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ABSTRACT

Pruning is a highly effective approach for compressing large language models
(LLMs). By strategically reducing model size, pruning significantly decreases both
latency and GPU memory usage during inference, resulting in more efficient and
cost-effective deployment of these models. Despite their effectiveness, current
structured pruning algorithms have limitations. They still require extensive contin-
ued pre-training on large datasets to achieve model compression. Moreover, most
of these methods are unable to reduce the memory usage of the key-value cache
during generation tasks. In this work, we propose a novel pruning algorithm that
requires no additional training and targets specific parameters within LLMs. We
classify the model’s parameters into three categories: aggregation, transformation,
and normalization. Our method primarily focuses on pruning the aggregation
parameters in the higher layers of the model. To further improve the performance
of the pruned LLM, we also introduce a rescaling parameter that adjusts the output
of the pruned block. We conduct comprehensive experiments on a wide range of
LLMs, including LLaMA3.1-8B/70B, Qwen2-7B/72B, Gemma2-9B, and Mistral-
7B-v0.3. Our evaluation includes both generation and discriminative tasks across
various benchmarks. The results consistently demonstrate that our method outper-
forms recent block pruning methods. This improvement is particularly notable in
generation tasks, where our approach significantly outperforms existing baselines.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2023; Jiang et al., 2023; Yang
et al., 2024; Gemma2-Team et al., 2024), pre-trained on extensive text data from across the internet,
have achieved remarkable performance in downstream tasks such as information retrieval (Asai et al.,
2024), code generation (Guo et al., 2024a), and mathematical reasoning (Wang et al., 2023; Yang
et al., 2023; Huang et al., 2024). These LLMs, however, contain a huge number of parameters,
resulting in substantially slower inference speed compared to their smaller counterparts. To address
this issue in generation tasks, a common approach is to use key-value (KV) cache (Pope et al., 2023),
which stores intermediate computation results. While this technique effectively trades space for time,
speeding up inference, it also significantly increases GPU memory consumption. As reported in Zhou
et al. (2024), the KV cache size can exceed the LLM model size during peak usage, and the inference
latency increases as the KV cache size grows. As a result, one major bottleneck for LLM serving is
GPU memory consumption.

Recent strategies to improve LLM efficiency primarily fall into two categories. The first category
focuses on the models themselves, aiming to reduce inference latency and GPU memory consumption
through pruning (Frantar & Alistarh, 2023; Ma et al., 2023; Jaiswal et al., 2023; Xia et al., 2024;
Ashkboos et al., 2024; Xu et al., 2024; Jaiswal et al., 2024a; Zhang et al., 2024c; Dong et al., 2024c;
Yin et al., 2024a;b; Zhao et al., 2024) or quantizing (Frantar et al., 2023; Xiao et al., 2023; Chee et al.,
2023; Lin et al., 2024). The second category targets the KV cache, specifically for generation tasks,
by either compressing (Dong et al., 2024b) or quantizing (Zhang et al., 2024d; Liu et al., 2024b) it to
decrease GPU memory usage during inference. Among these approaches, structured pruning (Xia
et al., 2024) searches for crucial substructures within the model while pruning other substructures
through continued pretraining on extensive text datasets. However, a significant limitation of most
current pruning algorithms is their inability to reduce the GPU memory consumption within the KV
cache. To address this issue, KV cache compression algorithms like LESS (Dong et al., 2024b) have
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been proposed, which maintain a constant-size KV cache by generating condensed representations of
less important tokens. These approaches (Xia et al., 2024; Dong et al., 2024c), however, typically
require designing specific learning objectives and loss functions, followed by extensive retraining
of the base model on large text corpora to achieve the desired goal. We argue that these methods
require an additional training phase, introducing significant computational overhead. Moreover, these
approaches may struggle to maintain performance in domains not well-covered in the extra training
data (Xia et al., 2024). This raises an important question: Can we develop a training-free algorithm
that effectively reduces GPU memory consumption with respect to the KV cache? Our work addresses
this challenge by drawing inspiration from an unexpected source: the intriguing connections between
Graph Neural Networks (GNNs) (Kipf & Welling, 2016; 2017; Hamilton et al., 2017; Veličković
et al., 2019) and LLMs. By exploring the parallels in their computation processes, we uncover
insights that lead to a novel, training-free method for improving LLM efficiency.
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Figure 1: Performance comparison between GC-
NII and its efficient variant on the Pubmed dataset.
The experiment evaluates both models with vary-
ing depths (L = 2, 4, 8, and 16). The efficient
GCNII demonstrates performance comparable to
the original GCNII across all tested depths, despite
its reduced computational complexity.

Recent studies (Joshi, 2020; Ying et al., 2021;
Kim et al., 2022; Nguyen et al., 2023; Barbero
et al., 2024) have uncovered connections be-
tween GNNs and Transformers (Vaswani et al.,
2017). The fundamental principle of GNNs is to
aggregate information from neighboring nodes,
resulting in smooth representations across the
graph. This principle finds a parallel in LLMs,
where the flow of contextual information can be
conceptualized as a GNN operating on a fully
connected graph, with connections governed by
a causal attention mask. In this conceptualiza-
tion, the process involves aggregating informa-
tion from previous tokens to update the repre-
sentations of subsequent ones. However, this
aggregation process is not without challenges.
In GNNs, while increasing the number of lay-
ers allows for the incorporation of higher-order
neighbor information and potentially smoother
representations, it also risks over-smoothing (Li
et al., 2018). This phenomenon can lead to node
representations converging to similar values, ul-
timately making them indistinguishable from
one another. To address this issue in GNNs, GCNII (Chen et al., 2020a) has been developed, utilizing
initial residual connections (Huang et al., 2017) and identity mappings, formulated as:

H(ℓ+1) = σ
((

(1− αℓ) ÃH(ℓ) + αℓH
(0)
)(

(1− βℓ) I + βℓH
(ℓ)
))

, (1)

where Ã = D̃−1/2ÃD̃−1/2, A is the adjacency matrix, Ã = A+ I , D̃ is the degree matrix of Ã,
and αℓ, βℓ, and W (ℓ) are the ℓ-th layer parameters. Although GCNII addresses over-smoothing, its
accuracy improves by only 1.6% when increasing layers from 2 to 16 (Figure 1), at the cost of an
eightfold increase in computation. Aggregation in GNNs is particularly computationally expensive,
especially in large graphs, accounting for up to 90% of total training and inference time (Liu et al.,
2023). GCNII can be made more efficient by reducing the number of aggregation operations during
inference while keeping the training process unchanged. This modified version can be formulated as
follows:

H(ℓ+1) =


σ

((
(1− αℓ) ÃH(ℓ) + αℓH

(0)

)(
(1− βℓ) I + βℓW

(ℓ)
))

if ℓ ≤ L
2 ,

σ
((

(1− αℓ) H(ℓ) + αℓH
(0)
) (

(1− βℓ) I + βℓW
(ℓ)
))

if ℓ > L
2 ,

(2)

where L is the depth of GCNII. As shown in Figure 1, we achieve comparable performance to GCNII
while halving the computational cost of aggregation during inference.

