

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS EFFICIENT CHAIN-OF-THOUGHT REASON- ING VIA ADAPTIVE-BUDGETING BASED POLICY OP- TIMIZATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Recently, *Chain-of-Thought* (CoT) reasoning has become a key problem-solving
014 capability for advanced *large language models* (LLMs) to address difficult tasks
015 such as the mathematical ones. However, balancing the efficiency and perfor-
016 mance of long CoTs still remains an intractable challenge. In this paper, we ob-
017 serve that assigning adaptive token budgets for different examples during training
018 is a viable way to tackle with the above issue. Motivated by this, we propose
019 a novel reinforcement learning scheme, termed *Adaptive-Budgeting based Pol-*
020 *icy Optimization* (ABPO). Based on the popular GRPO, our ABPO redefines the
021 RL training as an adaptive curriculum learning process, where example pools are
022 curated to categorize training examples into three types, namely the mastered,
023 learning and hard ones, respectively. As the training progresses, ABPO will adap-
024 tively schedule the examples with proper length budgets, and the example pools
025 will also be dynamically updated based on the model status. In this way, we can
026 assign adaptive token lengths for different examples during RL training, achieving
027 a good balance between efficiency and performance of CoTs. To validate ABPO,
028 we apply it to three representative LLMs, and conduct extensive experiments on
029 a bunch of CoT reasoning benchmarks. The experimental results not only show
030 the substantial efficiency improvements with minimal performance loss, *e.g.*, re-
031 ducing token length by 78.3% while improving 2.0% performance of DeepSeek-
032 R1-Distill-Qwen-1.5B on average, but also show our obvious advantages over
033 the compared methods, *e.g.*, reducing 59.4% length and increasing 8.3% perfor-
034 mance on average than HAPO, respectively. Our code is anonymously released at
035 <https://anonymous.4open.science/r/AnonymizeABPO-5380/>

036 1 INTRODUCTION

037 Recently, *test time scaling* Muennighoff et al. (2025) has become the *de facto* paradigm of ad-
038 vanced *large language models* (LLMs) Grattafiori et al. (2024); Yang et al. (2024); Bai et al. (2023);
039 Achiam et al. (2023). Following this paradigm, advanced LLMs DeepSeek-AI (2025); Team (2025)
040 are trained in reinforced or supervised manners to generate long *chain-of-thoughts* (CoTs), thereby
041 handling difficult tasks, such as mathematical problem solving of America (2024); Gao et al. (2024)
042 and logical reasoning Xie et al. (2025). Despite the great success, “*over-thinking*” Chen et al. (2025)
043 becomes another notable issue for these LLMs. For instance, Qwen-QwQ Team (2025) will gen-
044 erate CoTs of more than 2k tokens to answer a simple question, *e.g.*, “*The product of integers 240*
045 *and k is a perfect cube. What is the smallest possible positive value of k?*” This case will become
046 more prominent for smaller LLMs, such as DeepSeek-R1-Distill-Qwen-1.5B and DeepScaleR-1.5B-
047 Preview, which strongly contradicts their goals about efficient applications.

048 To address this problem, recent efforts are devoted to the research of efficient CoT reason-
049 ing Muennighoff et al. (2025); Aggarwal & Welleck (2025); Ma et al. (2025); Luo et al.
050 (2025a). Among these progresses, one plausible strategy is to imply length-related rewards to
051 the RL training of LLMs Aggarwal & Welleck (2025); Yeo et al. (2025); Arora & Zanette
052 (2025); Luo et al. (2025a). In particular, LLMs are assigned by a fixed-length token budget
053 during its training. And when the output CoT exceeds the token budget, a negative reward
will be returned to guide the RL optimization Aggarwal & Welleck (2025); Yeo et al. (2025).

054 In this way, LLMs are forced to learn to solve
 055 the tasks using limited-length CoTs.
 056

057 However, this fixed-budget based solution still
 058 encounters several limitations. Above all, the
 059 example difficulties for LLMs vary greatly,
 060 even for the mathematical tasks. And fixing
 061 the token budget is hard to meet the trade-off
 062 between efficiency and performance. To ex-
 063 plain, as shown in Fig.1, when the token budget
 064 is small, LLMs are prone to under-cutting the
 065 hard examples while over-supplying the easy
 066 ones. For instance, under a budget of $2k$ tokens,
 067 DeepSeek-R1-Distill-Qwen-1.5B can perform
 068 well on the simple tasks like MATH500 but re-
 069 ceives obvious performance drops on the more
 070 difficult ones, *e.g.*, -25% on AIME of America
 071 (2024). Moreover, simply increasing the to-
 072 ken budget will makes the efficiency benefit be-
 073 come limited, *e.g.*, $4k$ tokens, and the tuning
 074 cost also increases substantially. In this case,
 075 we argue that allocating appropriate token bud-
 076 getts to different examples based on the model
 077 status is the key to addressing this shortcoming.
 078

079 However, achieving the adaptive budgeting is
 080 notoriously challenging in existing RL training scheme. Although the example difficulty for LLMs
 081 can be measured via accuracy, entropy or prediction confidence Su & Cardie (2025); AlKhuzay
 082 et al. (2024), the model’s assessment of difficulty is a dynamic process that changes as training
 083 progresses, and how to assign proper token budgets is still intractable. Besides, the training scheduler
 084 also requires in-depth exploration. Gradually increasing the token budget is a natural solution, *e.g.*,
 085 *curriculum learning* Bengio et al. (2009), but it also causes the LLM to continuously traverse the
 086 simple examples, resulting additional issues of training efficiency and expenditure, especially con-
 087 sidering the expensive cost of the widely used GRPO training Shao et al. (2024). Therefore, how to
 088 effectively and dynamically adjust proper token budgets still remains an open problem.
 089

090 To address these issues, we propose a novel training scheme termed *Adaptive-Budgeting based Pol-
 091 icy Optimization* (ABPO), which extends the popular *Group Relative Policy Optimization* (GRPO)
 092 Shao et al. (2024) with adaptive and budget-aware rewards in a dynamic training process. Con-
 093 cretely, ABPO will first let the LLM to quickly read training examples, and then categorize the
 094 examples into three pools, namely the *mastered*, the *learning* and the *hard* ones, respectively. In
 095 practice, ABPO starts from a low token budget, which is then gradually increased. During train-
 096 ing, the hard examples are not directly used, but they will be adaptively updated to the *learning*
 097 pool based on the model status. Meanwhile, we also introduce an efficient review mechanism for
 098 the *mastered* examples, ensuring the knowledge retention and avoiding catastrophic. This dynamic
 099 scheduling can help to assign model-aware token budgets for different examples and avoid the redun-
 100 dant training of examples. In this case, ABPO can achieve a good trade-off among CoT efficiency
 101 and performance as well as training expenditure.
 102

