
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRUNING AGGREGATION PARAMETERS FOR LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning is a highly effective approach for compressing large language models
(LLMs). By strategically reducing model size, pruning significantly decreases both
latency and GPU memory usage during inference, resulting in more efficient and
cost-effective deployment of these models. Despite their effectiveness, current
structured pruning algorithms have limitations. They still require extensive contin-
ued pre-training on large datasets to achieve model compression. Moreover, most
of these methods are unable to reduce the memory usage of the key-value cache
during generation tasks. In this work, we propose a novel pruning algorithm that
requires no additional training and targets specific parameters within LLMs. We
classify the model’s parameters into three categories: aggregation, transformation,
and normalization. Our method primarily focuses on pruning the aggregation
parameters in the higher layers of the model. To further improve the performance
of the pruned LLM, we also introduce a rescaling parameter that adjusts the output
of the pruned block. We conduct comprehensive experiments on a wide range of
LLMs, including LLaMA3.1-8B/70B, Qwen2-7B/72B, Gemma2-9B, and Mistral-
7B-v0.3. Our evaluation includes both generation and discriminative tasks across
various benchmarks. The results consistently demonstrate that our method outper-
forms recent block pruning methods. This improvement is particularly notable in
generation tasks, where our approach significantly outperforms existing baselines.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2023; Jiang et al., 2023; Yang
et al., 2024; Gemma2-Team et al., 2024), pre-trained on extensive text data from across the internet,
have achieved remarkable performance in downstream tasks such as information retrieval (Asai et al.,
2024), code generation (Guo et al., 2024a), and mathematical reasoning (Wang et al., 2023; Yang
et al., 2023; Huang et al., 2024). These LLMs, however, contain a huge number of parameters,
resulting in substantially slower inference speed compared to their smaller counterparts. To address
this issue in generation tasks, a common approach is to use key-value (KV) cache (Pope et al., 2023),
which stores intermediate computation results. While this technique effectively trades space for time,
speeding up inference, it also significantly increases GPU memory consumption. As reported in Zhou
et al. (2024), the KV cache size can exceed the LLM model size during peak usage, and the inference
latency increases as the KV cache size grows. As a result, one major bottleneck for LLM serving is
GPU memory consumption.

Recent strategies to improve LLM efficiency primarily fall into two categories. The first category
focuses on the models themselves, aiming to reduce inference latency and GPU memory consumption
through pruning (Frantar & Alistarh, 2023; Ma et al., 2023; Jaiswal et al., 2023; Xia et al., 2024;
Ashkboos et al., 2024; Xu et al., 2024; Jaiswal et al., 2024a; Zhang et al., 2024c; Dong et al., 2024c;
Yin et al., 2024a;b; Zhao et al., 2024) or quantizing (Frantar et al., 2023; Xiao et al., 2023; Chee et al.,
2023; Lin et al., 2024). The second category targets the KV cache, specifically for generation tasks,
by either compressing (Dong et al., 2024b) or quantizing (Zhang et al., 2024d; Liu et al., 2024b) it to
decrease GPU memory usage during inference. Among these approaches, structured pruning (Xia
et al., 2024) searches for crucial substructures within the model while pruning other substructures
through continued pretraining on extensive text datasets. However, a significant limitation of most
current pruning algorithms is their inability to reduce the GPU memory consumption within the KV
cache. To address this issue, KV cache compression algorithms like LESS (Dong et al., 2024b) have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

been proposed, which maintain a constant-size KV cache by generating condensed representations of
less important tokens. These approaches (Xia et al., 2024; Dong et al., 2024c), however, typically
require designing specific learning objectives and loss functions, followed by extensive retraining
of the base model on large text corpora to achieve the desired goal. We argue that these methods
require an additional training phase, introducing significant computational overhead. Moreover, these
approaches may struggle to maintain performance in domains not well-covered in the extra training
data (Xia et al., 2024). This raises an important question: Can we develop a training-free algorithm
that effectively reduces GPU memory consumption with respect to the KV cache? Our work addresses
this challenge by drawing inspiration from an unexpected source: the intriguing connections between
Graph Neural Networks (GNNs) (Kipf & Welling, 2016; 2017; Hamilton et al., 2017; Veličković
et al., 2019) and LLMs. By exploring the parallels in their computation processes, we uncover
insights that lead to a novel, training-free method for improving LLM efficiency.

21 22 23 24

Depth

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

Node Classification Accuracy V.S. Depth

GCNII Efficient GCNII

Figure 1: Performance comparison between GC-
NII and its efficient variant on the Pubmed dataset.
The experiment evaluates both models with vary-
ing depths (L = 2, 4, 8, and 16). The efficient
GCNII demonstrates performance comparable to
the original GCNII across all tested depths, despite
its reduced computational complexity.

Recent studies (Joshi, 2020; Ying et al., 2021;
Kim et al., 2022; Nguyen et al., 2023; Barbero
et al., 2024) have uncovered connections be-
tween GNNs and Transformers (Vaswani et al.,
2017). The fundamental principle of GNNs is to
aggregate information from neighboring nodes,
resulting in smooth representations across the
graph. This principle finds a parallel in LLMs,
where the flow of contextual information can be
conceptualized as a GNN operating on a fully
connected graph, with connections governed by
a causal attention mask. In this conceptualiza-
tion, the process involves aggregating informa-
tion from previous tokens to update the repre-
sentations of subsequent ones. However, this
aggregation process is not without challenges.
In GNNs, while increasing the number of lay-
ers allows for the incorporation of higher-order
neighbor information and potentially smoother
representations, it also risks over-smoothing (Li
et al., 2018). This phenomenon can lead to node
representations converging to similar values, ul-
timately making them indistinguishable from
one another. To address this issue in GNNs, GCNII (Chen et al., 2020a) has been developed, utilizing
initial residual connections (Huang et al., 2017) and identity mappings, formulated as:

H(ℓ+1) = σ
((

(1− αℓ) ÃH(ℓ) + αℓH
(0)
)(

(1− βℓ) I + βℓH
(ℓ)
))

, (1)

where Ã = D̃−1/2ÃD̃−1/2, A is the adjacency matrix, Ã = A+ I , D̃ is the degree matrix of Ã,
and αℓ, βℓ, and W (ℓ) are the ℓ-th layer parameters. Although GCNII addresses over-smoothing, its
accuracy improves by only 1.6% when increasing layers from 2 to 16 (Figure 1), at the cost of an
eightfold increase in computation. Aggregation in GNNs is particularly computationally expensive,
especially in large graphs, accounting for up to 90% of total training and inference time (Liu et al.,
2023). GCNII can be made more efficient by reducing the number of aggregation operations during
inference while keeping the training process unchanged. This modified version can be formulated as
follows:

H(ℓ+1) =

σ

((
(1− αℓ) ÃH(ℓ) + αℓH

(0)

)(
(1− βℓ) I + βℓW

(ℓ)
))

if ℓ ≤ L
2 ,

σ
((

(1− αℓ) H(ℓ) + αℓH
(0)
) (

(1− βℓ) I + βℓW
(ℓ)
))

if ℓ > L
2 ,

(2)

where L is the depth of GCNII. As shown in Figure 1, we achieve comparable performance to GCNII
while halving the computational cost of aggregation during inference.

This phenomenon motivates us to explore whether a similar approach could be applied to LLMs.
Similar to the computationally expensive aggregation in GNNs, the self-attention module in LLMs
poses significant computational challenges. It exhibits quadratic time and memory complexity with

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 LLM inference with KV cache at each layer

1: Input: Current token’s hidden state Ht ∈ R1×d, previous keys Kcache ∈ R(t−1)×(h×dk),
previous values Vcache ∈ R(t−1)×(h×dk)

2: Step 1. Self-Attention:

3: Apply Layer Normalization: H ′
t = w1 ⊙

(
Ht√

1
d

∑d
i=1([Ht]:,i)

2
+ϵ

)
, where w1 ∈ Rd

4: Apply Linear Projection: Qt = H ′
tWQ, Kt = H ′

tWK , Vt = H ′
tWV , where WQ ∈

Rd×(h×g×dk), d = h× g × dk, and WK ,WV ∈ Rd×(h×dk)

5: Update KV Cache: Kcache ∈ Rt×(h×dk) ← Concat (Kcache,Kt), Vcache ∈ Rt×(h×dk) ←
Concat (Vcache,Vt)

6: Reshape Qt, Kcache, and Vcache: Q ∈ R1×h×g×dk ← Reshape (Qt), K ∈ Rt×h×dk ←
Reshape (Kcache), V ∈ Rt×h×dk ← Reshape (Vcache)

7: Apply Rotary Position Embedding (RoPE): Q← RoPE (Q), K← RoPE (K), where RoPE is
parameter-free

8: Repeat K and V: K′ ∈ Rt×h×g×dk ← Repeat (K), V′ ∈ Rt×h×g×dk ← Repeat (V), where
K′

:,hk,:g,:
= K:,hk,: and V′

:,hk,:g,:
= V:,hk,:

9: Compute Attention Scores A ∈ R1×t×h×g: A = softmax
(

QK′T
√
dk

)
, where K′T ∈ Rt×h×dk×g

10: Aggregate: Hattn = AV′ through the second dimension ▷ Aggregation over the context
11: Reshape Hattn: Hattn ∈ R1×d ← Reshape (Hattn)
12: Add Residual Connection: Ht = Ht +HattnWO, where WO ∈ Rd×d

13: Step 2. Feedforward Network (FFN):

14: Apply Layer Normalization: H ′
t = w2 ⊙

(
Ht√

1
d

∑d
i=1([Ht]:,i)

2
+ϵ

)
, where w2 ∈ Rd

15: Apply FFN: HFFN = (σ (H ′
tWgate)⊙ (H ′

tWup))Wdown, where σ is non-linear activation
function, Wgate,Wup ∈ Rd×di , and Wdown ∈ Rdi×d

16: Add Residual Connection: Ht = Ht +HFFN

17: Output: Updated keys Kcache, updated values Vcache, and updated Ht

respect to sequence length (Dao et al., 2022), making it a bottleneck in LLM serving. In this work,
inspired by the efficient version of GCNII discussed earlier, we propose a training-free pruning
strategy called AggregationPruner that targets only the query and key parameters in the higher layers
of LLMs. By selectively pruning these aggregation parameters, AggregationPruner compresses the
model and achieves a significant reduction in GPU memory consumption associated with the KV
cache during generation tasks. Considering the complex and black-box nature of LLMs, our approach
carefully avoids pruning transformation or normalization parameters to minimize the potential
negative impacts of pruning on downstream tasks. To further enhance performance, we incorporate
a rescaling parameter for the output of pruned blocks. Extensive experiments demonstrate that our
method outperforms recent block pruning algorithms (Men et al., 2024; Zhong et al., 2024; Gromov
et al., 2024; He et al., 2024; Siddiqui et al., 2024; Liu et al., 2024a; Zhang et al., 2024a; Jaiswal et al.,
2024b; Chen et al., 2024; Kim et al., 2024) across a wide range of downstream tasks and testing
LLMs. Notably, our approach shows significant performance improvement in generation tasks while
maintaining the same memory consumption with Self-AttentionPruner and LayerPruner (Gromov
et al., 2024; He et al., 2024) during inference.

2 PRELIMINARIES

2.1 DECODER-ONLY LARGE LANGUAGE MODEL

In decoder-only LLMs, information flows through self-attention modules, with each token aggregating
context from all preceding tokens in the sequence. This autoregressive process enables the model
to generate each subsequent token based on the information from earlier tokens. To preserve the
causal structure of language generation during training, attention is masked, preventing tokens
from accessing information from future positions in the sequence. For a given input sentence

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Classification of LLM layer parameters based on their functional roles.

Type w1 WQ WK WV WO w2 Wgate Wup Wdown

Aggregation Parameter ✓ ✓
Transformation Parameter ✓ ✓ ✓ ✓ ✓
Normalization Parameter ✓ ✓

x = {x1, . . . , xn}, LLMs employ a standard language modeling objective. This objective aims to
maximize the following: (Radford et al., 2018):

L(x) =
∑
i

logP (xi | xi−1, · · · , x1; Θ) , (3)

where P (xi | xi−1, · · · , x1; Θ) represents the probability of token xi given all preceding tokens
and the model parameters Θ. Conceptually, LLMs can be viewed as operating on a complete graph
structure, with tokens serving as nodes and attention scores as edges. Both LLMs and GNNs employ
a similar strategy for information processing: they iteratively refine representations by incorporating
contextual information. In LLMs, this context is derived from preceding tokens in a sequence, while
in GNNs, it comes from neighboring nodes in a graph. Despite operating in different domains, these
two model types share a fundamental approach to information aggregation and propagation. This
shared mechanism allows both LLMs and GNNs to generate context-aware representations.

Algorithm 1 illustrates the inference computation process of a decoder-only LLM layer. We categorize
the model parameters into three functional groups: aggregation, transformation, and normalization,
as detailed in Table 1. Aggregation parameters, such as WQ and WK , are used to compute attention
scores within the adjacency matrix A. These parameters enable the model to aggregate information
from preceding tokens, integrating context and capturing dependencies among tokens. Transformation
parameters, such as WV , WO, and Wgate, apply linear transformations and feedforward operations
to the hidden states of tokens. These parameters are crucial for the model’s ability to process input
and generate output. Normalization parameters, like w1 and w2, play a significant role in stabilizing
the training process. By maintaining a consistent scale in the output, they help prevent issues such
as vanishing or exploding gradients. In this work, we propose a pruning algorithm that specifically
targets the aggregation parameters to improve the LLMs’ efficiency.

2.2 BLOCK PRUNING STRATEGIES

Recent research (Men et al., 2024; Zhong et al., 2024; Gromov et al., 2024; He et al., 2024; Siddiqui
et al., 2024) has revealed the presence of redundant parameters in the higher layers of LLMs. These
studies demonstrate that selectively pruning certain blocks within these higher layers has little
performance degradation on downstream discriminative tasks. These pruning strategies can be
classified into three distinct approaches: Self-AttentionPruner, FFNPruner, and LayerPruner. Each
targets different components of the model:

• Self-AttentionPruner: This method bypasses the self-attention computation module (Step 1 in
Algorithm 1), removing parameters across all three categories: Aggregation, Transformation, and
Normalization.

• FFNPruner: By skipping the feed-forward network computation process (Step 2), this approach
primarily prunes Transformation and Normalization parameters.

• LayerPruner: This method skips an entire layer, resulting in the removal of all parameter types
within that layer.

These studies have introduced heuristic metrics to evaluate the importance of blocks within each
layer of LLMs. A consistent finding across these works is the greater significance of parameters in
lower layers compared to those in higher layers. Consequently, pruning algorithms typically target
parameters in higher layers while preserving those in lower layers.

This phenomenon can be intuitively explained through the lens of GNNs. The fundamental principle
of GNNs is to aggregate information from neighboring nodes to achieve smoother representations.
However, as the number of GNN layers increases, node representations tend to converge towards a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 2 LLM inference with AggregationPruner at each layer

1: Input: Current token’s hidden state Ht ∈ R1×d

2: Step 1. Transformation without Self-Attention:
3: Apply Layer Normalization as Line 3 in Algoritm 1
4: Apply Linear Projection: Vt = H ′

tWV , where WV ∈ Rd×(h×dk)

5: Reshape Vt: V ∈ R1×h×dk ← Reshape (Vt)
6: Repeat V: V′ ∈ R1×h×g×dk ← Repeat (V), where V′

0,hk,:g,:
= V0,hk,:

7: Reshape V′: Vt ∈ R1×d ← Reshape
(
V′)

8: Add Residual Connection: Ht = Ht + αVtWO ▷ Introduce a rescaling parameter
9: Step 2. Feedforward Network (FFN):

10: Apply FFN and Residual Connection as Lines 14-16 in Algorithm 1
11: Output: Updated Ht

common value. Beyond a certain point, adding more layers contributes minimally to changing node
representations, which can be formulated as follows:

lim
ℓ→∞

∥∥∥H(ℓ+1) −H(ℓ)
∥∥∥2
F
= lim

ℓ→∞

∥∥∥P (ℓ+1)X − P (ℓ)X
∥∥∥2
F
= 0. (4)

While the propagation matrix P in GNNs is static, the attention matrix in LLMs is dynamic. Despite
this difference, recent studies (Shi et al., 2022; Nguyen et al., 2023) have revealed that Transformers
can also experience over-smoothing, similar to GNNs. This phenomenon provides insight into the
behavior of the Block Importance (BI) metric proposed by Men et al. (2024):

BI(ℓ) = 1− EH,t
H

(ℓ)
t ·H(ℓ+1)

t∥∥∥H(ℓ)
t

∥∥∥
2

∥∥∥H(ℓ+1)
t

∥∥∥
2

. (5)

The BI metric tends to decrease as the layer index ℓ increases. This observation explains why recent
pruning algorithms target blocks in higher layers: these layers contribute less unique information.
Informed by these insights, our work also focuses on pruning aggregation parameters in the higher
layers of LLMs.

3 AGGREGATIONPRUNER

In this section, we first discuss the motivation behind our proposed AggregationPruner in Section 3.1
and 3.2. Then, we provide the details of our pruning algorithm in Section 3.3.

3.1 THE BOTTLENECK IN LLM SERVING

In applications such as chatbots and content generation tools, which handle a high volume of daily
API requests, maintaining low latency is crucial. This is typically achieved by batching multiple
requests for inference, thereby reducing computational waste. Moreover, modern LLMs employ the
KV cache to accelerate inference by storing intermediate results. While effective, this approach leads
to increased memory consumption as the number of requests grows. To illustrate the scale of memory
consumption from the KV cache, we use an example from PagedAttention (Kwon et al., 2023). A
13B parameter OPT model (Zhang et al., 2022), capable of generating up to 2048 tokens, requires
approximately 800 KB of GPU memory per token. This can lead to a potential consumption of 1.6
GB per request. Given that LLM operations are primarily constrained by memory bandwidth (Dao
et al., 2022), the amount of memory access becomes the primary factor in determining runtime.
Consequently, understanding the mechanism by which LLMs generate and utilize the KV cache is
essential for optimizing resource utilization.