This phenomenon motivates us to explore whether a similar approach could be applied to LLMs.
Similar to the computationally expensive aggregation in GNNs, the self-attention module in LLMs
poses significant computational challenges. It exhibits quadratic time and memory complexity with
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Algorithm 1 LLM inference with KV cache at each layer

1: Input: Current token’s hidden state Ht ∈ R1×d, previous keys Kcache ∈ R(t−1)×(h×dk),
previous values Vcache ∈ R(t−1)×(h×dk)

2: Step 1. Self-Attention:

3: Apply Layer Normalization: H ′
t = w1 ⊙

(
Ht√

1
d

∑d
i=1([Ht]:,i)

2
+ϵ

)
, where w1 ∈ Rd

4: Apply Linear Projection: Qt = H ′
tWQ, Kt = H ′

tWK , Vt = H ′
tWV , where WQ ∈

Rd×(h×g×dk), d = h× g × dk, and WK ,WV ∈ Rd×(h×dk)

5: Update KV Cache: Kcache ∈ Rt×(h×dk) ← Concat (Kcache,Kt), Vcache ∈ Rt×(h×dk) ←
Concat (Vcache,Vt)

6: Reshape Qt, Kcache, and Vcache: Q ∈ R1×h×g×dk ← Reshape (Qt), K ∈ Rt×h×dk ←
Reshape (Kcache), V ∈ Rt×h×dk ← Reshape (Vcache)

7: Apply Rotary Position Embedding (RoPE): Q← RoPE (Q), K← RoPE (K), where RoPE is
parameter-free

8: Repeat K and V: K′ ∈ Rt×h×g×dk ← Repeat (K), V′ ∈ Rt×h×g×dk ← Repeat (V), where
K′

:,hk,:g,:
= K:,hk,: and V′

:,hk,:g,:
= V:,hk,:

9: Compute Attention Scores A ∈ R1×t×h×g: A = softmax
(

QK′T
√
dk

)
, where K′T ∈ Rt×h×dk×g

10: Aggregate: Hattn = AV′ through the second dimension ▷ Aggregation over the context
11: Reshape Hattn: Hattn ∈ R1×d ← Reshape (Hattn)
12: Add Residual Connection: Ht = Ht +HattnWO, where WO ∈ Rd×d

13: Step 2. Feedforward Network (FFN):

14: Apply Layer Normalization: H ′
t = w2 ⊙

(
Ht√

1
d

∑d
i=1([Ht]:,i)

2
+ϵ

)
, where w2 ∈ Rd

15: Apply FFN: HFFN = (σ (H ′
tWgate)⊙ (H ′

tWup))Wdown, where σ is non-linear activation
function, Wgate,Wup ∈ Rd×di , and Wdown ∈ Rdi×d

16: Add Residual Connection: Ht = Ht +HFFN

17: Output: Updated keys Kcache, updated values Vcache, and updated Ht

respect to sequence length (Dao et al., 2022), making it a bottleneck in LLM serving. In this work,
inspired by the efficient version of GCNII discussed earlier, we propose a training-free pruning
strategy called AggregationPruner that targets only the query and key parameters in the higher layers
of LLMs. By selectively pruning these aggregation parameters, AggregationPruner compresses the
model and achieves a significant reduction in GPU memory consumption associated with the KV
cache during generation tasks. Considering the complex and black-box nature of LLMs, our approach
carefully avoids pruning transformation or normalization parameters to minimize the potential
negative impacts of pruning on downstream tasks. To further enhance performance, we incorporate
a rescaling parameter for the output of pruned blocks. Extensive experiments demonstrate that our
method outperforms recent block pruning algorithms (Men et al., 2024; Zhong et al., 2024; Gromov
et al., 2024; He et al., 2024; Siddiqui et al., 2024; Liu et al., 2024a; Zhang et al., 2024a; Jaiswal et al.,
2024b; Chen et al., 2024; Kim et al., 2024) across a wide range of downstream tasks and testing
LLMs. Notably, our approach shows significant performance improvement in generation tasks while
maintaining the same memory consumption with Self-AttentionPruner and LayerPruner (Gromov
et al., 2024; He et al., 2024) during inference.

2 PRELIMINARIES

2.1 DECODER-ONLY LARGE LANGUAGE MODEL

In decoder-only LLMs, information flows through self-attention modules, with each token aggregating
context from all preceding tokens in the sequence. This autoregressive process enables the model
to generate each subsequent token based on the information from earlier tokens. To preserve the
causal structure of language generation during training, attention is masked, preventing tokens
from accessing information from future positions in the sequence. For a given input sentence
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Table 1: Classification of LLM layer parameters based on their functional roles.

Type w1 WQ WK WV WO w2 Wgate Wup Wdown

Aggregation Parameter ✓ ✓
Transformation Parameter ✓ ✓ ✓ ✓ ✓
Normalization Parameter ✓ ✓

x = {x1, . . . , xn}, LLMs employ a standard language modeling objective. This objective aims to
maximize the following: (Radford et al., 2018):

L(x) =
∑
i

logP (xi | xi−1, · · · , x1; Θ) , (3)

where P (xi | xi−1, · · · , x1; Θ) represents the probability of token xi given all preceding tokens
and the model parameters Θ. Conceptually, LLMs can be viewed as operating on a complete graph
structure, with tokens serving as nodes and attention scores as edges. Both LLMs and GNNs employ
a similar strategy for information processing: they iteratively refine representations by incorporating
contextual information. In LLMs, this context is derived from preceding tokens in a sequence, while
in GNNs, it comes from neighboring nodes in a graph. Despite operating in different domains, these
two model types share a fundamental approach to information aggregation and propagation. This
shared mechanism allows both LLMs and GNNs to generate context-aware representations.

Algorithm 1 illustrates the inference computation process of a decoder-only LLM layer. We categorize
the model parameters into three functional groups: aggregation, transformation, and normalization,
as detailed in Table 1. Aggregation parameters, such as WQ and WK , are used to compute attention
scores within the adjacency matrix A. These parameters enable the model to aggregate information
from preceding tokens, integrating context and capturing dependencies among tokens. Transformation
parameters, such as WV , WO, and Wgate, apply linear transformations and feedforward operations
to the hidden states of tokens. These parameters are crucial for the model’s ability to process input
and generate output. Normalization parameters, like w1 and w2, play a significant role in stabilizing
the training process. By maintaining a consistent scale in the output, they help prevent issues such
as vanishing or exploding gradients. In this work, we propose a pruning algorithm that specifically
targets the aggregation parameters to improve the LLMs’ efficiency.

2.2 BLOCK PRUNING STRATEGIES

Recent research (Men et al., 2024; Zhong et al., 2024; Gromov et al., 2024; He et al., 2024; Siddiqui
et al., 2024) has revealed the presence of redundant parameters in the higher layers of LLMs. These
studies demonstrate that selectively pruning certain blocks within these higher layers has little
performance degradation on downstream discriminative tasks. These pruning strategies can be
classified into three distinct approaches: Self-AttentionPruner, FFNPruner, and LayerPruner. Each
targets different components of the model:

• Self-AttentionPruner: This method bypasses the self-attention computation module (Step 1 in
Algorithm 1), removing parameters across all three categories: Aggregation, Transformation, and
Normalization.

• FFNPruner: By skipping the feed-forward network computation process (Step 2), this approach
primarily prunes Transformation and Normalization parameters.

• LayerPruner: This method skips an entire layer, resulting in the removal of all parameter types
within that layer.

These studies have introduced heuristic metrics to evaluate the importance of blocks within each
layer of LLMs. A consistent finding across these works is the greater significance of parameters in
lower layers compared to those in higher layers. Consequently, pruning algorithms typically target
parameters in higher layers while preserving those in lower layers.