103 To validate ABPO, we apply it to a set of advanced LLMs, including DeepSeek-R1-Distill-Qwen-
 104 1.5B, 7B DeepSeek-AI (2025) and DeepScaleR-1.5B-Preview Luo et al. (2025b), on four represen-
 105 tative reasoning benchmarks of varying difficulties, which are MATH500 Hendrycks et al. (2021),
 106 AIME of America (2024), AMC AMC (2025) and OlympiadBench He et al. (2024). The experiment
 107 results show that ABPO can significantly reduce the token cost of CoT reasoning while main-
 108 taining competitive performance across various benchmarks. For instance, ABPO reduces the average
 109 CoT length of DeepSeek-R1-Distill-Qwen-1.5B by 78.3% while improving 2.0% of performance
 110 on average. Compared with prior CoT optimization methods, our ABPO can also obtain better CoT
 111 efficiency while achieving overall performance improvement on all benchmarks, *e.g.*, 2,217 v.s.,
 112 5,466 length and 60.2 v.s. 55.6 accuracy compared to HAPO Huang et al. (2025). These results well
 113 confirm the effectiveness of our the motivation and designs of ABPO towards efficient CoT.
 114

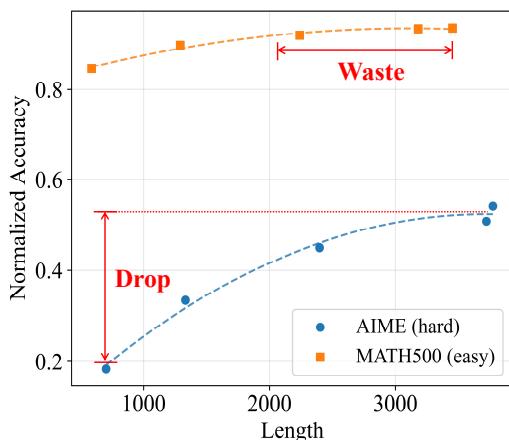


Figure 1: The performance-length curve of L1-Exact 1.5B Aggarwal & Welleck (2025) on two datasets. For easy questions, CoT will result in an obvious waste of computation. In contrast, for the hard ones, the limited token budgets of CoT will lead to obvious performance drop. Thus, assigning proper token budgets is the key to achieve the balance between efficiency and performance.

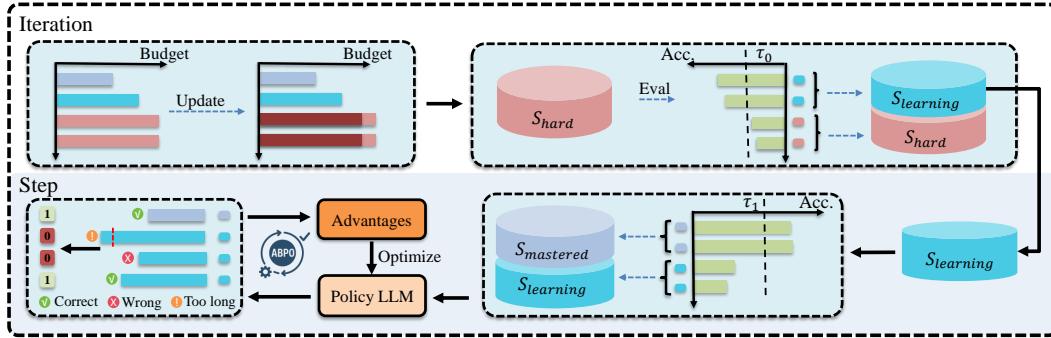


Figure 2: Illustration of *Adaptive Budgeting based Policy Optimization* (ABPO). During training, ABPO evaluates the difficulty of the training samples and groups them into three pools, *i.e.*, the mastered, learning and hard ones, respectively. As the training progresses, ABPO will adaptively allocate proper token budgets to the learning examples, and also actively review the mastered ones to avoid knowledge forgetting. In addition, these examples pools will be dynamically updated based on the LLM’s status during training, thereby balancing efficiency, performance and training costs.

Overall, our contributions are three-fold:

- We show the limitation of using fixed-budget CoT optimization schemes in terms of balancing CoT efficiency and performance, and also identify the key challenges of implementing adaptive budget rewards in existing RL training.
- We propose a novel training scheme termed *Adaptive-Budgeting based Policy Optimization* (ABPO), which can adaptively assign token budgets and schedule the RL training.
- On a set of LLMs and benchmarks, ABPO shows better capability of balancing CoT efficiency and performance than the compared methods.

2 RELATED WORK

Chain-of-Thought (CoT) refers to generating step-wise reasoning traces before answering the given question Wei et al. (2022), which has become a critical capability of advanced LLMs DeepSeek-AI (2025); Luo et al. (2025b); Team (2025); Team et al. (2025). However, these reasoning LLMs often produce excessively long CoT that commonly exhibit too many branching, verification, and backtracking. To address this issue, several works have recently been proposed for efficient CoT Aggarwal & Welleck (2025); Hou et al. (2025); Yeo et al. (2025); Hammoud et al. (2025). Specifically, one popular solution is using budget-based rewards in RL training Aggarwal & Welleck (2025); Yeo et al. (2025); Hou et al. (2025); Hammoud et al. (2025). For example, L1 Aggarwal & Welleck (2025) introduces a penalty term to enforce length budgets specified in the prompt. ThinkPrune Hou et al. (2025) introduces a uniform budget limit for all training samples. Curriculum GRPO Hammoud et al. (2025) gradually reduce the number of tokens a LLM is allowed to use, which however ignores the differences among questions. However, this static method often hard to meet the trade-off between efficiency and performance. In this case, recent works Luo et al. (2025a); Huang et al. (2025); Arora & Zanette (2025); Su & Cardie (2025); Yi et al. (2025) start exploring dynamic-length rewards for LLMs. O1-Pruner Luo et al. (2025a) and Training Efficiently Arora & Zanette (2025) apply a length penalty based on the within-group comparison. ShorterBetter Yi et al. (2025) ties its reward function to the length of the shortest and correct response for each sample. Although these methods incorporate dynamic reward signals, they still need to repeatedly train on the mastered samples, which significantly reduces training efficiency. In contrast, our approach considers the budget and training schedule for different samples, achieving a balance between performance and efficiency.

162 **3 METHOD**
 163

164 **3.1 PRELIMINARY**
 165

166 *Chain-of-thought* (CoT) Wei et al. (2022) is a key capability of advanced LLMs in terms of long and
 167 complex task solving. The inference process of an LLM with CoT can be defined by

$$168 \quad \hat{y}_i = LLM(o_i, q_i), \quad \text{where } o_i = LLM(q_i). \quad (1)$$

169 Here q_i denotes the input question, o_i is the generated reasoning trace, *i.e.*, CoT, and \hat{y}_i is the
 170 predicted answer. Under the popular *Group Relative Policy Optimization* (GPRO) Shao et al. (2024),
 171 its objective can be defined by

$$172 \quad \mathcal{J}_{GPO}(\theta) = \mathbb{E}[q \sim D, \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)] \\ 173 \quad \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left[\frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{old}}(o_{i,t}|q, o_{i,<t})} \hat{A}_{i,t} - \beta L_{KL}(\pi_{\theta}, \pi_{ref}) \right], \quad (2) \\ 174 \quad \text{where } \hat{A}_{i,t} = \frac{\mathbb{I}[\hat{y}_i = y_i] - \text{mean}(R)}{\text{std}(R)}.$$

175 Here, q denotes the sampled query from the dataset D , o_i is the i -th generated output sampled from
 176 the old policy $\pi_{\theta_{old}}$, π_{θ} is the updated policy for optimization, and π_{ref} is the reference model used
 177 for KL-regularization. $\hat{A}_{i,t}$ is the standardized reward advantage for token t with R denoting the set
 178 of rewards. β controls the strength of the *KL-regularization* $L_{KL}(\pi_{\theta}, \pi_{ref})$. In terms of the default
 179 GPRO, the reward function does not consider the length of CoT outputs, so the training mainly
 180 focuses on the prediction accuracy, which makes the model prone to *over-thinking*. And this issue
 181 will become more obvious in the smaller distilled LLMs Cuadron et al. (2025).