3.2 DISTINCT ROLES OF PARAMETER TYPES IN LARGE LANGUAGE MODELS

3.2.1 THE ROLE OF AGGREGATION PARAMETER

As previously discussed, aggregation parameters play a crucial role in calculating attention scores,
which are essential for aggregating contextual information from preceding tokens to subsequent ones.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3 Top-down α grid search for AggregationPruner

1: Input: Pruned LLM, number of pruned layers P , alpha search range 0, 0.1, 0.2, · · · , 1.0
2: Initialize: αbest = 1.0P (list of length P)
3: for ℓ = L to L− P + 1 step −1 do ▷ Start from the top layer
4: PPLbest =∞
5: for α ∈ 0, 0.1, 0.2, · · · , 1.0 do
6: Set αℓ = α in the pruned LLM
7: PPL = Perplexity (LLMpruned (αbest))
8: if PPL < PPLbest then
9: PPLbest = PPL

10: αbest[ℓ] = α
11: end if
12: end for
13: end for
14: Output: Optimal αbest for each pruned layer

This process involves computing the inner product of queries and keys, resulting in quadratic time
and memory complexity with respect to sequence length. To accelerate the generation of subsequent
tokens, modern LLMs typically employ a KV cache mechanism as illustrated in Algorithm 1. This
approach stores previously calculated keys and values, thereby reducing computational overhead.
When generating a new token, the model only needs to compute the query, key, and value for the last
token in the sequence. It then combines the KV cache with the last token’s query and key to aggregate
information from previous tokens, integrating this context into the last token’s representation. By
avoiding the need to recompute keys for each token, this approach significantly accelerates the
calculation of attention scores. These scores are then used to aggregate contextual information from
the V cache and the last token’s value. This optimization strategy greatly enhances inference speed
by minimizing redundant computations, particularly for long sequence generation tasks.

While the KV cache significantly accelerates inference, it also introduces substantial GPU memory
consumption. As previously discussed, higher layers in LLMs typically contribute less unique
information to the model’s output. Leveraging this insight, our work focuses on pruning aggregation
parameters in these higher layers to reduce the size of the KV cache. This approach aims to balance
the trade-off between inference speed and memory efficiency, optimizing overall model performance.

3.2.2 THE ROLE OF TRANSFORMATION PARAMETERS

Transformation parameters in LLMs comprise two main components: Wv and Wo in the Self-
Attention module, and Wgate, Wdown, Wup in the Feed-Forward Network (FFN). These parameters
apply linear transformations on token embeddings and, as some research (Anderson, 1972; Kohonen,
1972; Geva et al., 2021; Meng et al., 2023) suggests, serve as storage of compressed knowledge (Dele-
tang et al., 2024; Lester et al., 2024) derived from vast internet-scale text data.

Current block pruner methods risk discarding valuable stored knowledge when pruning these transfor-
mation parameters. Furthermore, since pruning aggregation parameters already provides substantial
memory savings, further pruning of transformation parameters results in diminishing returns. This
additional pruning could also introduce potential issues, especially when it comes to maintaining
performance across various downstream tasks.

3.3 OUR PROPOSED PRUNING ALGORITHM: AGGREGATIONPRUNER

Building on the insights discussed above, we introduce AggregationPruner, a novel pruning algorithm
designed specifically for LLMs. This approach strategically focuses on pruning only the aggregation
parameters in the higher layers of LLMs, preserving the knowledge-rich transformation parameters.
By doing so, AggregationPruner achieves substantial memory efficiency gains while preserving
the model’s core knowledge base. The computation process for the higher layers, incorporating
our pruning strategy, is detailed in Algorithm 2. It’s important to note that many LLMs employ
Grouped-query attention (GQA) (Ainslie et al., 2023). Therefore, a modification is required to
accommodate this architecture as shown in Algorithm 2. Specifically, in Line 6, we must replicate the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 4 LLM inference with AggregationPruner

1: Input: Token sequence T , the number of layers L, the number of pruning layers P
2: for ℓ = 1 to L do
3: if ℓ ≤ L− P then
4: Run Algorithm 1 on T : Compute H(ℓ)

5: else
6: Run Algorithm 2 on T : Compute H(ℓ)

7: end if
8: end for
9: Output: Final token representation H(L)

value matrix V a total of g− 1 times, where g represents the number of query groups. This replication
ensures compatibility with the GQA mechanism, enabling our AggregationPruner to seamlessly
integrate with modern LLM architectures.

When modifying the higher layers of an LLM, we propose that the original residual connection
coefficient of 1 may no longer be optimal. Inspired by GCNII, which uses a decreasing coefficient to
address the diminishing unique information in higher layers caused by over-smoothing, we introduce
a rescaling parameter. This parameter, denoted as α, adjusts the pruned block’s output within the
residual connection, as shown in Line 8 of Algorithm 2.

Determining the optimal value for α presents a challenge. Traditional retraining methods are not
applicable due to α’s non-differentiable nature. While some recent works have employed Zeroth-
Order Optimization (Guo et al., 2024b; Zhang et al., 2024b) to estimate gradients during fine-tuning,
we propose a simpler, more efficient approach: a greedy search strategy. Our method involves
calculating the perplexity of the pruned LLM to identify the optimal α. To simplify the search
process, we adopt a top-down approach. We begin by determining α for the uppermost layer and then
use this value as a starting point for the subsequent layer. This cascading strategy significantly reduces
the search space. The entire process is implemented as a grid search as illustrated in Algorithm 3,
balancing efficiency with thoroughness. This approach allows us to fine-tune the rescaling parameter
across layers, optimizing the model’s performance post-pruning without the need for extensive
retraining. The development of more complex search strategies leaves room for future work. The
inference process, which incorporates AggregationPruner, is detailed in Algorithm 4.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our proposed pruning algorithm, assessing
its performance across six LLMs and ten diverse benchmarks. By conducting experiments on various
LLMs and benchmarks, we aim to establish consistent and reliable results.

4.1 SETUP

Baselines. We evaluate AggregationPruner against three baselines: FNNPruner, LayerPruner, and
Self-AttentionPruner, which are described in Section 2.2. These baseline methods employ various
heuristic metrics to determine which layers should be pruned. While there may be minor variations in
the specific layers selected for pruning, all these methods generally prune from top to bottom. In this
work, we evaluate performance by pruning different blocks within the selected layers. To ensure a fair
comparison, we apply a top-to-bottom pruning approach for all methods as shown in Algorithm 4.

Testing LLMs. We evaluate all pruning algorithms on 6 LLMs: LLaMA3.1-8B/70B (Touvron et al.,
2023), Qwen2-7B/72B (Yang et al., 2024), Gemma2-9B (Gemma2-Team et al., 2024), and Mistral-
7B-v0.3 (Jiang et al., 2023). All experiments are conducted using Nvidia H100/A100 80G GPUs.
However, due to memory constraints, we are unable to load the full weights of LLaMA3.1-70B and
Qwen2-72B directly onto the GPU. To address this limitation, we employ the bnb quantization method
provided by Hugging Face to compress these two models to 4-bit precision for our experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.08

0.16

0.24

0.32

0.40

0.48

A
cc

ur
ac

y

Performance of LLaMA3.1-8B on GSM8K
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.12

0.24

0.36

0.48

0.60

0.72

A
cc

ur
ac

y

Performance of LLaMA3.1-8B on TriviaQA

AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.12

0.24

0.36

0.48

0.60

0.72

A
cc

ur
ac

y

Performance of LLaMA3.1-70B on GSM8K
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.14

0.28

0.42

0.56

0.70

0.84

A
cc

ur
ac

y

Performance of LLaMA3.1-70B on TriviaQA

AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.14

0.28

0.42

0.56

0.70

0.84

A
cc

ur
ac

y

Performance of Qwen2-7B on GSM8K
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.10

0.20

0.30

0.40

0.50

0.60

A
cc

ur
ac

y

Performance of Qwen2-7B on TriviaQA
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.15

0.30

0.45

0.60

0.75

0.90

A
cc

ur
ac

y

Performance of Qwen2-72B on GSM8K
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.14

0.28

0.42

0.56

0.70

0.84

A
cc

ur
ac

y

Performance of Qwen2-72B on TriviaQA

AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.12

0.24

0.36

0.48

0.60

0.72

A
cc

ur
ac

y

Performance of Gemma2-9B on GSM8K
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.12

0.24

0.36

0.48

0.60

0.72

A
cc

ur
ac

y

Performance of Gemma2-9B on TriviaQA

AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.06

0.12

0.18

0.24

0.30

0.36

A
cc

ur
ac

y

Performance of Mistral-7B-v0.3 on GSM8K
AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

0 2 4 6 8 10 12
The Number of Pruned Layers

0.0

0.12

0.24

0.36

0.48

0.60

0.72

A
cc

ur
ac

y
Performance of Mistral-7B-v0.3 on TriviaQA

AggregationPruner
Self-AttentionPruner
FFNPruner
LayerPruner

Figure 2: We evaluate the performance of 6 LLMs, including LLaMA3.1-8B/70B, Qwen2-7B/72B,
Gemma2-9B, and Mistral-7B-v0.3, on generation tasks such as GSM8K and TriviaQA. Our evaluation
involves progressively pruning layers, starting from 0 and extending up to 12 layers.

