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ABSTRACT

Recently, Chain-of-Thought (CoT) reasoning has become a key problem-solving
capability for advanced large language models (LLMs) to address difficult tasks
such as the mathematical ones. However, balancing the efficiency and perfor-
mance of long CoTs still remains an intractable challenge. In this paper, we ob-
serve that assigning adaptive token budgets for different examples during training
is an viable way to tackle with the above issue. Motivated by this, we propose
a novel reinforcement learning scheme, termed Adaptive-Budgeting based Pol-
icy Optimization (ABPO). Based on the popular GRPO, our ABPO redefines the
RL training as an adaptive curriculum learning process, where example pools are
curated to categorize training examples into three types, namely the mastered,
learning and hard ones, respectively. As the training progresses, ABPO will adap-
tively schedule the examples with proper length budgets, and the example pools
will alse be dynamically updated based on the model status. In this way, we can
assign adaptive token lengths for different examples during RL training, achieving
a good balance between efficiency and performance of CoTs. To validate ABPO,
we apply it to three representative LLMs, and conduct extensive experiments on
a bunch of CoT reasoning benchmarks. The experimental results not only show
the substantial efficiency improvements with minimal performance loss, e.g., re-
ducing token length by 78.3% while improving 2.0% performance of DeepSeek-
R1-Distill-Qwen-1.5B on average, but also show our obvious advantages over
the compared methods, e.g., reducing 59.4% length and increasing 8.3% perfor-
mance on average than HAPO, respectively. Our code is anonymously released at
https://anonymous.4open.science/r/AnonymizeABPO-5380/

1 INTRODUCTION

Recently, test time scaling Muennighoff et al. (2025) has become the de facto paradigm of ad-
vanced large language models (LLMs) Grattafiori et al. (2024); Yang et al. (2024); Bai et al. (2023);
Achiam et al. (2023). Following this paradigm, advanced LLMs DeepSeek-AI (2025); Team (2025)
are trained in reinforced or supervised manners to generate long chain-of-thoughts (CoTs), thereby
handling difficult tasks, such as mathematical problem solving of America (2024); Gao et al. (2024)
and logical reasoning Xie et al. (2025). Despite the great success, “over-thinking” Chen et al. (2025)
becomes another notable issue for these LLMs. For instance, Qwen-QwQ Team (2025) will gen-
erate CoTs of more than 2k tokens to answer a simple question, e.g., “The product of integers 240
and k is a perfect cube. What is the smallest possible positive value of k?” This case will become
more prominent for smaller LLMs, such as DeepSeek-R1-Distill-Qwen-1.5B and DeepScaleR-1.5B-
Preview, which strongly contradicts their goals about efficient applications.

To address this problem, recent efforts are devoted to the research of efficient CoT reason-
ing Muennighoff et al. (2025); Aggarwal & Welleck (2025); Ma et al. (2025); Luo et al.
(2025a). Among these progresses, one plausible strategy is to imply length-related rewards to
the RL training of LLMs Aggarwal & Welleck (2025); Yeo et al. (2025); Arora & Zanette
(2025); Luo et al. (2025a). In particular, LLMs are assigned by a fixed-length token budget
during its training. And when the output CoT exceeds the token budget, a negative reward
will be returned to guide the RL optimization Aggarwal & Welleck (2025); Yeo et al. (2025).

1

https://anonymous.4open.science/r/AnonymizeABPO-5380/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026
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Drop

Figure 1: The performance–length curve of L1-
Exact 1.5B Aggarwal & Welleck (2025) on two
datasets. For easy questions, CoT will result in an
obvious wast of computation. In contrast, for the
hard ones, the limited token budgets of CoT will
lead to obvious performance drop. Thus, assign-
ing proper token budgets is the key to achieve the
balance between efficiency and performance.

In this way, LLMs are forced to learn to solve
the tasks using limited-length CoTs.

However, this fixed-budget based solution still
encounters several limitations. Above all, the
example difficulties for LLMs vary greatly,
even for the mathematical tasks. And fixing
the token budget is hard to meet the trade-off
between efficiency and performance. To ex-
plain, as shown in Fig.1, when the token budget
is small, LLMs are prone to under-cutting the
hard examples while over-supplying the easy
ones. For instance, under a budget of 2k tokens,
DeepSeek-R1-Distill-Qwen-1.5B can perform
well on the simple tasks like MATH500 but re-
ceives obvious performance drops on the more
difficult ones, e.g.,-25% on AIME of America
(2024). Moreover, simply increasing the to-
ken budget will makes the efficiency benefit be-
come limited, e.g., 4k tokens, and the tuning
cost also increases substantially . In this case,
we argue that allocating appropriate token bud-
gets to different examples based on the model
status is the key to addressing this shortcoming.

However, achieving the adaptive budgeting is
notoriously challenging in existing RL training scheme. Although the example difficulty for LLMs
can be measured via accuracy, entropy or prediction confidence Su & Cardie (2025); AlKhuzaey
et al. (2024), the model’s assessment of difficulty is a dynamic process that changes as training pro-
gresses, and how to assign proper token budgets is still intractable. Besides, the training scheduler
also requires in-depth exploration. Gradually increasing the token budget is a natural solution, e.g.,
curriculum learning Bengio et al. (2009), but it also causes the LLM to continuously traverse the
simple examples, resulting additional issues of training efficiency and expenditure, expecially con-
sidering the expensive cost of the widely used GRPO training Shao et al. (2024). Therefore, how to
effectively and dynamically adjust proper token budgets still remains an open problem.

To address these issues, we propose a novel training scheme termed Adaptive-Budgeting based Pol-
icy Optimization (ABPO), which extends the popular Group Relative Policy Optimization (GRPO)
Shao et al. (2024) with adaptive and budget-aware rewards in a dynamic training process. Con-
cretely, ABPO will first let the LLM to quickly read training examples, and then categorize the
examples into three pools, namely the mastered, the learning and the hard ones, respectively. In
practice, ABPO starts from a low token budget, which is then gradually increased. During train-
ing, the hard examples are not directly used, but they will be adaptively updated to the learning
pool based on the model status. Meanwhile, we also introduce an efficient review mechanism for
the mastered examples, ensuring the knowledge retention and avoiding catastrophic. This dynamic
scheduling can help to assign model-aware token budgets for different examples and avoid the redun-
dant training of examples. In this case, ABPO can achieve a good trade-off among CoT efficiency
and performance as well as training expenditure.

To validate ABPO, we apply it to a set of advanced LLMs, including DeepSeek-R1-Distill-Qwen-
1.5B, 7B DeepSeek-AI (2025) and DeepScaleR-1.5B-Preview Luo et al. (2025b), on four represen-
tative reasoning benchmarks of varying difficulties, which are MATH500 Hendrycks et al. (2021),
AIME of America (2024), AMC AMC (2025) and OlympiadBench He et al. (2024). The experiment
results show that ABPO can significantly reduce the token cost of CoT reasoning while maintain-
ing competitive performance across various benchmarks. For instance, ABPO reduces the average
CoT length of DeepSeek-R1-Distill-Qwen-1.5B by 78.3% while improving 2.0% of performance
on average. Compared with prior CoT optimization methods, our ABPO can also obtain better CoT
efficiency while achieving overall performance improvement on all benchmarks, e.g., 2,217 v.s.,
5,466 length and 60.2 v.s. 55.6 accuracy compared to HAPO Huang et al. (2025). These results well
confirm the effectiveness of our the motivation and designs of ABPO towards efficient CoT.
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Figure 2: Illustration of Adaptive Budgeting based Policy Optimization (ABPO). During training,
ABPO evaluates the difficulty of the training samples and groups them into three pools, i.e., the
mastered, learning and hard ones, respectively. As the training progresses, ABPO will adaptively
allocate proper token budgets to the learning examples, and also actively review the mastered ones
to avoid knowledge forgetting. In addition, these examples pools will be dynamically updated based
on the LLM’s status during training, thereby balancing efficiency, performance and training costs.

Overall, our contributions are three-fold:

• We show the limitation of using fixed-budget CoT optimization schemes in terms of balanc-
ing CoT efficiency and performance, and also identify the key challenges of implementing
adaptive budget rewards in existing RL training.

• We propose a novel training scheme termed Adaptive-Budgeting based Policy Optimization
(ABPO), which can adaptively assign token budgets and schedule the RL training.

• On a set of LLMs and benchmarks, ABPO shows better capability of balancing CoT effi-
ciency and performance than the compared methods.

2 RELATED WORK

Chain-of-Thought (CoT) refers to generating step-wise reasoning traces before answering the given
question Wei et al. (2022), which has become a critical capability of advanced LLMs DeepSeek-
AI (2025); Luo et al. (2025b); Team (2025); Team et al. (2025). However, these reasoning LLMs
often produce excessively long CoT that commonly exhibit too many branching, verification, and
backtracking. To address this issue, several works have recently been proposed for efficient CoT Ag-
garwal & Welleck (2025); Hou et al. (2025); Yeo et al. (2025); Hammoud et al. (2025). Specifically,
one popular solution is using budget-based rewards in RL training Aggarwal & Welleck (2025); Yeo
et al. (2025); Hou et al. (2025); Hammoud et al. (2025). For example, L1 Aggarwal & Welleck
(2025) introduces a penalty term to enforce length budgets specified in the prompt. ThinkPrune Hou
et al. (2025) introduces a uniform budget limit for all training samples. Curriculum GRPO Ham-
moud et al. (2025) gradually reduce the number of tokens a LLM is allowed to use, which however
ignores the differences among questions. However, this static method often hard to meet the trade-
off between efficiency and performance. In this case, recent works Luo et al. (2025a); Huang et al.
(2025); Arora & Zanette (2025); Su & Cardie (2025); Yi et al. (2025) start exploring dynamic-length
rewards for LLMs. O1-Pruner Luo et al. (2025a) and Training Efficiently Arora & Zanette (2025)
apply a length penalty based on the within-group comparison. ShorterBetter Yi et al. (2025) ties
its reward function to the length of the shortest and correct response for each sample. Although
these methods incorporate dynamic reward signals, they still need to repeatedly train on the mas-
tered samples, which significantly reduces training efficiency. In contrast, our approach considers
the budget and training schedule for different samples, achieving a balance between performance
and efficiency.
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3 METHOD

3.1 PRELIMINARY

Chain-of-thought (CoT) Wei et al. (2022) is a key capability of advanced LLMs in terms of long and
complex task solving. The inference process of an LLM with CoT can be defined by

ŷi = LLM(oi, qi), where oi = LLM(qi). (1)
Here qi denotes the input question, oi is the generated reasoning trace, i.e., CoT, and ŷi is the
predicted answer. Under the popular Group Relative Policy Optimization (GPRO) Shao et al. (2024),
its objective can be defined by

JGRPO(θ) = E[q ∼ D,{oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t − βLKL(πθ, πref )

]
,

where Âi,t =
I[ ŷi = yi]−mean(R)

std(R)
.

(2)

Here, q denotes the sampled query from the dataset D, oi is the i-th generated output sampled from
the old policy πθold , πθ is the updated policy for optimization, and πref is the reference model used
for KL-regularization. Âi,t is the standardized reward advantage for token t with R denoting the set
of rewards. β controls the strength of the KL-regularization LKL(πθ, πref ). In terms of the default
GPRO, the reward function does not consider the length of CoT outputs, so the training mainly
focuses on the prediction accuracy, which makes the model prone to over-thinking. And this issue
will become more obvious in the smaller distilled LLMs Cuadron et al. (2025).