182 In this case, some recent works Hou et al. (2025); Aggarwal & Welleck (2025); Yeo et al. (2025)
 183 implement length-related reward to RL training. When the output CoT exceeds the max number of
 184 tokens, the LLM will receive a negative reward to penalize its optimization. As discussed above, the
 185 length-aware reward can encourage the model to learn to answer the questions with limited length
 186 of CoTs. However, the fixed budget commonly used Aggarwal & Welleck (2025); Hou et al. (2025)
 187 will also make the model under-cutting the hard examples while over-supplying the easy ones. In
 188 this case, we aim to achieve dynamic RL training with adaptive token budget scheduling.

189 **3.2 ADAPTIVE-BUDGETING BASED POLICY OPTIMIZATION**
 190

191 In this paper, we propose a novel training scheme to balance the efficiency and performance of
 192 LLM’s CoT reasoning, termed *Adaptive-Budgeting based Policy Optimization* (ABPO), of which
 193 illustration is depicted in Fig. 2. Concretely, ABPO introduces adaptive token budgets to the training
 194 of GPRO, and then the objective can be defined by

$$195 \quad \mathcal{J}_{ABPO}(\theta) = \mathbb{E}[q \sim D, \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)] \\ 196 \quad \frac{1}{G} \sum_{i=1}^G \frac{1}{\min(|o_i|, b(q_i))} \sum_{t=1}^{\min(|o_i|, b(q_i))} \left[\frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{old}}(o_{i,t}|q, o_{i,<t})} \hat{A}_{i,t} - \beta L_{KL}(\pi_{\theta}, \pi_{ref}) \right], \quad (3) \\ 197 \quad \text{where } \hat{A}_{i,t} = \frac{\mathbb{I}[\hat{y}_i = y_i \wedge |o_i| \leq b(q_i)] - \text{mean}(R)}{\text{std}(R)}.$$

198 Here $b(q_i)$ is the dynamic token budget that LLM can use to answer the question q_i . And the budget-
 199 aware function can be defined by

$$200 \quad r(o_i, \hat{y}_i) = \begin{cases} 1, & \text{if } \hat{y}_i = y_i \text{ and } |o_i| \leq b(q_i), \\ 0, & \text{otherwise.} \end{cases} \quad (4)$$

201 where o_i and \hat{y}_i are the reasoning trace and the predicted answer for the input question q_i . Notably,
 202 $b(q_i)$ will be adaptively adjusted according to the difficulties of examples to the LLM.

203 Before training, ABPO first considers that all examples are unknown (hard) to the model, and eval-
 204 uates their accuracies for the current model π_{θ} . In practice, we will first generate n CoT traces O_i
 205 for each question q_i :

$$206 \quad O_i = \{(o_{i,j}, \hat{y}_{i,j}) \mid (o_{i,j}, \hat{y}_{i,j}) = \pi_{\theta,j}(q_i)\}, \quad (5)$$

216 where $\pi_{\theta,j}$ represents the j -th sampling based on the policy model π_θ . Notably, these traces can also
 217 be used as $\{o_i\}_{i=1}^G$ in Eq.3, avoiding the waste of computation. Then, the average accuracy of the
 218 model $\pi_{\theta_{old}}$ for the question q_i under the length budget $b(q_i)$ can be obtained by
 219

$$220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237 \quad 238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad 244 \quad 245 \quad 246 \quad 247 \quad 248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad 254 \quad 255 \quad 256 \quad 257 \quad 258 \quad 259 \quad 260 \quad 261 \quad 262 \quad 263 \quad 264 \quad 265 \quad 266 \quad 267 \quad 268 \quad 269$$

$$Acc(q_i) = \frac{1}{n} \sum_{j=1}^n \mathbb{I}[\hat{y}_{ij} = y_i \wedge |o_{i,j}| \leq b(q_i)], \quad (6)$$

where $\mathbb{I}[\cdot]$ is an indicator function. Initially, all samples are given the same budget $b(q_i) = t_0$. Via Eq. 6, we can categorize these examples into three pools, defined by

$$\mathcal{S}_{\text{mastered}} = \{q_i \mid Acc(q_i) \geq \tau_1\}, \quad (7)$$

$$\mathcal{S}_{\text{learning}} = \{q_i \mid \tau_1 > Acc(q_i) > \tau_0\}, \quad (8)$$

$$\mathcal{S}_{\text{hard}} = \{q_i \mid \tau_0 \geq Acc(q_i)\}. \quad (9)$$

Here, τ_0 and the τ_1 are the lower and upper thresholds, respectively. Thus, the mastered pool $\mathcal{S}_{\text{mastered}}$ contains examples that have been solved under existing token budget $b(q_i)$. The learning pool $\mathcal{S}_{\text{learning}}$ have samples with a certain probability of being learned. In contrast, the hard pool $\mathcal{S}_{\text{hard}}$ contains difficult examples that are not suitable to learn by LLMs, and they will not be used.

During ABPO training, the examples used are mainly composed of the *learning* ones, but we will still review a certain number of the *mastered* examples to avoid knowledge forgetting, with a review rate denoted by α . After optimizing the LLM with the current batch, we calculate their accuracies according to Eq.6. Based on the accuracies, we can update the examples pools $\mathcal{S}_{\text{learning}}$ and $\mathcal{S}_{\text{mastered}}$. When the number of $\mathcal{S}_{\text{learning}}$ is reduced to a certain proportion λ , we will increase the length budgets $b(q_i)$ for the samples in $\mathcal{S}_{\text{hard}}$, and then start a new difficulty evaluation for these examples, which will accordingly update the pools of both hard and learning.

Specifically, the new budget for the questions $q_i \in \mathcal{S}_{\text{hard}}$ can be calculated by

$$b(q_i) = t_0 + (k - 1) \cdot d, \quad \text{where } q_i \in \mathcal{S}_{\text{hard}}. \quad (10)$$

Here k is the number of the current iteration and d denotes the increased length budget. Then we evaluate the accuracy of samples from $\mathcal{S}_{\text{hard}}$ under the new budget and move some examples into $\mathcal{S}_{\text{learning}}$ according to Eq.8 and Eq.9. In this way, easy examples will be added to the learning and mastered pools, which cost only a small budget, and the more difficult examples will receive a larger budget. Due to page limit, the detailed algorithm of ABPO is given in Appendix A.2.