This phenomenon can be intuitively explained through the lens of GNNs. The fundamental principle
of GNNs is to aggregate information from neighboring nodes to achieve smoother representations.
However, as the number of GNN layers increases, node representations tend to converge towards a
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Algorithm 2 LLM inference with AggregationPruner at each layer

1: Input: Current token’s hidden state Ht ∈ R1×d

2: Step 1. Transformation without Self-Attention:
3: Apply Layer Normalization as Line 3 in Algoritm 1
4: Apply Linear Projection: Vt = H ′

tWV , where WV ∈ Rd×(h×dk)

5: Reshape Vt: V ∈ R1×h×dk ← Reshape (Vt)
6: Repeat V: V′ ∈ R1×h×g×dk ← Repeat (V), where V′

0,hk,:g,:
= V0,hk,:

7: Reshape V′: Vt ∈ R1×d ← Reshape
(
V′)

8: Add Residual Connection: Ht = Ht + αVtWO ▷ Introduce a rescaling parameter
9: Step 2. Feedforward Network (FFN):

10: Apply FFN and Residual Connection as Lines 14-16 in Algorithm 1
11: Output: Updated Ht

common value. Beyond a certain point, adding more layers contributes minimally to changing node
representations, which can be formulated as follows:

lim
ℓ→∞

∥∥∥H(ℓ+1) −H(ℓ)
∥∥∥2
F
= lim

ℓ→∞

∥∥∥P (ℓ+1)X − P (ℓ)X
∥∥∥2
F
= 0. (4)

While the propagation matrix P in GNNs is static, the attention matrix in LLMs is dynamic. Despite
this difference, recent studies (Shi et al., 2022; Nguyen et al., 2023) have revealed that Transformers
can also experience over-smoothing, similar to GNNs. This phenomenon provides insight into the
behavior of the Block Importance (BI) metric proposed by Men et al. (2024):

BI(ℓ) = 1− EH,t
H

(ℓ)
t ·H(ℓ+1)

t∥∥∥H(ℓ)
t

∥∥∥
2

∥∥∥H(ℓ+1)
t

∥∥∥
2

. (5)

The BI metric tends to decrease as the layer index ℓ increases. This observation explains why recent
pruning algorithms target blocks in higher layers: these layers contribute less unique information.
Informed by these insights, our work also focuses on pruning aggregation parameters in the higher
layers of LLMs.

3 AGGREGATIONPRUNER

In this section, we first discuss the motivation behind our proposed AggregationPruner in Section 3.1
and 3.2. Then, we provide the details of our pruning algorithm in Section 3.3.

3.1 THE BOTTLENECK IN LLM SERVING

In applications such as chatbots and content generation tools, which handle a high volume of daily
API requests, maintaining low latency is crucial. This is typically achieved by batching multiple
requests for inference, thereby reducing computational waste. Moreover, modern LLMs employ the
KV cache to accelerate inference by storing intermediate results. While effective, this approach leads
to increased memory consumption as the number of requests grows. To illustrate the scale of memory
consumption from the KV cache, we use an example from PagedAttention (Kwon et al., 2023). A
13B parameter OPT model (Zhang et al., 2022), capable of generating up to 2048 tokens, requires
approximately 800 KB of GPU memory per token. This can lead to a potential consumption of 1.6
GB per request. Given that LLM operations are primarily constrained by memory bandwidth (Dao
et al., 2022), the amount of memory access becomes the primary factor in determining runtime.
Consequently, understanding the mechanism by which LLMs generate and utilize the KV cache is
essential for optimizing resource utilization.

3.2 DISTINCT ROLES OF PARAMETER TYPES IN LARGE LANGUAGE MODELS

3.2.1 THE ROLE OF AGGREGATION PARAMETER

As previously discussed, aggregation parameters play a crucial role in calculating attention scores,
which are essential for aggregating contextual information from preceding tokens to subsequent ones.

5
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Algorithm 3 Top-down α grid search for AggregationPruner

1: Input: Pruned LLM, number of pruned layers P , alpha search range 0, 0.1, 0.2, · · · , 1.0
2: Initialize: αbest = 1.0P (list of length P )
3: for ℓ = L to L− P + 1 step −1 do ▷ Start from the top layer
4: PPLbest =∞
5: for α ∈ 0, 0.1, 0.2, · · · , 1.0 do
6: Set αℓ = α in the pruned LLM
7: PPL = Perplexity (LLMpruned (αbest))
8: if PPL < PPLbest then
9: PPLbest = PPL

10: αbest[ℓ] = α
11: end if
12: end for
13: end for
14: Output: Optimal αbest for each pruned layer

This process involves computing the inner product of queries and keys, resulting in quadratic time
and memory complexity with respect to sequence length. To accelerate the generation of subsequent
tokens, modern LLMs typically employ a KV cache mechanism as illustrated in Algorithm 1. This
approach stores previously calculated keys and values, thereby reducing computational overhead.
When generating a new token, the model only needs to compute the query, key, and value for the last
token in the sequence. It then combines the KV cache with the last token’s query and key to aggregate
information from previous tokens, integrating this context into the last token’s representation. By
avoiding the need to recompute keys for each token, this approach significantly accelerates the
calculation of attention scores. These scores are then used to aggregate contextual information from
the V cache and the last token’s value. This optimization strategy greatly enhances inference speed
by minimizing redundant computations, particularly for long sequence generation tasks.

While the KV cache significantly accelerates inference, it also introduces substantial GPU memory
consumption. As previously discussed, higher layers in LLMs typically contribute less unique
information to the model’s output. Leveraging this insight, our work focuses on pruning aggregation
parameters in these higher layers to reduce the size of the KV cache. This approach aims to balance
the trade-off between inference speed and memory efficiency, optimizing overall model performance.

3.2.2 THE ROLE OF TRANSFORMATION PARAMETERS

Transformation parameters in LLMs comprise two main components: Wv and Wo in the Self-
Attention module, and Wgate, Wdown, Wup in the Feed-Forward Network (FFN). These parameters
apply linear transformations on token embeddings and, as some research (Anderson, 1972; Kohonen,
1972; Geva et al., 2021; Meng et al., 2023) suggests, serve as storage of compressed knowledge (Dele-
tang et al., 2024; Lester et al., 2024) derived from vast internet-scale text data.

Current block pruner methods risk discarding valuable stored knowledge when pruning these transfor-
mation parameters. Furthermore, since pruning aggregation parameters already provides substantial
memory savings, further pruning of transformation parameters results in diminishing returns. This
additional pruning could also introduce potential issues, especially when it comes to maintaining
performance across various downstream tasks.

3.3 OUR PROPOSED PRUNING ALGORITHM: AGGREGATIONPRUNER

Building on the insights discussed above, we introduce AggregationPruner, a novel pruning algorithm
designed specifically for LLMs. This approach strategically focuses on pruning only the aggregation
parameters in the higher layers of LLMs, preserving the knowledge-rich transformation parameters.
By doing so, AggregationPruner achieves substantial memory efficiency gains while preserving
the model’s core knowledge base. The computation process for the higher layers, incorporating
our pruning strategy, is detailed in Algorithm 2. It’s important to note that many LLMs employ
Grouped-query attention (GQA) (Ainslie et al., 2023). Therefore, a modification is required to
accommodate this architecture as shown in Algorithm 2. Specifically, in Line 6, we must replicate the

6
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Algorithm 4 LLM inference with AggregationPruner

1: Input: Token sequence T , the number of layers L, the number of pruning layers P
2: for ℓ = 1 to L do
3: if ℓ ≤ L− P then
4: Run Algorithm 1 on T : Compute H(ℓ)

5: else
6: Run Algorithm 2 on T : Compute H(ℓ)

7: end if
8: end for
9: Output: Final token representation H(L)

value matrix V a total of g− 1 times, where g represents the number of query groups. This replication
ensures compatibility with the GQA mechanism, enabling our AggregationPruner to seamlessly
integrate with modern LLM architectures.

When modifying the higher layers of an LLM, we propose that the original residual connection
coefficient of 1 may no longer be optimal. Inspired by GCNII, which uses a decreasing coefficient to
address the diminishing unique information in higher layers caused by over-smoothing, we introduce
a rescaling parameter. This parameter, denoted as α, adjusts the pruned block’s output within the
residual connection, as shown in Line 8 of Algorithm 2.