In this case, some recent works Hou et al. (2025); Aggarwal & Welleck (2025); Yeo et al. (2025)
implement length-related reward to RL training. When the output CoT exceeds the max number of
tokens, the LLM will receive a negative reward to penalize its optimization. As discussed above, the
length-aware reward can encourage the model to learn to answer the questions with limited length
of CoTs. However, the fixed budget commonly used Aggarwal & Welleck (2025); Hou et al. (2025)
will also make the model under-cutting the hard examples while over-supplying the easy ones. In
this case, we aim to achieve dynamic RL training with adaptive token budget scheduling.

3.2 ADAPTIVE-BUDGETING BASED POLICY OPTIMIZATION

In this paper, we propose a novel training scheme to balance the efficiency and performance of
LLM’s CoT reasoning, termed Adaptive-Budgeting based Policy Optimization (ABPO), of which
illustration is depicted in Fig. 2. Concretely, ABPO introduces adaptive token budgets to the training
of GPRO, and then the objective can be defined by

JABPO(θ) = E[q ∼ D, {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

min(|oi|, b(qi))

min(|oi|,b(qi))∑
t=1

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t − βLKL(πθ, πref )

]
,

where Âi,t =
I[ ŷi = yi ∧ |oi| ≤ b(qi)]−mean(R)

std(R)
.

(3)

Here b(qi) is the dynamic token budget that LLM can use to answer the question qi. And the budget-
aware reward function can be defined by

r(oi, ŷi) =

{
1, if ŷi = yi and |oi| ≤ b(qi),

0, otherwise.
(4)

where oi and ŷi are the reasoning trace and the predicted answer for the input question qi. Notably,
b(qi) will be adaptively adjusted according to the difficulties of examples to the LLM.

Before training, ABPO first considers that all examples are unknown (hard) to the model, and eval-
uates their accuracies for the current model πθ. In practice, we will first generate n CoT traces Oi

for each question qi:
Oi = {(oi,j , ŷi,j) | (oi,j , ŷi,j) = πθ,j(qi)}, (5)

4
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where πθ,j represents the j-th sampling based on the policy model πθ. Notably, these traces can also
be used as {oi}Gi=1 in Eq.3, avoiding the waste of computation. Then, the average accuracy of the
model πθold for the question qi under the length budget b(qi) can be obtained by

Acc(qi) =
1

n

n∑
j=1

I[ ŷij = yi ∧ |oi,j | ≤ b(qi) ] , (6)

where I[·] is an indicator function. Initially, all samples are given the same budget b(qi) = t0. Via
Eq. 6, we can categorize these examples into three pools, defined by

Smastered = {qi | Acc(qi) ≥ τ1}, (7)
Slearning = {qi | τ1 > Acc(qi) > τ0}, (8)
Shard = {qi | τ0 ≥ Acc(qi)}. (9)

Here,τ0 and the τ1 are the lower and upper thresholds, respectively. Thus, the mastered pool Smastered
contains examples that have been solved under existing token budget b(qi). The learning pool
Slearning have samples with a certain probability of being learned. In contrast, the hard pool Shard
contains difficult examples that are not suitable to learn by LLMs, and they will not be used.

During ABPO training, the examples used are mainly composed of the learning ones, but we will
still review a certain number of the mastered examples to avoid knowledge forgetting, with a review
rate denoted by α. After optimizing the LLM with the current batch, we calculate their accura-
cies according to Eq.6. Based on the accuracies, we can update the examples pools Slearning and
Smastered. When the number of Slearning is reduced to a certain proportion λ , we will increase the
length budgets b(qi) for the samples in Shard, and then start a new difficulty evaluation for these
examples, which will accordingly update the pools of both hard and learning.

Specifically, the new budget for the questions qi ∈ Shard can be calculated by

b(qi) = t0 + (k − 1) · d, where qi ∈ Shard. (10)

Here k is the number of the current iteration and d denotes the increased length budget. Then we
evaluate the accuracy of samples from Shard under the new budget and move some examples into
Slearning according to Eq.8 and Eq.9. In this way, easy examples will be added to the learning and
mastered pools, which cost only a small budget, and the more difficult examples will receive a larger
budget. Due to page limit, the detailed algorithm of ABPO is given in Appendix A.2.

4 EXPERIMENTS

4.1 DATASET AND METRIC

The experiments are conducted on four widely-used benchmarks, including MATH500 Hendrycks
et al. (2021), AIME of America (2024), AMC AMC (2025), and Olympiad-Bench He et al. (2024).
Among these benchmarks, MATH500 is often regarded as the easiest one, which is a subset of
MATH Hendrycks et al. (2021). AMC and AIME are moderately difficult, which has examples
from mathematics competitions. In particular, AIME is regarded as the most difficult one, of which
examples are from American Invitational Mathematics Examination. Following the previous works
Arora & Zanette (2025), the accuracy of an example is defined by the average performance across
K runs. During the evaluation, we set K = 3 for MATH500, K = 5 for Olympiad-Bench and
K = 10 for both AIME and AMC. Additionally, we use the Accuracy–Efficiency Score (AES) Luo
et al. (2025a) to evaluate the trade-off between accuracy and computation overhead. A higher AES
indicates a better balance between accuracy and efficiency.

4.2 IMPLEMENTATION DETAILS

We train ABPO on three base models, i.e., DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-
Qwen-7B DeepSeek-AI (2025), and DeepScaleR-1.5B-Preview Luo et al. (2025b). The main exper-
iments are conducted on 2.4k training samples from the AIME-AMC subset of the Prime dataset Cui
et al. (2025). To further validate the effectiveness of ABPO, we additionally train DeepSeek-R1-
Distill-Qwen-1.5B on 32k samples from the AM dataset Zhao et al. (2025). For training steps,
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Table 1: Comparison with existing efficient CoT optimization methods on three LLMs for four
mathematical benchmarks. “Acc.”, “Len.” and “AES” denote accuracy (higher is better), length
(lower is better) and Accuracy–Efficiency Score (higher is better), respectively. The best and second
best results are marked in bold and underline, respectively.

Train Data MATH500 AMC Olympiad AIME Average

Acc. ↑ Len. ↓ AES ↑ Acc. ↑ Len. ↓ AES ↑ Acc. ↑ Len. ↓ AES ↑ Acc. ↑ Len. ↓ AES ↑ Acc. ↑ Len. ↓ AES ↑
Base model: DeepSeek-R1-Distill-Qwen-1.5B

Baseline – 83.3 5278 – 70.3 9314 – 50.3 10820 – 32.0 15476 – 59.0 10222 –
ShorterBetter 40k 68.9 864 -0.03 48.3 1194 -0.69 36.2 2072 -0.60 19.7 4286 -1.20 43.2 2104 -0.54
Training Efficient 3.2k 81.9 2536 0.44 70.3 5183 0.44 49.2 6818 0.27 29.0 10552 -0.15 57.6 6272 0.27
HAPO 2k 81.5 2633 0.39 69.0 4507 0.43 49.2 5458 0.38 22.7 9268 -1.06 55.6 5466 0.18

ABPO (Ours) 2.4k 80.9 1647 0.54 71.3 2537 0.77 49.7 3311 0.63 29.3 6028 0.19 57.8 3371 0.57
ABPO (Ours) 32k 85.2 1434 0.80 74.3 2068 0.95 52.7 2141 0.95 28.7 3223 0.28 60.2 2217 0.85

Base model: DeepSeek-R1-Distill-Qwen-7B

Baseline – 93.2 4086 – 89 6484 – 66.1 8686 – 56.3 12837 – 71.9 8536 –
ShorterBetter 40k 85.6 1233 0.29 82.3 2443 0.24 56.7 2990 -0.06 49.0 5673 -0.09 64.5 3910 0.03
Training Efficient 3.2k 89.1 2121 0.26 87.5 4300 0.25 61.9 5626 0.04 52.3 9410 -0.09 65.0 5112 -0.08

ABPO (Ours) 2.4k 92.2 2243 0.40 87.3 3511 0.36 63.5 4852 0.25 48.7 8493 -0.34 66.0 4354 0.08

Base model: DeepScaleR-1.5B-Preview

Baseline – 88.2 3155 – 81.3 5067 – 58.3 5718 – 40.0 9041 – 66.9 5745 –
L1-Exact 40k 82.1 3189 -0.35 71.0 3067 -0.24 50.7 3196 -0.22 22.3 3715 -1.62 56.5 3292 -0.35
L1-Max 40k 84.5 1527 0.31 75.5 1768 0.30 51.1 1733 0.07 27.0 2290 -0.88 59.5 1830 0.13
HAPO 2k 81.9 2537 -0.16 70.5 4119 -0.47 53.6 3976 -0.10 31.3 6974 -0.86 59.3 4401 -0.33
ThinkPrune 2.4k 85.5 2029 0.21 78.5 3125 0.21 55.0 3532 0.10 34.7 5743 -0.30 63.4 3607 0.11

ABPO (Ours) 2.4k 85.6 1874 0.26 79.8 2845 0.35 55.0 3302 0.14 37.3 5736 0.03 64.4 3439 0.21

Table 2: Comparison between fixed-budget baselines and ABPO on DeepSeek-R1-Distill-Qwen-
1.5B on AMC and AIME.

AMC AIME Average Training
Time (h)Acc. ↑ Len.↓ AES Acc.↑ Len.↓ AES Acc. ↑ Len.↓ AES

Base 70.3 9314 – 32.0 15476 – 51.1 12395 – –
Fixed-Budget 2000 66.3 2320 0.47 24.0 5576 -0.61 45.1 3948 0.09 15.5
Fixed-Budget 3000 68.8 2850 0.59 23.3 6309 -0.76 46.0 4980 0.13 22.2
Fixed-Budget 4000 71.8 3600 0.68 25.7 6376 -0.40 48.7 4988 0.36 28.0
ABPO (Ours) 71.3 2537 0.77 29.3 6028 0.19 50.3 4283 0.57 20.3

DeepSeek-R1-Distill-Qwen-1.5B is trained for 350 steps under both the standard and extended-data
settings, while DeepSeek-R1-Distill-Qwen-7B and DeepScaleR-1.5B-Preview are each trained for
50 steps. The compared methods are ShorterBetter Yi et al. (2025), Training Efficient Arora &
Zanette (2025), HAPO Huang et al. (2025), L1-Exact, L1-Max Aggarwal & Welleck (2025) and
ThinkPrune Hou et al. (2025). The detailed experimental settings are provided in Appendix A.3.

