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ABSTRACT

Micro-AUC is averaging AUC on the prediction matrix in multi-label learning.
While it is a commonly-used evaluation measure in practice, the theoretical under-
standing is far behind. To fill up this gap, this paper takes an initial step to charac-
terize the generalization guarantees of algorithms based on three surrogate losses
w.r.t. Micro-AUC. Theoretically, we identify a critical data-dependent quantity af-
fecting the generalization bounds: the matrix-wise class imbalance. Our results of
the imbalance-aware error bounds show that the commonly-used univariate loss-
based algorithm has a worse learning guarantee than the ones with the proposed
pairwise and reweighting univariate loss, which probably implies its worse per-
formance. Finally, empirical results of the linear and deep neural network-based
models on various benchmarks corroborate our theory findings.

1 INTRODUCTION

As a typical learning task in machine learning, Multi-Label Learning (MLL) (McCallum, 1999)
deals with settings where each instance can be associated with multiple labels. It has wide appli-
cations in various areas, e.g., computer vision (Carneiro et al., 2007), natural language process-
ing (Schapire & Singer, 2000), and bioinformatics (Elisseeff & Weston, 2001). To comprehensively
evaluate learning algorithms for MLL, various evaluation measures (Zhang & Zhou, 2014; Wu &
Zhou, 2017) have been proposed from diverse perspectives, e.g., subset accuracy, Hamming loss,
and ranking loss. Among them, Micro-AUC is a commonly-used measure in practice. Intuitively,
Micro-AUC is averaging AUC on the prediction matrix, which is our focus in this paper.

Micro-AUC (and other measures) in MLL are discontinuous, non-differentiable, and non-convex,
where optimizing them directly results in the NP-hard problem (Arora & Barak, 2009). Thus, one
often seeks surrogate losses to construct learning algorithms for computational efficiency. Among
them, perhaps the univariate surrogate loss (Boutell et al., 2004; Wu & Zhu, 2020) is the most
commonly-used in practice, which originally aims to optimize Hamming loss. Empirically, many
algorithms (including the commonly-used surrogate-based one) are often evaluated w.r.t. the Micro-
AUC. Theoretically, however, the understanding is far behind. To fill up this gap, this paper attempts
to answer the following questions formally:
(a) What is the learning guarantee of the commonly-used surrogate univariate loss-based algo-

rithms w.r.t. Micro-AUC?
(b) Can we design new surrogate losses to construct efficient and effective algorithms with better

learning guarantees w.r.t. Micro-AUC?
To answer the above questions, we propose an analytical framework to characterize the general-
ization guarantees of learning algorithms w.r.t. Micro-AUC. Inspired by the theory analyses, we
propose one surrogate pairwise loss and another reweighted univariate loss. Formally, we analyze
the learning guarantees of algorithms based on these three surrogates. Theoretically, we first iden-
tify a data-dependent quantity, i.e., the matrix-wise class imbalance, playing a critical role in these
generalization bounds of algorithms.

Our results on the imbalance-aware bounds of these learning algorithms show that algorithms based
on the proposed surrogate pairwise loss (i.e., Lpa) and reweighted univariate loss (i.e., Lu2

) can have
better learning guarantees w.r.t. Micro-AUC than the one with the widely-used univariate loss (i.e.,
Lu1 ) (see Table 1). Specifically, the pairwise loss-based algorithm Apa has a learning guarantee of
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Table 1: Summary of main theoretical results. The contributions of this paper are highlighted in red.

Algorithm Surrogate loss Generalization bound Computation

Apa pairwise (Lpa) R̂pa
S (f) +O

(√
1

nKτS

)
O(n2K2)

Au1 (Boutell et al., 2004) univariate (Lu1 ) 1
τS

R̂u1
S (f) +O

(
1
τS

√
1

nKτS

)
O(nK)

Au2 reweighted univariate (Lu2 ) R̂u2
S (f) +O

(√
1

nKτS

)
O(nK)

O
(√

1
nKτS

)
w.r.t. Micro-AUC, where n and K are the numbers of instances and labels, respec-

tively, and τS ∈
[
1
K , 1

2

]
denotes the matrix-wise class imbalance level of the training dataset S,

where the smaller of τS , the higher of the imbalance level. However, Apa has a computational com-
plexity of O(n2K2), which is prohibitively expensive in large-scale problems. In comparison, the

commonly-used univariate loss-based algorithm Au1 has a learning guarantee of O
(

1
τS

√
1

nKτS

)
,

which is worse than that of Apa. This implies that when the imbalance level of datasets is high (i.e.,
τS is small), Apa would probably perform better than Au2 . Interestingly, the proposed reweighting
univariate loss-based algorithm Au2 has an error bound of O

(√
1

nKτS

)
, which is the same as Apa.

This also suggests that Au2 probably has superior performance than Au1 . Computationally, Au2

depends on O(nK), which is the same as Au1 and more efficient than Apa. Finally, our theory
findings are corroborated by extensive experimental results of the linear and neural network-based
models on various benchmark datasets.

Here we want to highlight the technical challenges for the generalization analysis of the Micro-AUC
Maximization (MiAUCM) problem. Firstly, the formal definition of the true (0/1) expected risk of
Micro-AUC is more complex than the usual form in MLL, which we define for the first time to our
knowledge. Secondly, the MiAUCM problem potentially involves learning with graph-dependent
examples, which the existing techniques for the analysis of instance-based measures (Wu & Zhu,
2020; Wu et al., 2021) in MLL cannot handle, making it more challenging. Here we mainly follow
the techniques in Bipartite Ranking (BR) (Usunier et al., 2005; Amini & Usunier, 2015).

Note that our theory is general for hypothesis space, where they can be various forms, e.g., linear,
kernel, and deep neural network-based ones, which can be viewed to be orthogonal to the research
of the complexity of hypothesis space (Bartlett et al., 2017; Long & Sedghi, 2019; Ma et al., 2020).

2 PRELIMINARIES

Notations. Let a and A denote a vector and matrix, respectively. Let A denote a set and |A| denote
its cardinal number. [n] denotes the set {1, 2, . . . , n}. The indicator function 1condition returns 1 if
the condition is true, 0 otherwise.

2.1 PROBLEM SETTING

Given a training sample S = ((x1,y1), . . . , (xn,yn)) which is i.i.d. drawn from a distribution P ,
where xi ∈ X , and yi ∈ {−1,+1}K for each i ∈ [n]. Besides, yij = 1 (or yij = −1) denotes that
the instance xi is relevant (or irrelevant) to the label j. The aim of MLL is to learn a good mapping
function h : X → {−1,+1}K .

A typical approach for MLL is to first learn a score function (or predictor) f = (f1, . . . , fK) : X →
RK from some hypothesis space F = {f}, and then get the final classifier through a thresholding
function. Multi-Label Ranking (MLR) (Dembczynski et al., 2012) aims to learn a good predictor
w.r.t. some ranking-based measure (e.g., Micro-AUC), which is our focus in this paper.

2.2 EVALUATION MEASURE

There are many evaluation measures for multi-label learning. Here we focus on one typical ranking-
based measure, i.e., Micro-AUC, which is a micro-average of AUC on the prediction matrix. Given
a training sample S and a predictor f , the (empirical) Micro-AUC can be formally defined as

Micro-AUCS(f) =
1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

1fi(xp)>fj(xq),
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where S+ (or S−) denotes the relevant (or irrelevant) index pair set of (instance, label), and S+i (or
S−j ) denotes the relevant (or irrelevant) instance index set, i.e.,

S+ def
= {(p, i) | ∀(xp,yp) ∈ S, i ∈ [K], ypi = +1} , S+i

def
= {p | ∀(xp,yp) ∈ S, ypi = +1} ,

S− def
= {(q, j) | ∀(xq,yq) ∈ S, j ∈ [K], yqj = −1} , S−j

def
= {q | ∀(xq,yq) ∈ S, yqj = −1} .