4 EXPERIMENTS

4.1 DATASET AND METRIC

The experiments are conducted on four widely-used benchmarks, including MATH500 Hendrycks et al. (2021), AIME of America (2024), AMC AMC (2025), and Olympiad-Bench He et al. (2024). Among these benchmarks, MATH500 is often regarded as the easiest one, which is a subset of MATH Hendrycks et al. (2021). AMC and AIME are moderately difficult, which has examples from mathematics competitions. In particular, AIME is regarded as the most difficult one, of which examples are from American Invitational Mathematics Examination. Following the previous works Arora & Zanette (2025), the accuracy of an example is defined by the average performance across K runs. During the evaluation, we set $K = 3$ for MATH500, $K = 5$ for Olympiad-Bench and $K = 10$ for both AIME and AMC. Additionally, we use the *Accuracy–Efficiency Score (AES)* Luo et al. (2025a) to evaluate the trade-off between accuracy and computation overhead. A higher AES indicates a better balance between accuracy and efficiency.

4.2 IMPLEMENTATION DETAILS

We train ABPO on three base models, *i.e.*, DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B DeepSeek-AI (2025), and DeepScaleR-1.5B-Preview Luo et al. (2025b). The main experiments are conducted on $2.4k$ training samples from the *AIME-AMC* subset of the Prime dataset Cui et al. (2025). To further validate the effectiveness of ABPO, we additionally train DeepSeek-R1-Distill-Qwen-1.5B on $32k$ samples from the AM dataset Zhao et al. (2025). For training steps,

Table 1: Comparison with existing efficient CoT optimization methods on three LLMs for four mathematical benchmarks. “Acc.”, “Len.” and “AES” denote accuracy (higher is better), length (lower is better) and Accuracy–Efficiency Score (higher is better), respectively. The best and second best results are marked in **bold** and underline, respectively.

Train Data	MATH500			AMC			Olympiad			AIME			Average			
	Acc.	↑ Len.	↓ AES	↑ Acc.	↑ Len.	↓ AES	↑ Acc.	↑ Len.	↓ AES	↑ Acc.	↑ Len.	↓ AES	↑ Acc.	↑ Len.	↓ AES	
<i>Base model: DeepSeek-R1-Distill-Qwen-1.5B</i>																
Baseline	—	83.3	5278	—	70.3	9314	—	50.3	10820	—	32.0	15476	—	59.0	10222	—
ShorterBetter	40k	68.9	864	-0.03	48.3	1194	-0.69	36.2	2072	-0.60	19.7	4286	-1.20	43.2	2104	-0.54
Training Efficient	3.2k	<u>81.9</u>	2536	0.44	70.3	5183	0.44	49.2	6818	0.27	<u>29.0</u>	10552	-0.15	57.6	6272	0.27
HAPO	2k	81.5	2633	0.39	69.0	4507	0.43	49.2	5458	0.38	22.7	9268	-1.06	55.6	5466	0.18
ABPO (Ours)	2.4k	80.9	1647	0.54	71.3	2537	0.77	49.7	3311	0.63	29.3	6028	0.19	57.8	3371	0.57
ABPO (Ours)	32k	85.2	<u>1434</u>	0.80	74.3	<u>2068</u>	0.95	52.7	<u>2141</u>	0.95	28.7	3223	0.28	60.2	<u>2217</u>	0.85
<i>Base model: DeepSeek-R1-Distill-Qwen-7B</i>																
Baseline	—	93.2	4086	—	89	6484	—	66.1	8686	—	56.3	12837	—	71.9	8536	—
ShorterBetter	40k	85.6	1233	<u>0.29</u>	82.3	2443	0.24	56.7	2990	-0.06	49.0	5673	-0.09	64.5	3910	<u>0.03</u>
Training Efficient	3.2k	89.1	<u>2121</u>	0.26	87.5	4300	<u>0.25</u>	<u>61.9</u>	5626	0.04	52.3	9410	-0.09	65.0	5112	-0.08
ABPO (Ours)	2.4k	92.2	2243	0.40	87.3	<u>3511</u>	0.36	63.5	4852	0.25	48.7	8493	-0.34	66.0	4354	0.08
<i>Base model: DeepScaleR-1.5B-Preview</i>																
Baseline	—	88.2	3155	—	81.3	5067	—	58.3	5718	—	40.0	9041	—	66.9	5745	—
L1-Exact	40k	82.1	3189	-0.35	71.0	3067	-0.24	50.7	3196	-0.22	22.3	3715	-1.62	56.5	3292	-0.35
L1-Max	40k	84.5	1527	0.31	75.5	1768	0.30	51.1	1733	0.07	27.0	2290	-0.88	59.5	1830	0.13
HAPO	2k	81.9	2537	-0.16	70.5	4119	-0.47	53.6	3976	-0.10	31.3	6974	-0.86	59.3	4401	-0.33
ThinkPrune	2.4k	<u>85.5</u>	2029	0.21	<u>78.5</u>	3125	0.21	55.0	3532	<u>0.10</u>	<u>34.7</u>	5743	-0.30	<u>63.4</u>	3607	0.11
ABPO (Ours)	2.4k	85.6	1874	<u>0.26</u>	79.8	<u>2845</u>	0.35	55.0	<u>3302</u>	0.14	37.3	5736	0.03	64.4	3439	0.21

Table 2: Comparison between fixed-budget baselines and ABPO on DeepSeek-R1-Distill-Qwen-1.5B on AMC and AIME.

	AMC			AIME			Average			Training Time (h)
	Acc. \uparrow	Len. \downarrow	AES	Acc. \uparrow	Len. \downarrow	AES	Acc. \uparrow	Len. \downarrow	AES	
Base	70.3	9314	—	32.0	15476	—	51.1	12395	—	—
Fixed-Budget 2000	66.3	2320	0.47	24.0	5576	-0.61	45.1	3948	0.09	15.5
Fixed-Budget 3000	68.8	2850	0.59	23.3	6309	-0.76	46.0	4980	0.13	22.2
Fixed-Budget 4000	71.8	3600	0.68	<u>25.7</u>	6376	-0.40	<u>48.7</u>	4988	<u>0.36</u>	28.0
ABPO (Ours)	71.3	<u>2537</u>	0.77	29.3	<u>6028</u>	0.19	50.3	<u>4283</u>	0.57	<u>20.3</u>

DeepSeek-R1-Distill-Qwen-1.5B is trained for 350 steps under both the standard and extended-data settings, while DeepSeek-R1-Distill-Qwen-7B and DeepScaleR-1.5B-Preview are each trained for 50 steps. The compared methods are **ShorterBetter** Yi et al. (2025), **Training Efficient** Arora & Zanette (2025), **HAPO** Huang et al. (2025), **L1-Exact**, **L1-Max** Aggarwal & Welleck (2025) and **ThinkPrune** Hou et al. (2025). The detailed experimental settings are provided in Appendix A.3.

