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Abstract

Inpainting, which refers to the synthesis of missing regions, can help restore occluded or
degraded areas of an image and also serve as a precursor task for self-supervision of neural
networks for computer vision. The current state-of-the-art models for inpainting are com-
putationally heavy as they are based on transformer or CNN backbones that are trained
in adversarial or diffusion settings. This paper diverges from vision transformers by using
a computationally-efficient WaveMix-based fully convolutional architecture—WavePaint. It
uses a 2D-discrete wavelet transform (DWT) for spatial and multi-resolution token-mixing
along with convolutional layers. The proposed model outperforms the current state-of-
the-art models for image inpainting on reconstruction quality while also using much fewer
parameters and GPU RAM, and considerably lower training and evaluation times. Our
model even outperforms current GAN-based architectures in CelebA-HQ dataset without
using an adversarially trainable discriminator. This work suggests that neural architectures
that are modeled after natural image priors require fewer parameters and computations to
achieve better generalization.

1 Introduction

Image inpainting refers to the process of filling missing parts of an image (blemishes, holes, and other defects)
realistically to match the available context, thereby restoring the degraded image. It requires implicitly
modeling large scale structures in natural images and an ability to perform image synthesis. State-of-the-
art inpainting models are based on deep neural networks (Li et al., 2020; Liu et al., 2018) trained in a
self-supervised and adversarial manner (Pathak et al., 2016; Ma et al., 2019; Yu et al., 2018; 2019) by
automatically generating training samples from large image datasets by randomly masking parts of the
image.

Specifically, we have worked on large mask inpainting, where the mask occludes a substantial and non-
trivial part of the image. Such image reconstruction tasks require networks to have large effective receptive

Ground Truth Masked Image LaMa WavePaint

Figure 1: Qualitative comparison of inpainted images generated by WavePaint and LaMa (Suvorov et al.,
2021a). The green arrows point to improper image completion.
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Figure 2: Masked images from the ImageNet validation set (first and third columns) and their inpainted
versions (second and fourth columns) using WavePaint

fields (Luo et al., 2017). Convolutional neural networks (CNN) can generate visually plausible image struc-
tures and textures, but adds distorted or blurry features inconsistent with surrounding areas due to its
ineffectiveness in explicitly borrowing information from distant spatial locations (Yu et al., 2018). CNNs
also require deep architectures (a large number of layers) with residual connections for increasing their re-
ceptive fields (He et al., 2015). On the other hand, using self-attention to access all the pixels of an image
right from the first layer gives transformers large receptive fields. However, their quadratic complexity with
respect to sequence length (number of patches) introduces an enormous computational burden. Moreover,
transformers require larger training data than CNNs, since they lack the inductive bias of spatial equivari-
ance (Khan et al., 2022).

The search for efficient models that can mix global spatial information while retaining the inductive bias
of CNNs has led to the development of token-mixing models such as PoolFormer (Yu et al., 2022), Con-
vMixer (Trockman & Kolter, 2022) and WaveMix (Jeevan et al., 2023) which use pooling, depth-wise convo-
lutions and 2 dimensional-discrete wavelet transform (2D-DWT), respectively. These alternatives consume
only a fraction of the resources compared to transformers to achieve competitive generalization in tasks such
as classification and segmentation. The performance of these models on image generation or restoration
tasks has not been evaluated.

Our model is a neural architecture that is inspired by WaveMix (Jeevan et al., 2022; 2023) and Con-
vMixer (Trockman & Kolter, 2022). We investigated the application of WaveMix architectural framework
to the task of image inpainting with suitable adaptations. This choice is motivated by the state-of-the-art
performance of WaveMix in multiple datasets on the task of parameter-efficient image classification and
segmentation by modeling additional inductive priors of images, such as scale invariance, and also due to its
exponential receptive field expansion.

We have not worked on blind mask inpainting, where the model does not see the mask. Sending mask to
the model is necessary in the large-mask setting for the model to know where the mask is and where to fill
information. None of models discussed or compared in this paper use blind mask inpainting.