Equivalently, maximizing the Micro-AUC is to minimize the following (empirical) risk (i.e., 1 −
Micro-AUCS(f)):

R̂
0/1
S (f) =

1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

L0/1(xp,xq, fi, fj), (1)

where the 0/1 loss function L0/1(xp,xq, fi, fj) = 1fi(xp)≤fj(xq).

2.3 RISK

The true (0/1) expected (or generalization) risk w.r.t. Micro-AUC can be defined as

R0/1(f) = E
i∼P+,j∼P−

E
xp∼P+

i ,xq∼P−
j

[
L0/1(xp,xq, fi, fj)

]
, (2)

where ∀k ∈ [K], the (adjusted) distribution P+ def
= P+(k) = P (yk=1)∑

k∈[K] P (yk=1) , P
− def

= P−(k) =

P (yk=−1)∑
k∈[K] P (yk=−1) for the label sampling, and the conditional distribution P+

k
def
= P (x|yk =

1), P−
k

def
= P (x|yk = −1) for the instance sampling. It can be verified that the empirical risk

R̂
0/1
S (f) in Eq.(1) is an unbiased estimator of the true expected risk, i.e., E

S

[
R̂

0/1
S (f)

]
= R0/1(f).

The Micro-AUC (or 0/1 loss) is discontinuous, non-differentiable, and non-convex, which results in
the NP-hard problem (Arora & Barak, 2009). Thus, practically one often seeks (convex) surrogate
losses to optimize it for computational efficiency. Given a surrogate loss function Lϕ : X × X ×
Fi × Fj → R+, where i, j ∈ [K], Fk = {fk | f = (f1, . . . , fK) ∈ F} for each k ∈ [K] and we
will discuss in detail in the next subsection, its empirical and expected risk can be defined as:

R̂ϕ
S(f) =

1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lϕ(xp,xq, fi, fj), Rϕ(f) = E
S

[
R̂ϕ

S(f)
]
. (3)

Notably, we do not define the surrogate expected risk Rϕ(f) as the following common form:

E
i∼P+,j∼P−

E
xp∼P+

i ,xq∼P−
j

[Lϕ(xp,xq, fi, fj)] .

This is due to that the above form cannot cover the case of surrogate losses depending on the dataset
S while Eq.(3) can. Additionally, they are equal for certain losses that are independent of S.

3 LEARNING ALGORITHM

3.1 SURROGATE LOSS

Naturally, we propose the following surrogate pairwise loss to optimize Micro-AUC:

Lpa(xp,xq, fi, fj) = ℓ(fi(xp)− fj(xq)), (4)

where the base loss function ℓ(t) can be many commonly-used margin-based losses, e.g., the hinge
loss ℓ(t) = max(0, 1− t) and logistic loss ℓ(t) = log2(1 + exp(−t)). As a natural property, ℓ(t) is
an upper bound of the 0/1 loss, i.e., 1t≤0 ≤ ℓ(t). The empirical risk w.r.t. Lpa is as follows:

R̂pa
S (f) =

1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lpa(xp,xq, fi, fj). (5)
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Perhaps, the most widely-used surrogate loss in MLL is the ordinary univariate loss Lu1
, which

originally aims to optimize the Hamming loss measure. Its empirical risk can be written as

R̂u1

S (f) =
1

nK

K∑
i=1

n∑
a=1

ℓ(yaifi(xa)) (6)

=
1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

[
|S+|
nK

ℓ(fi(xp)) +
|S−|
nK

ℓ(−fj(xq))

]
. (7)

Thus, we can define Lu1 as the following form to optimize Micro-AUC:

Lu1
(xp,xq, fi, fj) =

|S+|
nK

ℓ(fi(xp)) +
|S−|
nK

ℓ(−fj(xq)). (8)

Notably, Lu1
cannot strictly upper bound the 0/1 loss L0/1, which is vital for its generalization

guarantee w.r.t. the true (0/1) risk.

To upper bound 0/1 loss L0/1, we propose another (reweighted) univariate loss as follows:

Lu2(xp,xq, fi, fj) = ℓ(fi(xp)) + ℓ(−fj(xq)). (9)

Its empirical risk can be written as

R̂u2

S (f) =
1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lu2
(xp,xq, fi, fj). (10)

Through a simple deduction, we can get

R̂u2

S (f) =

K∑
i=1

n∑
a=1

[
1a∈S+i

1

|S+|
ℓ(fi(xa)) + 1a∈S−i

1

|S−|
ℓ(−fi(xa))

]
. (11)

Interestingly, we can observe that, minimizing R̂u2

S (f) has a computational efficiency over R̂pa
S (f).

Computationally, Lu2
can lead to a complexity of O(nK) while Lpa depends on O(n2K2). Intu-

itively, compared with Lu1
, Lu2

can be viewed as a reweighting strategy of losses to the relevant or
irrelevant elements based on the label matrix, which could give more weight to the scarce ones.
3.2 LEARNING ALGORITHM

Here we consider learning algorithms using the Empirical Risk Minimization (ERM) rule (Shalev-
Shwartz & Ben-David, 2014), where the constrained hypothesis space F = {f = (f1, . . . , fK)} is
the same. For these surrogate losses, their associated learning algorithms are as follows:

Apa : min
f∈F

R̂pa
S (f), Auj : min

f∈F
R̂

uj

S (f), j = 1, 2. (12)

Notably, our subsequent analyses are general, where F can be many common forms of hypothesis
space, e.g., the linear, kernel, and neural network-based ones. Besides, these learning algorithms
can often be equivalently transformed into the regularized ERM ones in practice.

4 MAIN RESULTS

In this section, we mainly give generalization analyses for the aforementioned learning algorithms,
where we identify a data-dependent quantity of the matrix-wise class imbalance playing a vital role
in these generalization error bounds. Besides, the detailed proof of the related lemmas, theorems,
and corollaries are in Appendix B.

Firstly, we give the definition of the matrix-wise class imbalance w.r.t. a dataset.

Definition 1 (Matrix-wise class imbalance). For a dataset S = ((x1,y1), . . . , (xn,yn)), define
the following quantity to characterize its matrix-wise class imbalance level:

τS
def
=

min {|S+|, |S−|}
nK

, where τS ∈
[
1

K
,
1

2

]
.1
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Intuitively, τS reflects the class imbalance level of the label matrix of S, and that is why we name
it that. The smaller of τS , the higher of the matrix-wise class imbalance level. Besides, for the
convenience of subsequent discussions, we give the following definitions.
Definition 2 (Matrix-wise class balanced or extremely imbalanced dataset). For a dataset S, it is
said to be matrix-wise class balanced (or extremely class imbalanced) when τS = 1

2 (or τS = 1
K ).2

Next, we give the common assumption for the following analyses.
Assumption 1 (The common assumption).

(1) The training dataset S = ((x1,y1), . . . , (xn,yn)) is an i.i.d. sample of the distribution P,
where the input is bounded, i.e., ∀x ∈ X , ∥x∥ is upper bounded.

