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ABSTRACT

We present a novel hybrid quantum-classical actor-critic reinforcement learning
(RL) model. In the noisy intermediate-scale quantum (NISQ) era, full utilization
of qubits is impractical due to resource limitations. To tackle this issue, this pa-
per proposes Quantum-Critic Proximal Policy Optimization (QC-PPO), where the
critic is designed using Quantum Neural Networks, whereas an actor is imple-
mented using conventional networks. We further argue that allocating quantum
capacity to the critic serves as a more natural lever for performance gains in actor-
critic RL. This is because bootstrapped value estimates shape advantage computa-
tion, which consequently shapes the direction of every policy update. Evaluations
on multiple MuJoCo environments show consistent improvements; on Humanoid-
v4, QC-PPO improves the median return by 52.3% over PPO with equal environ-
ment steps, demonstrating its potential for on-board applications.

1 INTRODUCTION

Quantum reinforcement learning (QRL) replaces the deep neural network (DNN) with a quantum
neural network (QNN; parameterized quantum circuit, PQC). Prior works have reported perfor-
mance gains and parameter efficiency (fewer learnable parameters) gains on simple low-dimensional
environments (e.g., CartPole, MountainCar) (Chen et al., 2020; Jerbi et al., 2021; Cho et al., 2024).
However, as the number of qubits and circuit depths increases, gradients vanish due to the bar-
ren plateau (McClean et al., 2018), posing challenges for training. Constraints from the noisy
intermediate-scale quantum (NISQ) era and limited qubit budgets further restrict scaling of PQC.
As a result, the scaling of state–action dimensionality is restricted and observed advantages mostly
appear in low-dimensional environments. In practice, the lack of quantum inference hardware and
the high computational cost of simulators hinder practical deployment.

As shown by Kölle et al. (2024); Jin et al. (2025), hybrid deep quantum neural networks (hDQNNs),
which place a PQC between classical DNN modules, improve training stability and expressiv-
ity, mitigating optimization difficulties associated with barren plateaus and partially addressing
state–action dimensionality. While they partially address state-action dimensionality, parameter-
shift–based updates (Wierichs et al., 2022) require many PQC evaluations. This creates a training
bottleneck that also burdens gradient calculation of the pre-PQC deep neural network (PreDNN).
Gradient surrogates such as quantum tangential deep neural network (qtDNN) enable end-to-end
backpropagation in hDQNNs by providing learned gradients for the PQC block (Luo & Chen, 2025).
This study reports that combining hDQNN with qtDNN alleviated the PQC evaluation bottleneck
and thus improved scalability to higher-dimensional tasks. Nevertheless, most prior work focuses on
quantum actors, which require quantum resources at deployment and are impractical for on-board
systems such as robotics and autonomous platforms.

In this paper, we concentrate quantum capacity in the critic. In actor–critic methods, update direc-
tions are largely determined by the critic (Yang et al., 2022). Moreover, under long horizons or large
discount factors, value functions accumulate high-frequency components, whereas standard multi-
layer perceptrons (MLPs) exhibit spectral bias (Yang et al., 2022) toward low frequencies. PQCs, via
data re-uploading and entanglement, can systematically expand the accessible frequency spectrum
and have been reported to capture higher frequencies more effectively (Xu & Zhang, 2024).
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(a) Training (b) On-Board Deployment

Classical Actor

Environment

CPU/GPU only

QPU/Simulator

...

...

qtDNN

Classical Actor

(Backpropagation Only)

Surrogate

hDQNN Critic

...

PQC

Figure 1: Overview of QC-PPO. (a) Training. We replace the PPO critic with a hybrid deep QNN
(hDQNN; PreDNN→PQC→PostDNN). The forward pass goes through the hDQNN to produce value
estimates, while gradients are routed through a qtDNN surrogate used for backpropagation only,
enabling scalable training in high-dimensional state–action spaces. (b) On-board deployment. At
deployment, only the classical actor runs on a central processing unit (CPU) or a GPU—no quantum
hardware or simulator is required.