4.3 QUANTITATIVE ANALYSIS

Comparison with existing methods In Tab.1, we first compare the performance and efficiency of ABPO with existing CoT optimization methods on three representative LLMs. From this table, we can first observe that the default LLMs (*Baseline*) often requires excessive tokens to generate CoTs on all benchmarks, *e.g.*, 5,278 tokens on MATH500 by DeepSeek-R1-Distill-Qwen-1.5B, showing notable over-thinking issues. ABPO and the compared methods can well alleviate this problem. For instance, via taking the shortest reasoning length within a sampled group, ShorterBetter can reduce the CoT length of DeepSeek-R1-Distill-Qwen-1.5B to 864 tokens on MATH500. However, we can also see that the compared methods have obvious compromises in performance, *e.g.*, -38.4% and -29.1% by ShorterBetter and HAPO on the difficult AIME. In addition, it can be seen that the efficiency benefits of some methods become marginal on the difficult tasks in order to reduce performance loss. For instance, the SOTA method *Training Efficient* requires about 10k and 6.8k token budgets on AIME and Olympiad for DeepSeek-R1-Distill-Qwen-1.5B, respectively, resulting worse *Accuracy-Efficiency Score* (AES). In terms of fixed-budget methods, *e.g.*, ThinkPrune Hou et al. (2025), it can maintain the CoT length at a relatively short output, but it obviously drops the performance by 13.2% on the difficult AIME. In contrast, ABPO can achieve a good balance

324
 325 Table 3: Ablation study of ABPO on DeepSeek-R1-Distill-Qwen-1.5B. We progressively add Cur-
 326 riculum Learning, Adaptive Budget and Example Review to ABPO. * denotes the full setting of
 327 ABPO.

	AMC			AIME			Average		
	Acc. \uparrow	Len. \downarrow	AES \uparrow	Acc. \uparrow	Len. \downarrow	AES \uparrow	Acc. \uparrow	Len. \downarrow	AES \uparrow
Base	70.3	9314	–	32.0	15476	–	51.1	12395	–
+ Curriculum Learning	<u>68.0</u>	2652	0.56	24.7	<u>5250</u>	-0.48	46.3	<u>3951</u>	0.21
+ Adaptive Budget	<u>68.0</u>	2232	0.60	<u>26.3</u>	5219	-0.22	<u>47.2</u>	3726	0.31
+ Review*	71.3	<u>2537</u>	0.77	29.3	6028	0.19	50.3	4283	0.57

334 Table 4: Comparison between ABPO and the alternative data scheduling strategies on DeepSeek-
 335 R1-Distill-Qwen-1.5B. $Mix(\cdot)$ denotes the mixing of different types of examples for sampling.

	AMC			AIME			Average		
	Acc. \uparrow	Len. \downarrow	AES \uparrow	Acc. \uparrow	Len. \downarrow	AES \uparrow	Acc. \uparrow	Len. \downarrow	AES \uparrow
Base	70.3	9314	–	32.0	15476	–	51.1	12395	–
$Mix(\mathcal{S}_{learning}, \mathcal{S}_{hard})$	62.8	1942	0.26	16.3	3954	-1.70	39.5	2948	-0.37
$Mix(\mathcal{S}_{learning}, \mathcal{S}_{mastered})$	<u>69.8</u>	2768	0.67	<u>28.7</u>	6180	0.08	49.2	4474	0.45
ABPO (Ours)	71.3	<u>2537</u>	0.77	29.3	6028	0.19	50.3	<u>4283</u>	0.57

343 between efficiency and performance. When increasing the amount of training data, *i.e.*, 32k, ABPO
 344 can help DeepSeek-R1-Distill-Qwen-1.5B reduce about 78.3% CoT length while achieving 2.0%
 345 performance gains on average. These results well confirm the effectiveness of our ABPO.

346 To better show our advantages, we compare ABPO with length-control approaches in Fig. 3 (a),
 347 *i.e.*, L1-Exact and L1-Max Aggarwal & Welleck (2025). We plot the *length-accuracy* of the
 348 DeepScaleR-1.5B-Preview under different budget settings. Specifically, L1-Max controls the maxi-
 349 mum output length of the model through prompting, whereas L1-Exact enforces the model to gener-
 350 ate outputs with an exact length budget specified in the prompt. We show the average performance
 351 on the four widely used benchmarks, *i.e.*, AMC, MATH500, AIME and Olympiad. From this figure,
 352 we can first observe that the original LLM takes a very large number of tokens to achieve better
 353 performance. Specifically, the original LLM achieves only 3.9% performance improvement while
 354 consuming nearly twice the token overhead of our ABPO. We can also observe that both L1-Exact
 355 and L1-Max can reduce the length of CoTs. When extending the CoT lengths, the performance
 356 of these two methods slightly increases but eventually reaches the ceiling. Compared with these
 357 two methods, the proposed ABPO achieves better performance with the same budget. As shown in
 358 the figure, ABPO obviously occupies a more upper left position in the length-performance curve.
 359 Overall, these results show that the proposed ABPO method can achieve a better balance between
 360 efficiency and effect and significantly improve the LLMs’ reasoning ability.

361 **Comparison with fixed-budget Baselines** In Tab. 2, we compare ABPO to the fixed-budget meth-
 362 ods under the same experimental settings. For the fixed-budget baselines, we assign a fixed token
 363 budget to all training samples. All samples are trained together, and this setting can serve as a di-
 364 rect counterpart to our adaptive scheduling strategy. From Tab. 2, we can first observe that this
 365 fixed-budget baselines will impose a negative impact on difficult examples. Specifically, training
 366 with a budget of 3,000 tokens on AIME reduces the output length by 59.2% but leads to 27.2%
 367 performance drop. In comparison, ABPO requires 8.6% less training time and reduces the output
 368 length by 61.0%, while resulting in an 8.4% performance drop. This performance is higher than the
 369 result under the fixed budget of 3,000. Another observation is that for medium-difficulty examples,
 370 ABPO achieves a better balance between accuracy and length. Although its accuracy is close to
 371 the baseline of a higher fixed budget, the output length is much shorter. For instance, on the AMC
 372 dataset, ABPO’s accuracy is only 0.6% lower than that of Fixed-budget 4,000, but its length is re-
 373 duced by 29.5%, while obtaining a 13.2% improvement in AES. Overall, these results demonstrate
 374 that ABPO can provide reasonable CoT budgets for examples of varying difficulties.