Benchmarks. We employ the lm-evaluation-harness package (Gao et al., 2021) to conduct
experiments on both generation and discriminative tasks. While current LLM deployments primarily
focus on generation tasks, discriminative tasks are often used to evaluate overall model performance.
It’s important to note that LLMs only generate the KV cache during generation tasks. Discriminative
tasks, on the other hand, involve providing inputs and directly obtaining results, such as classification
labels or regression values. Our generation tasks include 5-shot GSM8K (Cobbe et al., 2021) and 5-
shot TriviaQA (Joshi et al., 2017). For discriminative tasks, we use 7-shot CommonsenseQA (Talmor
et al., 2019), 5-shot WinoGrande (Sakaguchi et al., 2019), 25-shot ARC-Challenge (Clark et al., 2018),
0-shot BoolQ (Clark et al., 2019), 0-shot OpenBookQA (Mihaylov et al., 2018), 0-shot PIQA (Bisk
et al., 2020), 0-shot MedQA (Jin et al., 2020), and 5-shot MMLU (Hendrycks et al., 2021). We report
the accuracy for these tasks as recommended by the lm-evaluation-harness package.

4.2 RESULTS

Generation Tasks. Figure 2 presents the results for all pruning algorithms, showing the superior
performance of our proposed AggregationPruner across multiple generation tasks and language
models. Our method outperforms the baselines on both generation tasks with LLaMA3.1-8B, Qwen2-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: The Performance of LLaMA3.1-8B on Discriminative Tasks.

LLaMA3.1-8B

#Layers Method CommonSenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 73.6 77.2 54.7 82.1 33.4 80.0 59.9 65.2 65.8

2

FFNPruner 73.3 68.7 48.1 81.1 35.2 76.2 59.7 65.1 63.4
LayerPruner 73.4 67.2 47.5 81.1 37.6 75.6 59.9 65.1 63.4

Self-AttentionPruner 71.2 77.8 50.4 75.9 31.0 78.8 60.2 62.1 63.4
AggregationPruner 73.9 78.0 53.4 81.7 32.6 79.7 60.0 64.9 65.5

4

FFNPruner 73.3 66.2 45.1 77.4 32.2 75.0 53.9 62.6 60.7
LayerPruner 71.7 65.7 45.3 78.1 34.0 74.1 57.3 63.4 61.2

Self-AttentionPruner 71.1 76.7 49.5 56.6 30.4 77.9 60.4 61.6 60.5
AggregationPruner 74.4 77.5 52.7 78.0 33.0 79.1 60.1 65.0 65.0

6

FFNPruner 71.2 65.6 41.2 71.2 30.0 71.3 46.3 56.0 56.6
LayerPruner 72.4 60.9 43.9 79.3 33.4 71.9 53.5 61.3 59.6

Self-AttentionPruner 71.0 77.4 50.3 52.4 30.6 77.8 59.0 62.1 60.1
AggregationPruner 74.3 77.7 53.2 75.7 32.6 78.9 59.2 64.8 64.6

8

FFNPruner 72.6 64.7 37.5 62.2 27.2 68.6 55.3 62.8 56.4
LayerPruner 61.9 62.3 41.0 62.3 30.4 69.8 53.2 54.5 54.4

Self-AttentionPruner 71.6 76.6 49.1 51.8 30.4 77.7 58.4 62.0 59.7
AggregationPruner 74.0 77.7 53.6 74.8 33.2 79.0 59.9 64.8 64.6

10

FFNPruner 71.6 63.9 32.2 62.1 24.4 65.6 53.6 61.3 54.3
LayerPruner 63.9 61.6 36.7 62.3 26.6 68.4 57.4 62.4 54.9

Self-AttentionPruner 69.9 76.6 47.7 50.8 30.6 77.3 58.0 61.7 59.1
AggregationPruner 74.4 78.3 52.4 74.8 32.2 78.8 60.7 64.5 64.5

12

FFNPruner 72.7 62.0 31.2 63.1 21.8 63.8 57.9 63.2 54.5
LayerPruner 63.6 58.2 34.0 63.3 23.6 64.6 49.0 54.7 51.4

Self-AttentionPruner 70.4 75.5 45.1 49.4 29.0 75.5 57.5 61.7 58.0
AggregationPruner 74.3 77.1 51.3 75.0 31.0 77.3 60.8 64.5 63.9

14

FFNPruner 71.4 62.4 29.2 62.4 18.8 61.2 59.8 62.2 53.4
LayerPruner 71.8 58.7 32.1 62.2 24.4 63.1 59.6 64.2 54.5

Self-AttentionPruner 67.6 75.3 44.0 49.8 27.0 75.4 57.3 60.3 57.1
AggregationPruner 72.4 76.7 49.1 76.3 29.6 77.5 61.7 64.6 63.5

7B/72B, and Gemma2-9B for TriviaQA. For Mistral-7B-v0.3 on TriviaQA and LLaMA3.1-70B,
it shows a slight improvement. Additionally, on GSM8K with LLaMA3.1-70B, Gemma2-9B, and
Mistral-7B-v0.3, our performance is comparable to the best baseline. These results consistently
demonstrate that our method surpasses the three baselines across various models and tasks. Besides,
our results reveal a clear ranking in overall performance among the pruning methods: Aggregation-
Pruner > Self-AttentionPruner > FFNPruner > LayerPruner. Notably, FFNPruner and LayerPruner
exhibit a rapid decline in performance, dropping to zero as the number of pruned layers increases,
compared with the other two methods. These results emphasize the critical importance of transforma-
tion parameters in both the FFN and Self-Attention modules for generation tasks. This observation
aligns with our claim in Section 3.2.2.

Furthermore, our analysis revealed that as the number of pruned layers increases, the performance of
LLMs drops more rapidly on GSM8K compared to TriviaQA. This discrepancy can be attributed to
the differing response lengths required for each task. We observed that unpruned LLMs typically
encounter the end-of-sequence (EOS) token within 16 tokens when generating answers for TriviaQA.
In contrast, GSM8K often requires more (up to 256) tokens to produce a complete answer. Pruned
LLMs, which generate one token at a time, are more susceptible to errors than their unpruned
counterparts. This vulnerability is exacerbated in tasks requiring longer responses, as each additional
token introduces the potential for error accumulation. Consequently, the extended response length
needed for GSM8K leads to a more pronounced performance decline in pruned LLMs compared to
the shorter responses typical of TriviaQA.

Discriminative Tasks. We present the performance of six LLMs on discriminative tasks in Ta-
bles 2, 5, 6, and 4. Due to space limit in the main text, Tables 5, 6, and 4 are included in Appendix C.
We also report the average performance across eight discriminative tasks. The results demonstrate
that our pruning algorithm outperforms the baselines on LLaMa3.1-8B, Qwen2-7B/72B, and Mistral-
7B-v0.3, while achieving comparable performance to the best baseline on LLaMa3.1-70B and
Gemma2-9B. Notably, as we increase the number of pruned layers, the performance degradation
on discriminative tasks is less pronounced compared to generation tasks. This discrepancy can be

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

attributed to the nature of discriminative tasks, which typically involve multiple-choice questions with
limited options, making them inherently simpler than generation tasks that require predicting the next
token from the entire vocabulary. To further validate this claim, we conduct additional experiments
using a reward model with AggregationPruner. Specifically, we evaluate the Skywork/Skywork-
Reward-Llama-3.1-8B model from Hugging Face on RewardBench (Lambert et al., 2024) to assess
the impact of pruning algorithm on reward model performance.

0 2 4 6 8
The Number of Pruned Layers

0.54

0.58

0.62

0.66

0.70

A
cc

ur
ac

y

Ablation Study on Qwen2-7B
Searched α
α = 1

Figure 3: Performance comparison be-
tween the default alpha setting (α =
1) and the α value obtained through
grid search for Qwen2-7B. The experi-
ment evaluates model accuracy averaged
across eight discriminative tasks.