Our contributions are summarized below:

• We present—WavePaint—a token-mixing network modeled after natural image priors that can per-
form image inpainting. The network is based on recently proposed WaveMix architecture which uses
2D-DWT for spatial token-mixing (Jeevan et al., 2022; 2023). We also employ depth-wise convolu-
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tion in our network for additional token-mixing. The presence of wavelet layers enables the model
to have faster receptive field expansion compared to CNNs, which helps in better image reconstruc-
tion through access to global context of the image. Figure 9 shows how certain macro artifacts are
reduced by using WavePaint compared with LaMa (Suvorov et al., 2021a), for instance. Also, see
sample results on ImageNet validation set in Figure 2.

• The use of a paramter-free 2D-DWT and parameter-efficient depth-wise convolution helps WavePaint
reconstruct images without the need for a large number of parameters. WavePaint with just 5M
parameters can outperform much larger models such as LaMa (27 M) (Suvorov et al., 2021a) and
CoModGAN (109 M) (Zhao et al., 2021) on CelebA-HQ dataset for multiple mask sizes. WavePaint
also consumes fewer resources and less time for training and inference.

• WavePaint does not need adversarial or diffusion-based training routines, which are slow. The ability
of wavelet token mixing to generate realistic images from masked ones shows that we can develop
more efficient neural networks for image generation in particular and image processing in general.

• Our model reconstructs the image using a simple single-stage network, as opposed to the complicated
multi-stage models that have been proposed to generate intermediate predictions to restore the
missing parts (Liu et al., 2020; Nazeri et al., 2019b; Song et al., 2018).

• We show that utilizing natural image priors in neural architectural design may be the way forward
to avoid large computational costs and training datasets.

2 Related Works

Early approaches to image inpainting relied on propagating appearance information from neighbouring pixels
to masked area (Ballester et al., 2001; Bertalmío et al., 2000) such as patch-based methods which used
similar patches to complete missing areas. Data driven deep learning methods started exploiting encoder-
decoder architecture (Yeh et al., 2017; Nazeri et al., 2019a; Zhu et al., 2021), assuming that masked image,
once encoded, will have adequate information for reconstruction. Residual connections (He et al., 2015)
and multi-branch convolutions with reduced kernels (Szegedy et al., 2014) enabled the use of deeper CNN
models. Mask-Aware Dynamic Filtering (MADF) (Zhu et al., 2021) uses an encoder-decoder framework to
learn multi-scale features for missing regions in the encoding phase. Such methods could only handle narrow
masks with small color and texture variation.

Adversarial training is the most prevalent approach for inpainiting today (Zhao et al., 2021; Li et al., 2022;
Suvorov et al., 2021a). Co-ModGAN (Zhao et al., 2021) introduces variability into the generated outputs
by integrating input image-conditional and unconditional generators. Image completion with transformer
(ICT) (Wan et al., 2021) is a transformer-CNN hybrid that uses transformers to model the long-range
relationships in images to recover pluralistic coherent structures together with coarse textures, and uses
CNN for texture replenishment. Mask-Aware Transformer (Li et al., 2022) uses a multi-head contextual
attention for long-range dependency modeling by exploiting valid tokens indicated by a dynamic mask for
directly processing high-resolution images. It also proposed a modified transformer block to increase the
stability of large mask training. While attention-based models (Li et al., 2022; Wan et al., 2021) enable
global token-mixing better than CNN based models do, their quadratic complexity of attention requires
large computational resources and data sizes.

Alternatives to pure transformers for inpainting have attempted to use image transforms that mix spatial
tokens. For instance, 2D-DWT was used by WaveFill (Yu et al., 2021) to decompose images into multiple
frequency bands and fill the missing regions in each frequency band separately. LaMa (Suvorov et al., 2021a)
used Fourier convolution blocks having image-wide receptive field and showed that larger receptive fields aid
large mask inpainting. They also used an aggressive large mask generation strategy for better generalization
on different mask sizes. LaMa was shown to be more efficient than other models trained on adversarial
settings. We employ the same large mask generation scheme used by LaMa for our experiments.

Adversarial training is widely used for training inpainting models due to its ability to generate visually
plausible details. It requires the use of separate discriminator model whose parameters are updated during
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training, which requires more memory and time. Generative adversarial networks (GAN) also suffer from
mode collapse, training instabilities, and require extensive hyper-parameter tuning (Zhang et al., 2019; 2018b;
Kodali et al., 2017).