Determining the optimal value for α presents a challenge. Traditional retraining methods are not
applicable due to α’s non-differentiable nature. While some recent works have employed Zeroth-
Order Optimization (Guo et al., 2024b; Zhang et al., 2024b) to estimate gradients during fine-tuning,
we propose a simpler, more efficient approach: a greedy search strategy. Our method involves
calculating the perplexity of the pruned LLM to identify the optimal α. To simplify the search
process, we adopt a top-down approach. We begin by determining α for the uppermost layer and then
use this value as a starting point for the subsequent layer. This cascading strategy significantly reduces
the search space. The entire process is implemented as a grid search as illustrated in Algorithm 3,
balancing efficiency with thoroughness. This approach allows us to fine-tune the rescaling parameter
across layers, optimizing the model’s performance post-pruning without the need for extensive
retraining. The development of more complex search strategies leaves room for future work. The
inference process, which incorporates AggregationPruner, is detailed in Algorithm 4.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our proposed pruning algorithm, assessing
its performance across six LLMs and ten diverse benchmarks. By conducting experiments on various
LLMs and benchmarks, we aim to establish consistent and reliable results.

4.1 SETUP

Baselines. We evaluate AggregationPruner against three baselines: FNNPruner, LayerPruner, and
Self-AttentionPruner, which are described in Section 2.2. These baseline methods employ various
heuristic metrics to determine which layers should be pruned. While there may be minor variations in
the specific layers selected for pruning, all these methods generally prune from top to bottom. In this
work, we evaluate performance by pruning different blocks within the selected layers. To ensure a fair
comparison, we apply a top-to-bottom pruning approach for all methods as shown in Algorithm 4.

Testing LLMs. We evaluate all pruning algorithms on 6 LLMs: LLaMA3.1-8B/70B (Touvron et al.,
2023), Qwen2-7B/72B (Yang et al., 2024), Gemma2-9B (Gemma2-Team et al., 2024), and Mistral-
7B-v0.3 (Jiang et al., 2023). All experiments are conducted using Nvidia H100/A100 80G GPUs.
However, due to memory constraints, we are unable to load the full weights of LLaMA3.1-70B and
Qwen2-72B directly onto the GPU. To address this limitation, we employ the bnb quantization method
provided by Hugging Face to compress these two models to 4-bit precision for our experiments.
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Figure 2: We evaluate the performance of 6 LLMs, including LLaMA3.1-8B/70B, Qwen2-7B/72B,
Gemma2-9B, and Mistral-7B-v0.3, on generation tasks such as GSM8K and TriviaQA. Our evaluation
involves progressively pruning layers, starting from 0 and extending up to 12 layers.

Benchmarks. We employ the lm-evaluation-harness package (Gao et al., 2021) to conduct
experiments on both generation and discriminative tasks. While current LLM deployments primarily
focus on generation tasks, discriminative tasks are often used to evaluate overall model performance.
It’s important to note that LLMs only generate the KV cache during generation tasks. Discriminative
tasks, on the other hand, involve providing inputs and directly obtaining results, such as classification
labels or regression values. Our generation tasks include 5-shot GSM8K (Cobbe et al., 2021) and 5-
shot TriviaQA (Joshi et al., 2017). For discriminative tasks, we use 7-shot CommonsenseQA (Talmor
et al., 2019), 5-shot WinoGrande (Sakaguchi et al., 2019), 25-shot ARC-Challenge (Clark et al., 2018),
0-shot BoolQ (Clark et al., 2019), 0-shot OpenBookQA (Mihaylov et al., 2018), 0-shot PIQA (Bisk
et al., 2020), 0-shot MedQA (Jin et al., 2020), and 5-shot MMLU (Hendrycks et al., 2021). We report
the accuracy for these tasks as recommended by the lm-evaluation-harness package.

4.2 RESULTS

Generation Tasks. Figure 2 presents the results for all pruning algorithms, showing the superior
performance of our proposed AggregationPruner across multiple generation tasks and language
models. Our method outperforms the baselines on both generation tasks with LLaMA3.1-8B, Qwen2-
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Table 2: The Performance of LLaMA3.1-8B on Discriminative Tasks.

LLaMA3.1-8B

#Layers Method CommonSenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 73.6 77.2 54.7 82.1 33.4 80.0 59.9 65.2 65.8

2

FFNPruner 73.3 68.7 48.1 81.1 35.2 76.2 59.7 65.1 63.4
LayerPruner 73.4 67.2 47.5 81.1 37.6 75.6 59.9 65.1 63.4

Self-AttentionPruner 71.2 77.8 50.4 75.9 31.0 78.8 60.2 62.1 63.4
AggregationPruner 73.9 78.0 53.4 81.7 32.6 79.7 60.0 64.9 65.5

4

FFNPruner 73.3 66.2 45.1 77.4 32.2 75.0 53.9 62.6 60.7
LayerPruner 71.7 65.7 45.3 78.1 34.0 74.1 57.3 63.4 61.2

Self-AttentionPruner 71.1 76.7 49.5 56.6 30.4 77.9 60.4 61.6 60.5
AggregationPruner 74.4 77.5 52.7 78.0 33.0 79.1 60.1 65.0 65.0

6

FFNPruner 71.2 65.6 41.2 71.2 30.0 71.3 46.3 56.0 56.6
LayerPruner 72.4 60.9 43.9 79.3 33.4 71.9 53.5 61.3 59.6

Self-AttentionPruner 71.0 77.4 50.3 52.4 30.6 77.8 59.0 62.1 60.1
AggregationPruner 74.3 77.7 53.2 75.7 32.6 78.9 59.2 64.8 64.6

8

FFNPruner 72.6 64.7 37.5 62.2 27.2 68.6 55.3 62.8 56.4
LayerPruner 61.9 62.3 41.0 62.3 30.4 69.8 53.2 54.5 54.4

Self-AttentionPruner 71.6 76.6 49.1 51.8 30.4 77.7 58.4 62.0 59.7
AggregationPruner 74.0 77.7 53.6 74.8 33.2 79.0 59.9 64.8 64.6

10

FFNPruner 71.6 63.9 32.2 62.1 24.4 65.6 53.6 61.3 54.3
LayerPruner 63.9 61.6 36.7 62.3 26.6 68.4 57.4 62.4 54.9

Self-AttentionPruner 69.9 76.6 47.7 50.8 30.6 77.3 58.0 61.7 59.1
AggregationPruner 74.4 78.3 52.4 74.8 32.2 78.8 60.7 64.5 64.5

12

FFNPruner 72.7 62.0 31.2 63.1 21.8 63.8 57.9 63.2 54.5
LayerPruner 63.6 58.2 34.0 63.3 23.6 64.6 49.0 54.7 51.4

Self-AttentionPruner 70.4 75.5 45.1 49.4 29.0 75.5 57.5 61.7 58.0
AggregationPruner 74.3 77.1 51.3 75.0 31.0 77.3 60.8 64.5 63.9

14

FFNPruner 71.4 62.4 29.2 62.4 18.8 61.2 59.8 62.2 53.4
LayerPruner 71.8 58.7 32.1 62.2 24.4 63.1 59.6 64.2 54.5

Self-AttentionPruner 67.6 75.3 44.0 49.8 27.0 75.4 57.3 60.3 57.1
AggregationPruner 72.4 76.7 49.1 76.3 29.6 77.5 61.7 64.6 63.5

7B/72B, and Gemma2-9B for TriviaQA. For Mistral-7B-v0.3 on TriviaQA and LLaMA3.1-70B,
it shows a slight improvement. Additionally, on GSM8K with LLaMA3.1-70B, Gemma2-9B, and
Mistral-7B-v0.3, our performance is comparable to the best baseline. These results consistently
demonstrate that our method surpasses the three baselines across various models and tasks. Besides,
our results reveal a clear ranking in overall performance among the pruning methods: Aggregation-
Pruner > Self-AttentionPruner > FFNPruner > LayerPruner. Notably, FFNPruner and LayerPruner
exhibit a rapid decline in performance, dropping to zero as the number of pruned layers increases,
compared with the other two methods. These results emphasize the critical importance of transforma-
tion parameters in both the FFN and Self-Attention modules for generation tasks. This observation
aligns with our claim in Section 3.2.2.