Therefore, we propose QC-PPO, which replaces the proximal policy optimization (PPO) critic with
an hDQNN while keeping the actor purely classical. The PQC block is trained via a qtDNN surro-
gate, enabling efficient end-to-end critic updates on classical accelerators such as graphic processing
units (GPUs). During training, the critic’s PQC forward passes run on a quantum processing unit
(QPU) or a simulator while the qtDNN surrogate supplies gradients for backpropagation on classical
hardware. At deployment, only the classical actor runs on-board, eliminating the need for quantum
hardware and ensuring low-latency inference.

The key contributions can be summarized as follows. First, we empirically show that PPO perfor-
mance is more sensitive to critic expressivity than to the actor expressivity; on Humanoid-v4, under
equal conditions, QC-PPO improves the best-median return by about 52.3% over an MLP-based
PPO baseline (Table 1). Second, we propose QC-PPO, which achieves train–deploy separation
with a hybrid critic and a classical actor, meeting on-board latency requirements; empirically, the
actor’s inference is approximately 3.4× faster than a quantum actor on the same GPU (Table 3).
Third, we propose error-aware annealed gradient blending (EAGB) for qtDNN (Luo & Chen, 2025),
which increases the weight of surrogate gradients as the qtDNN error decreases(Section 4.3); this
improves early-training stability while reducing the number of quantum evaluations. To facilitate
reproducibility, we will release our training/evaluation scripts upon acceptance.

2 RELATED WORK

PQCs have recently been studied as learnable models that leverage qubit operations and provide
a different inductive bias from classical networks. Applied to RL, Chen et al. (2020); Jerbi et al.
(2021); Cho et al. (2024) reported that PQC-based models could achieve higher performance with
fewer parameters, especially in low-dimensional settings. However, most results remained confined
to such settings due to barren plateau problems and the high cost of training.

To address these limitations, hybrid models that combine PQCs with DNNs have been proposed.
In these architectures, classical networks handle data pre- and post-processing, while the PQC per-
forms high-dimensional feature extraction, thereby improving overall model expressivity and help-
ing to mitigate optimization difficulties associated with barren plateaus (Kölle et al., 2024; Jin et al.,
2025). In particular, most of the architectures implement quantum actors that use quantum circuits
to generate more diverse action trials during exploration. Although some environments report per-
formance gains, the practicality of quantum actors remains limited by challenges in on-board de-
ployment and by long training times. We therefore propose a practical algorithm that addresses the
limited maturity of quantum-specific optimization and mitigates key training bottlenecks.
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Encoding Ansatz Measurement

Figure 2: PQC overview. Inputs x are encoded by Uenc(x), processed by Uans(θ), and measured via
B to obtain fθ(x); gradients are obtained with the parameter-shift rule.

Several ablation studies have moved the quantum module to the critic, in many cases, this configura-
tion outperforms a quantum actor (Jin et al., 2025; Kölle et al., 2024). These findings were typically
presented without a clear explanation, and sometimes attributed to hyperparameter choices or tun-
ing artifacts. In contrast, we argue that the effect is systematic: actor–critic performance is more
sensitive to the critic’s expressivity, and a hybrid critic (hDQNN) directly mitigates an expressivity
bottleneck in the value function. We substantiate this hypothesis with spectral analysis of the learned
value function and corresponding performance gains (Figure 3).

3 BACKGROUND

Parameterized Quantum Circuit. A PQC is a learnable quantum circuit that combines data en-
coding, a parameterized ansatz, and measurements. A single qubit is |ψ⟩ = α |0⟩ + β |1⟩ with

|α|2 + |β|2 = 1 and equivalently written as the column vector |ψ⟩ =

(
α
β

)
. Let X , Y , and

Z denote the Pauli matrices; single-qubit rotations about the Bloch axes are Rx(θ) = e−i θ
2X ,