4.3 QUANTITATIVE ANALYSIS

Comparison with existing methods In Tab.1, we first compare the performance and efficiency of
ABPO with existing CoT optimization methods on three representative LLMs. From this table, we
can first observe that the default LLMs (Baseline) often requires excessive tokens to generate CoTs
on all benchmarks, e.g., 5,278 tokens on MATH500 by DeepSeek-R1-Distill-Qwen-1.5B, showing
notable over-thinking issues. ABPO and the compared methods can well alleviate this problem.
For instance, via taking the shortest reasoning length within a sampled group, ShorterBetter can
reduce the CoT length of DeepSeek-R1-Distill-Qwen-1.5B to 864 tokens on MATH500. However,
we can also see that the compared methods have obvious compromises in performance, e.g., -38.4%
and -29.1% by ShorterBetter and HAPO on the difficult AIME. In addition, it can be seen that
the efficiency benefits of some methods become marginal on the difficult tasks in order to reduce
performance loss. For instance, the SOTA method Training Efficient requires about 10k and 6.8k
token budgets on AIME and Olympiad for DeepSeek-R1-Distill-Qwen-1.5B, respectively, resulting
worse Accuracy-Efficiency Score (AES). In terms of fixed-budget methods, e.g., ThinkPrune Hou
et al. (2025), it can maintain the CoT length at a relatively short output, but it obviously drops
the performance by 13.2% on the difficult AIME. In contrast, ABPO can achieve a good balance
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Table 3: Ablation study of ABPO on DeepSeek-R1-Distill-Qwen-1.5B. We progressively add Cur-
riculum Learning, Adaptive Budget and Example Review to ABPO. ⋆ denotes the full setting of
ABPO.

AMC AIME Average

Acc.↑ Len.↓ AES↑ Acc.↑ Len.↓ AES↑ Acc.↑ Len.↓ AES↑
Base 70.3 9314 – 32.0 15476 – 51.1 12395 –

+ Curriculum Learning 68.0 2652 0.56 24.7 5250 -0.48 46.3 3951 0.21
+ Adaptive Budget 68.0 2232 0.60 26.3 5219 -0.22 47.2 3726 0.31

+ Review⋆ 71.3 2537 0.77 29.3 6028 0.19 50.3 4283 0.57

Table 4: Comparison between ABPO and the alternative data scheduling strategies on DeepSeek-
R1-Distill-Qwen-1.5B. Mix(·) denotes the mixing of different types of examples for sampling.

AMC AIME Average

Acc.↑ Len.↓ AES↑ Acc.↑ Len.↓ AES↑ Acc.↑ Len.↓ AES↑
Base 70.3 9314 – 32.0 15476 – 51.1 12395 –
Mix(Slearning,Shard) 62.8 1942 0.26 16.3 3954 -1.70 39.5 2948 -0.37
Mix(Slearning,Smastered) 69.8 2768 0.67 28.7 6180 0.08 49.2 4474 0.45
ABPO (Ours) 71.3 2537 0.77 29.3 6028 0.19 50.3 4283 0.57

between efficiency and performance. When increasing the amount of training data, i.e., 32k, ABPO
can help DeepSeek-R1-Distill-Qwen-1.5B reduce about 78.3% CoT length while achieving 2.0%
performance gains on average. These results well confirm the effectiveness of our ABPO.

To better show our advantages, we compare ABPO with length-control approaches in Fig. 3 (a),
i.e., L1-Exact and L1-Max Aggarwal & Welleck (2025). We plot the length–accuracy of the
DeepScaleR-1.5B-Preview under different budget settings. Specifically, L1-Max controls the maxi-
mum output length of the model through prompting, whereas L1-Exact enforces the model to gener-
ate outputs with an exact length budget specified in the prompt. We show the average performance
on the four widely used becnhmarks, i.e., AMC, MATH500, AIME and Olympiad. From this figure,
we can first observe that the original LLM takes a very large number of tokens to achieve better
performance. Specifically, the original LLM achieves only 3.9% performance improvement while
consuming nearly twice the token overhead of our ABPO. We can also observe that both L1-Exact
and L1-Max can reduce the length of CoTs. When extending the CoT lengths, the performance
of these two methods slightly increases but eventually reaches the ceiling. Compared with these
two methods, the proposed ABPO achieves better performance with the same budget. As shown in
the figure, ABPO obviously occupies a more upper left position in the length-performance curve.
Overall, these results show that the proposed ABPO method can achieve a better balance between
efficiency and effect and significantly improve the LLMs’ reasoning ability.

Comparison with fixed-budget Baselines In Tab. 2, we compare ABPO to the fixed-budget meth-
ods under the same experimental settings. For the fixed-budget baselines, we assign a fixed token
budget to all training samples. All samples are trained together, and this setting can serve as a di-
rect counterpart to our adaptive scheduling strategy. From Tab. 2, we can first observe that this
fixed-budget baselines will impose a negative impact on difficult examples. Specifically, training
with a budget of 3, 000 tokens on AIME reduces the output length by 59.2% but leads to 27.2%
performance drop. In comparison, ABPO requires 8.6% less training time and reduces the output
length by 61.0%, while resulting in an 8.4% performance drop. This performance is higher than the
result under the fixed budget of 3, 000. Another observation is that for medium-difficulty examples,
ABPO achieves a better balance between accuracy and length. Although its accuracy is close to
the baseline of a higher fixed budget, the output length is much shorter. For instance, on the AMC
dataset, ABPO’s accuracy is only 0.6% lower than that of Fixed-budget 4, 000, but its length is re-
duced by 29.5%, while obtaining a 13.2% improvement in AES. Overall, these results demonstrate
that ABPO can provide reasonable CoT budgets for examples of varying difficulties.

Ablation study In Tab. 3, we ablate the key designs of ABPO on DeepSeek-R1-Distill-Qwen-
1.5B. In this table, “+ Curriculum Learning” denotes training with curriculum scheduling and train-
ing batches are constructed by the examples from Slearning with CoT length limited by 4,000 tokens.
“+ Adaptive Budget” further introduces dynamic budget scheduling, where their initial budget is set
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Figure 3: (a) Comparison between ABPO and efficient CoT optimization methods under different
length budgets on DeepScaleR-1.5B-Preview. The accuracy is averaged over AMC, MATH500,
AIME and Olympiad. (b) The average CoT length and accuracy of ABPO on examples of MATH500
at different difficulty levels. It can be seen that the proposed ABPO can generate CoT with different
lengths according to the example difficulty.

to t0=2, 000 and gradually expanded with d=500 per iteration. Finally, “+ Review” corresponds to
the full settings of ABPO, which additionally adds the review mechanism by mixing a fraction of
the mastered samples. From Tab. 3, we can first observe that using curriculum learning can reduce
the CoT length substantially. For instance, on AMC benchmark,“+ Curriculum Learning” reduces
the reasoning trace by 71.5% with 3.3% performance drop. After adding adaptive budgeting, i.e.,
“+ Adaptive Budget”, the output length is further shortened while improving accuracy. For instance,
the length of CoT is shorten by 76.0%, while keeping the same performance on AIME benchmark.
With “+ Review”, ABPO achieves the best trade-off, and it restores the accuracy close to the original
LLMs while significantly reducing CoT token length. For instance, on AMC, the proposed ABPO
method not only reduces the CoT length by 72.8%, but also improve the performance by 1.4%.
These results well confirm the designs of the adaptive budget assignments and the example review.

In Tab. 4, we also examine the roles of three example pools in ABPO. We conduct two experi-
ments with different sampling strategies while keeping all other configurations identical to ABPO.
Here, “Mix(Slearning,Shard)” combing the examples of Slearning with Shard for sampling, i.e., not
considering the difficulty of examples for training. “Mix(Slearning,Smastered) denotes the mixing of
Slearning and Smastered, i.e., all examples are either under-learning or too hard for training. In con-
trast, ABPO will assess examples via three types while reviewing partial examples from Smastered,
as described in Sec. 3.2. From these results, we can observe that “Mix(Slearning,Shard)” significantly
reduces the CoT length of the LLM. For instance, it reduces CoT length by 74.4% on AIME. How-
ever, under this scheme, the longer CoTs for difficult examples always give the LLM a penalty sig-
nal, causing the LLM to mistakenly tend to output shorter CoT. On the other hand, we can observe
that “Mix(Slearning,Smastered)” significantly reduces the CoT length while obtaining better perfor-
mance. For example, “Mix(Slearning,Smastered)” reduces the inference length by 60.1% with 10.3%
performance drop on AMC. To explain, after identifying the hard examples, this scheme can help
the LLM achieve better optimizations during training. However, its performance is still limited due
to the excessive use of easy examples, especially on the difficult ones. In contrast, via categorizing
examples into three pools with a review design, ABPO can help the LLM better compensate the
performance drops while keeping low CoT budgets. Overall, these ablation studies well confirm the
designs of the example pools and the review operation in ABPO.

Inference cost w.r.t. example difficulty. In Fig. 3 (b), we show the relationships between infer-
ence cost and performance on the examples of MATH500 Hendrycks et al. (2021). These exam-
ples have the corresponding difficulty-level annotations. We apply ABPO to DeepSeek-R1-Distill-
Qwen-1.5B and evaluate its inference cost and performance on the subsets of different difficulty
levels. From the figure, we observe that our ABPO can help the LLM generate CoT with proper
lengths related to the example difficulties. This case shows that our ABPO can adaptively allo-
cate more suitable budgets to more challenging examples during training, thereby achieving a good
trade-off between performance and efficiency.
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:

The circle…Find the area of the quadrilateral…real upperparab…A, 

B, C, D…\ndot(C);\ndot(D);\n[/asy]

HARD

Problem understanding:
Okay, so I have... First, let me recall... so... Then... So, maybe I 

can... Wait, so the area...Then...Wait, , let me just... Another

way... But... Wait... So, in... Wait... So, in conclusion...So...The 

area of the triangle is 32.

In … triangle, the altitude …length $4\\sqrt{2}$.  What is the 

area of the triangle?

EASY

Okay, so I need...  First, let me recall... the altitude... But… Wait, 

in a right triangle… Let me compute... so the area is… The 

isosceles right triangle is 32.

ABPO 

Deepseek-R1-Distill-Qwen-1.5B

:

Total: 588 tokens √

Problem understanding:

Problem understanding:

Problem understanding:

Total: 1189 tokens 

Total: 2309 tokens √

Okay,so… I need to… Since the original… Therefore, the area 

of the triangle is...  Wait, let me verify...  Alternatively... The 

area… But wait, if … So the area is… Compute that:  First… 

Therefore… is 32. 
√

Fixed-Budget

Okay,so I've ...First... Therefore...Next...But since...Let 

me...So...Let me… So, For each... So... However...  Thus... Wait... 

Similarly... but...Wait...  So perhaps... Thus... Therefore... Wait...

Thus... So… is 15.

ABPO 

Fixed-Budget

Deepseek-R1-Distill-Qwen-1.5B

Total: 3949 tokens √

Total: 5099 tokens √

Okay, so I have this… Alternatively… So… So, let's write… 

Simplifying this… Wait… Now, I need… Again… Next…  So…  

Wait… Wait… So… Alternatively… But … Alternatively…  

Alternatively… Wait… Therefore… is 15.

Okay, so I have...First, I need... Next, I need... Comparing this... 

So... Therefore...  First, let's find... Therefore... solving this might 

be tricky... First... So, the quadrilateral...To find its area...Hence, 

the area is 9.
Total: 2106 tokens X

Figure 4: Visualization of CoTs and answers on both easy and hard examples by the default LLM,
fixed-budget CoT optimization (2k tokens) and our ABPO. These examples show that ABPO can
help the LLM generate more concise and compact CoTs for simple questions and more complex and
longer CoTs for the hard ones, thereby balancing the efficiency and performance of CoT reasoning.