Furthermore, our analysis revealed that as the number of pruned layers increases, the performance of
LLMs drops more rapidly on GSM8K compared to TriviaQA. This discrepancy can be attributed to
the differing response lengths required for each task. We observed that unpruned LLMs typically
encounter the end-of-sequence (EOS) token within 16 tokens when generating answers for TriviaQA.
In contrast, GSM8K often requires more (up to 256) tokens to produce a complete answer. Pruned
LLMs, which generate one token at a time, are more susceptible to errors than their unpruned
counterparts. This vulnerability is exacerbated in tasks requiring longer responses, as each additional
token introduces the potential for error accumulation. Consequently, the extended response length
needed for GSM8K leads to a more pronounced performance decline in pruned LLMs compared to
the shorter responses typical of TriviaQA.

Discriminative Tasks. We present the performance of six LLMs on discriminative tasks in Ta-
bles 2, 5, 6, and 4. Due to space limit in the main text, Tables 5, 6, and 4 are included in Appendix C.
We also report the average performance across eight discriminative tasks. The results demonstrate
that our pruning algorithm outperforms the baselines on LLaMa3.1-8B, Qwen2-7B/72B, and Mistral-
7B-v0.3, while achieving comparable performance to the best baseline on LLaMa3.1-70B and
Gemma2-9B. Notably, as we increase the number of pruned layers, the performance degradation
on discriminative tasks is less pronounced compared to generation tasks. This discrepancy can be
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attributed to the nature of discriminative tasks, which typically involve multiple-choice questions with
limited options, making them inherently simpler than generation tasks that require predicting the next
token from the entire vocabulary. To further validate this claim, we conduct additional experiments
using a reward model with AggregationPruner. Specifically, we evaluate the Skywork/Skywork-
Reward-Llama-3.1-8B model from Hugging Face on RewardBench (Lambert et al., 2024) to assess
the impact of pruning algorithm on reward model performance.
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Ablation Study on Qwen2-7B
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α = 1

Figure 3: Performance comparison be-
tween the default alpha setting (α =
1) and the α value obtained through
grid search for Qwen2-7B. The experi-
ment evaluates model accuracy averaged
across eight discriminative tasks.

Figure 8 in Appendix C illustrates the performance of the
reward model on RewardBench. Notably, when 16 layers
are pruned, the model’s performance remains nearly identi-
cal to that of the unpruned version. However, an additional
experiment reveals differences when using the pruned and
unpruned models to annotate rewards for online align-
ment (Cen et al., 2024; Dong et al., 2024a). We observe a
significant disparity in the reward distributions generated
by the pruned and unpruned models. The mean in the re-
wards gap is 3.53, with a standard deviation of 5.77. This
discrepancy can be attributed to the nature of the tasks: Re-
wardBench primarily involves preference choices between
two responses, essentially a binary classification problem.
In contrast, reward annotation operates on a continuous
real number scale, which is a more challenging task. These
findings lead us to conclude that pruned models are bet-
ter suited for maintaining performance on discriminative
tasks with limited options. This conclusion makes pruned
reward models particularly well-suited for online Direct
Preference Optimization (DPO) (Rafailov et al., 2023) settings. In such settings, each iteration
requires only on-policy preference data, and the reduced latency of pruned models is advantageous.
However, this same attribute makes them less ideal for online Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022), where more nuanced reward annotations may be necessary.

4.3 ABLATION STUDY

In this section, we evaluate the efficacy of our proposed α search algorithm, as described in Sec-
tion 3.3. Our experiments focus on Qwen2-7B, and we present the average accuracy across eight
discriminative tasks. As illustrated in Figure 3, the alpha value obtained through our grid search
method demonstrates better performance compared to the default setting of α = 1. These results
demonstrate the effectiveness of our algorithm in improving model performance.

5 RELATED WORK

Pruning. Pruning is a widely adopted and efficient technique in both Computer Vision and Large
Language Models. It can be categorized into two main types: Structured Pruning and Unstructured
Pruning. Structured Pruning (Lagunas et al., 2021; Xia et al., 2022; Kurtic et al., 2023; He & Xiao,
2023; Xia et al., 2024) involves removing entire filters from neural networks, making it particularly
conducive to model deployment. On the other hand, Unstructured Pruning (Chen et al., 2020b; Sanh
et al., 2020) focuses on removing individual neurons within the network. Some recent works (Men
et al., 2024; Zhong et al., 2024; Gromov et al., 2024; He et al., 2024; Siddiqui et al., 2024) have been
proposed to prune blocks in the higher layers of Large Language Models.

6 CONCLUSION

In this work, we propose AggregationPruner, a novel approach that focuses on pruning query and
key parameters in the higher layers of LLMs. Our method can reduce GPU memory consumption
associated with the KV cache during generation tasks. Through extensive experimentation, we
demonstrate that our pruning algorithm consistently outperforms recent block pruning techniques,
offering a significant advancement in model efficiency without compromising performance. We hope
our work will inspire future research on pruning strategies to reduce the KV cache in LLM serving.
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Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Association for Computational Linguistics, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating
language model pre-training via structured pruning. In International Conference on Learning
Representations, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient
sparsity allocation. In International Conference on Learning Representations, 2024.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang, Mei Li, Min Xue,
Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai,
Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou,
Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang,
Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, and Zhi-Wei Fan. Qwen2 technical report.
arXiv preprint arXiv:2407.10671, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. In Advances in Neural Information Processing Systems, 2023.

Lu Yin, Ajay Kumar Jaiswal, Shiwei Liu, Souvik Kundu, and Zhangyang Wang. Junk DNA
hypothesis: Pruning small pre-trained weights Irreversibly and Monotonically impairs “difficult"
downstream tasks in LLMs. In International Conference on Machine Learning, 2024a.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar,
Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier
weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high sparsity. In
International Conference on Machine Learning, 2024b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024a.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. In
International Conference on Machine Learning, 2024b.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In International
Conference on Learning Representations, 2024c.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
A better token oracle for efficient llm inference via sparse-quantized kv cache. In Proceedings of
Machine Learning and Systems, 2024d.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. APT: Adaptive pruning and tuning pretrained
language models for efficient training and inference. In International Conference on Machine
Learning, 2024.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A BENCHMARK DETAILS

For our evaluation on discriminative tasks, we employ the lm-evaluation-harness package
(version 0.4.2) developed by Gao et al. (2021)1. All experiments for discriminative tasks are conducted
using an Nvidia A100 80G GPU. It’s important to note that the lm-evaluation-harness
provides two accuracy metrics: “acc” and “acc_norm” for the ARC-Challenge, OpenBookQA, PIQA,
and MedQA benchmarks. For these benchmarks, we report the “acc” accuracy results. Table 3 reports
the number of tasks and the number of choices for each discriminative task.

In our evaluation of generation tasks, we utilize version 0.4.3 of the lm-evaluation-harness
package. All experiments for generation tasks are conducted using an Nvidia H100 80G GPU. For the
GSM8K and TriviaQA benchmarks, this package offers two accuracy metrics: “exact_match,strict-
match” and “exact_match,flexible-extract”. In our reporting, we use the “exact_match,strict-match”
accuracy results for these benchmarks. The number of tasks for GSM8K and TriviaQA are 1319 and
17944, respectively.

Table 3: Dataset Statistics

Metric CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU

# Tasks 1221 1267 1172 3270 500 1838 1273 11973
# Choices 5 2 4 2 4 2 4 4

B GREEDY SEARCH DETAILS

For the search of optimal α, we utilize the wikitext task provided in lm-evaluation-harness
(version 0.4.2) to compute perplexity. While this package reports three types of perplexity metrics:
“word_perplexity”, “byte_perplexity”, and “bits_per_byte”. We employ the “word_perplexity” metric
in our search for α. The experiments are conducted using one Nvidia A100 80G GPU.