(2) The same hypothesis space F = {f = (f1, . . . , fK) : X → RK} is constrained by some
certain forms (e.g., the norm constraint).

(3) The base (convex) loss function ℓ(·) is ρ-Lipschitz continuous and bounded by B.

Since optimizing Micro-AUC potentially involves learning with graph-dependent examples, here
we give the definition of the fractional Rademacher complexity of the loss and hypothesis spaces,
which can handle the graph-dependent case.
Definition 3 (The fractional Rademacher complexity of the loss space and hypothesis space).
Give the dataset S = ((x1,y1), . . . , (xn,yn)), construct a dataset S̃ = {(x̃b, 1)}mb=1 ={
((x̃+

b , x̃
−
b , αb, βb), 1)

}m

b=1
, where x̃+

b = xp, x̃−
b = xq for some p, q ∈ [n], and αb, βb ∈ [K],

ypαb
= 1, and yqβb

= −1. Let {(Ij , ωj)}j∈[J] be a fractional independent vertex cover of the
dependence graph G constructed over S̃ with

∑
j∈[J] ωj = χf (G), where χf (G) is the fractional

chromatic number of G. For the hypothesis space F = {f = (f1, . . . , fK) : X → RK} and the loss
function L : X × X × Fi ×Fj → R+, where i, j ∈ [K], and Fk = {fk | f = (f1, . . . , fK) ∈ F},
∀k ∈ [K], the empirical fractional Rademacher complexity of the loss space w.r.t. S̃ is defined as

R̂∗
S̃
(L ◦ F) = E

σ

 1

m

∑
j∈[J]

ωj × sup
f∈F

∑
i∈Ij

σiL(x̃
+
i , x̃

−
i , fαi , fβi)

 ,

where σ = (σi)
n
i=1, in which σis are independent Rademacher variables.

For the hypothesis space F , the empirical fractional Rademacher complexity of the hypothesis space
w.r.t. the positive and negative parts of S̃ is defined as follows, respectively:

R̂∗
S̃,+

(F) = E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifαi
(x̃+

i )

 ,

R̂∗
S̃,−(F) = E

σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifβi
(x̃−

i )

 .

Next, we give the base theorem of Micro-AUC for the subsequent generalization analyses.
Theorem 1 (The base theorem of Micro-AUC). Assume the loss function Lϕ : X×X×Fi×Fj →
R+ is bounded by M . Then, for any δ > 0, the following generalization bound holds with probability
at least 1− δ over the draw of an i.i.d. sample S of size n:

∀f ∈ F , Rϕ(f) ≤ R̂ϕ
S(f) + 2R̂∗

S̃
(Lϕ ◦ F) + 3M

√
1

2nK
log

(
2

δ

)√
1

τS
.

Then, we analyze the relationship between 0/1 and surrogate losses (see Appendix B.2.1). Further,
we can get the relationship between 0/1 and surrogate risks.

2In the following, we usually said it is balanced (or extremely imbalanced) for simplicity. Note that the
multi-class dataset can be viewed as an extremely imbalanced one of MLL.
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Lemma 1 (The relationship between 0/1 and surrogate risks). Assume the base loss ℓ upper

bounds the original 0/1 loss, i.e., 1t≤0 ≤ ℓ(t). Then, ∀S i.i.d.∼ P and f ∈ F , we can have

R0/1(f) ≤ Rpa(f),

R0/1(f) ≤ Ru2
(f) = E

S

[
R̂u2

S (f)
]
≤ E

S

[
1

τS
R̂u1

S (f)

]
≤ E

S

[
1− τS
τS

R̂u2

S (f)

]
.

Remark. From the above lemma, we can see that when minimizing the surrogate risk, we can also
minimize the 0/1 risk. Additionally, the bound involving the Lu1

and Lu2
in the second inequality

is tight since the equality holds when τS = 1
2 .

4.1 GENERAL DATASET

In this subsection, we give the generalization analyses of algorithms in the case of general datasets.

For the algorithm Apa, we can have a learning guarantee w.r.t. the Micro-AUC as follows.

Theorem 2 (Learning guarantee of Apa for general datasets). Suppose the surrogate loss Lϕ =
Lpa defined in Eq.(4) and Assumption 1 holds. Then, for any δ > 0, the following generalization
bound holds with probability at least 1− δ:

R0/1(f) ≤ Rpa(f) ≤ R̂pa(f) + 2ρ
(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
+ 3B

√
log

(
2
δ

)
2nK

√
1

τS
. (13)

Remark. For the second term involving the fractional Rademacher complexity, it can usually be
upper bounded by the order of O(

√
1

nKτS
), e.g., the kernel-based one illustrated in Section 5.

From this theorem, we can see that Apa has a learning guarantee of O(
√

1
nKτS

) w.r.t. Micro-AUC.

Then, the algorithm Au1 has a learning guarantee w.r.t. Micro-AUC as follows.

Theorem 3 (Learning guarantee of Au1 for general datasets). Suppose the surrogate loss Lϕ =
1
τS
Lu1 defined in Eq.(8) and Assumption 1 holds. Then, for any δ > 0, the following generalization

bound holds with probability at least 1− δ:

R0/1(f) ≤
1

τS
R̂u1(f) +

2ρ

τS

(
|S+|
nK

R̂∗
S̃,+

(F) +
|S−|
nK

R̂∗
S̃,−(F)

)
︸ ︷︷ ︸

≈ 1
2

(
R̂∗

S̃,+
(F)+R̂∗

S̃,−
(F)

)
+
3B

τS

√
log

(
2
δ

)
2nK

√
1

τS
. (14)

From this theorem, we can see Au1 has a learning guarantee of O( 1
τS

√
1

nKτS
) w.r.t. Micro-AUC.

Finally, the algorithm Au2 has a learning guarantee w.r.t. Micro-AUC as follows.

Theorem 4 (Learning guarantee of Au2 for general datasets). Suppose the surrogate loss Lϕ =
Lu2

defined in Eq.(9) and Assumption 1 holds. Then, for any δ > 0, the following generalization
bound holds with probability at least 1− δ:

R0/1(f) ≤ Ru2
(f) ≤ R̂u2

(f) + 2ρ
(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
+ 6B

√
log

(
2
δ

)
2nK

√
1

τS
. (15)

From this theorem, we can see that Au2 has a learning guarantee of O(
√

1
nKτS

) w.r.t. Micro-AUC.

4.2 BALANCED DATASET

Here we consider the case of balanced datasets. Notably, in this case, the algorithms Au1 and Au2

are exactly the same, which should have the same generalization guarantees w.r.t. Micro-AUC, and
it is corroborated by the following corollary.

Corollary 1 (Learning guarantee of Au1 and Au2 for balanced datasets). Suppose Assumption 1
holds and the dataset S is balanced. Besides, assume the surrogate loss Lϕ = Lu2 = 2Lu1 . Then,
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the following generalization bound holds with probability at least 1− δ:

R0/1(f) ≤ Ru2(f) = 2Ru1(f) ≤ R̂u2(f) + 2ρ
(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
+ 6B

√
log

(
2
δ

)
nK

, (16)

where R̂u2
(f) = 2R̂u1

(f).

From this corollary, we can see that Au1 and Au2 have learning guarantees of O(
√

1
nK ) w.r.t.

Micro-AUC. Note that the same learning guarantees confirm the validity of our analyses.

