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Abstract

In clinical practice, imaging modalities may not always be available for every patient due to
scheduling, cost, or patient-specific constraints. Additionally, multi-center imaging studies
often face inconsistencies in protocols, machine settings, and artifacts, compromising data
quality. We propose a 3D U-Net model for ischemic lesion segmentation using a novel train-
ing technique, gradual modality dropout, which progressively deactivates imaging modal-
ities during training. This approach ensures robust performances when all modalities are
present and improves segmentation accuracy in scenarios where one or more modalities
are missing in unfamiliar contexts. The model demonstrates adaptability and reliabil-
ity when trained on MRI scans of stroke patients across different phases (hyper-acute,
sub-acute, acute, and post-treatment) and various hospital settings. Code available here:
https://github.com/sofiavarib/Gradual-modality-dropout
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1. Introduction

Stroke remains a leading cause of death globally, with millions of fatalities each year. It
results from arterial blockages that reduce blood flow, causing irreversible brain damage.
Accurate identification of the affected brain region (lesion) is vital for treatment decisions.
While lesion segmentation is critical in improving survival and recovery, manual analysis is
time-consuming and limits timely intervention.

To address this, various deep learning models have been developed to automate and ac-
celerate lesion detection. These include 3D CNN-based models like 3D U-Net (Ronneberger
et al., 2015; Omarov et al., 2022; Ashtari et al., 2023), hybrid 2D/3D architectures such as
D-Unet (Zhou et al., 2021) and DFENet (Basak et al., 2021), patch-based sampling (Xue
et al., 2020; Alquhayz et al., 2022), and attention-based methods like AABTS-Net (Tian
et al., 2023) and PerfUnet (de Vries et al., 2023). However, many rely on the presence of
specific imaging modalities. To overcome this, approaches like the Unified Representation
Network (Lau et al., 2019) enable flexible input handling, while GANs have been used to
generate missing modalities (Sharma and Hamarneh, 2019). Modality dropout strategies
have also proven effective, with MultiUnet (Xu et al., 2024) and ModDrop+ (Liu et al.,
2022) offering strong performance, the latter introducing a dynamic filter-scaling head.
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2. Datasets

This study uses two multicentric and multiequipement datasets: JHU (Liu et al., 2023),
which consists of 1888 patients with acute ischemic strokes, and ISLES (Hernandez Petzsche
et al., 2022), which has 150 patients. CHSF and MATAR datasets (Marnat et al., 2023)
consist only of hyper-acute strokes from a single hospital and machine. CHSF has 65
patients with proximal occlusion and MATAR 125 patients with distal ones. All of them
have Apparent diffusion coefficient (ADC), magnetic field strength (B0), and diffusion-
weighted imaging (DWI), except for ISLE,S where B0 is missing.

3. Method

Inspired by the dropout technique (Srivastava et al., 2014), modality dropout (Lau et al.,
2019) extends this concept to input modalities (Lau et al., 2019): instead of deactivating
individual neurons, it zeroes out entire input images with a Bernoulli probability p, effec-
tively simulating missing modalities and improving model robustness to incomplete data.
We propose a gradual transition mechanism to replace the abrupt disruptions caused by
completely dropping a modality, and evaluate its performance using the nnU-Net bench-
mark (Isensee et al., 2018). For a segmentation model F that processes input modalities
xj , j ∈ {1, . . . , n} and n the total number of modalities, the final output y is computed as:

y = F (r̃⊙ x) with r̃j =

{
1, if rj = 1,with probability p

gj(t), otherwise,with probability 1− p
(1)

with rj ∼ Bernouilli(p) and ’⊙’ the Hadamard product. When p = 1, no dropout is applied,
and all modalities are used, whereas when p = 0, the corresponding modality is gradually
dropout, controlled by the gradual function g(t). This decreasing function reaches zero at
some time t and we propose the following g(t):

gj(t) =


0.75 + ϵ, if t < 0.25T

0.5 + ϵ, if t < 0.5T

0.25 + ϵ, if t < 0.75T

0 + ϵ, otherwise

(2)

where T represents the total number of epochs, and a noise ϵ is added from a normal distri-
bution with a mean of 0 and a standard deviation of 0.01 to the function gj(t). Serving both
as data augmentation, where r̃⊙x becomes an enhanced version of x, and as regularization,
it allows the model to adapt to missing modality data gradually.

4. Results

In clinical practice, a dataset from a new center can create a missing modality scenario.
To mimic this case, all datasets are used during training except ISLES, where B0 is ab-
sent. Using ADC, DWI, and B0 as inputs for nnUnet, we apply modality dropout on B0
with varying probabilities and evaluate performance with all modalities available and under
missing-data conditions. The results are shown in Table 1, where our proposed method
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Table 1: The evaluation considers missing B0 on the unseen ISLES dataset, using modality dropout
with probability p in gradual and non-gradual settings. All training configurations use ADC, DWI,
and B0 as inputs. The upper bound (*) includes ISLES in training, while the lower bound (†)
excludes it, both without any method. The best Dice scores for unseen datasets and average results
under missing-modality conditions are highlighted and the best without absent data are underlined.
Evaluation symbols: for all modalities present, and when B0 is absent.