4.4 QUALITATIVE ANALYSIS

To gain insights in to the proposed ABPO, we visualize its outputs on both easy and hard exam-
ples, and compare them with the default LLM and the fixed-budget baselines (2k), as shown in
Fig. 4. The details of these examples can be found in Appendix A.4. From these examples, we
can see that ABPO can generate concise and compact CoT traces on easy examples, helping the
LLM quickly arrive at the correct answer without unnecessary elaboration. In contrast, the base-
line model DeepSeek-R1-Distill-Qwen-1.5B tends to generate lengthy and redundant CoTs even for
easy examples, leading to inefficient reasoning traces. For more difficult examples, ABPO adap-
tively generates longer CoTs that involve multiple attempts, self-reflection and alternative solution
paths before giving the correct answer. Meanwhile, when training the LLM under fixed-budget set-
tings, the reasoning process for the harder examples is too tightly to correctly answer the question.
In other words, producing shorter CoTs will fail to contain the necessary reasoning steps, and also
results in incorrect answers. This case demonstrates that ABPO is capable of adaptively performing
test time scaling according to example difficulty, validating its ability to achieve difficulty-aware
and efficient reasoning. Overall, these findings demonstrate the effectiveness of ABPO in adjusting
token budgets according to example difficulty and its adaptive design principle.

5 CONCLUSTION

In this paper, we focus on addressing the challenges of efficient and adaptive chain-of-thought (CoT)
reasoning for large language models (LLMs), and propose a novel reinforcement learning scheme
termed Adaptive-Budgeting based Policy Optimization (ABPO). To balance the efficiency and per-
formance of CoT reasoning, ABPO introduces dynamic example pools to categorize training exam-
ples into three types based on the model’s status, and then adopts an adaptive scheduling mechanism
to assign proper token budgets for different examples during RL training. In this way, ABPO help
the LLM to be capable of solving different tasks with adaptive CoT lengths, achieving a remarkable
balance between the efficiency and performance. Extensive experiments on three representative
LLMs and a bunch of CoT reasoning benchmarks are conducted, of which the results demonstrate
that our ABPO method can achieve substantial efficiency improvements with minimal performance
loss. Moreover, we also show obvious advantages over the compared methods in balancing the ef-
ficiency and performance of CoT reasoning. For instance, ABPO reduces token length by 78.3%
while improving accuracy by 2.3% on DeepSeek-R1-Distill-Qwen-1.5B on average, and achieves
59.4% shorter reasoning length with 8.3% higher accuracy compared to HAPO. These results well
confirm the effectiveness of ABPO towards efficient CoT reasoning for LLMs.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed a large language model (LLM) to assist with language polishing and proofreading.
The use of the LLM was limited to improving clarity and readability of the manuscript, without
influencing the design of experiments, analyses, or conclusions.

A.2 PSEUDO-CODE OF ADAPTIVE-BUDGETING BASED POLICY OPTIMIZATION (ABPO)

In this subsection, we present the pseudo-code of ABPO.

Algorithm 1: Adaptive-Budgeting based Policy Optimization (ABPO)

Input: D={(qi, yi)}Ni=1
Output: LLM M with compact CoT

1 Init: Shard←D, Slearning←∅, Smastered←∅; budget[q]←0; t←0; k←1.
2 while t < Smax and Smastered ̸= D do
3 foreach q ∈ Shard do
4 budget[q]← t0 + (k−1)d;
5 if Acc(q;n) > τ0 then move q to tail of Slearning; ;
6 L0 ← |Slearning|;
7 while |Slearning| ≥ λL0 and t < Smax do
8 Sample batch B:=mix(Smastered,Slearning;α) ;
9 GRPO UPDATE(M,B, n); ;

10 foreach q ∈ B do
11 if Acc(q;n) ≥ τ1 then move q to tail of Smastered;
12 else move q to tail of Slearning;
13 t←t+1;
14 k←k+1;

A.3 HYPERPARAMETER SETTINGS

Table 5 summarizes the detailed hyperparameter settings used in all ABPO experiments, including
training steps, initial reasoning budgets t0, thresholds τ0 and τ1, rollouts, and batch sizes for different
models and data scales.

Table 5: Hyperparameter settings of ABPO experiments across different models and data scales.
Model Steps t0 d τ0 τ1 Rollouts Batch Size

DeepSeek-R1-Distill-Qwen-1.5B 350 2000 500 0.0 0.85 16 128
DeepScaleR-1.5B-Preview 50 2000 500 0.2 0.85 16 128
DeepSeek-R1-Distill-Qwen-7B 50 3000 500 0.3 0.85 16 128
DeepSeek-R1-Distill-Qwen-1.5B (32k data) 350 2000 500 0.2 0.85 8 1024
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A.4 ADDITIONAL CASE STUDIES OF ABPO

We provide more detailed outputs on both easy and hard problems in Fig.4. The transition words
are highlighted in red.

In a certain isosceles right triangle, the altitude to the hypotenuse has length $4\sqrt{2}$.  What is 

the area of the triangle?

EASY

Problem understanding:

Okay, so I have this problem here: In a certain isosceles right triangle, the altitude to the hypotenuse 

has length \(4\sqrt{2}\). I need to find the area of the triangle. Hmm, let's see. I remember that in an 

isosceles right triangle, the two legs are equal, and the angles are 45°, 45°, and 90°. So, maybe I can 

use some properties of right triangles here.

First, let me visualize the triangle. It's an isosceles right triangle, so the legs are equal. Let me 

denote the length of each leg as \(x\). Then, the hypotenuse can be found using the Pythagorean 

theorem. Since it's a right-angled triangle, the hypotenuse \(c\) is \(x\sqrt{2}\). That makes sense 

because in a 45-45-90 triangle, the hypotenuse is leg length times \(\sqrt{2}\).

Now, the problem mentions the altitude to the hypotenuse. In a right triangle, the altitude to the 

hypotenuse relates to the two segments it creates on the hypotenuse. I remember that the area can be 

calculated in two ways: one as half the product of the legs, and another using the hypotenuse and the 

altitude. So, maybe I can set up an equation using these two expressions for the area.

Let me denote the altitude to the hypotenuse as \(h\), which is given as \(4\sqrt{2}\). So, the area of 

the triangle is also equal to \(\frac{1}{2} \times \text{hypotenuse} \times h\). Since I know the 

hypotenuse is \(x\sqrt{2}\), substituting in the values, the area is \(\frac{1}{2} \times x\sqrt{2} 

\times 4\sqrt{2}\).

Let me compute that: \(\frac{1}{2} \times x\sqrt{2} \times 4\sqrt{2}\). Multiplying the constants 

first: \(\frac{1}{2} \times 4 = 2\). Then, \(\sqrt{2} \times \sqrt{2} = 2\). So, putting it together, the 

area becomes \(2 \times x \times 2 = 4x\).

Wait, so the area is \(4x\). But I also know that the area is \(\frac{1}{2} \times \text{leg} \times 

\text{leg}\), which is \(\frac{1}{2}x^2\). So, setting these two expressions equal: \(4x = 

\frac{1}{2}x^2\). Hmm, let me solve for \(x\).

Multiplying both sides by 2 to eliminate the fraction: \(8x = x^2\). Then, bringing all terms to one 

side: \(x^2 - 8x = 0\). Factoring out an \(x\): \(x(x - 8) = 0\). So, \(x = 0\) or \(x = 8\). Since a triangle 

can't have a side of length 0, \(x = 8\).

Okay, so each leg is 8 units long. Then, to find the area, I can use \(\frac{1}{2} \times x^2\) which is 

\(\frac{1}{2} \times 8^2 = \frac{1}{2} \times 64 = 32\).

lternatively, using the other area expression, \(4x\), so \(4 \times 8 = 32\). Either way, I get the same 

result. So, the area is 32.

Wait, let me just make sure I didn't skip any steps or make a mistake. Starting from the beginning: 

it's an isosceles right triangle, legs equal, hypotenuse \(x\sqrt{2}\). Altitude to hypotenuse is 

\(4\sqrt{2}\). Area is \(\frac{1}{2} \times hypotenuse \times altitude\), which is \(\frac{1}{2} \times 

x\sqrt{2} \times 4\sqrt{2}\). Simplify: \(\frac{1}{2} \times 4 = 2\), \(\sqrt{2} \times \sqrt{2} = 2\), 

so 2 * x * 2 = 4x. Area is also \(\frac{1}{2}x^2\). So, 4x = \(\frac{1}{2}x^2\). Multiply both sides 

by 2: 8x = x^2. So, x^2 - 8x = 0. x(x - 8) = 0. So, x = 8. Then, area is \(\frac{1}{2}x^2 = 32\). Yep, 

that seems right.

DeepSeek-R1-Distill-Qwen-1.5B
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Problem understanding:

Wait, let me just make sure I didn't skip any steps or make a mistake. Starting from the beginning: 

it's an isosceles right triangle, legs equal, hypotenuse \(x\sqrt{2}\). Altitude to hypotenuse is 

\(4\sqrt{2}\). Area is \(\frac{1}{2} \times hypotenuse \times altitude\), which is \(\frac{1}{2} \times 

x\sqrt{2} \times 4\sqrt{2}\). Simplify: \(\frac{1}{2} \times 4 = 2\), \(\sqrt{2} \times \sqrt{2} = 2\), 

so 2 * x * 2 = 4x. Area is also \(\frac{1}{2}x^2\). So, 4x = \(\frac{1}{2}x^2\). Multiply both sides 

by 2: 8x = x^2. So, x^2 - 8x = 0. x(x - 8) = 0. So, x = 8. Then, area is \(\frac{1}{2}x^2 = 32\). Yep, 

that seems right.

Another way to think about it: In an isosceles right triangle, the altitude to the hypotenuse also acts 

as a median and an angle bisector. Moreover, in such triangles, the altitude is equal to half the 

hypotenuse times \(\sqrt{2}\). Wait, is that correct? Let me see.

If the legs are each \(x\), then the hypotenuse is \(x\sqrt{2}\). The altitude to the hypotenuse in a 

right triangle is given by \(h = \frac{\text{product of legs}}{\text{hypotenuse}} = \frac{x \times 

x}{x\sqrt{2}} = \frac{x}{\sqrt{2}}\). So, \(h = \frac{x}{\sqrt{2}}\).

But we are given \(h = 4\sqrt{2}\), so setting them equal: \(\frac{x}{\sqrt{2}} = 4\sqrt{2}\). 

Multiplying both sides by \(\sqrt{2}\): \(x = 4\sqrt{2} \times \sqrt{2} = 4 \times 2 = 8\). Yep, same 

result. So, legs are 8, hypotenuse is \(8\sqrt{2}\), area is \(32\). So, either way, the area is 32.

Wait, maybe I can also think about similar triangles here. In an isosceles right triangle, when you 

draw the altitude to the hypotenuse, it creates two smaller isosceles right triangles, each similar to 

the original triangle. So, each of these smaller triangles also has legs equal to each other. Let me try 

to confirm.

Let me denote the original triangle as ABC, right-angled at C, with legs AC and BC each of length 

\(x\), and hypotenuse AB of length \(x\sqrt{2}\). The altitude from C to AB is CD, which is given as 

\(4\sqrt{2}\). Then, triangles ACD and BCD are both isosceles right triangles. So, in triangle ACD, 

legs AD and CD are equal. Similarly, in triangle BCD, legs BD and CD are equal.