Ry(φ) = e−iφ
2 Y , and Rz(ϕ) = e−iϕ

2 Z , while two-qubit entangling gates such as controlled-NOT
(CNOT) and controlled-Z (CZ) create correlations among qubits. Classical inputs x are embedded
via data-encoding rotations (e.g., angle encoding with Rx/y/z), followed by a parameterized ansatz
Uans(θ); the overall unitary isU(x) = Uans(θ)Uenc(x). Measuring an observableB yields the model
output, as follows,

fθ(x) = ⟨ψ| U†(x)B U(x) |ψ⟩ , (1)
and its expectation is estimated with Nshots repeated measurements. The gradient of the expectation
with respect to θk can be obtained without differentiating through the simulator via the parameter-
shift rule,

∂fθ(x)

∂θk
=

1

2

[
fθk+

π
2
(x)− fθk−π

2
(x)

]
, (2)

thus, a single gradient component requires two forward circuit evaluations. For a given in-
put–observable pair, the circuit-call cost therefore scales as follows,

2×Nparams ×Nshots, (3)

and this evaluation burden compounds with circuit depth and the number of measured observables.
Beyond the well-known barren plateau phenomenon, the parameter-shift cost and shot noise intro-
duce an additional training bottleneck that limits scalability in high-dimensional settings.

Quantum Tangential Deep Neural Network. Parameter-shift rule (Wierichs et al., 2022) based
parameter updates in PQCs require multiple forward circuit evaluations per parameter, which in
practice calls for high-throughput quantum execution (ideally in parallel). In reality, the limited
availability of QPUs that support such parallelism constrains the practicality and scalability of PQCs.

The qtDNN addresses this by training a surrogate model of the PQC within a quantum–classical
hybrid pipeline. During backpropagation, it bridges gradients between the PreDNN and the post-
PQC deep neural network (PostDNN), thereby alleviating the backpropagation bottleneck through
the PQC and the PreDNN.
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Furthermore, the proposed hDQNN differs from conventional quantum–classical hybrids in two key
respects. First of all, the output of the PreDNN directly parameterizes the PQC’s control parameters,
i.e., rotation angles and entangling operations; and then, secondly, to exploit both classical and
quantum representational capacity, a direct connection link dc−link connects the PreDNN to the
PostDNN, providing a classical communication path that can bypass the PQC when beneficial.

Although the architecture introduces an additional surrogate-model training stage, parallel back-
propagation parameter updates in classical GPU enabled by qtDNN alleviated the training bottle-
necks in the PQC and PreDNN components that were observed in the original hDQNN.

4 QUANTUM CRITIC PPO

In this section, we introduce QC-PPO, which instantiates the critic with an hDQNN and the actor
with a standard DNN within an actor-critic framework.

4.1 MOTIVATION

It has been shown that injecting Fourier features into the MLPs of deep Q-network (DQN) and
deep deterministic policy gradient (DDPG) improves performance over plain MLPs Brellmann et al.
(2023); Evmorfos et al. (2023). In particular, Yang et al. (2022) demonstrate from a neural tangent
kernel (NTK) perspective that the low-frequency bias of value-function MLPs can hinder actor–critic
learning.

Building on two observations—(i) most gains arise when critic features receive Fourier structure,
and (ii) the expectation value of a PQC under a single-parameter gate U(x) = e−ixG admits a
Fourier-series expansion with frequencies drawn from eigenvalue differences ofG—we hypothesize
that a PQC-based critic can realize a similar advantage:

fQ(x) =
∑
ω∈Ω

cωe
iωx = a0 +

∑R

ℓ=1

[
aℓ cos(Ωℓx) + bℓ sin(Ωℓx)

]
, (4)

with Ω ⊆ {λj − λk} for eigenvalues {λj} of G.

While Luo & Chen (2025) applied hDQNN/qtDNN to the twindelayed deep deterministic policy
gradient algorithm (TD3) actor, we instead place the hybrid module in the critic to directly address
limited value-function expressivity. We adopt PPO for its clipped updates and parallel training
efficiency—crucial in safety-critical control where rapid, diverse interaction is preferable to maximal
sample reuse. During training, a qtDNN surrogate carries gradients through the quantum block,
avoiding parameter-shift overhead.