375 **Ablation study** In Tab. 3, we ablate the key designs of ABPO on DeepSeek-R1-Distill-Qwen-
 376 1.5B. In this table, “+ Curriculum Learning” denotes training with curriculum scheduling and train-
 377 ing batches are constructed by the examples from $\mathcal{S}_{learning}$ with CoT length limited by 4,000 tokens.
 “+ Adaptive Budget” further introduces dynamic budget scheduling, where their initial budget is set

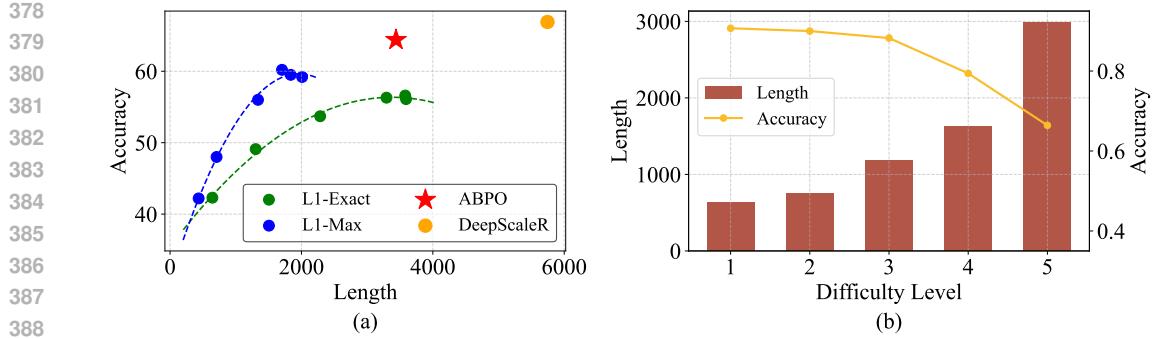


Figure 3: (a) Comparison between ABPO and efficient CoT optimization methods under different length budgets on DeepScaleR-1.5B-Preview. The accuracy is averaged over AMC, MATH500, AIME and Olympiad. (b) The average CoT length and accuracy of ABPO on examples of MATH500 at different difficulty levels. It can be seen that the proposed ABPO can generate CoT with different lengths according to the example difficulty.

to $t_0=2,000$ and gradually expanded with $d=500$ per iteration. Finally, “+ *Review*” corresponds to the full settings of ABPO, which additionally adds the review mechanism by mixing a fraction of the mastered samples. From Tab. 3, we can first observe that using curriculum learning can reduce the CoT length substantially. For instance, on AMC benchmark, “+ *Curriculum Learning*” reduces the reasoning trace by 71.5% with 3.3% performance drop. After adding adaptive budgeting, *i.e.*, “+ *Adaptive Budget*”, the output length is further shortened while improving accuracy. For instance, the length of CoT is shorten by 76.0%, while keeping the same performance on AIME benchmark. With “+ *Review*”, ABPO achieves the best trade-off, and it restores the accuracy close to the original LLMs while significantly reducing CoT token length. For instance, on AMC, the proposed ABPO method not only reduces the CoT length by 72.8%, but also improve the performance by 1.4%. These results well confirm the designs of the adaptive budget assignments and the example review.

In Tab. 4, we also examine the roles of three example pools in ABPO. We conduct two experiments with different sampling strategies while keeping all other configurations identical to ABPO. Here, “ $Mix(\mathcal{S}_{learning}, \mathcal{S}_{hard})$ ” combing the examples of $\mathcal{S}_{learning}$ with \mathcal{S}_{hard} for sampling, *i.e.*, not considering the difficulty of examples for training. “ $Mix(\mathcal{S}_{learning}, \mathcal{S}_{mastered})$ ” denotes the mixing of $\mathcal{S}_{learning}$ and $\mathcal{S}_{mastered}$, *i.e.*, all examples are either under-learning or too hard for training. In contrast, ABPO will assess examples via three types while reviewing partial examples from $\mathcal{S}_{mastered}$, as described in Sec. 3.2. From these results, we can observe that “ $Mix(\mathcal{S}_{learning}, \mathcal{S}_{hard})$ ” significantly reduces the CoT length of the LLM. For instance, it reduces CoT length by 74.4% on AIME. However, under this scheme, the longer CoTs for difficult examples always give the LLM a penalty signal, causing the LLM to mistakenly tend to output shorter CoT. On the other hand, we can observe that “ $Mix(\mathcal{S}_{learning}, \mathcal{S}_{mastered})$ ” significantly reduces the CoT length while obtaining better performance. For example, “ $Mix(\mathcal{S}_{learning}, \mathcal{S}_{mastered})$ ” reduces the inference length by 60.1% with 10.3% performance drop on AMC. To explain, after identifying the hard examples, this scheme can help the LLM achieve better optimizations during training. However, its performance is still limited due to the excessive use of easy examples, especially on the difficult ones. In contrast, via categorizing examples into three pools with a review design, ABPO can help the LLM better compensate the performance drops while keeping low CoT budgets. Overall, these ablation studies well confirm the designs of the example pools and the review operation in ABPO.

Inference cost w.r.t. example difficulty. In Fig. 3 (b), we show the relationships between inference cost and performance on the examples of MATH500 Hendrycks et al. (2021). These examples have the corresponding difficulty-level annotations. We apply ABPO to DeepSeek-R1-Distill-Qwen-1.5B and evaluate its inference cost and performance on the subsets of different difficulty levels. From the figure, we observe that our ABPO can help the LLM generate CoT with proper lengths related to the example difficulties. This case shows that our ABPO can adaptively allocate more suitable budgets to more challenging examples during training, thereby achieving a good trade-off between performance and efficiency.

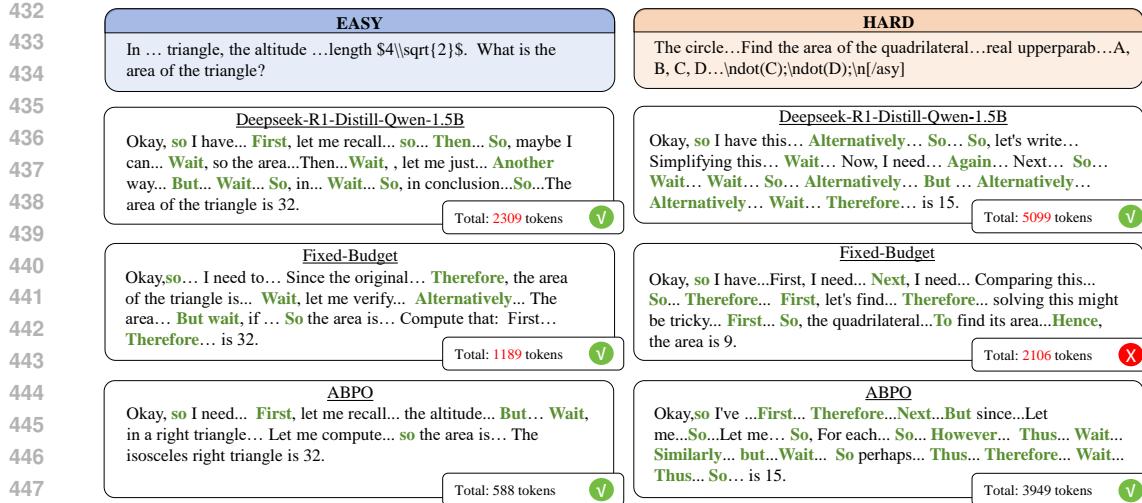


Figure 4: Visualization of CoTs and answers on both easy and hard examples by the default LLM, fixed-budget CoT optimization ($2k$ tokens) and our ABPO. These examples show that ABPO can help the LLM generate more concise and compact CoTs for simple questions and more complex and longer CoTs for the hard ones, thereby balancing the efficiency and performance of CoT reasoning.