Figure 8 in Appendix C illustrates the performance of the
reward model on RewardBench. Notably, when 16 layers
are pruned, the model’s performance remains nearly identi-
cal to that of the unpruned version. However, an additional
experiment reveals differences when using the pruned and
unpruned models to annotate rewards for online align-
ment (Cen et al., 2024; Dong et al., 2024a). We observe a
significant disparity in the reward distributions generated
by the pruned and unpruned models. The mean in the re-
wards gap is 3.53, with a standard deviation of 5.77. This
discrepancy can be attributed to the nature of the tasks: Re-
wardBench primarily involves preference choices between
two responses, essentially a binary classification problem.
In contrast, reward annotation operates on a continuous
real number scale, which is a more challenging task. These
findings lead us to conclude that pruned models are bet-
ter suited for maintaining performance on discriminative
tasks with limited options. This conclusion makes pruned
reward models particularly well-suited for online Direct
Preference Optimization (DPO) (Rafailov et al., 2023) settings. In such settings, each iteration
requires only on-policy preference data, and the reduced latency of pruned models is advantageous.
However, this same attribute makes them less ideal for online Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022), where more nuanced reward annotations may be necessary.

4.3 ABLATION STUDY

In this section, we evaluate the efficacy of our proposed α search algorithm, as described in Sec-
tion 3.3. Our experiments focus on Qwen2-7B, and we present the average accuracy across eight
discriminative tasks. As illustrated in Figure 3, the alpha value obtained through our grid search
method demonstrates better performance compared to the default setting of α = 1. These results
demonstrate the effectiveness of our algorithm in improving model performance.

5 RELATED WORK

Pruning. Pruning is a widely adopted and efficient technique in both Computer Vision and Large
Language Models. It can be categorized into two main types: Structured Pruning and Unstructured
Pruning. Structured Pruning (Lagunas et al., 2021; Xia et al., 2022; Kurtic et al., 2023; He & Xiao,
2023; Xia et al., 2024) involves removing entire filters from neural networks, making it particularly
conducive to model deployment. On the other hand, Unstructured Pruning (Chen et al., 2020b; Sanh
et al., 2020) focuses on removing individual neurons within the network. Some recent works (Men
et al., 2024; Zhong et al., 2024; Gromov et al., 2024; He et al., 2024; Siddiqui et al., 2024) have been
proposed to prune blocks in the higher layers of Large Language Models.

6 CONCLUSION

In this work, we propose AggregationPruner, a novel approach that focuses on pruning query and
key parameters in the higher layers of LLMs. Our method can reduce GPU memory consumption
associated with the KV cache during generation tasks. Through extensive experimentation, we
demonstrate that our pruning algorithm consistently outperforms recent block pruning techniques,
offering a significant advancement in model efficiency without compromising performance. We hope
our work will inspire future research on pruning strategies to reduce the KV cache in LLM serving.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
In Empirical Methods in Natural Language Processing, 2023.

James A Anderson. A simple neural network generating an interactive memory. Mathematical
Biosciences, 14(3-4):197–220, 1972.

Akari Asai, Zexuan Zhong, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer, Hannaneh Hajishirzi, and
Wen-tau Yih. Reliable, adaptable, and attributable language models with retrieval. arXiv preprint
2403.03187, 2024.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. SliceGPT: Compress large language models by deleting rows and columns. In
International Conference on Learning Representations, 2024.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João GM Araújo,
Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information
over-squashing in language tasks. arXiv preprint arXiv:2406.04267, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. In Advances in Neural Information Processing Systems,
2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020a.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. In Advances in Neural
Information Processing Systems, 2020b.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining
the unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In North
American Association for Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Advances in Neural Information Processing Systems,
2022.

Gregoire Deletang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression. In International Conference on
Learning Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024a.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. In
International Conference on Machine Learning, 2024b.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. In
International Conference on Machine Learning, 2024c.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In International Conference on Learning Representations,
2023.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, September 2021.

Gemma2-Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, L’eonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ram’e, Johan
Ferret, Peter Liu, Pouya Dehghani Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin
Kumar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stańczyk, Ser-
tan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam
Neyshabur, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Anto-
nia Paterson, Ben Bastian, Bilal Piot, Boxi Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Christoper A. Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David
Weinberger, Dimple Vijaykumar, Dominika Rogozi’nska, D. Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluci’nska, Harleen
Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost R.
van Amersfoort, Josh Gordon, Josh Lipschultz, Joshua Newlan, Junsong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, L. Sifre, Lena Heuermann, Leticia Lago, Lilly
McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt
Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming
Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Rokni, Rishabh Agarwal,
Ryan Mullins, Samaneh Saadat, S. Mc Carthy, Sarah Perrin, S’ebastien Arnold, Sebastian Krause,
Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting
Yu, Tom Eccles, Tom Hennigan, Tomás Kociský, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk
Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao,
Minh Giang, Ludovic Peran, Tris Brian Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani,
Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeffrey Dean,
Demis Hassabis, Koray Kavukcuoglu, Cl’ement Farabet, Elena Buchatskaya, Sebastian Borgeaud,
Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2:
Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Empirical Methods in Natural Language Processing, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024a.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, Beidi Chen, and Zhaozhuo Xu. Zeroth-order fine-
tuning of LLMs with extreme sparsity. In 2nd Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Optimization (WANT@ICML 2024), 2024b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is
needed. arXiv preprint arXiv:2406.15786, 2024.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In International
Conference on Learning Representations, 2024.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and Zhangyang Wang. The emergence of essential sparsity
in large pre-trained models: The weights that matter. In Advances in Neural Information Processing
Systems, 2023.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, and Yinfei Yang. Compressing
LLMs: The truth is rarely pure and never simple. In International Conference on Learning
Representations, 2024a.

Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shiwei Liu, Tianlong Chen, and Aditya Akella. Ffn-
skipllm: A hidden gem for autoregressive decoding with adaptive feed forward skipping. arXiv
preprint arXiv:2404.03865, 2024b.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from medical
exams. arXiv preprint arXiv:2009.13081, 2020.

Chaitanya Joshi. Transformers are graph neural networks. The Gradient, 2020.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Association for Computational
Linguistics, 2017.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. In Advances in Neural Information
Processing Systems, 2022.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Teuvo Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 100(4):353–359,
1972.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. Ziplm: Hardware-aware structured pruning of language
models. arXiv preprint arXiv:2302.04089, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, 2023.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Brian Lester, Jaehoon Lee, Alex Alemi, Jeffrey Pennington, Adam Roberts, Jascha Sohl-Dickstein,
and Noah Constant. Training llms over neurally compressed text. arXiv preprint arXiv:2404.03626,
2024.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. In Proceedings of Machine Learning and Systems,
2024.

Songwei Liu, Chao Zeng, Lianqiang Li, Chenqian Yan, Lean Fu, Xing Mei, and Fangmin Chen.
Foldgpt: Simple and effective large language model compression scheme. arXiv preprint
arXiv:2407.00928, 2024a.

Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. Dspar:
An embarrassingly simple strategy for efficient gnn training and inference via degree-based
sparsification. Transactions on Machine Learning Research, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In International
Conference on Machine Learning, 2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In International Conference on Learning Representations, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Empirical Methods in Natural
Language Processing, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tam Nguyen, Tan Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers via
regularized nonlocal functionals. In Advances in Neural Information Processing Systems, 2023.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff
Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fish-
man, Juston Forte, Is abella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter
Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik
Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew
Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin,
Stephanie Lin, Ma teusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Adeola Makanju,
Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer,
Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake
McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg Murk,
David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo,
Hyeonwoo Noh, Ouyang Long, Cullen O’Keefe, Jakub W. Pachocki, Alex Paino, Joe Palermo,
Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alexandre Passos,
Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack W. Rae,
Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted,
Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry,
Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov,
Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan
Sitkin, Katarina Slama, Ian Sohl, Benjamin D. Sokolowsky, Yang Song, Natalie Staudacher,
Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine
Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cer’on Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll L.
Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann,
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. In
Proceedings of Machine Learning and Systems, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Advances
in Neural Information Processing Systems, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Systems, 2020.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M. S. Lee, and
James Kwok. Revisiting over-smoothing in BERT from the perspective of graph. In International
Conference on Learning Representations, 2022.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and
Pavlo Molchanov. A deeper look at depth pruning of llms. arXiv preprint arXiv:2407.16286, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In North American Association for
Computational Linguistics, 2019.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Association for Computational Linguistics, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating
language model pre-training via structured pruning. In International Conference on Learning
Representations, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient
sparsity allocation. In International Conference on Learning Representations, 2024.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang, Mei Li, Min Xue,
Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai,
Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou,
Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang,
Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, and Zhi-Wei Fan. Qwen2 technical report.
arXiv preprint arXiv:2407.10671, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. In Advances in Neural Information Processing Systems, 2023.