4.3 COMPARISON AND DISCUSSION

Theoretically, a tighter generalization error bound usually suggests better performance in prac-
tice (Shalev-Shwartz & Ben-David, 2014; Mohri et al., 2018).3 Here we analyze these learning
algorithms under the same framework and the bounds between the true and surrogate risk (or loss)
are tight. Hence, we can safely assess the performance of algorithms by comparing their generaliza-
tion upper bounds. Specifically, we compare them in the following.

Apa vs Au1 . Apa usually has a tighter bound than Au1 . Given the same hypothesis space, R̂pa(f) is
usually easier to train than R̂u1(f), which results in that R̂pa ≤ 1

τS
R̂u1 .4 For the model complexity

term (i.e., the last two terms in these bounds), we can see that Apa has an error bound of O(
√

1
nKτS

)

while Au1 depends on O( 1
τS

√
1

nKτS
).

Au2 vs Au1 . Similarly, Au2 usually has a tighter bound than Au1 . For the empirical term, R̂u2 is
usually smaller than 1

τS
R̂u1

. For the model complexity term, we can see that Au2 has an error bound

of O(
√

1
nKτS

) while Au1 depends on O( 1
τS

√
1

nKτS
).

Apa vs Au2 . Apa usually has a comparable bound to Au2 . For the empirical term, R̂pa is usually

comparable to R̂u2
. For the model complexity term, they depend on the same order of O(

√
1

nKτS
).

Overall, Apa and Au2 usually have tigher bounds than Au1 , which suggests they would probably
perform better than Au1 , especially when the dataset is highly imbalanced (i.e., τS is very small).
Besides, the comparable bounds of Apa and Au2 imply that they would probably perform compara-
bly to each other. Experimental results also confirm our theory analyses.

Consistency. Besides the generalization, it is also important to characterize the consistency proper-
ties of these surrogate losses, which is very challenging to our knowledge and left as future work.

5 KERNEL MODEL

For simplicity, here we consider the kernel-based hypothesis space as an illustration of F , which
has been widely studied both in practice (Elisseeff & Weston, 2001; Boutell et al., 2004; Hariharan
et al., 2010; Tan et al., 2020; Wu et al., 2020) and in theory (Wu & Zhu, 2020; Wu et al., 2021; 2023)
in MLL. Let Φ : X → H be a feature mapping associated with the kernel function κ, where κ :
X × X → R is a Positive Definite Symmetric (PDS) kernel and H denotes its induced reproducing
kernel Hilbert space (RKHS). Formally, the considered kernel-based hypothesis space is defined as

F kernel =
{
x 7→ W⊤Φ(x) : W = [w1, . . . ,wK ], ∥wk∥H ≤ Λ,∀k ∈ [K]

}
. (17)

Based on the preceding theoretical results in Section 4.1, we can have the following corollary.

Corollary 2 (Learning guarantee of Apa for the kernel-based hypothesis space). Suppose the
surrogate loss Lϕ = Lpa defined in Eq.(4) and Assumption 1 holds. Besides, assume the hypothesis
space F = F kernel defined in Eq.(17), and ∀x ∈ X ,∃r > 0, κ(x,x) ≤ r2. Then, for any δ > 0, the

3Notably when comparing bounds, it is usually more rational to compare the order of dependent factors
rather than the absolute values.

4Although we cannot formally prove this, experimental results support it.
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following generalization bound holds with probability at least 1− δ:

R0/1(f) ≤ Rpa(f) ≤ R̂pa(f) +
4ρrΛ√
nK

√
1

τS
+ 3B

√
log

(
2
δ

)
2nK

√
1

τS
. (18)

From this corollary, we can see that Apa has an error bound of O(
√

1
nKτS

) w.r.t. Micro-AUC.
Similarly, we can also get the kernel-based counterparts of Au1 and Au2 (see Appendix B.5). Note
that similar analyses can be extended to the case of the deep neural network-based hypothesis space,
based on the related research on the complexity of various hypothesis spaces (Anthony & Bartlett,
1999; Bartlett et al., 2017; Long & Sedghi, 2019; Ma et al., 2020), left as future work.

6 RELATED WORK

Consistency. Gao & Zhou (2013) investigated the consistency of various surrogates on the measures
of Hamming and (partial) ranking loss in MLL. Further, Dembczynski et al. (2012) gave an explicit
regret bound of a univariate surrogate on the partial ranking loss measure. For the F-measure in
binary classification with application in the Macro-F measure in MLL, Ye et al. (2012) justified and
connected two approaches: the empirical utility maximization (EUM) and the decision-theoretic
approach (DTA), where recent work (Dembczyński et al., 2017) gave more descriptive names Popu-
lation Utility (PU) and Expected Test Utility (ETU).5 Further, Waegeman et al. (2014); Zhang et al.
(2020) investigated the consistency of the F-measure with different estimations of the conditional
distribution P (y|x) under the DTA. For precision@k and recall@k measures, Menon et al. (2019)
studied the multi-label consistency of various reduction methods.

Generalization. For the measures of subset accuracy and Hamming loss, Wu & Zhu (2020) studied
the generalization of various algorithms, and identified the label number playing a critical role in
these bounds, which could explain the phenomena better than previous results. For the ranking loss
measure, Wu et al. (2021) revisited the consistency and generalization, and identified the instance-
wise class imbalance affecting the generalization bounds, which could explain the phenomena better
than consistency. For the Macro-AUC measure, Wu et al. (2023) identified the label-wise class
imbalance playing a vital role in generalization bounds.

7 EXPERIMENTS

For experiments, the primary goal is to corroborate our theory findings rather than illustrate the supe-
rior performance of our proposed algorithms. Since our theoretical results can cover various model
forms, we mainly conduct experiments with linear and neural network-based models on tabular and
image datasets, respectively. For a fair comparison, we adopt the regularized ERM algorithms with
l2 norm and the same logistic base loss. See Appendix C for detailed setup and additional results.

7.1 TABULAR DATA

The tabular benchmarks and empirical results are summarized in Table 2 and 3, respectively. Over-
all, from Table 3, we can see Apa and Au2 perform better than Au1 , which corroborates our theory
results that Apa and Au2 have better learning guarantees than Au1 . Besides, Apa performs compa-
rably to Au2 , which also confirms the theory results that they have comparable learning guarantees.

Further, from Table 2 and 3, we can carefully analyze the effect of the matrix-wise class imbalance
level on the performance. Specifically, for the first five datasets, the imbalance level (i.e., 1

τS
) is

small, and the performance gap among these three algorithms is also small. In contrast, for the last
five datasets, the imbalance level is high, and the performance gap between Au1 and Au2 is big.
This also corroborates our theory results that Apa and Au1 have error bounds of O(

√
1

nKτS
) while

Au1 depends on O( 1
τS

√
1

nKτS
).

7.2 IMAGE DATA

The (raw) image benchmark datasets and empirical results are summarized in Table 4 and 5, respec-
tively. From Table 4 and 5, we can observe that the imbalance levels of these datasets are large, and

5Note that our generalization analyses are under the EUM (or PU) framework.
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Table 2: Basic statistics of the tabular benchmark datasets. Denote the matrix-wise class imbalance-
related quantities Imb1 =

√
1
τS
, Imb2 = 1

τS
and Imb3 = 1

τS

√
1
τS

, respectively.