4.2 THE HDQNN CRITIC UPDATE WITH QTDNN

We retain the PPO pipeline but replace the critic with an hDQNN. In this setup, the PQC itself has no
free internal parameters; instead, the PreDNN outputs a control vector qi that directly parameterizes
the PQC’s rotation gates. Thus, trainability comes indirectly through the PreDNN weights.

The critic maps s 7→ V (s) as follows,

qi, dc-link = PreDNN(s), (5)
qo = fQ(qi) ≡ PQC(qi), (6)

V (s) = PostDNN
(
[ qo, dc-link ]

)
, (7)

where s ∈ Rds ; qi ∈ RNparams is the PreDNN control vector; dc-link ∈ RNdc-link is a classical
bypass; fQ denotes the non-trainable PQC; qo ∈ [−1, 1]nq stacks Pauli-Z expectations; and the
concatenation [ qo, dc-link ] is fed into PostDNN to produce the scalar value V (s).

During rollouts we store PQC inputs and outputs (qi, qo) in a buffer. From these, tiny batches Btiny

are drawn to train a qtDNN surrogate:

Ldist =
1

Btiny

Btiny∑
i=1

∥fqt(qi;ω)− fQ(qi)∥22 . (8)
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Algorithm 1 Pseudocode for the proposed QC-PPO algorithm.

1: Initialize policy πθ; critic PreDNN and PostDNN; qtDNN surrogate fqt(·;ω)
2: for iteration = 1, 2, . . . do
3: for t = 1 to T do
4: Sample at ∼ πθ(· | st); step env to get (rt, st+1)
5: (qi,t, dc-link,t)← PreDNN(st)
6: qo,t ← fQ(qi,t) ▷ PQC output: Pauli-Z expectations
7: Vt ← PostDNN

(
[ qo,t, dc-link,t ]

)
8: Store

(
st, at, rt, Vt, qi,t, qo,t, dc-link,t

)
9: end for

10: Compute GAE advantages Ât and targets R̂t = Ât + Vt
11: Distill qtDNN (buffer from rollout):

Ldist =
1
B

∑B

i=1

∥∥fqt(qi;ω)− fQ(qi)∥∥22, ω ← ω − η∇ωLdist

12: EAGB schedule:

αt =


0, if iteration ≤ Twarm,

α⋆ ·min
(
1,

iteration− Twarm

Tramp

)
, otherwise.

13: for epoch = 1 to K do
14: for minibatch B do
15: Policy ratio rt =

πθ(at | st)
πθold(at | st)

16: EAGB (critic forward):

q̃o,t = (1− αt) fqt(qi,t)
detach + αt fqt(qi,t),

Vt = PostDNN
(
[ q̃o,t, dc-link,t ]

)
17: Actor loss:

Lactor = −EB

[
min

(
rtÂt, clip(rt, 1±ε) Ât

)]
18: Critic loss: Lcritic = EB

[
(Vt − R̂t)

2
]

(value clipping optional)
19: Total loss: L = Lactor + cv Lcritic

20: Update θ and critic params by Adam on∇L; optionally update ω on∇Ldist

21: end for
22: end for
23: end for

where fqt(·;ω) is the qtDNN surrogate with weights ω; Btiny is the distillation mini-batch size.

Since Pauli-Z expectation outputs are continuous expectation values, mean squared error (MSE)
is more natural than cross-entropy, which is tailored to probabilistic targets and can cause gradient
blow-up near the boundaries. The trained qtDNN then replaces the PQC during backpropagation,
providing classical differentiability. Consistency of qtDNN gradients has been analyzed in Luo &
Chen (2025).

4.3 ERROR-AWARE ANNEALED GRADIENT BLENDING

Early in training, surrogate gradients can be unreliable. We introduce error-aware annealed gradi-
ent blending (EAGB): initially updates rely on the always-available classical path (dc−link), while
qtDNN influence is increased gradually. Concretely,

f̃qt(qi;α) = (1− α) fdetachqt (qi) + α fqt(qi), (9)

where fdetachqt is a stop-gradient copy (∂fdetachqt /∂ω = 0). The qtDNN weights ω are still trained
by Ldist.