Exp. Mod. drop B0 Unseen Test set (T0) (Dice)
num Type 1-p ISLES CHSF MATAR ISLES (unseen) JHU Average

Exp1 - - ✓ 0.790± 0.029 0.768±0.061 - 0.731±0.012 0.763±0.059

Exp1 - - ✓ 0.787±0.027 0.767±0.065 0.622†±0.040 0.723±0.014 0.725±0.055
Exp2 MultiUnet 0.2 ✓ 0.787±0.027 0.762±0.056 - 0.750±0.012 0.767±0.061

Exp2 MultiUnet 0.2 ✓ 0.788±0.028 0.765±0.056 0.672±0.039 0.748±0.013 0.743±0.051
Exp3 Gradual 0.2 ✓ 0.789±0.028 0.757±0.061 - 0.744±0.013 0.763±0.061

Exp3 Gradual 0.2 ✓ 0.789±0.028 0.758±0.061 0.650±0.040 0.743±0.013 0.735±0.052
Exp4 ModDrop+ 0.2 ✓ 0.787±0.028 0.733±0.066 - 0.740±0.014 0.753±0.066

Exp4 ModDrop+ 0.2 ✓ 0.787±0.029 0.732±0.065 0.617±0.041 0.740±0.014 0.719±0.056
Exp5 MultiUnet 0.5 ✓ 0.789±0.028 0.775±0.056 - 0.748±0.013 0.771±0.058

Exp5 MultiUnet 0.5 ✓ 0.789±0.028 0.777±0.055 0.637±0.040 0.747±0.013 0.738±0.051
Exp6 Gradual 0.5 ✓ 0.786±0.029 0.766±0.055 - 0.747±0.013 0.766±0.058

Exp6 Gradual 0.5 ✓ 0.786±0.029 0.763±0.056 0.655±0.039 0.748±0.012 0.738±0.050
Exp7 ModDrop+ 0.5 ✓ 0.779±0.029 0.758±0.070 - 0.744±0.013 0.760±0.066

Exp7 ModDrop+ 0.5 ✓ 0.778±0.029 0.761±0.070 0.630±0.040 0.743±0.013 0.728±0.056
Exp8 MultiUnet 0.8 ✓ 0.790±0.026 0.743±0.068 - 0.751±0.013 0.761±0.065

Exp8 MultiUnet 0.8 ✓ 0.790±0.027 0.741±0.068 0.682±0.032 0.751±0.013 0.741±0.050
Exp9 Gradual 0.8 ✓ 0.810±0.025 0.750±0.055 - 0.743±0.013 0.768±0.057

Exp9 Gradual 0.8 ✓ 0.810±0.026 0.752±0.056 0.701±0.038 0.743±0.013 0.749±0.048
Exp10 ModDrop+ 0.8 ✓ 0.788±0.026 0.763±0.060 - 0.753±0.012 0.768±0.058

Exp10 ModDrop+ 0.8 ✓ 0.788±0.027 0.761±0.060 0.635±0.038 0.753±0.012 0.734±0.051
Exp11 - - 0.773±0.031 0.753±0.056 - 0.756±0.012 0.761±0.057

Exp11 - - 0.775±0.025 0.680±0.058 0.782∗±0.029 0.756±0.012 0.747±0.041

(Gradual) is compared with MultiUnet, where the modality dropout is done without a
gradual function, zeroing abruptly the modalities and with ModDrop+, where a dynamic
filter is included. Some visual predictions are shown in Appendix A.

Except for ModDrop+ with (1−p) = 0.2, all methods allow to have an improvement on
the unseen dataset ISLES with respect to the lower bound (which corresponds to training
without ISLES and no dropout (Exp1)). The best result is obtained with our proposed
method, arriving at a Dice of 0.701 on ISLES (Exp 9), but still staying far from the upper
bound, which includes ISLES during training with a black image instead of B0 input (Exp11,
Dice = 0.782). Seeing the average Dice scores under missing modalities conditions, the best
average score (Exp9, Dice 0.749) gets close to the upper bound (Exp11, Dice 0.747), without
a performance reduction under the non-missing scenario, showing the method’s robustness.

5. Conclusion

The proposed method includes modality dropout in a smoother way, where a gradual func-
tion reduces the input contrast over the training. Thanks to the regularizing and augmenta-
tion aspect of the method and without reducing the performance in the seen centers either
under a missing or not missing scenario, it outperforms the other Dice score’ methods on
an unseen center, where a modality is absent. Gradual modality dropout is model-agnostic,
being adaptable to any architecture under any training schedule.
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Appendix A. Out-domain evaluation with missing modalities - visual
examples

In Fig. 1, the predictions of several models and the groundtruth are represented over the
DWI image for ISLES dataset. All models have DWI, ADC, and missing B0 as input
(black image). For the first column, the lower bound model is used, when ISLES is not
seen during training, the second one is the best model obtained by adding the proposed
method (1− p=0.8), and the third column is when the model uses ISLES during training.
Finally, in the last column, the groundtruth of the model is shown. In the first line, when
the dataset is unseen and no method to manage the missing modality is used, some parts of
the lesion are not detected. For the second case, false positives are obtained if the method
is not applied. Finally, in the last case, we can see how seeing or not seeing ISLES, there
are parts of the lesion that are still not detected.

Unseen ISLES Unseen ISLES Seen ISLES Groundtruth
+ grad. mod. drop.

Figure 1: Lesion segmentation from ISLES dataset using ADC, DWI and missing B0 (black image)
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