So, in triangle ACD, legs AD and CD are equal, so AD = CD = \(4\sqrt{2}\). Similarly, BD = CD = 

\(4\sqrt{2}\). Therefore, the hypotenuse AB is AD + BD = \(4\sqrt{2} + 4\sqrt{2} = 8\sqrt{2}\), 

which matches our earlier calculation that the hypotenuse is \(x\sqrt{2}\), so \(x = 8\). So, that's 

another verification.

Alternatively, using proportions: Since triangle ACD is similar to triangle ABC, the ratio of 

corresponding sides is the same. So, in triangle ACD, legs are AD = \(4\sqrt{2}\), hypotenuse AC = 

8 (since AC is a leg of the original triangle, but wait, no: AC is a leg of the original triangle, but CD 

is a leg in triangle ACD.

Wait, maybe this approach is getting a bit convoluted. Maybe better to stick with the two methods 

we already used, which both lead to the same answer.

So, in conclusion, the legs are each 8, hypotenuse is \(8\sqrt{2}\), area is \(\frac{1}{2} \times 8 

\times 8 = 32\). Alternatively, using the altitude, \(\frac{1}{2} \times 8\sqrt{2} \times 4\sqrt{2} = 

\frac{1}{2} \times 8 \times 4 \times 2 = 32\). So, both methods confirm the area is 32.

I think that's solid. I don't see any mistakes in my reasoning. So, I feel confident that the area is 32.

**Final Answer**

The area of the triangle is \boxed{32}.
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Problem understanding:

Okay, so I have this problem about an isosceles right triangle where the altitude to the hypotenuse is 

\(4\sqrt{2}\). I need to find the area of the triangle. Let me think about how to approach this.

First, let me recall what an isosceles right triangle looks like. It has two legs of equal length and a 

hypotenuse. The two non-right angles are each 45 degrees.

In such a triangle, the altitude to the hypotenuse is a line segment from the right angle to the 

hypotenuse, dividing it into two smaller congruent triangles. Since the original triangle is isosceles, I 

can use the properties of similar triangles here.

I remember that in an isosceles right triangle, the legs are equal, let's say each leg has length \(a\). 

Then the hypotenuse will be \(a\sqrt{2}\), because for a right triangle, the hypotenuse squared is 

equal to the sum of the squares of the other two sides.

Now, the altitude to the hypotenuse in a right triangle relates to the legs. I think the formula for the 

altitude \(h\) is \(h = \frac{a \cdot b}{c}\), where \(a\) and \(b\) are the legs, and \(c\) is the 

hypotenuse. Since it's an isosceles triangle, \(a = b\), so the formula simplifies to \(h = 

\frac{a^2}{c}\).

Given \(h = 4\sqrt{2}\), so substituting:

\(4\sqrt{2} = \frac{a^2}{c}\)

But \(c = a\sqrt{2}\), so substitute that in:

\(4\sqrt{2} = \frac{a^2}{a\sqrt{2}}\)

Simplify the denominator:

\(4\sqrt{2} = \frac{a^2}{a\sqrt{2}} = \frac{a}{\sqrt{2}}\)

Hence:

\(4\sqrt{2} = \frac{a}{\sqrt{2}}\)

Multiply both sides by \(\sqrt{2}\):

\(4\sqrt{2} \cdot \sqrt{2} = a\)

Simplify the left side:

\(\sqrt{2} \cdot \sqrt{2} = 2\), so:

\(4 \times 2 = a\)

\(a = 8\)

So each leg is 8 units long. Therefore, the area of the triangle is \(\frac{1}{2} \times a \times b\), 

which is \(\frac{1}{2} \times 8 \times 8\).

Fixed-Budget
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Problem understanding:

Calculate that:

\(\frac{1}{2} \times 64 = 32\)

So the area is 32.

Wait, let me verify if my reasoning is correct.

Alternatively, I can think about the area in terms of the altitude. The area of the triangle can also be 

expressed as \(\frac{1}{2} \times c \times h\), where \(c\) is the hypotenuse and \(h\) is the altitude.

We found that \(c = a\sqrt{2}\), which is \(8\sqrt{2}\).

But wait, if \(a =8\), then \(c =8\sqrt{2}\), which is correct.

So the area is \(\frac{1}{2} \times 8\sqrt{2} \times 4\sqrt{2}\).

Compute that:

First, multiply the constants: \(\frac{1}{2} \times 8 \times 4 = \frac{1}{2} \times 32 = 16\)

Then multiply the radicals: \(\sqrt{2} \times \sqrt{2} = 2\)

So overall: \(16 \times 2 = 32\). Perfect, same answer.

Therefore, the area of the triangle is 32.

</think>

The problem involves an isosceles right triangle with an altitude to the hypotenuse of length 

\(4\sqrt{2}\). We need to find the area of the triangle.

1. **Identify the properties of the isosceles right triangle:**

   - Two legs of equal length, say \(a\).

   - Hypotenuse \(c = a\sqrt{2}\).

2. **Formula for the altitude to the hypotenuse:**

   - The altitude \(h\) in a right triangle is given by \(h = \frac{a \cdot b}{c}\).

   - Since \(a = b\), this simplifies to \(h = \frac{a^2}{c}\).

3. **Substitute the known values:**

   - Given \(h = 4\sqrt{2}\) and \(c = a\sqrt{2}\).

   - So, \(4\sqrt{2} = \frac{a^2}{a\sqrt{2}}\).

   - Simplify: \(4\sqrt{2} = \frac{a}{\sqrt{2}}\).

   - Multiply both sides by \(\sqrt{2}\): \(4 \times 2 = a\), so \(a = 8\).

4. **Calculate the area:**

   - The area is \(\frac{1}{2} \times a \times b = \frac{1}{2} \times 8 \times 8 = 32\).

Thus, the area of the triangle is \(\boxed{32}\)
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Problem understanding:

Okay, so I need to find the area of an isosceles right triangle where the altitude to the hypotenuse is 

4√2. Hmm, let's see. First, let me recall some properties of isosceles right triangles. 

An isosceles right triangle has two legs of equal length and a hypotenuse. The angles are 45°, 45°, 
and 90°. The legs are equal, let's call each leg 'a'. The hypotenuse in such a triangle is a√2. 

Now, the altitude to the hypotenuse is given as 4√2. I remember that in a right triangle, the altitude 

to the hypotenuse relates to the lengths of the segments it creates on the hypotenuse. But in an 

isosceles right triangle, the altitude might have a special relationship.

Wait, in a right triangle, the length of the altitude to the hypotenuse can be calculated by the 

formula: (product of the legs) divided by the hypotenuse. So, in this case, the altitude h is (a * a) / 

(a√2). That simplifies to a² / (a√2) which is a / √2. 

Given that this altitude is equal to 4√2, so:

a / √2 = 4√2

Let me solve for 'a' here. Multiply both sides by √2:

a = 4√2 * √2

√2 * √2 is 2, so:

a = 4 * 2 = 8

So each leg of the triangle is 8 units long. 

Now, the area of the triangle is (base * height) / 2. Since it's an isosceles right triangle, both legs are 

equal, so the area is (a * a) / 2. Plugging in a = 8:

Area = (8 * 8) / 2 = 64 / 2 = 32

So, the area of the triangle is 32.

Alternatively, I can think in terms of the hypotenuse. The hypotenuse of the triangle is a√2 = 8√2. 

The altitude is given as 4√2. The area can also be expressed as (hypotenuse * altitude) / 2. So:

Area = (8√2 * 4√2) / 2

Multiply the terms:

(8 * 4) * (√2 * √2) / 2 = 32 * 2 / 2 = 32. Same result.

So, I'm confident the area is 32.

</think>

The area of the isosceles right triangle is \boxed{32}.

ABPO
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Problem understanding:

Okay, so I have this problem where I need to find the area of a quadrilateral formed by the points 

where two common tangents to a circle and a parabola touch each curve. The circle is given by the 

equation \( x^2 + y^2 = 2 \) and the parabola is \( y^2 = 8x \). The figure provided in the Asymptote 

code shows the circle and the parabola, and then the tangents which intersect at four points forming 

a quadrilateral.

First, I need to understand the problem. We have a circle and a parabola, and we're supposed to find 

their common tangents. Each tangent will touch both the circle and the parabola at exactly one point. 

Since there are two common tangents, each will have two points of tangency, and these four points 

will form a quadrilateral. The task is to find the area of this quadrilateral.

I know that a common tangent to two curves is a line that touches each curve at exactly one point. 

For a circle and a parabola, the equations of the common tangents can be found by solving certain 

conditions. The approach is likely to involve setting up equations for the tangent lines and then 

solving for the points where these lines are tangent to both the circle and the parabola.

Let me start by recalling that the equation of a tangent to a circle \( x^2 + y^2 = r^2 \) at a point 

\( (x_1, y_1) \) is \( xx_1 + yy_1 = r^2 \). In this case, the circle has radius \( \sqrt{2} \), so the 

tangent equation would be \( xx_1 + yy_1 = 2 \).

For the parabola \( y^2 = 8x \), which opens to the right, the equation of a tangent can be written in 

the form \( y = mx + \frac{2}{m} \), where \( m \) is the slope of the tangent. Alternatively, the 

tangent can be expressed as \( y = mx + c \), and for the parabola \( y^2 = 4ax \), the condition for 

the line \( y = mx + c \) to be tangent is \( c = \frac{a}{m} \). In this case, since \( 4a = 8 \), \( a = 2 

\), so \( c = \frac{2}{m} \). That seems right.

So, for the parabola \( y^2 = 8x \), the tangent equations will be \( y = mx + \frac{2}{m} \).

Now, since these lines are also tangent to the circle \( x^2 + y^2 = 2 \), the distance from the center 

of the circle (which is at (0,0)) to the tangent line must be equal to the radius of the circle, which is 

\( \sqrt{2} \).

The formula for the distance from a point \( (x_0, y_0) \) to the line \( ax + by + c = 0 \) is 

\( \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \). So, let's write the equation of the tangent line in 

standard form.

DeepSeek-R1-Distill-Qwen-1.5B

The circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ have two common tangents, forming four 

points of tangency.  Find the area of the quadrilateral formed by the four points of tangency.

[asy] unitsize(0.8 cm);

real upperparab (real x) {return (sqrt(8*x));} real lowerparab (real x) {return (-sqrt(8*x));}

pair A, B, C, D; A = (-1,1); B = (2,4); C = (-1,-1); D = (2,-4);

draw(graph(upperparab,0,3)); draw(graph(lowerparab,0,3)); draw(Circle((0,0),sqrt(2))); 

draw(interp(A,B,-0.2)--interp(A,B,1.2)); draw(interp(C,D,-0.2)--interp(C,D,1.2));

draw(A--C); draw(B--D); dot(A); dot(B); dot(C); dot(D); [/asy]

HARD
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Problem understanding:

Given \( y = mx + \frac{2}{m} \), we can rearrange it to \( mx - y + \frac{2}{m} = 0 \). So, \( a = m 

\), \( b = -1 \), and \( c = \frac{2}{m} \).