Lu Yin, Ajay Kumar Jaiswal, Shiwei Liu, Souvik Kundu, and Zhangyang Wang. Junk DNA
hypothesis: Pruning small pre-trained weights Irreversibly and Monotonically impairs “difficult"
downstream tasks in LLMs. In International Conference on Machine Learning, 2024a.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar,
Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier
weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high sparsity. In
International Conference on Machine Learning, 2024b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024a.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. In
International Conference on Machine Learning, 2024b.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In International
Conference on Learning Representations, 2024c.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
A better token oracle for efficient llm inference via sparse-quantized kv cache. In Proceedings of
Machine Learning and Systems, 2024d.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. APT: Adaptive pruning and tuning pretrained
language models for efficient training and inference. In International Conference on Machine
Learning, 2024.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A BENCHMARK DETAILS

For our evaluation on discriminative tasks, we employ the lm-evaluation-harness package
(version 0.4.2) developed by Gao et al. (2021)1. All experiments for discriminative tasks are conducted
using an Nvidia A100 80G GPU. It’s important to note that the lm-evaluation-harness
provides two accuracy metrics: “acc” and “acc_norm” for the ARC-Challenge, OpenBookQA, PIQA,
and MedQA benchmarks. For these benchmarks, we report the “acc” accuracy results. Table 3 reports
the number of tasks and the number of choices for each discriminative task.

In our evaluation of generation tasks, we utilize version 0.4.3 of the lm-evaluation-harness
package. All experiments for generation tasks are conducted using an Nvidia H100 80G GPU. For the
GSM8K and TriviaQA benchmarks, this package offers two accuracy metrics: “exact_match,strict-
match” and “exact_match,flexible-extract”. In our reporting, we use the “exact_match,strict-match”
accuracy results for these benchmarks. The number of tasks for GSM8K and TriviaQA are 1319 and
17944, respectively.

Table 3: Dataset Statistics

Metric CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU

Tasks 1221 1267 1172 3270 500 1838 1273 11973
Choices 5 2 4 2 4 2 4 4

B GREEDY SEARCH DETAILS

For the search of optimal α, we utilize the wikitext task provided in lm-evaluation-harness
(version 0.4.2) to compute perplexity. While this package reports three types of perplexity metrics:
“word_perplexity”, “byte_perplexity”, and “bits_per_byte”. We employ the “word_perplexity” metric
in our search for α. The experiments are conducted using one Nvidia A100 80G GPU.

We present the searched alpha values for Mistral-7B-v0.3, Gemma2-9B, LLaMA3.1-8B, Qwen2-7B,
LLaMA3.1-70B, and Qwen2-72B in Figures 4, 5, 6, and 7. Our findings reveal that different models
yield distinct alpha values for each pruned layer, with layer indices starting at 0.

In Mistral-7B-v0.3, LLaMA3.1-8B, and Qwen2-7B/72B, we observed a trend where the searched
alpha values increase as the layer index rises. We hypothesize that this pattern may be attributed to
our top-down search approach, resulting in higher alpha values for upper layers.

Conversely, the alpha values searched for Gemma2-9B and LLaMA3.1-70B exhibit fluctuations. The
exploration of more sophisticated search methods is left for future research.

18 20 22 24 26 28 30 32
The Index of the Pruned Layer

−0.1

0.1

0.3

0.5

0.7

A
lp

ha

Searched Alpha on Mistral-7B-v0.3
AggregationPruner

28 30 32 34 36 38 40 42
The Index of the Pruned Layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
lp

ha

Searched Alpha on Gemma2-9B
AggregationPruner

Figure 4: Searched alpha on Mistral-7B-v0.3 and Gemma2-9B.

1https://github.com/EleutherAI/lm-evaluation-harness

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

18 20 22 24 26 28 30 32
The Index of the Pruned Layer

−0.1

0.1

0.3

0.5

0.7

0.9

A
lp

ha

Searched Alpha on LLaMA3.1-8B
AggregationPruner

21 22 23 24 25 26 27 28
The Index of the Pruned Layer

−0.1

0.1

0.3

0.5

0.7

0.9

A
lp

ha

Searched Alpha on Qwen2-7B
AggregationPruner

Figure 5: Searched alpha on LLaMA3.1-8B and Qwen2-7B.

40 44 48 52 56 60 64 68 72 76 80
The Index of the Pruned Layer

−0.1

0.0

0.1

0.2

0.3

A
lp

ha

Searched Alpha on LLaMA3.1-70B
AggregationPruner

Figure 6: Searched alpha on LLaMA3.1-70B.

60 64 68 72 76 80
The Index of the Pruned Layer

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
lp

ha

Searched Alpha on Qwen2-72B
AggregationPruner

Figure 7: Searched alpha on Qwen2-72B.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C MORE EXPERIMENTAL RESULTS

C.1 DISCRIMINATIVE TASK RESULTS

We present more results on discriminative tasks in Tables 4, 5, and 6.

Table 4: The Performance of Qwen2-7B on Discriminative Tasks.

Qwen2-7B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 80.8 77.2 58.1 84.9 34.8 79.9 56.7 70.5 67.9

2

FFNPruner 81.3 70.1 50.2 83.9 31.6 73.8 55.5 70.0 64.6
LayerPruner 79.7 66.9 50.4 83.3 32.4 71.1 55.4 69.6 63.6

Self-AttentionPruner 59.6 70.6 44.6 33.4 28.2 75.4 35.3 42.9 48.8
AggregationPruner 80.8 76.7 57.7 84.8 34.8 80.1 56.6 70.0 67.7

4

FFNPruner 80.5 65.5 40.1 84.5 25.8 67.7 54.6 67.3 60.8
LayerPruner 42.1 64.0 42.0 82.9 28.2 67.7 44.3 57.9 53.6

Self-AttentionPruner 51.6 70.5 45.1 29.5 28.4 75.4 24.2 32.3 44.6
AggregationPruner 71.0 76.5 57.7 84.9 35.0 79.5 55.7 68.1 66.1

6

FFNPruner 79.0 59.4 30.1 67.8 19.8 65.0 53.7 66.8 55.2
LayerPruner 35.6 63.5 35.3 62.2 25.8 63.1 39.0 40.3 45.6

Self-AttentionPruner 48.6 68.8 43.8 34.0 26.2 74.5 29.7 44.0 46.2
AggregationPruner 57.0 76.1 54.9 84.9 33.0 78.8 56.0 67.0 63.5

8

FFNPruner 43.8 52.6 26.5 69.7 19.6 61.8 49.8 59.3 47.9
LayerPruner 29.0 58.7 30.5 62.2 20.6 60.4 34.1 30.5 40.8

Self-AttentionPruner 33.7 67.0 39.1 34.1 24.2 71.8 26.1 35.4 41.4
AggregationPruner 58.4 74.0 51.5 85.1 29.4 75.8 56.1 66.9 62.2

C.2 REWARD MODEL RESULTS

Figure 8 presents our reward model results, which are obtained using RewardBench (Lambert et al.,
2024) for evaluation. We conduct these evaluations on an Nvidia H100 80G GPU, utilizing the reward
model provided by Skywork2.

To annotate reward values for our prompt-response data in online alignment setting, we employ a
multi-step process. First, we fine-tune the meta-llama/Meta-Llama-3-8B model3 using an instruction
dataset provided by RLHFlow (Dong et al., 2024a)4. We then use this instruction-tuned model to
generate responses to prompts from the RLHFlow dataset5, sampling two responses for each prompt.
Finally, we annotate these responses with reward values using a reward model that has been pruned
by 16 layers using the AggregationPruner method.

0 4 8 12 16 20 24
The Number of Pruned Layers

48

56

64

72

80

88

96

104

Sc
or

e

Performance of Skywork/Skywork-Reward-Llama-3.1-8B on RewardBench
AggregationPruner

Figure 8: We evaluate the performance of Skywork/Skywork-Reward-Llama-3.1- 8B on Reward-
Bench. Our evaluation involves progressively pruning layers, starting from 0 and extending up to 12
layers.

2https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B
3https://huggingface.co/meta-llama/Meta-Llama-3-8B
4https://huggingface.co/datasets/RLHFlow/SFT-OpenHermes-2.5-Standard
5https://huggingface.co/datasets/RLHFlow/iterative-prompt-v1-iter1-20K

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5: The Performance of Mistral-7B-v0.3 and Gemma2-9B on Discriminative Tasks.