Dataset #Instance #Feature #Label Domain Imb1 Imb2 Imb3

CAL500 502 68 174 music 2.5 6.7 17.3
emotions 593 72 6 music 1.8 3.2 5.8
image 2000 294 5 images 2.0 4.0 8.1
scene 2407 294 6 images 2.4 5.6 13.2
yeast 2417 103 14 biology 1.8 3.3 6.0
enron 1702 1001 53 text 4.0 15.7 62.1
rcv1-s1 6000 944 101 text 5.9 35.1 207.7
bibtex 7395 1836 159 text 8.1 66.2 538.6
corel5k 5000 499 374 images 10.3 106.2 1094.3
delicious 16105 500 983 text(web) 7.2 51.7 371.5

Table 3: Micro-AUC (mean ± std, the symbol . means 0.) of all three linear model-based algorithms
based on tabular benchmark datasets. The top two algorithms on each dataset are highlighted in bold
and the top one is labeled with †. Besides, “-” means that Apa takes more than one week by using a
GPU server on the corresponding datasets.

Dataset Apa Au1 Au2

CAL500 .7841± .0049† .7765± .0065 .7831± .0057
emotions .8555± .0153 .8550± .0146 .8560± .0167†

image .8426± .0069 .8370± .0094 .8443± .0070†

scene .9352± .0033† .9311± .0039 .9318± .0023
yeast .8301± .0008 .8284± .0016 .8309± .0007†

enron .8697± .0168 .8499± .0128 .8736± .0015†

rcv1-s1 - .9211± .0055 .9526± .0008†

bibtex - .8919± .0053 .9417± .0001†

corel5k - .7684± .0032 .8146± .0043†

delicious - .8680± .0007 .9028± .0007†

Table 4: Statistics of the (raw) image benchmark datasets. The meanings of the matrix-wise class
imbalance-related quantities are the same as the ones in Table 2. The shape of inputs is resized.

Dataset #Instance #Pixel #Label Imb1 Imb2 Imb3

PASCAL VOC 2012 11540 300× 300 20 3.6 13.0 47.0
MSCOCO 2017 123287 300× 300 80 5.2 27.5 144.2
NUS-WIDE 269648 300× 300 81 6.6 43.3 285.4

Table 5: Micro-AUC of all three algorithms with the ResNet-34 model on image benchmark datasets.

Dataset Apa Au1 Au2

PASCAL VOC 2012 .8357 .7449 .8448†

MSCOCO 2017 .8715 .8165 .9062†

NUS-WIDE .9206 .8513 .9329†

Apa and Au2 perform better than Au1 , which corroborates our theory results that Apa and Au2 have
better learning guarantees than Au1 .

8 CONCLUSION AND DISCUSSION

Toward theoretically understanding the Micro-AUC maximization problem in MLL, this paper takes
an initial step to characterize the learning guarantees of three surrogate loss-based algorithms. The-
oretically, a critical data-dependent quantity, i.e., the matrix-wise class imbalance, is identified. The
results of the imbalance-aware error bounds suggest that algorithms with the proposed pairwise and
reweighted univariate loss can have better learning guarantees than the one with the commonly-used
univariate loss, which probably indicates their superior performance in practice. Experimental re-
sults also confirm the theory findings. As a by-product, the proposed reweighted surrogate loss can
be a good candidate in applications for its good theory guarantee along with efficiency.
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A TECHNICAL PRELIMINARIES

Our subsequent analyses need techniques of the graph theory on the fractional independent vertex
cover, and the dependent graph associated with a sample. For these technical backgrounds, we
refer the readers to a recent survey (Zhang & Amini, 2022) on this topic and Appendix A in recent
work (Wu et al., 2023).

In this work, our analyses are mainly based on the following theorem which can handle the learning
task with graph-dependent examples.

Theorem A.1 ((Usunier et al., 2005; Amini & Usunier, 2015)). Give a sample S̃ = {(x̃i, ỹi)}mi=1,
where x̃i ∈ X̃ , ỹi ∈ Ỹ and S̃ is associated with a dependency graph G, where χf (G) is its frac-

tional chromatic number, and a loss function L : X̃ × Ỹ × F̃ → [0,M ], where F̃ =
{
f̃ : X̃ → R

}
.

Then, for any δ ∈ (0, 1), the following generalization bound holds with probability at least 1− δ:

∀f ∈ F , R(f) ≤ R̂S̃(f̃) + 2R̂∗
S̃
(L ◦ F̃) + 3M

√
χf (G)

2m
log

(
2

δ

)
, (19)

where R̂∗
S̃
(L ◦ F̃) is the empirical fractional Rademacher complexity of the loss space.

B MAIN PROOFS

B.1 PROOF OF THEOREM 1

B.1.1 PROBLEM TRANSFORMATION

For the Micro-AUC maximization problem in multi-label learning, we can transform it into the
following learning task with graph-dependent examples.

Specifically, given a training dataset S = ((x1,y1), . . . , (xn,yn)), which is an i.i.d. sample
drawn from a MLL distribution P , where x ∈ X , and y ∈ {−1,+1}K , construct a dataset
S̃ = {(x̃b, 1)}mb=1 =

{
((x̃+

b , x̃
−
b , αb, βb), 1)

}m

b=1
, where x̃+

b = xp, x̃−
b = xq for any p, q ∈ [n],

and αb, βb ∈ [K], ypαb
= 1, and yqβb

= −1. Then, we can get that m = |S+||S−|. Denote
X̃ = X × X × [K] × [K] and given a loss function L : X̃ × {1} × F̃ → R+, where the adjusted
hypothesis space F̃ =

{
f̃(x̃i) = fαi

(x̃+
i )− fβi

(x̃−
i ) | f = (f1, . . . , fK) : X → RK ∈ F

}
. The

goal of this new learning task is to learn a good mapping function f̃ : X̃ → R from F̃ w.r.t. the loss
function L.

Let {(Ij , ωj)}j∈[J] be a fractional independent vertex cover of the dependence graph G constructed
over S̃ with

∑
j∈[J] ωj = χf (G), where χf (G) is the fractional chromatic number of G. Based on

the previous results in bipartite ranking (Usunier et al., 2005; Amini & Usunier, 2015), we can know
that

χf (G) = max{|S+|, |S−|} = (1− τS)nK.

B.1.2 PROOF OF THEOREM 1

Proof. Through the problem transformation in Section B.1.1, we can straightforwardly get the de-
sired result by applying Theorem A.1.

B.2 PROOF OF LEMMA B.2.1 AND 1

B.2.1 PROOF OF LEMMA B.2.1

Lemma B.2.1 (The relationship between 0/1 and surrogate losses). Assume the base loss ℓ upper
bounds the original 0/1 loss, i.e., 1t≤0 ≤ ℓ(t). Then, ∀(p, i) ∈ S+, (q, j) ∈ S−, and f ∈ F , we can

13



Under review as a conference paper at ICLR 2024

have

L0/1(xp,xq, fi, fj) ≤ Lpa(xp,xq, fi, fj),

L0/1(xp,xq, fi, fj) ≤ Lu2(xp,xq, fi, fj) ≤
1

τS
Lu1(xp,xq, fi, fj) ≤

1− τS
τS

Lu2(xp,xq, fi, fj).

Remark. From the above lemma, we can see that when minimizing the surrogate loss, we can also
minimize the 0/1 loss. Additionally, the bound involving the Lu1

and Lu2
in the second inequality

is tight since the equality holds when τS = 1
2 .

Proof. For the first inequality, the following holds:

L0/1(xp,xq, fi, fj) = 1fi(xp)≤fj(xq) ≤ ℓ(fi(xp)− fj(xq)) = Lpa(xp,xq, fi, fj).

