c = −1− b

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Now, from the second pair of equations, β = 1 is a root of both x2 +
x+ a = 0 and x2 + cx+ b = 0. Substitute x = 1 into both equations:
- 12 + 1 + a = 0 ⇒ 1 + 1 + (−2) = 0 ⇒ 0 ✓
- 12 + c · 1 + b = 0 ⇒ 1 + c+ b = 0 ⇒ c+ b = −1 ✓
Thus, consistent.
Now, the sum:

a+ b+ c = −2 + b+ (−1− b) = −3

Final Answer

−3

Human Analysis: The AI makes an unwarranted assumption that α = 1,
whereas in fact, deriving this requires a complex reasoning process.
Although the final answer is correct, the reasoning is flawed and
the correct value is reached coincidentally.

26

	Introduction
	Preliminary: Unveiling Flawed Positives in RL Training
	Problem Definition and Motivation
	Flawed Positive Analysis in Reinforcement Learning

	FAPO: Flawed-Aware Policy Optimization
	Flawed Positive Detection
	Flawed Positive Penalization

	Experiments
	Training Details
	Evaluation Setup
	Main Results
	Ablation Study
	Discussion: GenRM Application in Future RL Systems

	Related Work
	Conclusion
	Theoretical Analysis of FAPO algorithm
	Implementation Details
	Additional Results and Discussion
	Limitations and Future Work
	LLM Usage
	Prompts
	Flawed Positive Samples with Human Analysis