Mistral-7B-v0.3

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 71.7 78.5 57.7 82.2 33.6 80.5 50.1 62.2 64.6

2

FFNPruner 71.6 74.3 53.7 80.1 30.8 78.5 49.8 61.2 62.5
LayerPruner 71.3 72.4 52.4 81.2 31.8 78.2 48.5 60.9 62.1

Self-AttentionPruner 71.3 77.9 55.1 81.5 33.4 80.1 49.7 59.2 63.5
AggregationPruner 71.6 77.9 56.8 81.6 34.4 79.9 50.0 62.1 64.3

4

FFNPruner 69.5 69.9 47.5 65.7 28.8 72.7 46.4 59.5 57.5
LayerPruner 69.9 68.5 47.3 65.3 28.4 69.9 44.0 57.7 56.4

Self-AttentionPruner 66.4 77.6 55.0 79.1 30.2 79.9 44.1 50.6 60.4
AggregationPruner 71.7 78.0 56.3 81.8 32.8 79.9 50.0 61.5 64.0

6

FFNPruner 66.5 67.9 42.5 62.2 24.6 68.4 46.4 58.1 54.6
LayerPruner 69.7 65.4 40.7 62.2 25.8 66.1 47.0 61.1 54.8

Self-AttentionPruner 67.2 77.7 54.8 77.8 31.2 80.0 45.6 50.4 60.6
AggregationPruner 71.7 77.6 56.1 80.7 33.2 79.8 49.0 61.6 63.7

8

FFNPruner 62.3 64.4 37.9 62.7 25.2 67.3 48.4 55.5 53.0
LayerPruner 68.4 62.2 37.6 63.6 24.6 64.4 48.8 57.0 53.3

Self-AttentionPruner 66.7 77.3 54.6 77.1 31.6 79.7 44.1 49.9 60.1
AggregationPruner 71.4 77.3 55.8 80.6 32.8 79.1 49.1 61.4 63.4

10

FFNPruner 58.1 61.6 35.6 62.3 23.0 64.7 42.8 52.1 50.0
LayerPruner 64.1 60.7 35.7 62.4 23.8 63.5 48.5 56.7 51.9

Self-AttentionPruner 67.3 77.5 54.2 75.6 31.6 79.4 43.6 51.2 60.1
AggregationPruner 71.4 77.6 56.6 79.7 33.4 79.0 49.3 61.5 63.6

12

FFNPruner 59.0 61.6 33.2 62.2 21.4 61.9 45.1 51.6 49.5
LayerPruner 68.1 65.1 34.0 62.2 23.2 61.9 48.0 57.3 52.5

Self-AttentionPruner 65.9 77.4 53.4 72.7 31.2 77.4 38.3 50.6 58.4
AggregationPruner 71.5 77.8 53.9 79.0 32.0 77.8 50.9 61.7 63.1

13

FFNPruner 61.1 61.5 32.5 62.2 21.2 60.8 45.0 51.3 49.5
LayerPruner 38.0 63.9 33.5 62.2 21.4 60.7 29.5 40.5 43.7

Self-AttentionPruner 58.0 76.1 50.9 70.9 29.8 76.4 35.2 51.9 56.2
AggregationPruner 62.9 77.0 52.6 78.2 28.8 77.5 46.6 59.8 60.4

Gemma2-9B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 77.6 80.0 64.9 84.4 33.4 81.4 60.0 70.6 69.0

2

FFNPruner 77.1 78.1 64.6 84.0 34.6 80.8 60.4 70.5 68.8
LayerPruner 77.5 78.0 63.5 84.6 33.8 80.2 60.8 70.6 68.6

Self-AttentionPruner 74.9 80.0 64.5 83.7 35.6 81.5 60.9 69.1 68.8
AggregationPruner 77.7 80.0 65.0 83.9 34.6 81.4 61.2 70.6 69.3

4

FFNPruner 77.0 77.2 63.0 84.3 35.4 79.5 58.8 70.4 68.2
LayerPruner 79.1 76.3 62.2 84.3 36.2 78.7 58.6 71.0 68.3

Self-AttentionPruner 77.1 78.9 64.3 83.7 35.4 80.7 59.7 70.5 68.8
AggregationPruner 77.6 81.1 65.7 83.1 35.4 80.7 60.5 70.7 69.4

6

FFNPruner 76.2 77.0 59.1 79.8 33.4 77.3 59.9 69.6 66.5
LayerPruner 77.9 75.1 57.8 81.8 35.0 76.2 59.8 71.0 66.8

Self-AttentionPruner 77.0 79.4 61.9 82.6 34.2 80.3 60.5 70.4 68.3
AggregationPruner 77.5 79.4 64.5 82.9 34.2 80.8 60.1 70.7 68.8

8

FFNPruner 75.3 74.8 53.2 63.1 30.8 75.5 58.3 70.2 62.6
LayerPruner 71.9 74.5 54.1 63.1 32.8 73.5 47.4 66.7 60.5

Self-AttentionPruner 77.0 77.8 61.7 83.1 34.8 79.9 59.8 70.1 68.0
AggregationPruner 77.7 79.2 63.9 70.6 35.8 80.1 60.3 70.0 67.2

10

FFNPruner 73.7 74.3 46.2 62.7 29.4 72.3 58.4 69.3 60.8
LayerPruner 41.0 72.8 48.5 62.8 28.6 71.1 33.1 47.7 50.7

Self-AttentionPruner 78.0 77.8 59.8 81.2 34.2 79.6 60.6 69.7 67.6
AggregationPruner 78.1 78.8 62.1 55.4 35.4 79.9 59.4 69.8 64.9

12

FFNPruner 74.4 72.4 41.7 62.6 25.4 69.4 56.6 69.1 59.0
LayerPruner 61.0 72.0 44.1 62.4 27.2 67.9 45.4 64.2 55.5

Self-AttentionPruner 77.4 76.7 58.5 75.7 33.4 79.2 58.8 68.7 66.0
AggregationPruner 78.1 78.0 61.1 57.8 34.6 79.7 59.6 70.1 64.9

13

FFNPruner 74.3 69.9 37.5 62.8 22.2 67.7 56.5 69.4 57.5
LayerPruner 66.8 71.8 40.0 62.9 24.6 65.1 50.7 66.0 56.0

Self-AttentionPruner 77.1 75.8 56.3 76.4 33.4 78.7 57.3 68.2 65.4
AggregationPruner 77.3 77.6 59.9 59.7 35.8 79.3 60.1 70.1 65.0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: The Performance of LLaMA3.1-70B and Qwen2-72B on Discriminative Tasks.

LLaMA3.1-70B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 82.6 84.1 65.4 83.9 36.6 82.3 72.7 74.4 72.8

8

FFNPruner 80.0 73.2 51.3 76.6 33.8 75.8 70.9 67.4 66.1
LayerPruner 81.2 72.7 50.6 79.8 34.8 73.6 66.8 70.5 66.2

Self-AttentionPruner 82.2 83.8 63.0 83.8 35.6 81.8 73.5 74.6 72.3
AggregationPruner 82.5 83.7 63.1 83.8 35.6 81.7 73.6 74.6 72.3

16

FFNPruner 73.4 74.9 48.0 71.5 30.8 73.8 60.4 62.4 61.9
LayerPruner 80.8 68.5 49.6 75.1 34.4 72.4 72.1 73.3 65.8

Self-AttentionPruner 81.6 83.7 63.0 83.9 33.8 81.4 73.6 74.2 71.9
AggregationPruner 81.7 83.9 62.7 83.9 34.4 81.0 73.8 74.3 72.0

24

FFNPruner 67.8 74.7 45.4 68.3 28.4 71.4 57.5 54.4 58.5
LayerPruner 54.7 69.0 47.6 73.0 33.4 71.2 50.6 63.0 57.8

Self-AttentionPruner 81.7 83.6 62.9 83.8 34.4 81.2 73.5 74.0 71.9
AggregationPruner 81.4 83.8 63.0 84.1 34.6 81.3 73.4 74.0 71.9

32

FFNPruner 63.5 75.7 38.6 66.8 24.4 67.2 57.1 54.2 55.9
LayerPruner 70.1 66.9 42.8 72.0 30.0 68.2 65.8 69.7 60.7

Self-AttentionPruner 80.4 83.5 62.5 83.6 36.6 81.5 73.4 73.7 71.9
AggregationPruner 80.6 83.7 62.3 83.8 36.4 81.2 73.5 74.0 71.9

40

FFNPruner 60.0 73.2 31.3 62.1 20.6 63.2 60.9 51.5 52.8
LayerPruner 63.5 70.4 38.1 62.0 24.6 65.9 53.7 65.2 55.4

Self-AttentionPruner 80.9 82.0 61.5 84.0 34.4 80.3 72.9 73.7 71.2
AggregationPruner 80.3 82.7 61.9 84.0 34.2 80.4 73.5 74.2 71.4

41

FFNPruner 55.2 71.8 30.6 62.1 20.6 63.0 60.3 49.0 51.6
LayerPruner 40.4 70.3 37.8 62.0 23.0 65.3 55.8 60.7 51.9

Self-AttentionPruner 71.3 82.7 59.0 84.2 34.8 79.7 72.0 72.7 69.6
AggregationPruner 70.9 82.8 59.7 84.0 33.4 79.7 72.0 73.1 69.4

Qwen2-72B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 89.3 84.5 65.3 88.3 36.2 82.4 75.6 83.8 75.7

3

FFNPruner 89.4 75.6 58.6 83.4 35.0 78.8 75.7 83.3 72.5
LayerPruner 88.6 72.4 57.7 84.6 36.8 77.2 74.9 82.6 71.8

Self-AttentionPruner 88.6 84.8 63.9 81.0 35.4 81.6 76.7 82.2 74.3
AggregationPruner 88.9 84.2 64.4 88.5 36.4 82.3 76.5 82.8 75.5

6

FFNPruner 88.3 70.7 53.2 68.9 32.4 75.6 76.0 82.5 68.4
LayerPruner 88.5 69.6 53.4 76.8 31.6 73.0 74.0 81.6 68.6