We present the searched alpha values for Mistral-7B-v0.3, Gemma2-9B, LLaMA3.1-8B, Qwen2-7B,
LLaMA3.1-70B, and Qwen2-72B in Figures 4, 5, 6, and 7. Our findings reveal that different models
yield distinct alpha values for each pruned layer, with layer indices starting at 0.

In Mistral-7B-v0.3, LLaMA3.1-8B, and Qwen2-7B/72B, we observed a trend where the searched
alpha values increase as the layer index rises. We hypothesize that this pattern may be attributed to
our top-down search approach, resulting in higher alpha values for upper layers.

Conversely, the alpha values searched for Gemma2-9B and LLaMA3.1-70B exhibit fluctuations. The
exploration of more sophisticated search methods is left for future research.
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Figure 4: Searched alpha on Mistral-7B-v0.3 and Gemma2-9B.

1https://github.com/EleutherAI/lm-evaluation-harness
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Figure 5: Searched alpha on LLaMA3.1-8B and Qwen2-7B.
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Figure 6: Searched alpha on LLaMA3.1-70B.
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Figure 7: Searched alpha on Qwen2-72B.
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C MORE EXPERIMENTAL RESULTS

C.1 DISCRIMINATIVE TASK RESULTS

We present more results on discriminative tasks in Tables 4, 5, and 6.

Table 4: The Performance of Qwen2-7B on Discriminative Tasks.

Qwen2-7B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 80.8 77.2 58.1 84.9 34.8 79.9 56.7 70.5 67.9

2

FFNPruner 81.3 70.1 50.2 83.9 31.6 73.8 55.5 70.0 64.6
LayerPruner 79.7 66.9 50.4 83.3 32.4 71.1 55.4 69.6 63.6

Self-AttentionPruner 59.6 70.6 44.6 33.4 28.2 75.4 35.3 42.9 48.8
AggregationPruner 80.8 76.7 57.7 84.8 34.8 80.1 56.6 70.0 67.7

4

FFNPruner 80.5 65.5 40.1 84.5 25.8 67.7 54.6 67.3 60.8
LayerPruner 42.1 64.0 42.0 82.9 28.2 67.7 44.3 57.9 53.6

Self-AttentionPruner 51.6 70.5 45.1 29.5 28.4 75.4 24.2 32.3 44.6
AggregationPruner 71.0 76.5 57.7 84.9 35.0 79.5 55.7 68.1 66.1

6

FFNPruner 79.0 59.4 30.1 67.8 19.8 65.0 53.7 66.8 55.2
LayerPruner 35.6 63.5 35.3 62.2 25.8 63.1 39.0 40.3 45.6

Self-AttentionPruner 48.6 68.8 43.8 34.0 26.2 74.5 29.7 44.0 46.2
AggregationPruner 57.0 76.1 54.9 84.9 33.0 78.8 56.0 67.0 63.5

8

FFNPruner 43.8 52.6 26.5 69.7 19.6 61.8 49.8 59.3 47.9
LayerPruner 29.0 58.7 30.5 62.2 20.6 60.4 34.1 30.5 40.8

Self-AttentionPruner 33.7 67.0 39.1 34.1 24.2 71.8 26.1 35.4 41.4
AggregationPruner 58.4 74.0 51.5 85.1 29.4 75.8 56.1 66.9 62.2

C.2 REWARD MODEL RESULTS

Figure 8 presents our reward model results, which are obtained using RewardBench (Lambert et al.,
2024) for evaluation. We conduct these evaluations on an Nvidia H100 80G GPU, utilizing the reward
model provided by Skywork2.

To annotate reward values for our prompt-response data in online alignment setting, we employ a
multi-step process. First, we fine-tune the meta-llama/Meta-Llama-3-8B model3 using an instruction
dataset provided by RLHFlow (Dong et al., 2024a)4. We then use this instruction-tuned model to
generate responses to prompts from the RLHFlow dataset5, sampling two responses for each prompt.
Finally, we annotate these responses with reward values using a reward model that has been pruned
by 16 layers using the AggregationPruner method.
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Figure 8: We evaluate the performance of Skywork/Skywork-Reward-Llama-3.1- 8B on Reward-
Bench. Our evaluation involves progressively pruning layers, starting from 0 and extending up to 12
layers.

2https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B
3https://huggingface.co/meta-llama/Meta-Llama-3-8B
4https://huggingface.co/datasets/RLHFlow/SFT-OpenHermes-2.5-Standard
5https://huggingface.co/datasets/RLHFlow/iterative-prompt-v1-iter1-20K
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Table 5: The Performance of Mistral-7B-v0.3 and Gemma2-9B on Discriminative Tasks.

Mistral-7B-v0.3

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 71.7 78.5 57.7 82.2 33.6 80.5 50.1 62.2 64.6

2

FFNPruner 71.6 74.3 53.7 80.1 30.8 78.5 49.8 61.2 62.5
LayerPruner 71.3 72.4 52.4 81.2 31.8 78.2 48.5 60.9 62.1

Self-AttentionPruner 71.3 77.9 55.1 81.5 33.4 80.1 49.7 59.2 63.5
AggregationPruner 71.6 77.9 56.8 81.6 34.4 79.9 50.0 62.1 64.3

4

FFNPruner 69.5 69.9 47.5 65.7 28.8 72.7 46.4 59.5 57.5
LayerPruner 69.9 68.5 47.3 65.3 28.4 69.9 44.0 57.7 56.4

Self-AttentionPruner 66.4 77.6 55.0 79.1 30.2 79.9 44.1 50.6 60.4
AggregationPruner 71.7 78.0 56.3 81.8 32.8 79.9 50.0 61.5 64.0

6

FFNPruner 66.5 67.9 42.5 62.2 24.6 68.4 46.4 58.1 54.6
LayerPruner 69.7 65.4 40.7 62.2 25.8 66.1 47.0 61.1 54.8

Self-AttentionPruner 67.2 77.7 54.8 77.8 31.2 80.0 45.6 50.4 60.6
AggregationPruner 71.7 77.6 56.1 80.7 33.2 79.8 49.0 61.6 63.7

8

FFNPruner 62.3 64.4 37.9 62.7 25.2 67.3 48.4 55.5 53.0
LayerPruner 68.4 62.2 37.6 63.6 24.6 64.4 48.8 57.0 53.3

Self-AttentionPruner 66.7 77.3 54.6 77.1 31.6 79.7 44.1 49.9 60.1
AggregationPruner 71.4 77.3 55.8 80.6 32.8 79.1 49.1 61.4 63.4

10

FFNPruner 58.1 61.6 35.6 62.3 23.0 64.7 42.8 52.1 50.0
LayerPruner 64.1 60.7 35.7 62.4 23.8 63.5 48.5 56.7 51.9

Self-AttentionPruner 67.3 77.5 54.2 75.6 31.6 79.4 43.6 51.2 60.1
AggregationPruner 71.4 77.6 56.6 79.7 33.4 79.0 49.3 61.5 63.6

12

FFNPruner 59.0 61.6 33.2 62.2 21.4 61.9 45.1 51.6 49.5
LayerPruner 68.1 65.1 34.0 62.2 23.2 61.9 48.0 57.3 52.5

Self-AttentionPruner 65.9 77.4 53.4 72.7 31.2 77.4 38.3 50.6 58.4
AggregationPruner 71.5 77.8 53.9 79.0 32.0 77.8 50.9 61.7 63.1

13

FFNPruner 61.1 61.5 32.5 62.2 21.2 60.8 45.0 51.3 49.5
LayerPruner 38.0 63.9 33.5 62.2 21.4 60.7 29.5 40.5 43.7