The distance from (0,0) to this line is \( \frac{|0 + 0 + \frac{2}{m}|}{\sqrt{m^2 + (-1)^2}}} = 

\frac{|\frac{2}{m}|}{\sqrt{m^2 + 1}}} \).

Since this distance must equal the radius \( \sqrt{2} \), we have:

\( \frac{\frac{2}{|m|}}{\sqrt{m^2 + 1}} = \sqrt{2} \)

Simplifying this, we can write:

\( \frac{2}{|m| \sqrt{m^2 + 1}} = \sqrt{2} \)

Multiply both sides by \( |m| \sqrt{m^2 + 1} \):

\( 2 = \sqrt{2} |m| \sqrt{m^2 + 1} \)

Divide both sides by \( \sqrt{2} \):

\( \sqrt{2} = |m| \sqrt{m^2 + 1} \)

Square both sides to eliminate the square roots:

\( 2 = m^2 (m^2 + 1) \)

Expanding the right side:

\( 2 = m^4 + m^2 \)

Bring all terms to one side:

\( m^4 + m^2 - 2 = 0 \)

This is a quadratic in terms of \( m^2 \). Let me set \( u = m^2 \), so the equation becomes:

\( u^2 + u - 2 = 0 \)

Solving this quadratic equation using the quadratic formula:

\( u = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2} \)

So, \( u = \frac{2}{2} = 1 \) or \( u = \frac{-4}{2} = -2 \). Since \( u = m^2 \) must be non-negative, 

we discard \( u = -2 \). Thus, \( u = 1 \), which means \( m^2 = 1 \), so \( m = \pm 1 \).

So, the slopes of the common tangents are \( m = 1 \) and \( m = -1 \).

Therefore, the equations of the tangent lines are:

For \( m = 1 \): \( y = x + \frac{2}{1} = x + 2 \)
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Problem understanding:

For \( m = -1 \): \( y = -x + \frac{2}{-1} = -x - 2 \)

Wait, hold on, earlier I wrote the tangent equations as \( y = mx + \frac{2}{m} \). So, for \( m = 1 \), 

it's \( y = x + 2 \), and for \( m = -1 \), it's \( y = -x - 2 \).

But let's verify this because sometimes the signs can be tricky.

Wait, when \( m = -1 \), the tangent equation would be \( y = -x + \frac{2}{-1} = -x - 2 \). That 

seems correct.

Now, I need to find the points where these tangent lines touch the circle and the parabola.

First, let's find the points of tangency on the parabola \( y^2 = 8x \).

For the line \( y = x + 2 \):

Substitute into the parabola equation:

\( (x + 2)^2 = 8x \)

Expanding:

\( x^2 + 4x + 4 = 8x \)

Bring all terms to one side:

\( x^2 - 4x + 4 = 0 \)

This factors as:

\( (x - 2)^2 = 0 \)

So, \( x = 2 \). Then, \( y = 2 + 2 = 4 \). So, the point of tangency on the parabola is (2, 4).

Similarly, for the line \( y = -x - 2 \):

Substitute into the parabola equation:

\( (-x - 2)^2 = 8x \)

Expanding:

\( x^2 + 4x + 4 = 8x \)

Bring all terms to one side:

\( x^2 - 4x + 4 = 0 \)

Again, this factors as:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Problem understanding:

\( (x - 2)^2 = 0 \)

Thus, \( x = 2 \), and \( y = -2 - 2 = -4 \). So, the point of tangency on the parabola is (2, -4).

Now, let's find the points of tangency on the circle \( x^2 + y^2 = 2 \).

For the line \( y = x + 2 \):

Substitute into the circle equation:

\( x^2 + (x + 2)^2 = 2 \)

Expanding:

\( x^2 + x^2 + 4x + 4 = 2 \)

Combine like terms:

\( 2x^2 + 4x + 2 = 0 \)

Divide by 2:

\( x^2 + 2x + 1 = 0 \)

This factors as:

\( (x + 1)^2 = 0 \)

So, \( x = -1 \). Then, \( y = -1 + 2 = 1 \). Therefore, the point of tangency on the circle is (-1, 1).

Similarly, for the line \( y = -x - 2 \):

Substitute into the circle equation:

\( x^2 + (-x - 2)^2 = 2 \)

Expanding:

\( x^2 + x^2 + 4x + 4 = 2 \)

Combine like terms:

\( 2x^2 + 4x + 2 = 0 \)

Divide by 2:

\( x^2 + 2x + 1 = 0 \)

Factor as:

\( (x + 1)^2 = 0 \)
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So, \( x = -1 \). Then, \( y = 1 - 2 = -1 \). Therefore, the point of tangency on the circle is (-1, -1).

So, the four points of tangency are:

1. (-1, 1) on the circle

2. (2, 4) on the parabola

3. (-1, -1) on the circle

4. (2, -4) on the parabola

Now, I need to find the area of the quadrilateral formed by connecting these four points: (-1, 1), (2, 

4), (-1, -1), and (2, -4).

Let me plot these points mentally. (-1, 1) is in the second quadrant, (2, 4) is in the first quadrant, (-1, 

-1) is in the third quadrant, and (2, -4) is in the fourth quadrant.

Connecting these points in order would form a quadrilateral. To find its area, I can use the shoelace 

formula, which is a method for finding the area of a polygon when the coordinates of the vertices 

are known.

The shoelace formula states that for a polygon with vertices (x1, y1), (x2, y2), ..., (xn, yn), the area 

is:

\( \frac{1}{2} | \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) | \)

where (xn+1, yn+1) is (x1, y1).

So, let's list the coordinates in order. Let's go around the quadrilateral clockwise or counterclockwise. 

Let me choose the order: (-1, 1), (2, 4), (2, -4), (-1, -1), and back to (-1, 1).

Let me write them down:

1. (-1, 1)

2. (2, 4)

3. (2, -4)

4. (-1, -1)

5. (-1, 1)  // Closing the polygon

Now, applying the shoelace formula:

First, compute the sum of \( x_i y_{i+1} \):

- (-1) * 4 = -4

- 2 * (-4) = -8

- 2 * (-1) = -2

- (-1) * 1 = -1

Sum: (-4) + (-8) + (-2) + (-1) = -15

Next, compute the sum of \( y_i x_{i+1} \):
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- 1 * 2 = 2

- 4 * 2 = 8

- (-4) * (-1) = 4

- (-1) * (-1) = 1

Sum: 2 + 8 + 4 + 1 = 15

Now, subtract the two sums:

-15 - 15 = -30

Take the absolute value and divide by 2:

\( \frac{1}{2} | -30 | = \frac{1}{2} * 30 = 15 \)

So, the area is 15.

Wait, that seems straightforward, but let me double-check my calculations because sometimes the 

order of the points can affect the result.

Alternatively, I can plot the points and see if the quadrilateral is a trapezoid or some other shape.

Looking at the coordinates:

(-1, 1), (2, 4), (2, -4), (-1, -1)

Plotting these, we see that two points are at (-1, ±1) and (2, ±4). So, the quadrilateral is symmetric 

with respect to both the x-axis and y-axis. Wait, is it symmetric?

Wait, (-1, 1) and (-1, -1) are symmetric over the x-axis. Similarly, (2,4) and (2, -4) are symmetric 

over the x-axis. Similarly, the points (-1,1) and (2,4) are not symmetric, as are (-1,-1) and (2,-4). So, 

perhaps the quadrilateral is symmetric across both axes.

But regardless, the shoelace formula should work as long as the points are ordered correctly, either 

clockwise or counterclockwise.

Let me try a different order to double-check.

Let me arrange the points in a different order, say: (-1, 1), (-1, -1), (2, -4), (2, 4), and back to (-1, 1).

Computing shoelace formula again:

First sum:

- (-1) * (-1) = 1

- (-1) * (-4) = 4

- 2 * 4 = 8

- 2 * 1 = 2

Sum: 1 + 4 + 8 + 2 = 15
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Second sum:

- 1 * (-1) = -1

- (-1) * 2 = -2

- (-4) * 2 = -8

- 4 * (-1) = -4

Sum: (-1) + (-2) + (-8) + (-4) = -15

Subtract: 15 - (-15) = 30

Take absolute value and divide by 2: 15

Same result, so that's consistent.

Wait, actually, the shoelace formula requires the points to be ordered either clockwise or 

counterclockwise without crossing. So, the first ordering I did was (-1,1), (2,4), (2,-4), (-1,-1), which 

goes around the quadrilateral in clockwise order, and the second was (-1,1), (-1,-1), (2,-4), (2,4), 

which is also clockwise.

Either way, the area is 15.

Alternatively, maybe we can think of the quadrilateral as a trapezoid. Let me see.

Wait, looking at the coordinates, the quadrilateral is symmetric across the x-axis. So, if I consider 

the upper half and the lower half separately.

But perhaps that complicates things because it's a trapezoid.

Alternatively, think of the quadrilateral as a polygon with vertices at (-1,1), (2,4), (2,-4), (-1,-1). If I 

connect these points, I can divide it into two triangles.

Alternatively, think of it as a kite-shaped quadrilateral because two pairs of adjacent sides are equal. 

Wait, is that the case?

Compute the distances between consecutive points:

1. From (-1,1) to (2,4):

Distance squared: (2 - (-1))^2 + (4 - 1)^2 = (3)^2 + (3)^2 = 9 + 9 = 18

2. From (2,4) to (2,-4):

Distance squared: (2 - 2)^2 + (-4 - 4)^2 = 0 + (-8)^2 = 64

3. From (2,-4) to (-1,-1):

Distance squared: (-1 - 2)^2 + (-1 - (-4))^2 = (-3)^2 + (3)^2 = 9 + 9 = 18
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4. From (-1,-1) to (-1,1):

Distance squared: (-1 - (-1))^2 + (1 - (-1))^2 = 0 + (2)^2 = 4

So, sides are sqrt(18), 8, sqrt(18), and 2.

So, the sides are not equal, so it's not a kite. Maybe it's a trapezoid? Let me check if any sides are 

parallel.

Compute the slopes of the sides:

1. From (-1,1) to (2,4): slope is (4 - 1)/(2 - (-1)) = 3/3 = 1.

2. From (2,4) to (2,-4): slope is undefined (vertical line).

3. From (2,-4) to (-1,-1): slope is (-1 - (-4))/(-1 - 2) = (3)/(-3) = -1.

4. From (-1,-1) to (-1,1): slope is undefined (vertical line).

So, sides 2 and 4 are both vertical, hence parallel. Sides 1 and 3 have slopes 1 and -1, which are not 

equal, so they are not parallel. So, it's a trapezoid with two sides parallel.

Therefore, the area can be found by the formula for the area of a trapezoid: \( \frac{1}{2} (b_1 + 

b_2) h \), where \( b_1 \) and \( b_2 \) are the lengths of the two parallel sides, and \( h \) is the 

height (distance between them).

Looking at the trapezoid, the two parallel sides are the vertical sides from (2,4) to (2,-4) and from (-

1,1) to (-1,-1). Their lengths are:

- From (2,4) to (2,-4): distance is |4 - (-4)| = 8 units.

- From (-1,1) to (-1,-1): distance is |1 - (-1)| = 2 units.

So, \( b_1 = 8 \), \( b_2 = 2 \).