5
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Figure 3: Median EMA learning curves on Humanoid-v4, HalfCheetah-v4 and Ant-v4 (IQR shaded,
10 seeds).

We use a linear ramp schedule

αt = α⋆ ·min
(
1,

max(0, t− Twarm)

Tramp

)
, (10)

with target α⋆ ∈ (0, 1]. Optionally, “error-aware” variants tie the increase of αt to the surrogate
calibration error ∥fqt − fQ∥2, enabling adaptive gating.

4.4 ALGORITHM SUMMARY

Our proposed framework is summarized in Algorithm 1. In (Line 1), we initialize the policy
πθ, the critic submodules (PreDNN and PostDNN), the qtDNN surrogate fqt(·;ω). In (Lines 2–
9), we collect a rollout of length T : at each step we sample at ∼ πθ(· | st), compute
(qi,t, dc-link,t) = PreDNN(st), evaluate the PQC; qo,t = fQ(qi,t) (Pauli-Z expectations), obtain
the value Vt = PostDNN([ qo,t, dc-link,t ]), and store all tuples for learning. In (Line 10), we com-
pute GAE advantages Ât and value targets. In (Lines 11–12), we distill the qtDNN on buffered pairs
(qi, qo) via the MSE loss Ldist and set the EAGB blending coefficient αt using the warm-up/ramp
schedule. In (Lines 13–21), we update parameters over K epochs and mini-batches: we form the
EAGB-blended critic input, compute the value estimation, optimize the clipped PPO actor loss and
the MSE critic loss, and apply Adam updates to θ and the critic parameters.

5 EVALUATION

We evaluate our architecture on multiple high-dimensional MuJoCo environments including the
challenging Humanoid-v4 benchmark (Brockman et al., 2016). Because learning curves in these en-
vironments exhibit substantial variability across random seeds—even for the same algorithm (Mania
et al., 2018)—we conduct a multi-seed evaluation.

Protocols. For each method (ours and baselines), we run experiments with 10 random seeds and
report the median and interquartile range (IQR; 25–75%) of episodic return across seeds. To align
sample budgets across runs, trajectories are resampled onto a common step grid with stride 20,000
via linear interpolation, and per-step percentiles are computed on this grid. For visualization, we op-
tionally apply an EMA-smoothed median curve, but all statistical comparisons (tables and numerical
results) are based on the unsmoothed medians and IQRs.

Baselines and fairness. To isolate the role of a quantum critic, we evaluate three configurations.
1. QC-PPO (ours): quantum-augmented critic (hDQNN/qtDNN) with a classical actor,
2. QA-PPO: reversed configuration—quantum-augmented actor with a classical critic,
3. PPO: fully classical actor–critic.

For fairness, network sizes are matched across methods (see Table 2). Learning curves are shown in
Figure 3.

Summary metrics. From each interpolated median curve we report (i) the peak median—the max-
imum median return across training—with its q25 and q75 at the peak step, and (ii) the final-at-budget

6
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Table 1: Median return and IQR (q25, median, q75) over 10 seeds on three MuJoCo environments.

Environment Method Peak median Final at Budget

q25 median q75 q25 median q75

Humanoid-v4
QC-PPO 1277.993 1769.126 2034.736 1011.587 1265.081 1513.972
QA-PPO 641.229 782.631 844.339 643.687 717.436 795.387
PPO 709.735 1161.744 2024.238 719.805 946.759 1582.493

HalfCheetah-v4
QC-PPO 2245.759 4342.132 4646.062 3304.476 4297.952 4377.111
QA-PPO 910.293 1626.839 2280.093 467.834 1178.669 2146.152
PPO 2223.479 3968.225 4573.391 2803.185 3850.272 4213.181

Ant-v4
QC-PPO 3019.571 4152.033 4630.525 3756.357 4013.574 4429.250
QA-PPO -25.461 -17.073 -15.966 -21.053 -19.727 -15.787
PPO 3420.916 3955.076 4316.747 2449.911 3481.606 4068.357

Table 2: Network architectures. In hDQNN models, the critic and actor are split into PreDNN and
PostDNN. The PQC has no trainable parameters, with each layer applying Rx and Ry , therefore
Nparams = 2×Nqubits ×Nlayers On Humanoid-v4, we use 10 qubits and 10 layers.