Self-AttentionPruner 58.0 76.1 50.9 70.9 29.8 76.4 35.2 51.9 56.2
AggregationPruner 62.9 77.0 52.6 78.2 28.8 77.5 46.6 59.8 60.4

Gemma2-9B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 77.6 80.0 64.9 84.4 33.4 81.4 60.0 70.6 69.0

2

FFNPruner 77.1 78.1 64.6 84.0 34.6 80.8 60.4 70.5 68.8
LayerPruner 77.5 78.0 63.5 84.6 33.8 80.2 60.8 70.6 68.6

Self-AttentionPruner 74.9 80.0 64.5 83.7 35.6 81.5 60.9 69.1 68.8
AggregationPruner 77.7 80.0 65.0 83.9 34.6 81.4 61.2 70.6 69.3

4

FFNPruner 77.0 77.2 63.0 84.3 35.4 79.5 58.8 70.4 68.2
LayerPruner 79.1 76.3 62.2 84.3 36.2 78.7 58.6 71.0 68.3

Self-AttentionPruner 77.1 78.9 64.3 83.7 35.4 80.7 59.7 70.5 68.8
AggregationPruner 77.6 81.1 65.7 83.1 35.4 80.7 60.5 70.7 69.4

6

FFNPruner 76.2 77.0 59.1 79.8 33.4 77.3 59.9 69.6 66.5
LayerPruner 77.9 75.1 57.8 81.8 35.0 76.2 59.8 71.0 66.8

Self-AttentionPruner 77.0 79.4 61.9 82.6 34.2 80.3 60.5 70.4 68.3
AggregationPruner 77.5 79.4 64.5 82.9 34.2 80.8 60.1 70.7 68.8

8

FFNPruner 75.3 74.8 53.2 63.1 30.8 75.5 58.3 70.2 62.6
LayerPruner 71.9 74.5 54.1 63.1 32.8 73.5 47.4 66.7 60.5

Self-AttentionPruner 77.0 77.8 61.7 83.1 34.8 79.9 59.8 70.1 68.0
AggregationPruner 77.7 79.2 63.9 70.6 35.8 80.1 60.3 70.0 67.2

10

FFNPruner 73.7 74.3 46.2 62.7 29.4 72.3 58.4 69.3 60.8
LayerPruner 41.0 72.8 48.5 62.8 28.6 71.1 33.1 47.7 50.7

Self-AttentionPruner 78.0 77.8 59.8 81.2 34.2 79.6 60.6 69.7 67.6
AggregationPruner 78.1 78.8 62.1 55.4 35.4 79.9 59.4 69.8 64.9

12

FFNPruner 74.4 72.4 41.7 62.6 25.4 69.4 56.6 69.1 59.0
LayerPruner 61.0 72.0 44.1 62.4 27.2 67.9 45.4 64.2 55.5

Self-AttentionPruner 77.4 76.7 58.5 75.7 33.4 79.2 58.8 68.7 66.0
AggregationPruner 78.1 78.0 61.1 57.8 34.6 79.7 59.6 70.1 64.9

13

FFNPruner 74.3 69.9 37.5 62.8 22.2 67.7 56.5 69.4 57.5
LayerPruner 66.8 71.8 40.0 62.9 24.6 65.1 50.7 66.0 56.0

Self-AttentionPruner 77.1 75.8 56.3 76.4 33.4 78.7 57.3 68.2 65.4
AggregationPruner 77.3 77.6 59.9 59.7 35.8 79.3 60.1 70.1 65.0
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Table 6: The Performance of LLaMA3.1-70B and Qwen2-72B on Discriminative Tasks.

LLaMA3.1-70B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 82.6 84.1 65.4 83.9 36.6 82.3 72.7 74.4 72.8

8

FFNPruner 80.0 73.2 51.3 76.6 33.8 75.8 70.9 67.4 66.1
LayerPruner 81.2 72.7 50.6 79.8 34.8 73.6 66.8 70.5 66.2

Self-AttentionPruner 82.2 83.8 63.0 83.8 35.6 81.8 73.5 74.6 72.3
AggregationPruner 82.5 83.7 63.1 83.8 35.6 81.7 73.6 74.6 72.3

16

FFNPruner 73.4 74.9 48.0 71.5 30.8 73.8 60.4 62.4 61.9
LayerPruner 80.8 68.5 49.6 75.1 34.4 72.4 72.1 73.3 65.8

Self-AttentionPruner 81.6 83.7 63.0 83.9 33.8 81.4 73.6 74.2 71.9
AggregationPruner 81.7 83.9 62.7 83.9 34.4 81.0 73.8 74.3 72.0

24

FFNPruner 67.8 74.7 45.4 68.3 28.4 71.4 57.5 54.4 58.5
LayerPruner 54.7 69.0 47.6 73.0 33.4 71.2 50.6 63.0 57.8

Self-AttentionPruner 81.7 83.6 62.9 83.8 34.4 81.2 73.5 74.0 71.9
AggregationPruner 81.4 83.8 63.0 84.1 34.6 81.3 73.4 74.0 71.9

32

FFNPruner 63.5 75.7 38.6 66.8 24.4 67.2 57.1 54.2 55.9
LayerPruner 70.1 66.9 42.8 72.0 30.0 68.2 65.8 69.7 60.7

Self-AttentionPruner 80.4 83.5 62.5 83.6 36.6 81.5 73.4 73.7 71.9
AggregationPruner 80.6 83.7 62.3 83.8 36.4 81.2 73.5 74.0 71.9

40

FFNPruner 60.0 73.2 31.3 62.1 20.6 63.2 60.9 51.5 52.8
LayerPruner 63.5 70.4 38.1 62.0 24.6 65.9 53.7 65.2 55.4

Self-AttentionPruner 80.9 82.0 61.5 84.0 34.4 80.3 72.9 73.7 71.2
AggregationPruner 80.3 82.7 61.9 84.0 34.2 80.4 73.5 74.2 71.4

41

FFNPruner 55.2 71.8 30.6 62.1 20.6 63.0 60.3 49.0 51.6
LayerPruner 40.4 70.3 37.8 62.0 23.0 65.3 55.8 60.7 51.9

Self-AttentionPruner 71.3 82.7 59.0 84.2 34.8 79.7 72.0 72.7 69.6
AggregationPruner 70.9 82.8 59.7 84.0 33.4 79.7 72.0 73.1 69.4

Qwen2-72B

#Layers Method CommonsenseQA WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MedQA MMLU Average

0 No Pruning 89.3 84.5 65.3 88.3 36.2 82.4 75.6 83.8 75.7

3

FFNPruner 89.4 75.6 58.6 83.4 35.0 78.8 75.7 83.3 72.5
LayerPruner 88.6 72.4 57.7 84.6 36.8 77.2 74.9 82.6 71.8

Self-AttentionPruner 88.6 84.8 63.9 81.0 35.4 81.6 76.7 82.2 74.3
AggregationPruner 88.9 84.2 64.4 88.5 36.4 82.3 76.5 82.8 75.5

6

FFNPruner 88.3 70.7 53.2 68.9 32.4 75.6 76.0 82.5 68.4
LayerPruner 88.5 69.6 53.4 76.8 31.6 73.0 74.0 81.6 68.6

Self-AttentionPruner 88.1 84.3 63.0 79.9 34.6 80.6 76.2 81.5 73.5
AggregationPruner 88.7 83.9 63.7 88.3 36.4 81.7 76.7 82.7 75.3

9

FFNPruner 87.9 69.1 43.9 62.2 30.0 72.1 75.3 82.1 65.3
LayerPruner 86.8 67.9 48.5 62.3 31.6 70.3 73.4 80.5 65.2

Self-AttentionPruner 87.8 84.3 62.8 79.8 34.0 80.4 74.5 81.3 73.1
AggregationPruner 88.9 84.2 64.1 87.8 37.0 81.7 76.4 82.8 75.4