Recently, diffusion models have emerged as an alternative to GANs (Suvorov et al., 2021b; Lugmayr et al.,
2022). Diffusion models uses a T-fold pass through a fixed network to go from completely random noise to
a coherent and contextually consistent image. Latent diffusion model (LDM) (Rombach et al., 2021) works
on a lower-dimensional feature space rather than the image space to address the time-consuming nature
of diffusion training. The model uses an encoder-decoder architecture with the slow diffusion step at the
neck of the chain to speed up the entire network. RePaint (Lugmayr et al., 2022) is a denoising diffusion
probabilistic model (DDPM) based inpainting approach which employs a pretrained unconditional DDPM
as the generative prior. It only alters the reverse diffusion iterations by sampling the unmasked area to
condition the generation process.

Even though diffusion models can generate realistic images, the training and inference processes require
large computational resources. It also requires careful tuning of hyper-parameters which can also be time-
consuming. Additionally, generating images with diffusion models requires multiple iterations, resulting in
much longer inference times compared to other methods.

In this work, we develop a novel framework that simultaneously achieves high quality image generation
and large mask inpainting, without using adversarial or diffusion training, thereby reducing the demand for
compute and memory. To achieve our goals, we developed a novel neural network architecture that is based
on natural image priors of translational equivariance, scale invariance, and feature locality, inspired from
WaveMix (Jeevan et al., 2023).

3 WavePaint Architectural Framework

Inspired by the success of WaveMix (Jeevan et al., 2023) and ConvMixer (Trockman & Kolter, 2022), which
use 2D-DWT and depthwise-convolutions, respectively, for parameter efficient token-mixing, we propose a
neural architecture that can inpaint masked images using these token-mixing operations. The ability of
these token-mixers to impart rapid receptive field expansion from initial layers itself helps the model grasp
the global context faster than conventional CNN-based networks. Unlike other popular models for image
inpainting that uses diffusion or adversarial training, our model has simple single network architecture and
can perform well without the need for a discriminator network.

3.1 Overall architecture

The input image x ∈ RH×W ×3 is masked by a binary mask m ∈ {0, 1}H×W ×1 that is generated from a mask
generator. The masked image is denoted as x ⊕ m. The mask m is concatenated with the masked image
x ⊕ m, resulting in a 4-channel input x̂ ∈ RH×W ×4 that is passed to the model as shown in Figure 3.

The network consists of a series of M Wave modules which processes the input x̂ and gives the output
ŷ ∈ RH×W ×3, which is multiplied by the inverted binary mask 1 − m to hide the unmasked areas of the
output and retains the inpainted parts by the model. This is added back to the masked image x̂ which fills
the unmasked areas and creates the final inpainted image y ∈ RH×W ×3. This ensures that the model only
fills the masks areas and not change pixel information of unmasked parts.

3.2 Wave Modules

Proper inpainting requires global context information of the image. WaveMix has shown rapid expansion of
receptive fields from very early layers (Jeevan et al., 2023). So we use 4 WaveMix blocks in series in each
of the Wave modules to process the image and get global context. This is further aided by the depth-wise
convolution layer which further helps with spatial token-mixing with high parameter-efficiency (Trockman
& Kolter, 2022).
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Figure 3: Architecture of WavePaint along with details of Wave module, WaveMix block (Jeevan et al.,
2023), Decoder, DepthConv and MLP along with the resolutions of feature maps shown after each operation

Denoting input and output tensors of the Wave module by x̂in and x̂out, respectively; convolution operations
by c1 and c2 and its respective trainable parameter sets by θ1 and θ2 respectively; the series of WaveMix
blocks by WB; DepthConv by DC; Decoder by D; concatenation along the channel dimension by ⊕, and
point-wise addition by +, the operations inside a Wave module can be expressed using the following equations:

x̂0 = x̂in ⊕ m; x̂in ∈ RH×W ×4 (1)

x̂1 = c1(x̂0, θ1); x̂1 ∈ RH/2×W/2×C (2)

x̂2 = WB(x̂1); x̂2 ∈ RH/2×W/2×C (3)

x̂3 = DC(x̂2); x̂3 ∈ RH/2×W/2×C (4)

x̂4 = x̂3 ⊕ x̂1; x̂4 ∈ RH/2×W/2×2C (5)
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x̂5 = D(x̂4); x̂5 ∈ RH×W ×C/2 (6)

x̂6 = x̂5 ⊕ x̂in; x̂6 ∈ RH×W ×(C/2+3) (7)

x̂7 = c2(x̂6, θ2); x̂7 ∈ RH×W ×3 (8)

x̂out = x̂7 + x̂in; x̂out ∈ RH×W ×3 (9)