For the second inequality, the following holds:

L0/1(xp,xq, fi, fj) = 1fi(xp)≤fj(xq)

≤ 1sign(fi(xp))≤sign(fj(xq))

1
= 1sign(fi(xp)) ̸=+1 + 1sign(fj(xq)) ̸=−1 − 1sign(fi(xp))̸=+11sign(fj(xq)) ̸=−1

≤ 1sign(fi(xp))̸=+1 + 1sign(fj(xq)) ̸=−1

≤ ℓ(fi(xp)) + ℓ(−fj(xq))

= Lu2(xp,xq, fi, fj)

=
nK

min{|S+|, |S−|}

(
min{|S+|, |S−|}

nK
ℓ(fi(xp)) +

min{|S+|, |S−|}
nK

ℓ(−fj(xq))

)
≤ 1

τS

(
|S+|
nK

ℓ(fi(xp)) +
|S−|
nK

ℓ(−fj(xq))

)
=

1

τS
Lu1

(xp,xq, fi, fj)

≤ 1

τS

(
max{|S+|, |S−|}

nK
ℓ(fi(xp)) +

max{|S+|, |S−|}
nK

ℓ(−fj(xq))

)
=

max{|S+|, |S−|}
min{|S+|, |S−|}

(ℓ(fi(xp)) + ℓ(−fj(xq)))

=
1− τS
τS

Lu2
(xp,xq, fi, fj).

For 1 , we can enumerate the possible values of sign(fi(xp) and sign(fj(xq)) to get the equality.

B.2.2 PROOF OF LEMMA 1

Proof. For the first inequality, the following holds:

R0/1(f) = E
S

[
R̂

0/1
S (f)

]
= E

S

 1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

L0/1(xp,xq, fi, fj)


1
≤ E

S

 1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lpa(xp,xq, fi, fj)


= E

S

[
R̂pa

S (f)
]

= Rpa(f).

For 1 , it is due to the first inequality in Lemma B.2.1.
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For the second inequality, the following holds:

R0/1(f) = E
S

[
R̂

0/1
S (f)

]
= E

S

 1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

L0/1(xp,xq, fi, fj)


2
≤ E

S

 1

|S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lu2
(xp,xq, fi, fj)


= E

S

[
R̂u2

S (f)
]

= Ru2(f)

3
≤ E

S

 1

τS |S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lu1
(xp,xq, fi, fj)


= E

S

[
1

τS
R̂u1

S (f)

]
4
≤ E

S

 1− τS
τS |S+||S−|

K∑
i=1

K∑
j=1

∑
(p,q)∈S+i ×S−j

Lu2
(xp,xq, fi, fj)


= E

S

[
1− τS
τS

R̂u2

S (f)

]
.

For 2 , 3 and 4 , they are due to the second inequality in Lemma B.2.1.

B.3 THE LEMMAS OF THE CONTRACTION INEQUALITIES

Lemma B.3.1 (The base contraction inequality). Assume the base loss ℓ(·) is ρ-Lipschitz contin-
uous. Then, the following inequalities hold:

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(fαi
(x̃+

i ))

 ≤ ρE
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifαi
(x̃+

i )

 , (20)

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(−fβi
(x̃−

i ))

 ≤ ρE
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifβi
(x̃−

i )

 ,

(21)

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(fαi
(x̃+

i )− fβi
(x̃−

i ))

 ≤

ρE
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σi(fαi
(x̃+

i )− fβi
(x̃−

i ))

 . (22)

Proof. Here we mainly prove the first inequality following the idea in Mohri et al. (2018)
(Lemma 5.7, p.93), and the other two inequalities share the same proof ideas, which are omitted
for brevity.
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First we fix a sample (x̃1, . . . , x̃m), then by definition,

E
σ

 1

m

∑
j∈[J]

ωj sup
f∈F

∑
i∈Ij

σiℓ(fαi(x̃
+
i ))


=

1

m

∑
j∈[J]

ωj E
σ1,...,σnj−1

[
E
σnj

[
sup
f∈F

unj−1(f) + σnj ℓ(f(x̃
+
nj
))

]]
, (denote nj = |Ij | for simplicity)

where unj−1(f) =
∑nj

i=1 σiℓ(f(x̃
+
i )). By the definition of the supremum, for any ϵ > 0, there

exists f1, f2 ∈ F such that

unj−1(f
1) + ℓ(f1(x̃+

nj
)) ≤ (1− ϵ)

[
sup
f∈F

unj−1(f) + ℓ(f(x̃+
nj
))

]
,

and

unj−1(f
2)− ℓ(f2(x̃+

nj
)) ≤ (1− ϵ)

[
sup
f∈F

unj−1(f)− ℓ(f(x̃+
nj
))

]
.

Thus, for any ϵ > 0, by definition of E
σnj

,

(1− ϵ) E
σnj

[
sup
f∈F

unj−1(f) + σnj
ℓ(f(x̃+

nj
))

]

= (1− ϵ)

[
1

2
sup
f∈F

unj−1(f) + ℓ(f(x̃+
nj
))

]
+

[
1

2
sup
f∈F

unj−1(f)− ℓ(f(x̃+
nj
))

]

≤ 1

2

[
unj−1(f

1) + ℓ(f1(x̃+
nj
))
]
+

1

2

[
unj−1(f

2)− ℓ(f2(x̃+
nj
))
]
.

Let s = sign(f1(xnj )− f2(xnj )). Then, the previous inequality implies

(1− ϵ) E
σnj

[
sup
f∈F

unj−1(f) + σnj ℓ(f(x̃
+
nj
))

]

≤ 1

2

[
unj−1(f

1) + unj−1(f
2) + sρ(f1(x̃+

nj
)− f2(x̃+

nj
))
]

(Lipschitz property)

=
1

2

[
unj−1(f

1) + sρf1(x̃+
nj
)
]
+

1

2

[
unj−1(f

2)− sρf2(x̃+
nj
)
]

(rearranging)

≤ 1

2
sup
f∈F

[
unj−1(f) + sρf(x̃+

nj
)
]
+

1

2
sup
f∈F

[
unj−1(f)− sρf(x̃+

nj
)
]

(definition of sup)

= E
σnj

[
sup
f∈F

unj−1(f) + σnj
µf(x̃+

nj
)

]
. (definition of E

σnj

)

Since the inequality holds for any ϵ > 0, we have

E
σnj

[
sup
f∈F

unj−1(f) + σnj
ℓ(f(x̃+

nj
))

]
≤ E

σnj

[
sup
f∈F

unj−1(f) + σnj
µf(x̃+

nj
)

]
.

Proceeding in the same way for all other σi (i ∈ [Ij ], i ̸= nj) proves that

E
σ

sup
f∈F

∑
i∈Ij

σiℓ(f(x̃
+
i ))

 ≤ ρE
σ

sup
f∈F

∑
i∈Ij

σif(x̃
+
i )

 .

By proceeding other j ∈ [J ], we can obtain the following

1

m

∑
j∈[J]

ωj E
σ

sup
f∈F

∑
i∈Ij

σiℓ(f(x̃
+
i ))

 ≤ ρ
1

m

∑
j∈[J]

ωj E
σ

sup
f∈F

∑
i∈Ij

σif(x̃
+
i )

 .