Self-AttentionPruner 88.1 84.3 63.0 79.9 34.6 80.6 76.2 81.5 73.5
AggregationPruner 88.7 83.9 63.7 88.3 36.4 81.7 76.7 82.7 75.3

9

FFNPruner 87.9 69.1 43.9 62.2 30.0 72.1 75.3 82.1 65.3
LayerPruner 86.8 67.9 48.5 62.3 31.6 70.3 73.4 80.5 65.2

Self-AttentionPruner 87.8 84.3 62.8 79.8 34.0 80.4 74.5 81.3 73.1
AggregationPruner 88.9 84.2 64.1 87.8 37.0 81.7 76.4 82.8 75.4

12

FFNPruner 87.5 65.4 36.7 62.5 25.8 69.7 74.7 81.8 63.0
LayerPruner 84.2 67.9 45.6 64.6 29.0 69.5 75.1 81.9 64.7

Self-AttentionPruner 87.3 83.5 62.7 81.6 33.6 79.7 74.5 81.2 73.0
AggregationPruner 88.9 84.1 63.7 88.2 36.6 81.0 76.4 82.9 75.2

15

FFNPruner 86.9 63.2 32.9 62.4 22.2 65.8 74.6 81.9 61.2
LayerPruner 74.0 68.8 43.4 64.4 26.4 67.6 74.1 79.8 62.3

Self-AttentionPruner 88.2 82.8 61.5 78.0 31.4 80.3 75.4 81.6 72.4
AggregationPruner 88.4 83.4 64.2 86.7 36.2 80.6 76.4 82.9 74.9

18

FFNPruner 86.3 61.6 29.2 62.2 20.4 64.7 71.6 81.1 59.6
LayerPruner 76.3 68.8 39.5 64.0 24.2 64.5 74.2 79.2 61.3

Self-AttentionPruner 88.0 81.3 59.3 74.6 29.8 78.6 75.3 81.1 71.0
AggregationPruner 88.0 81.8 62.5 87.7 34.8 79.9 77.1 82.5 74.3

19

FFNPruner 87.0 61.7 30.4 62.2 20.4 64.9 72.4 81.1 60.0
LayerPruner 72.6 68.3 38.3 63.7 23.2 64.0 72.4 78.4 60.1

Self-AttentionPruner 87.6 81.2 59.0 76.5 28.2 78.0 74.9 80.8 70.8
AggregationPruner 88.1 81.8 61.7 88.1 34.8 80.0 76.4 82.3 74.2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D DEMONSTRATION EXAMPLES ON GENERATION TASKS

In this section, we provide some demonstration examples on generation tasks with various pruning
algorithms.

Table 7: We present a demonstration example of outputs from various pruning algorithms applied to
the LLaMA3.1-70B model. In this demonstration, we prune the last two layers of the model using
different pruning methods. The comparative results are shown using the TriviaQA task. We can find
that LayerPruner produces incorrect answers, while AggregationPruner and Self-AttentionPruner
provide the correct ones.

Prompt: Which feminist book label was established by Carmen Callil
and others in 1973?
Answer: Viragos
Question: What is the name of the thoroughfare that Harry Potter
lived with his Uncle’s family?
Answer: Eeylops Owl Emporium
Question: Plaid Cymru (roughly pronounced ’plied cumrie’) is the
nationalist political party of which nation?
Answer: Welsh nation
Question: Thomas Becket was murdered where?
Answer: Our Lady of the Undercroft
Question: How many countries make up Europe?
Answer: forty-eight
Question: What claimed the life of singer Kathleen Ferrier?
Answer:

AggregationPruner: Cancer

Self-AttentionPruner: Cancer

LayerPruner: Ovarian cancer claimed her life at age41 in19532̆0331953

FFNPruner: cancerous growths in her voicebox

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: We present a demonstration example of outputs from various pruning algorithms applied
to the Qwen2-72B model. In this demonstration, we prune the last 12 layers of the model for
AggregationPruner and Self-AttentionPruner. We prune the last 5 and 7 layers of the model for
LayerPruner and FFNPruner The comparative results are shown using the GSM8K task. We find that
FFNPruner and LayerPruner produce redundant content and fail to generate the correct answer. On
the other hand, AggregationPruner and Self-AttentionPruner both arrive at the correct solution, albeit
with differing outputs.

Prompt:Question: Steve finds 100 gold bars while visiting Oregon. He wants to distribute his gold bars
evenly to his 4 friends. If 20 gold bars were lost on the way back to San Diego, how many gold bars
will each of his 4 friends get when he returns?
Answer: He only has 100 − 20 = 80 gold bars after losing 20 of them.
He then gives each of his friends 80

4
= 20 gold bars.

20
Question: In a week, Mortdecai collects 8 dozen eggs every Tuesday and Thursday, and he delivers 3
dozen eggs to the market and 5 dozen eggs to the mall. He then uses 4 dozen eggs to make a pie every
Saturday. Mortdecai donates the remaining eggs to the charity by Sunday. How many eggs does he donate
to the charity?
Answer: Mortdecai collects a total of 8 × 2 = 16 dozens of eggs.
He sells a total of 3 + 5 = 8 dozens of eggs.
So, 16 − 8 = 8 dozens of eggs are left.
After using 4 dozens of eggs to make a pie, 8 − 4 = 4 dozens of eggs are left.
Since there are 12 in 1 dozen, Mortdecai donates 4 × 12 = 48 pieces of eggs to the charity.
48
Question: Corey downloaded two movie series from his Netflix account with 12 and 14 seasons per series,
respectively. However, in the week, his computer got a mechanical failure, and he lost two episodes
from each season for both series. If each season in the movie series that Corey downloaded had 16
episodes, how many episodes remained after the computer’s mechanical failure?
Answer: In the first movie series with 12 seasons, after the mechanical failure, the number of episodes
that Corey lost is 2 × 1224.
Originally, the movie series with 12 seasons had 12 × 16 = 192 episodes.
After the mechanical failure, Corey had 192 − 24 = 168 episodes remaining in the first movie series.
Similarly, the 14-season movie series also had 14 × 2 = 28 episodes lost after the computer’s mechanical
failure.
Originally, the movie series with 14 seasons had 14 × 16 = 224 episodes.
The mechanical failure of the computer reduced the number of episodes in the 14-season movie series to
224 − 28 = 196.
After the loss, Corey had 196 + 168 = 364 episodes remaining from the two movie series he had downloaded.
364
Question: There were 18 students assigned in a minibus for a field trip. Eight of these students were
boys. On the day of the field trip, the number of girls and boys was the same since some of the girls
were not able to join the trip. How many girls were not able to join the field trip?
Answer: 8 boys + 8 girls = 16 students joined the field trip.
Thus, 18 − 16 = 2 girls were not able to join the field trip.
2
Question: There are 200 more red apples than green apples in a grocery store. A truck arrives and
delivers another 340 green apples. If there were originally 32 green apples, how many more green apples
than red apples are there in the store now?
Answer: There are 200 + 32 = 232 red apples.
After the delivery, there are 340 + 32 = 372 green apples.
There are now 372 − 232 = 140 more green apples than red apples.
140
Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?
Answer:
AggregationPruner: The white fibers take 2

2
= 1 pound per bookend.

So, in total, it takes 2 + 1 = 3 pounds of fiber per robe.
3

Self-AttentionPruner:The number of white fibers is calculated using:

COUNTIFS("A2:A10", ">0")

The total number of bolts is calculated using:

=COUNTIFS("A2:A10", ">0")

3

LayerPruner: white fiber plus two blue fiber equals total fiber used 2+ half of two equals total fiber
used 2+ half of two equals total fiber used 2+ half of two equals total fiber used 2+ half of two equals
total fiber used two plus half of two equals total fiber used two plus half of two equals total fiber
used two plus half of two equals total fiber used two plus half of two equals total fiber used two plus
half of two equals total fiber used two plus half of two equals total fiber used two plus half of two
equals total fiber used two plus half of two equals total fiber used two plus half of two equals total
fiber used

FFNPruner:White fiber + 2 bolts of blue fiber = ⟨⟨ 2 + 2 = 4 ⟨⟨ 4 bolts total fiber.
White fiber = 2

2
= ⟨⟨2/2 = 1⟩⟩ 1 bolt of white fiber.

White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.

24

	Introduction
	Preliminaries
	Decoder-only Large Language Model
	Block Pruning Strategies

	AggregationPruner
	The Bottleneck in LLM Serving
	Distinct Roles of Parameter Types in Large Language Models
	The Role of Aggregation Parameter
	The Role of Transformation Parameters

	Our Proposed Pruning Algorithm: AggregationPruner

	Experiments
	Setup
	Results
	Ablation Study

	Related Work
	Conclusion
	Benchmark Details
	Greedy Search Details
	More Experimental Results
	Discriminative Task Results
	Reward Model Results

	Demonstration Examples on Generation Tasks