Now, the height \( h \) is the horizontal distance between the two parallel sides. Since the sides are 

vertical at x=2 and x=-1, the distance between them is |2 - (-1)| = 3 units.

Therefore, area is \( \frac{1}{2} (8 + 2) * 3 = \frac{1}{2} * 10 * 3 = 5 * 3 = 15 \).

Same result as before.

So, regardless of the method, the area is 15. Therefore, I can be confident that 15 is the correct area 

of the quadrilateral.

But wait, before I conclude, let me just visualize the points again. The quadrilateral has two vertical 

sides at x=2 and x=-1, connecting (2,4) to (2, -4) and (-1,1) to (-1,-1). Then, the other two sides are 

the lines connecting (2,4) to (-1,-1) and (2,-4) to (-1,1). These cross each other, forming a 

quadrilateral.

Alternatively, I can compute the area using vectors or coordinate geometry. But since both methods 

gave me 15, and my reasoning is consistent, I think it's safe.
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Therefore, the area of the quadrilateral formed by the four points of tangency is 15.

**Final Answer**

\boxed{15}

</think>

To find the area of the quadrilateral formed by the points of tangency of the common tangents to the 

circle \( x^2 + y^2 = 2 \) and the parabola \( y^2 = 8x \), we start by determining the equations of the 

common tangents.

1. The circle \( x^2 + y^2 = 2 \) has radius \( \sqrt{2} \).

2. The parabola \( y^2 = 8x \) has the tangent equation \( y = mx + \frac{2}{m} \).

Using the condition that the distance from the center of the circle (0,0) to the tangent line must equal 

the radius \( \sqrt{2} \), we find the slopes \( m \):

\[

\frac{\left| \frac{2}{m} \right|}{\sqrt{m^2 + 1}} = \sqrt{2}

\]

Solving this, we get \( m = \pm 1 \). Thus, the equations of the tangent lines are \( y = x + 2 \) and 

\( y = -x - 2 \).

Next, we find the points of tangency on the parabola and the circle:

- For the line \( y = x + 2 \):

  - Tangency on the parabola: \( (2, 4) \)

  - Tangency on the circle: \( (-1, 1) \)

- For the line \( y = -x - 2 \):

  - Tangency on the parabola: \( (2, -4) \)

  - Tangency on the circle: \( (-1, -1) \)

The four points of tangency are: (-1, 1), (2, 4), (-1, -1), and (2, -4).

Using the shoelace formula to find the area of the quadrilateral formed by these points:

1. List the coordinates in order: (-1, 1), (2, 4), (2, -4), (-1, -1).

2. Apply the shoelace formula:

\[

\text{Area} = \frac{1}{2} \left| (-1 \cdot 4 + 2 \cdot (-4) + 2 \cdot (-1) + (-1) \cdot 1) - (1 \cdot 2 + 4 

\cdot 2 + (-4) \cdot (-1) + (-1) \cdot (-1)) \right|

\]

Calculating the sums:

- First sum: \(-4 - 8 - 2 - 1 = -15\)

- Second sum: \(2 + 8 + 4 + 1 = 15\)
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Subtracting and taking the absolute value:

\[

\left| -15 - 15 \right| = 30

\]

Dividing by 2:

\[

\frac{1}{2} \times 30 = 15

\]

Thus, the area of the quadrilateral is:

\[

\boxed{15}

\]
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Okay, so I have this problem where I need to find the area of a quadrilateral formed by the points of 

tangency between the circle \( x^2 + y^2 = 2 \) and the parabola \( y^2 = 8x \). The figure provided 

is an Asymptote drawing, which shows the circle and the parabola, and some tangents with points of 

contact labeled A, B, C, D.

First, I need to recall how to find common tangents between a circle and a parabola. Since both are 

symmetric with respect to the x-axis, the points of tangency will also be symmetric. So, if point A is 

at (a, b), point C will be at (a, -b), and similarly for points B and D.

Next, I need an equation for the tangent lines to both the circle and the parabola. For a parabola 

\( y^2 = 4ax \), the equation of the tangent at point \( (at^2, 2at) \) is \( ty = x + at^2 \). Comparing 

this with our given parabola \( y^2 = 8x \), which can be seen as \( y^2 = 4a x \) with \( a = 2 \), so 

\( 4a = 8 \).

So, the tangent equation becomes \( ty = x + 2t^2 \).

Now, this line should also be tangent to the circle \( x^2 + y^2 = 2 \). The condition for a line \( y = 

mx + c \) to be tangent to a circle \( x^2 + y^2 = r^2 \) is that \( c^2 = r^2(1 + m^2) \).

Let me rearrange the tangent line equation:

\( ty = x + 2t^2 \) --> \( x - ty + 2t^2 = 0 \).

So, it's in the form \( Ax + By + C = 0 \), where \( A = 1 \), \( B = -t \), \( C = 2t^2 \).

Therefore, the condition for tangency is:

\( C^2 = r^2(1 + m^2) \).

But I need to express this in terms of t.

First, let's find the slope m of the tangent line.

From the equation \( x - ty + 2t^2 = 0 \), we can write it as \( y = \frac{1}{t}x + \frac{2t}{1} \).

So, \( m = \frac{1}{t} \).

Therefore, \( m^2 = \frac{1}{t^2} \).

Now, plugging back into the tangency condition:

\( (2t^2)^2 = 2^2 \left(1 + \frac{1}{t^2}\right) \).

Simplify:

\( 4t^4 = 4 \left(1 + \frac{1}{t^2}\right) \).

Divide both sides by 4:

Fixed-Budget
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\( t^4 = 1 + \frac{1}{t^2} \).

Multiply both sides by \( t^2 \):

\( t^6 = t^2 + 1 \).

This is a cubic equation in terms of \( z = t^2 \):

\( z^3 - z - 1 = 0 \).

Hmm, solving this might be tricky. Maybe I can find rational roots. Trying z=1: \( 1 -1 -1 = -1 \neq 0 

\). z= -1: negative, so no. So, probably no rational roots. Maybe I can use some approximation 

method or use the cubic formula, but that might be complicated.

Alternatively, maybe I can use substitution or numerical methods. Alternatively, perhaps there's a 

substitution.

Let me consider \( z = t^2 \), so the equation is \( z^3 - z -1 =0 \).

Perhaps I can use the method for solving cubics.

The general formula for a cubic \( z^3 + az^2 + bz + c = 0 \) is:

\( z = \sqrt[3]{-\frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{a}{3}\right)^3}} + 

\sqrt[3]{-\frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{a}{3}\right)^3}} \).

In our case, \( a = 0 \), \( b = -1 \), \( c = -1 \).

So,

\( z = \sqrt[3]{\frac{1}{2} + \sqrt{\left(\frac{1}{2}\right)^2 + 0}} + \sqrt[3]{\frac{1}{2} - 

\sqrt{\left(\frac{1}{2}\right)^2 + 0}} \).

Simplify:

\( z = \sqrt[3]{\frac{1}{2} + \frac{1}{2}} + \sqrt[3]{\frac{1}{2} - \frac{1}{2}} \).

\( z = \sqrt[3]{1} + \sqrt[3]{0} = 1 + 0 =1 \).

So, one real root is \( z =1 \), so \( t^2=1 \), so \( t=1 \) or \( t=-1 \).

Therefore, we can take t=1 or t=-1.

So, the tangent lines are:

For t=1:

\( y = \frac{1}{1}x + \frac{2(1)^2}{1} = x + 2 \).

For t=-1:
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\( y = \frac{1}{-1}x + \frac{2(-1)^2}{1} = -x + 2 \).

So, the two tangent lines are \( y = x + 2 \) and \( y = -x + 2 \).

Now, let's find the points of contact on both the circle and the parabola.

For the parabola \( y^2 =8x \), the points of tangency are \( (2t^2, 4t) \).

So for t=1, point is \( (2(1)^2, 4(1)) = (2, 4) \).

For t=-1, point is \( (2(-1)^2, 4(-1)) = (2, -4) \).

So, the two points of tangency on the parabola are A(2,4) and B(2,-4).

Similarly, for the circle \( x^2 + y^2 = 2 \), the points of tangency can be found by solving the 

system of the circle and the tangent line.

For line \( y = x + 2 \):

\( x^2 + (x + 2)^2 = 2 \).

\( x^2 + x^2 +4x +4 = 2 \).

\( 2x^2 +4x +2 =0 \).

Divide by 2:

\( x^2 +2x +1 =0 \).

\( (x+1)^2 =0 \).

So, \( x = -1 \).

Then, \( y = -1 +2 =1 \).

Thus, the point of tangency is (-1,1).

Similarly, for line \( y = -x +2 \):

\( x^2 + (-x +2)^2 = 2 \).

\( x^2 + x^2 -4x +4 =2 \).

\( 2x^2 -4x +2 =0 \).

Divide by 2:

\( x^2 -2x +1 =0 \).

\( (x-1)^2 =0 \).
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Thus, \( x =1 \), \( y = -1 +2=1 \).

Thus, the point of tangency is (1,1).

So, the four points of tangency are:

A(2,4), B(2,-4), C(-1,1), D(1,1).

Now, we need to find the area of quadrilateral ABCD.

Given the points A(2,4), B(2,-4), C(-1,1), D(1,1).

First, I can plot these points:

A(2,4) is in the upper right quadrant.

B(2,-4) is in the lower right quadrant.

C(-1,1) is in the upper left quadrant.

D(1,1) is in the upper right quadrant.

So, the quadrilateral is symmetric with respect to the y-axis.

To find its area, I can use the shoelace formula.

The coordinates in order are A(2,4), B(2,-4), C(-1,1), D(1,1), back to A(2,4).

Compute shoelace sum:

Sum1 = (2)(-4) + (2)(1) + (-1)(1) + (1)(4) = (-8) + 2 + (-1) +4 = (-8+2) + ( -1+4)= (-6) +3= -3.

Sum2 = (4)(2) + (-4)(-1) + (1)(1) + (1)(2) = 8 +4 +1 +2= 15.

Area= (|Sum1 - Sum2|)/2= | -3 -15 | /2= | -18 | /2=9.

Hence, the area is 9.
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Okay, so I've got this problem where I need to find the area of a quadrilateral formed by the points 

of tangency of two common tangents to a circle and a parabola. The circle is given by the equation 

x² + y² = 2, and the parabola is y² = 8x. The points of tangency are four in total, and they form a 

quadrilateral. I need to find the area of this quadrilateral.

First, I remember that common tangents to a circle and a parabola are lines that touch both the circle 

and the parabola at exactly one point each. Since there are two common tangents, each will touch 

both the circle and the parabola, resulting in four points of tangency.

I think the Asymptote code provided might help me visualize the figure. It shows the circle centered 

at the origin with radius √2, and the parabola y² = 8x opens to the right. The points A, B, C, D are 

given as (-1,1), (2,4), (-1,-1), and (2,-4). So, the quadrilateral is formed by connecting these points.

But I need to confirm this. Maybe I should derive the equations of the common tangents and then 

find their points of contact with the circle and parabola.

Let me start by recalling some properties. For a parabola y² = 4ax, the general equation of a tangent 

line is y = tx + a/t, where t is a parameter. Comparing this with y² = 8x, which is y² = 4a x with 4a = 

8, so a = 2. Thus, the tangent equation becomes y = tx + 2/t.