Each Wave module receives the input x̂in ∈ RH×W ×3 and the mask m which are concatenated to create x̂0
(Eq. 11). x̂0 is send to a convolution layer c1 that reduces its feature resolution by half and increases the
channel dimension to C (Eq. 12). This feature map x̂1 is sent to a series of four WaveMix blocks for token-
mixing (Eq. 13). The output from the WaveMix block x̂2 is further passed through a DepthConv module
where the feature maps undergo further spatial token-mixing from the depth-wise convolution (Eq. 14). A
skip connection from c1 is concatenated with the output from DepthConv module x̂3 which increases the
channel dimension of the output x̂4 to 2C (Eq. 15). This output is further passed through a Decoder network
which increases the resolution of feature maps to original resolution (Eq. 6). The Decoder layer also reduces
the number of channels to C/2 and the feature maps x̂5 are again concatenated with the input x̂in (Eq. 7).
The output after concatenation x̂6 is then passed to a final convolution layer c2 to generate the output x̂7
(Eq. 8). A residual connection (He et al., 2015) is also provided from the input for ease of gradient flow
(Eq. 9) and resultant feature maps are the final output of the Wave module x̂out.

3.3 WaveMix Blocks

The WaveMix block (Jeevan et al., 2023) is the fundamental building block of WaveMix architecture which
allows multi-resolution token-mixing of information using 2D-DWT. This helps in a rapid expansion of the
receptive field with depth. It also reduces the computational burden because 2D-DWT decreases the input
resolution by half and further processing by multi-layer perceptron (MLP) is faster and cheaper. DWT
helps in lowering the number of model parameters significantly, as it lacks any parameters, while promoting
global context understanding even in a shallow network. We have used the WaveMix block with one level of
2D-DWT using Haar wavelet due to its simplicity, speed and higher performance (when used in WaveMix
compared to other wavelets (Jeevan et al., 2023)). Details of the operations inside WaveMix block are
provided in Appendix.

3.4 DepthConv

DepthConv employs a depth-wise convolution operation followed by a GELU non-linearity and batch-
normalization as shown in Figure 3. We use a depth-convolution with kernel size of 5, which is smaller than
the one used in Convmixer models. This was done to further decrease the parameter count while ensuring
further spatial token-mixing.

3.5 Decoder

Decoder module is used to up-sample the resolution of feature maps back to original input resolution to the
Wave module. It comprises of a transposed convolution layer followed by batch-normalization as shown in
Figure 3. The transposed convolution layer is also used to reduce the number of channels by 4, from 2C to
C/2.

4 Experiments and Results

In this section, we report the datasets and metrics used for extensive comparison with the state-of-the-
art, the loss functions and other implementation details, and quantitative image reconstruction accuracy

6



Under review as submission to TMLR

Figure 4: Masked images from the ImageNet validation set (top row) and their inpainted versions generated
by WavePaint (bottom row).

comparison, along with compute time, and memory requirements comparison. We also show a sample of
qualitative results. Additionally, we report ablation studies for various architectural choices.

4.1 Datasets and Metrics

We use CelebA-HQ (Karras et al., 2018), Places-365 standard (Zhou et al., 2017) and ImageNet (Deng
et al., 2009) datasets for our experiments. We use images of size 256 × 256 and 512 × 512 for CelebA-HQ,
256 × 256 for Places-365 and 224 × 224 for ImageNet experiments. We followed the same mask generation
policy employed in LaMa (Suvorov et al., 2021a) and used their settings to generate narrow, medium and
wide masks. We only used the wide mask for training and evaluated the models on narrow, medium and wide
masks. We took 26,000 images for training and 2,000 for testing from 256 × 256 CelebA-HQ dataset similar
to the procedure followed by (Suvorov et al., 2021a) and 24,182 images for training and 2993 for testing from
512 × 512 CelebA-HQ dataset as used by (Li et al., 2022). For ImageNet and Places-365 dataset, we used
the training set for training and validation set for inference.

Learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018a) and Fréchet inception distance
(FID) (Heusel et al., 2018) are reported as metrics since L1 and L2 distances are not enough to compare
inpainted images with large masks where multiple natural completions are possible. Inference and training
throughput on a single GPU was reported in frames/sec (FPS), i.e., images per second.