Then, by the linearity of expectation, we can get the first inequality.
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Lemma B.3.2 (Contraction inequality for Lpa). Assume the surrogate loss Lϕ = Lpa defined in
Eq.(4) and the base loss ℓ(·) is ρ-Lipschitz continuous. Then, the following inequality holds:

R̂∗
S̃
(Lpa ◦ F) ≤ ρ

(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
. (23)

Proof. For this inequality, we can have that

R̂∗
S̃
(Lpa ◦ F) = E

σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(fαi
(x̃+

i )− fβi
(x̃−

i ))


1
≤ ρE

σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σi(fαi
(x̃+

i )− fβi
(x̃−

i ))


2
≤ ρ

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifαi
(x̃+

i )

+ E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifβi
(x̃−

i )


= ρ

(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
.

For 1 , it is due to the third inequality in Lemma B.3.1. For 2 , it is due to that sup(a + b) ≤
sup(a) + sup(b), the property of the Rademacher variables, and the linearity of expectation.

Lemma B.3.3 (Contraction inequality for Lu1
). Assume the surrogate loss Lϕ = Lu1

defined in
Eq.(8) and the base loss ℓ(·) is ρ-Lipschitz continuous. Then, the following inequality holds:

R̂∗
S̃
(Lu1 ◦ F) ≤ ρ

(
|S+|
nK

R̂∗
S̃,+

(F) +
|S−|
nK

R̂∗
S̃,−(F)

)
. (24)

Proof. For this inequality, we have that

R̂∗
S̃
(Lu2

◦ F) = E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σi

(
|S+|
nK

ℓ(fαi
(x̃+

i )) +
|S−|
nK

ℓ(−fβi
(x̃−

i ))

)
1
≤ |S+|

nK
E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(fαi(x̃
+
i ))

+
|S−|
nK

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(−fβi(x̃
−
i ))


2
≤ ρ

 |S+|
nK

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifαi(x̃
+
i )

+
|S−|
nK

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifβi(x̃
−
i )


= ρ

(
|S+|
nK

R̂∗
S̃,+

(F) +
|S−|
nK

R̂∗
S̃,−(F)

)
.

For 1 , it is due to that sup(a+ b) ≤ sup(a) + sup(b), and the linearity of expectation. For 2 , it is
due to the first and second inequality in Lemma B.3.1.

Lemma B.3.4 (Contraction inequality for Lu2 ). Assume the surrogate loss Lϕ = Lu2 defined in
Eq.(9) and the base loss ℓ(·) is ρ-Lipschitz continuous. Then, the following inequality holds:

R̂∗
S̃
(Lu2

◦ F) ≤ ρ
(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
. (25)
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Proof. For this inequality, we have that

R̂∗
S̃
(Lu2

◦ F) = E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σi

(
ℓ(fαi

(x̃+
i )) + ℓ(−fβi

(x̃−
i ))

)
1
≤ E

σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(fαi
(x̃+

i ))

+ E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σiℓ(−fβi
(x̃−

i ))


2
≤ ρ

E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifαi
(x̃+

i )

+ E
σ

 1

m

∑
j∈[J]

ωj

sup
f∈F

∑
i∈Ij

σifβi
(x̃−

i )


= ρ

(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
.

For 1 , it is due to that sup(a+ b) ≤ sup(a) + sup(b), and the linearity of expectation. For 2 , it is
due to the first and second inequality in Lemma B.3.1.

B.4 PROOF OF THEOREM 2, 3 AND 4

B.4.1 PROOF OF THEOREM 2

Proof. Since the surrogate loss Lϕ = Lpa and Assumption 1 holds, we can get that Lϕ is bounded
by B. Then, applying Theorem 1 and Lemma B.3.2, we can get that, for any δ > 0, the following
generalization bound holds with probability at least 1− δ:

Rpa(f) ≤ R̂pa(f) + 2ρ
(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
+ 3B

√
log

(
2
δ

)
2nK

√
1

τS
.

Based on Lemma 1 (i.e., R0/1(f) ≤ Rpa(f)), we can get the desired result.

B.4.2 PROOF OF THEOREM 3

Proof. Since the surrogate loss Lϕ = 1
τS
Lu1

and Assumption 1 holds, we can get that Lϕ is bounded
by B

τS
. Then, applying Theorem 1 and Lemma B.3.3, we can get that, for any δ > 0, the following

generalization bound holds with probability at least 1− δ:

E
S

[
1

τS
R̂u1

S (f)

]
≤ 1

τS
R̂u1

(f) +
2ρ

τS

(
|S+|
nK

R̂∗
S̃,+

(F) +
|S−|
nK

R̂∗
S̃,−(F)

)
︸ ︷︷ ︸

≈ 1
2

(
R̂∗

S̃,+
(F)+R̂∗

S̃,−
(F)

)
+
3B

τS

√
log

(
2
δ

)
2nK

√
1

τS
.

Based on Lemma 1 (i.e., R0/1(f) ≤ E
S

[
1
τS
R̂u1

S (f)
]
), we can get the desired result. Besides, when

τS = 1
2 , the equality holds for the second approximation term involving the Rademacher complexity.

B.4.3 PROOF OF THEOREM 4

Proof. Since the surrogate loss Lϕ = Lu2
and Assumption 1 holds, we can get that Lϕ is bounded

by 2B. Then, applying Theorem 1 and Lemma B.3.4, we can get that, for any δ > 0, the following
generalization bound holds with probability at least 1− δ:

Ru2
(f) ≤ R̂u2

(f) + 2ρ
(
R̂∗

S̃,+
(F) + R̂∗

S̃,−(F)
)
+ 6B

√
log

(
2
δ

)
2nK

√
1

τS
.

Based on Lemma 1 (i.e., R0/1(f) ≤ Ru2(f)), we can get the desired result.
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B.5 PROOF OF COROLLARY 2, 3 AND 4

Corollary 3 (Learning guarantee of Au1 for the kernel-based hypothesis space). Suppose the
surrogate loss Lϕ = 1

τS
Lu1

defined in Eq.(8) and Assumption 1 holds. Besides, assume the hypoth-
esis space F = F kernel defined in Eq.(17), and ∀x ∈ X ,∃r > 0, κ(x,x) ≤ r2. Then, for any δ > 0,
the following generalization bound holds with probability at least 1− δ:

R0/1(f) ≤
1

τS
R̂u1(f) +

2ρrΛ

τS
√
nK

√
1

τS
+

3B

τS

√
log

(
2
δ

)
2nK

√
1

τS
. (26)

Corollary 4 (Learning guarantee of Au2 for the kernel-based hypothesis space). Suppose the
surrogate loss Lϕ = Lu2

defined in Eq.(9) and Assumption 1 holds. Besides, assume the hypothesis
space F = F kernel defined in Eq.(17), and ∀x ∈ X ,∃r > 0, κ(x,x) ≤ r2. Then, for any δ > 0, the
following generalization bound holds with probability at least 1− δ:

R0/1(f) ≤ Ru2(f) ≤ R̂u2(f) +
4ρrΛ√
nK

√
1

τS
+ 6B

√
log

(
2
δ

)
2nK

√
1

τS
. (27)

Lemma B.5.1 (The Rademacher complexity of the kernel-based hypothesis space). Assume the
hypothesis space F = F kernel defined in Eq.(17), and ∀x ∈ X ,∃r > 0, κ(x,x) ≤ r2. Then, we
have

R̂∗
S̃,+

(F kernel) ≤ rΛ

√
1

nKτS
, (28)

R̂∗
S̃,−(F

kernel) ≤ rΛ

√
1

nKτS
. (29)

Proof. For the first inequality, we can have

R̂∗
S̃,+

(F kernel) = E
σ

 1

m

∑
j∈[J]