4.4 QUALITATIVE ANALYSIS

To gain insights into the proposed ABPO, we visualize its outputs on both easy and hard examples, and compare them with the default LLM and the fixed-budget baselines ($2k$), as shown in Fig. 4. The details of these examples can be found in Appendix A.4. From these examples, we can see that ABPO can generate concise and compact CoT traces on easy examples, helping the LLM quickly arrive at the correct answer without unnecessary elaboration. In contrast, the baseline model DeepSeek-R1-Distill-Qwen-1.5B tends to generate lengthy and redundant CoTs even for easy examples, leading to inefficient reasoning traces. For more difficult examples, ABPO adaptively generates longer CoTs that involve multiple attempts, self-reflection and alternative solution paths before giving the correct answer. Meanwhile, when training the LLM under fixed-budget settings, the reasoning process for the harder examples is too tightly to correctly answer the question. In other words, producing shorter CoTs will fail to contain the necessary reasoning steps, and also results in incorrect answers. This case demonstrates that ABPO is capable of adaptively performing test time scaling according to example difficulty, validating its ability to achieve difficulty-aware and efficient reasoning. Overall, these findings demonstrate the effectiveness of ABPO in adjusting token budgets according to example difficulty and its adaptive design principle.

5 CONCLUSION

In this paper, we focus on addressing the challenges of efficient and adaptive chain-of-thought (CoT) reasoning for *large language models* (LLMs), and propose a novel reinforcement learning scheme termed *Adaptive-Budgeting based Policy Optimization (ABPO)*. To balance the efficiency and performance of CoT reasoning, ABPO introduces dynamic example pools to categorize training examples into three types based on the model’s status, and then adopts an adaptive scheduling mechanism to assign proper token budgets for different examples during RL training. In this way, ABPO helps the LLM to be capable of solving different tasks with adaptive CoT lengths, achieving a remarkable balance between the efficiency and performance. Extensive experiments on three representative LLMs and a bunch of CoT reasoning benchmarks are conducted, of which the results demonstrate that our ABPO method can achieve substantial efficiency improvements with minimal performance loss. Moreover, we also show obvious advantages over the compared methods in balancing the efficiency and performance of CoT reasoning. For instance, ABPO reduces token length by 78.3% while improving accuracy by 2.3% on DeepSeek-R1-Distill-Qwen-1.5B on average, and achieves 59.4% shorter reasoning length with 8.3% higher accuracy compared to HAPO. These results well confirm the effectiveness of ABPO towards efficient CoT reasoning for LLMs.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
492 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.04697>.

493 Samah AlKhazaey, Floriana Grasso, Terry R Payne, and Valentina Tamma. Text-based question
494 difficulty prediction: A systematic review of automatic approaches. *International Journal of
495 Artificial Intelligence in Education*, 34(3):862–914, 2024.

496

497 AMC. American mathematics competitions (amc). [https://maa.org/
498 student-programs/amc/](https://maa.org/student-programs/amc/), 2025.

499

500 Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
501 <https://arxiv.org/abs/2502.04463>.

502 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
503 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

504

505 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
506 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

507

508 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu,
509 Mengfei Zhou, Zhusong Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
510 think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL <https://arxiv.org/abs/2412.21187>.

511

512 Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
513 Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examining
514 the reasoning-action dilemma in agentic tasks. *arXiv preprint arXiv:2502.08235*, 2025.

515

516 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
517 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint
518 arXiv:2502.01456*, 2025.

519

520 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
521 2025. URL <https://arxiv.org/abs/2501.12948>.

522

523 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
524 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
525 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omnimath:
526 A universal olympiad level mathematic benchmark for large language models, 2024. URL
527 <https://arxiv.org/abs/2410.07985>.

528

529 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
530 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
531 of models. *arXiv preprint arXiv:2407.21783*, 2024.

532

533 Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh
534 Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient rea-
535 soning, 2025. URL <https://arxiv.org/abs/2508.08940>.

536

537 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
538 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
539 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint
arXiv:2402.14008*, 2024.

540

541 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
542 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
543 preprint arXiv:2103.03874*, 2021.

540 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 541 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025. URL
 542 <https://arxiv.org/abs/2504.01296>.

543 Chengyu Huang, Zhengxin Zhang, and Claire Cardie. Hapo: Training language models to reason
 544 concisely via history-aware policy optimization, 2025. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2505.11225)
 545 2505.11225.

546 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 547 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
 548 2025a. URL <https://arxiv.org/abs/2501.12570>.

549 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan
 550 Roongta, Colin Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada
 551 Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b
 552 model by scaling rl. [https://pretty-radio-b75.notion.site/](https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-2025b)
 553 DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-
 554 2025b.

555 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 556 compressible chain-of-thought tuning, 2025. URL [https://arxiv.org/abs/2502.](https://arxiv.org/abs/2502.09601)
 557 09601.

558 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 559 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 560 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

561 Mathematical Association of America. Aime, February 2024. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/.

562 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 563 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 564 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

565 Jinyan Su and Claire Cardie. Thinking fast and right: Balancing accuracy and reasoning length with
 566 adaptive rewards, 2025. URL <https://arxiv.org/abs/2505.18298>.

567 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 568 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 569 llms. *arXiv preprint arXiv:2501.12599*, 2025.

570 Qwen Team. Qwq-32b-preview. <https://qwenlm.github.io/blog/qwq-32b-preview/>, 2025.

571 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 572 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 573 neural information processing systems*, 35:24824–24837, 2022.

574 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 575 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning, 2025.
 576 URL <https://arxiv.org/abs/2410.23123>.

577 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 578 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 579 arXiv:2412.15115*, 2024.

580 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
 581 of-thought reasoning in llms, 2025. URL <https://arxiv.org/abs/2502.03373>.

582 Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find opti-
 583 mal inference length for efficient reasoning, 2025. URL [https://arxiv.org/abs/2504.](https://arxiv.org/abs/2504.21370)
 584 21370.

585 Han Zhao, Haotian Wang, Yiping Peng, Sitong Zhao, Xiaoyu Tian, Shuaiting Chen, Yunjie Ji, and
 586 Xiangang Li. 1.4 million open-source distilled reasoning dataset to empower large language
 587 model training, 2025. URL <https://arxiv.org/abs/2503.19633>.

594
595

A APPENDIX

596
597

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

598
599
600
We employed a large language model (LLM) to assist with language polishing and proofreading.
The use of the LLM was limited to improving clarity and readability of the manuscript, without
influencing the design of experiments, analyses, or conclusions.601
602

A.2 PSEUDO-CODE OF ADAPTIVE-BUDGETING BASED POLICY OPTIMIZATION (ABPO)