4.2 Loss function and implementation details

We used a hybrid loss Lhybrid to optimize the model parameters. Since we did not employ a discriminator
for adversarial training, no adversarial loss was used. We used a weighted sum of L1 (mean absolute error),
L2 (mean square error) and LLP IP S as shown below:

Lhybrid = (1 − α)L1 + αL2 + LLP IP S (10)

Due to limited computational resources, the maximum number of training epochs was set to 300 for CelebA-
HQ and 50 for ImageNet experiments. All experiments were run on a single 80 GB Nvidia A100 GPU. We
used AdamW optimizer (α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8) with a weight decay of 0.01 during initial
epochs and then used stochastic gradient descent (SGD) with a learning rate of 0.001 and momentum = 0.9
during the final epochs (Keskar & Socher, 2017; Jeevan & sethi, 2022). We used the maximum batch-size
that could be accommodated in a single GPU for our experiments. We used an embedding dimension (C)
of 128 in all the Wave modules. Each Wave module has 4 WaveMix blocks unless otherwise specified.

4.3 Quantitative results

We compared our models with the other state-of-the-art baselines on the 256 × 256 CelebA-HQ dataset
for narrow, medium, and wide masks, as shown in Table 1. WavePaint consistently outperforms all other
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Table 1: Quantitative comparison of reconstruction quality of WavePaint (which is parameter-efficient and
does not require adversarial training) with other methods (which use adversarial training to improve results)
on CelebA-HQ dataset masked with narrow, medium, and wide masks (as done in LaMa (Suvorov et al.,
2021a)) using two metrics – Learned perceptual image patch similarity (LPIPS) and Fréchet inception
distance (FID) – with the best WavePaint results highlighted in bold and the results of other models which
performed better than WavePaint in red.

CELEBA-HQ (256 × 256)
MODEL #PARAM.↓ NARROW MASKS MEDIUM MASKS WIDE MASKS

FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓

CoModGAN (Zhao et al., 2021) 109 M 16.8 0.079 19.4 0.092 24.4 0.102
AOT GAN (Zeng et al., 2021) 15 M 6.67 0.081 7.28 0.089 10.3 0.118
RegionWise (Ma et al., 2019) 47 M 11.1 0.124 7.52 0.101 8.54 0.121
DeepFill v2 (Yu et al., 2019) 4 M 12.5 0.130 9.05 0.105 11.2 0.126
EdgeConnect (Nazeri et al., 2019b) 22 M 9.61 0.099 7.56 0.095 9.02 0.120
LaMa-Fourier (Suvorov et al., 2021a) 27 M 7.26 0.085 6.13 0.080 6.96 0.098
WavePaint 3 M 8.03 0.115 8.87 0.123 21.3 0.155
WavePaint 12 M 5.34 0.082 5.63 0.088 7.27 0.111
WavePaint 13 M 5.43 0.081 5.47 0.086 6.84 0.107

Table 2: Quantitative comparison of reconstruction quality of WavePaint with other models for inpainting
narrow masks in CelebA-HQ dataset for image resolution of 512 × 512 (better results in bold).

CELEBA-HQ (512 × 512)
MODELS #PARAM. NARROW MASK FID ↓

LaMa (Suvorov et al., 2021a) 27 M 4.05
ICT (Wan et al., 2021) 150 M 6.28
MADF (Zhu et al., 2021) 85 M 3.39
AOT GAN (Zeng et al., 2021) 15 M 4.65
EdgeConnect (Nazeri et al., 2019b) 22 M 10.58
WavePaint 10 M 3.36

models on different mask configurations in FID. Even though we have reported LPIPS in the table, FID
a better metric because the pixel-wise evaluation of LPIPS punishes diverse inpainting systems for large
holes (Li et al., 2022). It also has to be noted all other models have much larger parameter count and
employ adversarial training using a discriminator. Since WavePaint does not employ a discriminator ,it is
light-wight, and it can be trained faster than GANs and diffusion models. Similarly, we see from Table 2 that
WavePaint can outperform all other models on narrow mask inpainting of 512 × 512 CelebA-HQ dataset.