12

FFNPruner 87.5 65.4 36.7 62.5 25.8 69.7 74.7 81.8 63.0
LayerPruner 84.2 67.9 45.6 64.6 29.0 69.5 75.1 81.9 64.7

Self-AttentionPruner 87.3 83.5 62.7 81.6 33.6 79.7 74.5 81.2 73.0
AggregationPruner 88.9 84.1 63.7 88.2 36.6 81.0 76.4 82.9 75.2

15

FFNPruner 86.9 63.2 32.9 62.4 22.2 65.8 74.6 81.9 61.2
LayerPruner 74.0 68.8 43.4 64.4 26.4 67.6 74.1 79.8 62.3

Self-AttentionPruner 88.2 82.8 61.5 78.0 31.4 80.3 75.4 81.6 72.4
AggregationPruner 88.4 83.4 64.2 86.7 36.2 80.6 76.4 82.9 74.9

18

FFNPruner 86.3 61.6 29.2 62.2 20.4 64.7 71.6 81.1 59.6
LayerPruner 76.3 68.8 39.5 64.0 24.2 64.5 74.2 79.2 61.3

Self-AttentionPruner 88.0 81.3 59.3 74.6 29.8 78.6 75.3 81.1 71.0
AggregationPruner 88.0 81.8 62.5 87.7 34.8 79.9 77.1 82.5 74.3

19

FFNPruner 87.0 61.7 30.4 62.2 20.4 64.9 72.4 81.1 60.0
LayerPruner 72.6 68.3 38.3 63.7 23.2 64.0 72.4 78.4 60.1

Self-AttentionPruner 87.6 81.2 59.0 76.5 28.2 78.0 74.9 80.8 70.8
AggregationPruner 88.1 81.8 61.7 88.1 34.8 80.0 76.4 82.3 74.2
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D DEMONSTRATION EXAMPLES ON GENERATION TASKS

In this section, we provide some demonstration examples on generation tasks with various pruning
algorithms.

Table 7: We present a demonstration example of outputs from various pruning algorithms applied to
the LLaMA3.1-70B model. In this demonstration, we prune the last two layers of the model using
different pruning methods. The comparative results are shown using the TriviaQA task. We can find
that LayerPruner produces incorrect answers, while AggregationPruner and Self-AttentionPruner
provide the correct ones.

Prompt: Which feminist book label was established by Carmen Callil
and others in 1973?
Answer: Viragos
Question: What is the name of the thoroughfare that Harry Potter
lived with his Uncle’s family?
Answer: Eeylops Owl Emporium
Question: Plaid Cymru (roughly pronounced ’plied cumrie’) is the
nationalist political party of which nation?
Answer: Welsh nation
Question: Thomas Becket was murdered where?
Answer: Our Lady of the Undercroft
Question: How many countries make up Europe?
Answer: forty-eight
Question: What claimed the life of singer Kathleen Ferrier?
Answer:

AggregationPruner: Cancer

Self-AttentionPruner: Cancer

LayerPruner: Ovarian cancer claimed her life at age41 in19532̆0331953

FFNPruner: cancerous growths in her voicebox
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Table 8: We present a demonstration example of outputs from various pruning algorithms applied
to the Qwen2-72B model. In this demonstration, we prune the last 12 layers of the model for
AggregationPruner and Self-AttentionPruner. We prune the last 5 and 7 layers of the model for
LayerPruner and FFNPruner The comparative results are shown using the GSM8K task. We find that
FFNPruner and LayerPruner produce redundant content and fail to generate the correct answer. On
the other hand, AggregationPruner and Self-AttentionPruner both arrive at the correct solution, albeit
with differing outputs.

Prompt:Question: Steve finds 100 gold bars while visiting Oregon. He wants to distribute his gold bars
evenly to his 4 friends. If 20 gold bars were lost on the way back to San Diego, how many gold bars
will each of his 4 friends get when he returns?
Answer: He only has 100 − 20 = 80 gold bars after losing 20 of them.
He then gives each of his friends 80

4
= 20 gold bars.

#### 20
Question: In a week, Mortdecai collects 8 dozen eggs every Tuesday and Thursday, and he delivers 3
dozen eggs to the market and 5 dozen eggs to the mall. He then uses 4 dozen eggs to make a pie every
Saturday. Mortdecai donates the remaining eggs to the charity by Sunday. How many eggs does he donate
to the charity?
Answer: Mortdecai collects a total of 8 × 2 = 16 dozens of eggs.
He sells a total of 3 + 5 = 8 dozens of eggs.
So, 16 − 8 = 8 dozens of eggs are left.
After using 4 dozens of eggs to make a pie, 8 − 4 = 4 dozens of eggs are left.
Since there are 12 in 1 dozen, Mortdecai donates 4 × 12 = 48 pieces of eggs to the charity.
#### 48
Question: Corey downloaded two movie series from his Netflix account with 12 and 14 seasons per series,
respectively. However, in the week, his computer got a mechanical failure, and he lost two episodes
from each season for both series. If each season in the movie series that Corey downloaded had 16
episodes, how many episodes remained after the computer’s mechanical failure?
Answer: In the first movie series with 12 seasons, after the mechanical failure, the number of episodes
that Corey lost is 2 × 1224.
Originally, the movie series with 12 seasons had 12 × 16 = 192 episodes.
After the mechanical failure, Corey had 192 − 24 = 168 episodes remaining in the first movie series.
Similarly, the 14-season movie series also had 14 × 2 = 28 episodes lost after the computer’s mechanical
failure.
Originally, the movie series with 14 seasons had 14 × 16 = 224 episodes.
The mechanical failure of the computer reduced the number of episodes in the 14-season movie series to
224 − 28 = 196.
After the loss, Corey had 196 + 168 = 364 episodes remaining from the two movie series he had downloaded.
#### 364
Question: There were 18 students assigned in a minibus for a field trip. Eight of these students were
boys. On the day of the field trip, the number of girls and boys was the same since some of the girls
were not able to join the trip. How many girls were not able to join the field trip?
Answer: 8 boys + 8 girls = 16 students joined the field trip.
Thus, 18 − 16 = 2 girls were not able to join the field trip.
#### 2
Question: There are 200 more red apples than green apples in a grocery store. A truck arrives and
delivers another 340 green apples. If there were originally 32 green apples, how many more green apples
than red apples are there in the store now?
Answer: There are 200 + 32 = 232 red apples.
After the delivery, there are 340 + 32 = 372 green apples.
There are now 372 − 232 = 140 more green apples than red apples.
#### 140
Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?
Answer:
AggregationPruner: The white fibers take 2

2
= 1 pound per bookend.

So, in total, it takes 2 + 1 = 3 pounds of fiber per robe.
#### 3

Self-AttentionPruner:The number of white fibers is calculated using:

COUNTIFS("A2:A10", ">0")

The total number of bolts is calculated using:

=COUNTIFS("A2:A10", ">0")

#### 3

LayerPruner: white fiber plus two blue fiber equals total fiber used 2+ half of two equals total fiber
used 2+ half of two equals total fiber used 2+ half of two equals total fiber used 2+ half of two equals
total fiber used two plus half of two equals total fiber used two plus half of two equals total fiber
used two plus half of two equals total fiber used two plus half of two equals total fiber used two plus
half of two equals total fiber used two plus half of two equals total fiber used two plus half of two
equals total fiber used two plus half of two equals total fiber used two plus half of two equals total
fiber used

FFNPruner:White fiber + 2 bolts of blue fiber = ⟨⟨ 2 + 2 = 4 ⟨⟨ 4 bolts total fiber.
White fiber = 2

2
= ⟨⟨2/2 = 1⟩⟩ 1 bolt of white fiber.

White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
White fiber + blue fiber = ⟨⟨1 + 2 = 3⟩⟩3 bolts total fiber.
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