Similarly, the circle x² + y² = 2 has a general tangent equation. The tangent to a circle x² + y² = r² at 

point (x₁, y₁) is xx₁ + yy₁ = r². So, if I have a tangent line y = mx + c, then the condition for it to be 

tangent to the circle is c² = r²(1 + m²). Here, r² = 2, so c² = 2(1 + m²).

So, the tangent lines to the circle will have the form y = mx ± √(2(1 + m²)). These lines should also 

be tangent to the parabola y² = 8x.

Substituting y = mx ± √(2(1 + m²)) into y² = 8x:

(mx ± √(2(1 + m²)))² = 8x

Expanding the left side:

m²x² ± 2mx√(2(1 + m²)) + 2(1 + m²) = 8x

This is a quadratic in x. For the line to be tangent to the parabola, the discriminant of this quadratic 

should be zero.

So, let me write it as:

m²x² ± 2mx√(2(1 + m²)) + 2(1 + m²) - 8x = 0

Arrange terms:

m²x² + (±2m√(2(1 + m²)) - 8)x + 2(1 + m²) = 0

For this quadratic equation, the discriminant D is:

ABPO
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Problem understanding:

D = [±2m√(2(1 + m²)) - 8]^2 - 4 * m² * 2(1 + m²) = 0

This seems a bit complicated, but let's compute it step by step.

First, compute the discriminant:

D = [±2m√(2(1 + m²)) - 8]^2 - 8m²(1 + m²) = 0

Let me compute the first square term:

[±2m√(2(1 + m²)) - 8]^2 = (±2m√(2(1 + m²)))^2 - 2 * 2m√(2(1 + m²)) * 8 + 8²

Wait, actually, expanding (a - b)^2 = a² - 2ab + b².

So,

= (2m√(2(1 + m²)))^2 - 2 * 2m√(2(1 + m²)) * 8 + 8²

= 4m² * 2(1 + m²) - 32m√(2(1 + m²)) + 64

= 8m²(1 + m²) - 32m√(2(1 + m²)) + 64

Then subtract 8m²(1 + m²):

So,

D = [8m²(1 + m²) - 32m√(2(1 + m²)) + 64] - 8m²(1 + m²) = 0

Simplify:

8m²(1 + m²) cancels with -8m²(1 + m²), leaving:

-32m√(2(1 + m²)) + 64 = 0

So,

-32m√(2(1 + m²)) + 64 = 0

Move 64 to the other side:

-32m√(2(1 + m²)) = -64

Divide both sides by -32:

m√(2(1 + m²)) = 2

Square both sides to eliminate the square root:

m² * 2(1 + m²) = 4

Simplify:
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Problem understanding:

2m²(1 + m²) = 4

Divide both sides by 2:

m²(1 + m²) = 2

This is a quartic equation:

m^4 + m² - 2 = 0

Let me set z = m², so equation becomes:

z² + z - 2 = 0

Solve for z:

z = [-1 ± √(1 + 8)] / 2 = [-1 ± 3]/2

So, z = (2)/2 = 1 or z = (-4)/2 = -2

Since z = m² cannot be negative, z = 1.

Thus, m² = 1 => m = ±1

Therefore, the slopes of the common tangents are m = 1 and m = -1.

So, the equations of the common tangents are:

For m = 1: y = x ± √(2(1 + 1)) = x ± √4 = x ± 2

For m = -1: y = -x ± √(2(1 + 1)) = -x ± 2

So, the four lines are y = x + 2, y = x - 2, y = -x + 2, and y = -x - 2.

Now, I need to find the points of tangency on both the circle and the parabola.

Let's start with the circle x² + y² = 2.

For each tangent line, solve for the point of contact.

Take y = x + 2.

Substitute into circle:

x² + (x + 2)^2 = 2

x² + x² + 4x + 4 = 2

2x² + 4x + 2 = 0

Divide by 2:
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Problem understanding:

x² + 2x + 1 = 0

This factors as (x + 1)^2 = 0 => x = -1

Then y = -1 + 2 = 1

So, one point is (-1, 1).

Similarly, for y = x - 2:

Substitute into circle:

x² + (x - 2)^2 = 2

x² + x² - 4x + 4 = 2

2x² - 4x + 2 = 0

Divide by 2:

x² - 2x + 1 = 0 => (x - 1)^2 = 0 => x = 1

Then y = 1 - 2 = -1

So, the point is (1, -1).

Similarly, for y = -x + 2:

Substitute into circle:

x² + (-x + 2)^2 = 2

x² + x² - 4x + 4 = 2

2x² - 4x + 2 = 0

Divide by 2:

x² - 2x + 1 = 0 => (x - 1)^2 = 0 => x = 1

Then y = -1 + 2 = 1

Point is (1, 1).

For y = -x - 2:

Substitute into circle:

x² + (-x - 2)^2 = 2
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Problem understanding:

x² + x² + 4x + 4 = 2

2x² + 4x + 2 = 0

Divide by 2:

x² + 2x + 1 = 0 => (x + 1)^2 = 0 => x = -1

Then y = 1 - 2 = -1

Point is (-1, -1).

So, the four points of tangency on the circle are (-1,1), (1,-1), (1,1), (-1,-1).

Now, let's find the points of tangency on the parabola y² = 8x.

For each tangent line, solve for the point of contact.

Take y = x + 2.

Substitute into parabola:

(x + 2)^2 = 8x

x² + 4x + 4 = 8x

x² -4x +4=0

This factors as (x - 2)^2 =0 => x=2

Then y = 2 + 2 =4. So, point is (2,4).

Similarly, y = x - 2:

(x - 2)^2 =8x

x² -4x +4=8x

x² -12x +4=0

Solve using quadratic formula:

x = [12 ± √(144 -16)]/2 = [12 ± √128]/2 = [12 ± 8√2]/2 = 6 ±4√2

Wait, but then y = x -2, so y would be (6 ±4√2) -2 =4 ±4√2.

But since the parabola is y²=8x, which opens to the right, the points (6 +4√2, 4 +4√2) and (6 -4√2, 4 

-4√2) are valid.

Wait, but maybe I made a mistake because the tangent lines are y =x ±2, so when solving, the 

points should satisfy both the line and the parabola.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Problem understanding:

Wait, perhaps I should approach it differently. Let's use the condition that the line y = mx + c is 

tangent to the parabola y²=4ax, which has the condition c² = a(1 + m²).

For our parabola y²=8x, a=2, so c²=2(1 + m²). For the tangent lines y =x ±2, m=1, c=±2.

So, substituting into the parabola equation, we can find the points of contact.

Alternatively, using the formula for the point of contact, for the parabola y²=4ax, the point of 

contact for a tangent y = mx + c is (a/m², 2a/m).

So, for our case, a=2, m=1, so the point is (2/1, 4/1) = (2,4).

Similarly, for m=-1, the point is (2/1, -4/1) = (2,-4).

Thus, the points of tangency on the parabola are (2,4), (2,-4), (-2,4), (-2,-4). Wait, but according to 

the formula, it's (a/m², 2a/m). So, if m=1, it's (2,4). If m=-1, it's (2, -4). Similarly, for m=1, it's (2,4), 

and for m=-1, it's (2,-4). So, the four points are (2,4), (2,-4), (-2,4), (-2,-4).

Wait, but in the Asymptote code, the points are (-1,1), (2,4), (-1,-1), (2,-4). So, perhaps the points 

on the circle are (-1,1), (1,-1), (1,1), (-1,-1), and on the parabola, (2,4), (2,-4), (-2,4), (-2,-4). So, the 

quadrilateral is formed by connecting these points in order: (-1,1), (2,4), (-1,-1), (2,-4), and back to 

(-1,1). That would form a kite-shaped quadrilateral.

Wait, but the user mentioned four points of tangency, so perhaps each tangent touches the circle 

and the parabola, resulting in four distinct points. So, the points are (-1,1), (1,-1), (1,1), (-1,-1) on the 

circle, and (2,4), (2,-4), (-2,4), (-2,-4) on the parabola.

So, the quadrilateral is formed by connecting these points. Let me list them in order: (-1,1), (2,4), (-

1,-1), (2,-4), and back to (-1,1). This should form a convex quadrilateral.

Now, to find the area of this quadrilateral, I can use the shoelace formula.

First, list the coordinates in order:

1. (-1,1)

2. (2,4)

3. (-1,-1)

4. (2,-4)

5. (-1,1)  # Closing the polygon

Apply the shoelace formula:

Area = 1/2 |sum over i (x_i y_{i+1} - x_{i+1} y_i)|

Compute each term:

Between (-1,1) and (2,4):

x_i y_{i+1} = (-1)(4) = -4

x_{i+1} y_i = (2)(1) = 2
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Problem understanding:

Term: -4 -2 = -6

Between (2,4) and (-1,-1):

x_i y_{i+1} = (2)(-1) = -2

x_{i+1} y_i = (-1)(4) = -4

Term: -2 - (-4) = 2

Between (-1,-1) and (2,-4):

x_i y_{i+1} = (-1)(-4) = 4

x_{i+1} y_i = (2)(-1) = -2

Term: 4 - (-2) = 6

Between (2,-4) and (-1,1):

x_i y_{i+1} = (2)(1) = 2

x_{i+1} y_i = (-1)(-4) = 4

Term: 2 -4 = -2

Sum all terms: -6 +2 +6 -2 = 0

Wait, that can't be right because the area can't be zero. I must have made a mistake in the order of 

the points or in the calculation.

Wait, perhaps the order of the points is incorrect. Let me try a different order or check the points.

Alternatively, maybe the quadrilateral is actually a rectangle or another shape, but the shoelace 

formula requires the points to be ordered either clockwise or counterclockwise without crossing.

Let me list the points again:

(-1,1), (2,4), (-1,-1), (2,-4)

But connecting them in this order might cause the polygon to intersect itself. Instead, perhaps the 

correct order is (-1,1), (2,4), (2,-4), (-1,-1), (-1,1). Let me try this order.

Compute the terms:

1. (-1,1) to (2,4):

x_i y_{i+1} = (-1)(4) = -4

x_{i+1} y_i = (2)(1) = 2

Term: -4 -2 = -6
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Problem understanding:

2. (2,4) to (2,-4):

x_i y_{i+1} = (2)(-4) = -8

x_{i+1} y_i = (2)(4) = 8

Term: -8 -8 = -16

3. (2,-4) to (-1,-1):

x_i y_{i+1} = (2)(-1) = -2

x_{i+1} y_i = (-1)(-4) = 4

Term: -2 -4 = -6

4. (-1,-1) to (-1,1):

x_i y_{i+1} = (-1)(1) = -1

x_{i+1} y_i = (-1)(-1) =1

Term: -1 -1 = -2

Sum all terms: -6 -16 -6 -2 = -30

Area = 1/2 | -30 | = 15

So, the area is 15.

Wait, that seems large, but given the points, it might be correct. Let me verify.

Alternatively, maybe using vectors or another method would give the same result.

Alternatively, since the quadrilateral is symmetric, I can compute the area by finding the area of 

two triangles and adding them.

But the shoelace formula gave me 15, which seems plausible.

So, the area of the quadrilateral is 15.

Figure 5: Detail visualization of model outputs on both easy and hard problems.
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