Table 3: Multi-aspect comparison of WavePaint with LaMa (Suvorov et al., 2021a) on parameters, resource-
consumption and speed for CelebA-HQ dataset with narrow masks on a single 24 GB RTX 3090 GPU with
a batch size of 10 (better results in bold).

MODEL #PARAM FID↓ GPU THROUGHPUT
(FPS)

INFERENCE TRAIN

LaMa (Suvorov et al., 2021a) 27 M 7.26 23 GB 32 11
WavePaint 5 M 7.09 11 GB 105 32

8



Under review as submission to TMLR

Figure 5: Wide-masked images from the CelebA-HQ dataset (top row) and their inpainted versions generated
by WavePaint (bottom row). More qualitative results are provided in Appendix.

We could not compare WavePaint with latest diffusion models such as RePaint (Lugmayr et al., 2022) because
diffusion is a much slower process of image generation and we were constrained by the available computational
resources. We tried RePaint with 1000 diffusion steps and 10 times resampling, but the model had over 500
M parameters and inference on each image took around 100s. RePaint (Lugmayr et al., 2022) had reported
that quantitative results of LaMa (Suvorov et al., 2021a) are better than that of RePaint in wide and narrow
mask inpainting on ImageNet and CelebA-HQ datasets. Since, the quantitave performance of WavePaint is
better than LaMa, we can claim that it is also better than RePaint. Among models that use 2D-DWT for
inpainting, WaveFill (Yu et al., 2021) uses self-attention with adversarial training and performs better than
others. When compared to WaveFill (about 50 M parameters), WavePaint is lighter (less than one-third
parameters) and outperforms WaveFill in terms of FID in 256×256 CelebA-HQ dataset with higher inference
speed (3× faster).

Since LaMa (Suvorov et al., 2021a) was the most resource-efficient model for inpainting which was also
outperforming the other models, we only compared WavePaint with LaMa in Table 3 to analyse its resource-
efficiency. We see that WavePaint requires less than one-fifth of the parameters of LaMa to outperform it
in FID metric. WavaPaint is also ∼ 3× faster than LaMa in both inference and training speeds and utilizes
less than half the GPU RAM required by LaMa. The actual speed of WavePaint will be even higher (almost
twice) as we used same batch size of 10 for both LaMa and WavePaint in out experiments. Our results clearly
shows that WavePaint is more resource and parameter-efficient than LaMa. The high resource-efficiency of
WavePaint can be attributed to the resource-efficient token-mixing using WaveMix blocks which processes
the image at a lower resolution due to lossless downsampling property of 2D-DWT.

4.4 Qualitative Results

The images generated by WavePaint on ImageNet dataset are shown in Figure 4. We can see that WavePaint
completes textures and missing details by completing the lines and filling in details. The images generated
by WavePaint on CelebA-HQ dataset are shown in Figure 6. WavePaint can fill in missing details of facial
features, color, texture, eyes and eyebrows even if major parts of the image are masked. We show qualitative
comparisons with LaMa in Figure 9. We observe that WavePaint can fill in details like eyes and eyebrows
better than LaMa. Analysing the images inpainted by WavePaint, we observed presence of fine-texture
artifacts in inpainted portions in some of the images when zoomed in. These artifacts were of similar color
and texture of the background, hence almost invisible in most cases. More examples of qualitative results
with different mask categories are provided in the Appendix.

5 Ablation Studies

Multiple ablation experiments were conducted to optimize the network hyper-parameters and understand
the utility of the network components. The quantitative performance of WavePaint using different hyper-
parameters on CelebA-HQ and ImageNet datasets are shown in Table 4. Table 5 shows the performance of
WavePaint which uses WaveMix blocks with multi-level 2D-DWT. Using higher levels of DWT can improve
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Table 4: Comparison of image reconstruction and throughput metrics for WavePaint architectures of different
sizes that use level-1 2D-DWT and 4 WaveMix blocks per modules by varying the number of modules on
2,000 images of CelebA-HQ (as used by LaMa (Suvorov et al., 2021a), 36,500 images of Places-365 standard
validation set and 50,000 images of ImageNet validation set on a single 80 GB A100 GPU.