Method Actor layers Critic layers

PPO [ds→512 →128 →da] [ds→256 →256 →1]

QC-PPO [ds→512 →128 →da] Pre: [ds→256 →Ndc-link +Nparams]
Post: [Ndc-link +Nqubits→128 →1]

QA-PPO Pre: [ds→256 →Ndc-link +Nparams]
Post: [Ndc-link +Nqubits→128 →da] [ds→256 →256 →1]

median with its q25 and q75 (Table 1). This jointly captures transient best performance and end-of-
training performance.

Results. Across 10 seeds, we observe the performance superiority in the order of

QA-PPO < PPO < QC-PPO,

especially with QC-PPO achieving a 52.3% higher best-median return than the classical PPO base-
line (Table 1). This supports our hypothesis that allocating quantum capacity to the critic more
directly enhances value-function expressivity and stabilizes policy updates. By contrast, improve-
ments on the other environments are modest. We hypothesize that this is because a single configura-
tion, with network sizes and hyperparameters tuned primarily for Humanoid-v4, was applied across
tasks.
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Figure 4: Power spectral density of the learned value function V (s) computed from a single trajec-
tory obtained by concatenating 50 episodes in Humanoid-v4.
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Table 3: Actor inference latency (ms; mean ± standard deviation over 5 runs)

Classical Actor Quantum Actor

Time 0.786 ± 0.042 2.695 ± 0.008

Frequency analysis of the value function. To compare the high-frequency modeling ability of
the critic, we compute the power spectral density (PSD) of the value predictions V (st). For fairness,
we roll out the same set of evaluation trajectories and feed the resulting states to two critics—the
classical critic and our hybrid hDQNN critic. Figure 4 shows that both critics concentrate energy
at low frequencies, but the classical critic exhibits a pronounced narrow-band peak around 100 and
a heavier concentration near that band. In contrast, the hDQNN critic redistributes energy across
multiple moderate bands and reduces narrow-band dominance, yielding a smoother value trace with
modest mid–to–high-frequency components. Because advantages At depend on temporal differ-
ences of V (st), the hDQNN’s shift in spectral bias likely reduces the variance of At and stabilizes
policy updates, helping to explain the higher performance achieved by QC-PPO.

Deployment efficiency. Finally, we compare actor inference latency between QC-PPO (classical
actor) and QA-PPO (quantum actor). Using the same GPU, we measure the mean latency over five
runs with CUDA and CUDA-Q (quantum simulator). As shown in Table 3, the classical actor in QC-
PPO is approximately 3.4× faster than the quantum actor in QA-PPO. This highlights a practical
advantage of our design: quantum resources are required only during training, while deployment
remains fully classical.

6 CONCLUSION

QC-PPO showed promising performance improvements over a classical MLP-based baseline in the
challenging Humanoid-v4 environment, while maintaining the practical advantage of on-board de-
ployment with a purely classical actor. These results position QC-PPO as one of the most practi-
cal QRL architectures available today, enabling a clear train–deploy separation in which quantum
resources are used only during learning. A limitation of this study is that all experiments were
conducted on a CUDA-Q–based GPU quantum simulator rather than real quantum hardware. As
future work, we will evaluate training efficiency on QPUs and deploy QC-PPO for policy learning
on humanoid robots to validate its real-world applicability.

LLM USAGE

To improve fluency and clarity, we used a large language model (LLM) for limited editing (e.g.,
phrasing and grammar). All changes were reviewed by the authors to ensure faithfulness to the
intended meaning, and no identifying information was disclosed.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. The study does not involve human subjects, per-
sonally identifiable information, or sensitive attributes. All datasets used are publicly available and
employed under their respective licenses. We took care to avoid harmful or biased use of the models.
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