ωj sup
∥w∥≤Λ

∑
i∈Ij

σi⟨wαi
,Φ(x̃+

i )⟩


≤ E

σ

 1

m

∑
j∈[J]

ωj sup
∥w∥≤Λ

∥wαi
∥

∥∥∥∥∥∥
∑
i∈Ij

σiΦ(x̃
+
i )

∥∥∥∥∥∥
 (Cauchy–Schwarz inequality)

=
Λ

m

∑
j∈[J]

ωj E
σ

∥∥∥∥∥∥
∑
i∈Ij

σiΦ(x̃
+
i )

∥∥∥∥∥∥
 (the definition of the sup and linearity of expectation)

≤ Λ

m

∑
j∈[J]

ωj

E
σ


∥∥∥∥∥∥
∑
i∈Ij

σiΦ(x̃
+
i )

∥∥∥∥∥∥
2



1
2

(Jensen’s inequality)

=
Λ

m

∑
j∈[J]

ωj

E
σ

 ∑
p∈Ij ,q∈Ij

σpσq⟨Φ(x̃+
p ),Φ(x̃

+
q )⟩

 1
2

=
Λ

m

∑
j∈[J]

ωj

∑
i∈Ij

⟨Φ(x̃+
i ),Φ(x̃

+
i )⟩

 1
2

(∀p ̸= q,E[σpσq] = 0 and E[σiσi] = 1)

≤ Λr

m

∑
j∈[J]

ωj
√
mj (⟨Φ(x̃+

i ),Φ(x̃
+
i )⟩ = κ(x̃+

i , x̃
+
i ) ≤ r2 and let mj = |Ij |)

=
Λrχf (G)

m

∑
j∈[J]

ωj

χf (G)

√
mj

≤
Λr

√
χf (G)

m

√∑
j∈[J]

ωjmj (
∑
j∈[J]

ωj

χf (G)
= 1 and Jensen’s inequality).
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Since
∑

j∈[J] ωjmj = m,χf (G) = max{|S+|, |S−|},m = |S+||S−| and min{|S+|, |S−|} =

nKτS hold, it comes

R̂∗
S̃,+

(F kernel) ≤
Λr

√
χf (G)

m

√∑
j∈[J]

ωjmj =
Λr√
nK

√
1

τS
.

Similarly to the proof of the first inequality, we can obtain the second inequality, which is omitted
here for brevity.

B.5.1 PROOF OF COROLLARY 2

Proof. Based on Theorem 2 and Lemma B.5.1, it is straightforward to get the desired result.

B.5.2 PROOF OF COROLLARY 3

Proof. Based on Theorem 3 and Lemma B.5.1, it is straightforward to get the desired result.

B.5.3 PROOF OF COROLLARY 4

Proof. Based on Theorem 4 and Lemma B.5.1, it is straightforward to get the desired result.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL EXPERIMENTAL SETUP

For all the experiments, we implement the algorithms with Pytorch (Paszke et al., 2019), where the
stochastic gradient descent (SGD) is chosen as the optimizer, and the hyperparameter of the weight
decay is selected in {10−6, 10−5, . . . , 10−1} and we report the best Micro-AUC for each of the three
algorithms. We use 3-fold cross-validation to get our average results for the experiments of linear
and multilayer perception (MLP) models.

For the experiments of linear models on the tabular benchmark datasets, most datasets adopt a learn-
ing rate of 0.1 and converge at 200 epochs, except for the datasets of Image and enron, which have
a learning rate of 0.01 and require 600 epochs to converge.

For the experiments of MLP models on the tabular benchmark datasets, we use a 3−layer network,
where the number of hidden layer’s units is 100 for all benchmark datasets. The training epoch is
set to 200 with a learning rate of 0.1 and batch size of 256.

For the experiments of CNN models on the (raw) image benchmark datasets, we use the test set
in the original dataset as our test set and split the training set in the original dataset into train and
validation sets according to the ratio of 7:3, where we select the hyperparameter of weight decay
based on the validation sets. We use a batch size of 256 and train 40 epochs with a learning rate of
0.005 for both VGG-11 and ResNet-34.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

For the experiments of the linear model-based algorithms on the tabular benchmark datasets, we cal-
culate the absolute upper bound values of these three algorithms, where the results are summarized
in Table 6. Similarly to previous work (Wu et al., 2021; 2023), the absolute values might not reflect
the true generalization error reasonably (i.e., bigger than 1), but we can still get valuable insights
from the order of dependent quantities of these bounds.

Besides, we also conduct experiments with MLP-based learning algorithms on the tabular datasets,
where the results are summarized in Table 7. From 7, we can observe that when the imbalance level
of datasets is large (e.g., the last four datasets), Au2 consistently performs better than Au1 . This
corroborate our theory findings that Au2 has an error bound of O(

√
1

nKτS
) while Au1 depends on

O( 1
τS

√
1

nKτS
). We also notice that when the imbalance level of datasets is small (e.g., the first five

datasets), the algorithms perform comparably to each other. This is not inconsistent with our theory
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Table 6: The mean upper bound values of three linear model-based algorithms for the tabular bench-
mark datasets. We set δ = 0.05.

Dataset Apa Au1 Au2

CAL500 37.7 131.9 42.6
emotions 104.0 193.8 119.6
image 245.5 512.2 256.1
scene 127.5 397.0 138.1
yeast 24.4 48.3 29.9
enron 163.4 1362.8 170.6
rcv1-s1 - 1044.3 60.3
bibtex - 2683.2 81.4
corel5k - 2364.6 45.1
delicious - 603.5 24.0

Table 7: Micro-AUC (mean ± std, the symbol . means 0.) of all three MLP model-based algorithms
on tabular benchmark datasets. The top two algorithms on each dataset are highlighted in bold and
the top one is labeled with †. Besides, “-” means that Apa takes more than one week by using a GPU
server on the corresponding datasets.

Dataset Apa Au1 Au2

CAL500 .8111± .0034 .8022± .0016 .8151± .0016†

emotions .8736± .0138 .8740± .0146† .8658± .0130
image .8818± .0090† .8741± .0082 .8723± .0049
scene .9530± .0040 .9535± .0037 .9560± .0035†

yeast .8478± .0014 .8390± .0012 .8497± .0014†

enron .9025± .0112 .9132± .0020 .9219± .0040†

rcv1-s1 - .9593± .0015 .9632± .0012†

bibtex - .9373± .0010 .9431± .0005†

corel5k - .8594± .0037 .8881± .0042†

delicious - .8757± .0011 .9131± .0008†

findings of the dependent order of the imbalance level on these bounds. When the imbalance level
is small (or equivalently, the dataset is nearly balanced), the bounds of these algorithms are close to
the same order and thus it is hard to see which is better. Notably, in this case, we also notice that
the relative performance is also dependent on the choice of the hypothesis space by comparing the
results of the linear (Table 3) and MLP model (Table 7), which needs further investigation, left as
future work.

Additionally, we also conduct experiments with another popular CNN-based model (i.e., VGG-11)
on the image benchmark datasets, where the results are summarized in Table 8. The empirical results
also confirm our theory findings.

Table 8: Micro-AUC of all three algorithms with the VGG-11 model on image benchmark datasets.
The top two algorithms on each dataset are highlighted in bold and the top one is labeled with †.
Besides, “-” means that Apa takes more than one week by using a GPU server on the corresponding
datasets.

Dataset Apa Au1 Au2

PASCAL VOC 2012 .8125 .6759 .8225†

MSCOCO 2017 - .7303 .9004†

NUS-WIDE - .8587 .9385†
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