MODEL

#
M

O
D

U
LE

S

D
E

P
T

H
C

O
N

V

PARAMS NARROW MASKS MEDIUM MASKS WIDE MASKS THROUGHPUT (FPS)

FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ INFERENCE TRAIN
CelebA-HQ (256 × 256)

WavePaint 2 No 3.3 M 11.1 0.148 13.9 0.148 33.7 0.176 356 165
WavePaint 2 Yes 3.3 M 8.03 0.115 8.87 0.123 21.3 0.155 322 145
WavePaint 3 Yes 5.0 M 7.09 0.103 6.96 0.104 10.2 0.131 275 99
WavePaint 5 Yes 8.4 M 6.56 0.096 6.62 0.098 8.83 0.122 167 60
WavePaint 6 Yes 10 M 5.53 0.085 5.59 0.090 7.22 0.112 133 50
WavePaint 7 Yes 12 M 5.34 0.082 5.63 0.088 7.27 0.111 117 42
WavePaint 8 Yes 13 M 5.43 0.081 5.47 0.086 6.84 0.107 105 37

Places-365 (256 × 256)

WavePaint 8 Yes 13 M 4.63 0.152 4.82 0.127 9.74 0.157 97 35
ImageNet (224 × 224)

WavePaint 2 Yes 3.3 M 3.26 0.134 3.72 0.108 - - 333 213
WavePaint 3 Yes 5.0 M 3.21 0.138 3.47 0.106 - - 305 126

Table 5: Comparison of performance of WavePaint architecutres with different levels of 2D-DWT using three
modules and four WaveMix blocks per module on CelebA-HQ dataset show improved performance due to
the rapid expansion of receptive fields while using multi-level 2D-DWT token-mixing
MODEL PARAM NARROW MASKS MEDIUM MASKS WIDE MASKS THROUGHPUT (FPS)

FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ INFERENCE TRAIN

Level 1 5.0 M 7.09 0.103 6.96 0.104 10.2 0.131 275 99
Level 2 7.6 M 7.12 0.095 7.16 0.096 9.16 0.119 222 78
Level 3 10 M 7.74 0.094 7.62 0.092 9.26 0.112 200 67
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Table 6: Performance of WavePaint with 8 WaveMix blocks by varying the number of modules on a subset
of ImageNet dataset

#MODULES #WAVEMIX BLOCKS #PARAM LPIPS

1 8 3.0 M 0.085
2 4 3.3 M 0.079
4 2 4.0 M 0.079

the performance of the model due to the exponential increase in receptive field. WavePaint can also gener-
alise to larger mask sizes even from training on smaller masks. The generalization results by training using
medium mask and infering on wide masks are provided in Appendix.

Table 6 shows the performance of WavePaint with 8 WaveMix blocks arranged in different number of modules.
Results shows that having less number of modules with large number of WaveMix blocks is more parameter-
efficient but results in poor performance. When we decrease the number of WaveMix blocks in each module
and increase the number of modules, the model become larger with higher parameter count. Modules with
four Waveblocks each retain parameter-efficiency without degrading performance.

Removing DepthConv block from WavePaint reduces the FID score by 38% and increases the training and
inference throughput by 14%. Since, depth-wise convolution is a highly parameter efficient operation, its
removal only reduces the number of parameters by less than 1%. Therefore, adding DepthConv block in
each module is beneficial for the network as it aids the WaveMix block with further spatial token-mixing.

6 Conclusion and Future Work

This paper proposes using multi-level 2D-DWT token-mixing for the less-explored task of image inpainting.
The performance of the proposed model is comparable to much larger models and those that use adversarial
training on CelebA-HQ dataset. Moreover, our model uses only a fraction of the parameters, consumes
less GPU RAM and is multiple times faster in training and inference compared to other models such as
LaMa (Suvorov et al., 2021a). The faster receptive field expansion leading to availability of global context
information can help these models do image reconstruction.

A possible direction of future work is to develop resource-efficient image generation models using WavePaint
trained in an adversarial or diffusion setting. This is likely to further suppress the fine-texture artifacts that
are barely visible in some of the image regions generated by WavePaint. Overall, this paper highlights the
potential of using token-mixing that exploit natural image priors as an alternative to vision transformers
and CNNs for resource-efficient image inpainting.
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Figure 6: Wide-masked images from the CelebA-HQ dataset (top row) and their inpainted versions generated
by WavePaint (bottom row) Inpainted images (bottom row)

Figure 7: Medium-masked images from the CelebA-HQ dataset (top row) and their inpainted versions
generated by WavePaint (bottom row) Inpainted images (bottom row)

A Appendix

A.1 Qualitative Results

The qualitative results of inpainting by WavePaint for wide, medium, and narrow masks are shown in
Figure 6, 7, and 8, respectively. All the images were generated by WavePaint (12M parameters) trained only
on wide masks. We see that WavePaint is able to fill in missing region with facial features. It is able to
match the eye colours, eyebrows etc from the visible region to the generated parts.

In some images we observe the presence of fine-texture artifacts near the masked portions. We ran some
experiments by training WavePaint in adversarial settings using a discriminator and observed that these
artifacts disappear. For future work, we will create an adversarially trained WavaPaint model which would
produce more realistic images and will be resource-efficient.

Additional qualitative comparison of images inpainted using WavePaint with those inpainted using LaMa (Su-
vorov et al., 2021a) are shown in Figure 9.

A.2 WaveMix Block (Jeevan et al., 2023)

WaveMix blocks with one and three levels of 2D-discrete wavelet transform (2D-DWT) are shown in Fig-
ure 10 and 11 respectively. WaveMix block having a single level of 2D-DWT is called WaveMix-Lite. De-
noting input and output tensors of the WaveMix block by xin and xout, respectively; level of the wavelet
transform by l ∈ {1...L}, the four wavelet filters along with their downsampling operations at each level
by wl

aa, wl
ad, wl

da, wl
dd (a for approximation, d for detail); convolution, multi-layer perceptron (MLP), trans-

posed convolution (upconvolution), and batch normalization operations by c, m, t, and b, respectively; and
their respective trainable parameter sets by ξ, θl, ϕl, and γl, respectively; concatenation along the channel
dimension by ⊕, and point-wise addition by +, the operations inside a WaveMix block can be expressed
using the following equations:
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Figure 8: Narrow-masked images from the CelebA-HQ dataset (top row) and their inpainted versions gen-
erated by WavePaint (bottom row) Inpainted images (bottom row)

Ground Truth Masked Image LaMa WavePaint

Figure 9: Qualitative comparison of inpainted images generated by WavePaint and LaMa (Suvorov et al.,
2021a). The green arrows point to improper image completion.

x0 = c(xin, ξ); xin ∈ RH×W ×C , x0 ∈ RH×W ×C/4 (11)

xl = [wl
aa(x0) ⊕ wl

ad(x0) ⊕ wl
da(x0) ⊕ wl

dd(x0)]; xl ∈ RH/2l×W/2l×4C/4, l ∈ {1...L} (12)

x̂l = [xl ⊕ x̃l+1], x̂L = xL; l ∈ {1...L − 1} (13)

x̃l = b(t(m(x̂l, θl), ϕl), γl); x̃l ∈ RH/2l−1×W/2l−1×Cl∀l > 1 Cl = C/2, C1 = C, l ∈ {1...L} (14)
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Conv 

Level 1
2D-DWT

Concatenate

MLP

Transposed 
Conv

BatchNorm

Output

WaveMix-Lite Block (1-level 2D-DWT)

H x W x C

InputH x W x C

H x W x C/4

H x W x C

H/2 x W/2 x C

aa ad da dd

Figure 10: WaveMix block architecture using level-1 2D-discrete wavelet transform. The image is take from
(Jeevan et al., 2023)

Table 7: Mask generalization performance of WavePaint when using medium masks for training.
CELEBA-HQ (256 × 256)

MODEL #PARAM↓ NARROW MASKS MEDIUM MASKS WIDE MASKS
FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓

WavePaint 12 M 4.68 0.073 4.98 0.082 6.69 0.108
WavePaint 13 M 4.44 0.070 4.79 0.080 6.27 0.104

xout = x̃1 + xin; xout ∈ RH×W ×C (15)

B Mask Generalization

In all the reported results, WavePaint was trained only on wide masks and tested on narrrow, medium and
wide masks. For checking the generalisation ability of WavePaint to larger mask sizes, we trained WavePaint
on medium masks and tested its performance on wide masks. The results are shown in Table 7. We see that
WavePaint is providing good performance in wide masks even when trained of medium masks. This shows
that WavePaint is able to generalize well on larger unseen masks during inference.
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Figure 11: Details of the WaveMix block with 3 levels of 2D-DWT. The image is take from (Jeevan et al.,
2023)
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