603
604
In this subsection, we present the pseudo-code of ABPO.605
606
Algorithm 1: Adaptive-Budgeting based Policy Optimization (ABPO)607
608
Input: $D = \{(q_i, y_i)\}_{i=1}^N$
Output: LLM M with compact CoT
1 **Init:** $\mathcal{S}_{\text{hard}} \leftarrow D$, $\mathcal{S}_{\text{learning}} \leftarrow \emptyset$, $\mathcal{S}_{\text{mastered}} \leftarrow \emptyset$; $\text{budget}[q] \leftarrow 0$; $t \leftarrow 0$; $k \leftarrow 1$.
2 **while** $t < S_{\text{max}}$ **and** $\mathcal{S}_{\text{mastered}} \neq D$ **do**
3 **foreach** $q \in \mathcal{S}_{\text{hard}}$ **do**
4 $\text{budget}[q] \leftarrow t_0 + (k-1)d$;
5 **if** $\text{Acc}(q; n) > \tau_0$ **then** move q to tail of $\mathcal{S}_{\text{learning}}$;
6 $L_0 \leftarrow |\mathcal{S}_{\text{learning}}|$;
7 **while** $|\mathcal{S}_{\text{learning}}| \geq \lambda L_0$ **and** $t < S_{\text{max}}$ **do**
8 Sample batch $\mathcal{B} := \text{mix}(\mathcal{S}_{\text{mastered}}, \mathcal{S}_{\text{learning}}; \alpha)$;
9 GRPO_UPDATE(M, \mathcal{B}, n);;
10 **foreach** $q \in \mathcal{B}$ **do**
11 **if** $\text{Acc}(q; n) \geq \tau_1$ **then** move q to tail of $\mathcal{S}_{\text{mastered}}$;
12 **else** move q to tail of $\mathcal{S}_{\text{learning}}$;
13 $t \leftarrow t+1$;
14 $k \leftarrow k+1$;624
625
626

A.3 HYPERPARAMETER SETTINGS

627
628
Table 5 summarizes the detailed hyperparameter settings used in all ABPO experiments, including
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
Table 5: Hyperparameter settings of ABPO experiments across different models and data scales.

Model	Steps	t_0	d	τ_0	τ_1	Rollouts	Batch Size
DeepSeek-R1-Distill-Qwen-1.5B	350	2000	500	0.0	0.85	16	128
DeepScaleR-1.5B-Preview	50	2000	500	0.2	0.85	16	128
DeepSeek-R1-Distill-Qwen-7B	50	3000	500	0.3	0.85	16	128
DeepSeek-R1-Distill-Qwen-1.5B (32k data)	350	2000	500	0.2	0.85	8	1024

648
649

A.4 ADDITIONAL CASE STUDIES OF ABPO

650
651

We provide more detailed outputs on both easy and hard problems in Fig.4. The transition words are highlighted in red.

652

653

EASY

654

655

In a certain isosceles right triangle, the altitude to the hypotenuse has length $4\sqrt{2}$. What is the area of the triangle?

656

657

658

DeepSeek-R1-Distill-Owen-1.5B

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Okay, **so** I have this problem here: In a certain isosceles right triangle, the altitude to the hypotenuse has length $4\sqrt{2}$. I need to find the area of the triangle. Hmm, let's see. I remember that in an isosceles right triangle, the two legs are equal, and the angles are 45° , 45° , and 90° . **So**, maybe I can use some properties of right triangles here.

First, let me visualize the triangle. It's an isosceles right triangle, **so** the legs are equal. Let me denote the length of each leg as x . Then, the hypotenuse can be found using the Pythagorean theorem. Since it's a right-angled triangle, the hypotenuse c is $x\sqrt{2}$. That makes sense because in a 45-45-90 triangle, the hypotenuse is leg length times $\sqrt{2}$.

Now, the problem mentions the altitude to the hypotenuse. In a right triangle, the altitude to the hypotenuse relates to the two segments it creates on the hypotenuse. I remember that the area can be calculated in two ways: one as half the product of the legs, and another using the hypotenuse and the altitude. **So**, maybe I can set up an equation using these two expressions for the area.

Let me denote the altitude to the hypotenuse as h , which is given as $4\sqrt{2}$. **So**, the area of the triangle is also equal to $\frac{1}{2} \times \text{hypotenuse} \times h$. Since I know the hypotenuse is $x\sqrt{2}$, substituting in the values, the area is $\frac{1}{2} \times x\sqrt{2} \times 4\sqrt{2}$.

Let me compute that: $\frac{1}{2} \times x\sqrt{2} \times 4\sqrt{2}$. Multiplying the constants first: $\frac{1}{2} \times 4 = 2$. Then, $\sqrt{2} \times \sqrt{2} = 2$. **So**, putting it together, the area becomes $2 \times x \times 2 = 4x$.

Wait, so the area is $4x$. **But** I also know that the area is $\frac{1}{2} \times \text{leg} \times \text{leg}$, which is $\frac{1}{2} \times x^2$. **So**, setting these two expressions equal: $4x = \frac{1}{2} \times x^2$. Hmm, let me solve for x .

Multiplying both sides by 2 to eliminate the fraction: $8x = x^2$. Then, bringing all terms to one side: $x^2 - 8x = 0$. Factoring out an x : $x(x - 8) = 0$. **So**, $x = 0$ or $x = 8$. Since a triangle can't have a side of length 0, $x = 8$.

Okay, **so** each leg is 8 units long. Then, to find the area, I can use $\frac{1}{2} \times x^2$ which is $\frac{1}{2} \times 8^2 = \frac{1}{2} \times 64 = 32$.

Alternatively, using the other area expression, $4x$, **so** $4 \times 8 = 32$. Either way, I get the same result. **So**, the area is 32.

Wait, let me just make sure I didn't skip any steps or make a mistake. Starting from the beginning: it's an isosceles right triangle, legs equal, hypotenuse $x\sqrt{2}$. Altitude to hypotenuse is $4\sqrt{2}$. Area is $\frac{1}{2} \times \text{hypotenuse} \times \text{altitude}$, which is $\frac{1}{2} \times x\sqrt{2} \times 4\sqrt{2}$. Simplify: $\frac{1}{2} \times x\sqrt{2} \times 4\sqrt{2} = 2x\sqrt{2}$. **so** $2x\sqrt{2} = 4x$. Area is also $\frac{1}{2} \times x^2$. **So**, $4x = \frac{1}{2} \times x^2$. Multiply both sides by 2: $8x = x^2$. **so**, $x^2 - 8x = 0$. $x(x - 8) = 0$. **So**, $x = 8$. Then, area is $\frac{1}{2} \times x^2 = 32$. Yep, that seems right.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Wait, let me just make sure I didn't skip any steps or make a mistake. Starting from the beginning: it's an isosceles right triangle, legs equal, hypotenuse $\langle x \sqrt{2} \rangle$. Altitude to hypotenuse is $\langle 4\sqrt{2} \rangle$. Area is $\langle \frac{1}{2} \times \text{hypotenuse} \times \text{altitude} \rangle$, which is $\langle \frac{1}{2} \times x \sqrt{2} \times 4\sqrt{2} \rangle$. Simplify: $\langle \frac{1}{2} \times 4 = 2 \rangle$, $\langle \sqrt{2} \times \sqrt{2} = 2 \rangle$, **so** $2 * x * 2 = 4x$. Area is also $\langle \frac{1}{2} x^2 \rangle$. **So**, $4x = \langle \frac{1}{2} x^2 \rangle$. Multiply both sides by 2: $8x = x^2$. **So**, $x^2 - 8x = 0$. $x(x - 8) = 0$. **So**, $x = 8$. Then, area is $\langle \frac{1}{2} x^2 = 32 \rangle$. Yep, that seems right.

Another way to think about it: In an isosceles right triangle, the altitude to the hypotenuse also acts as a median and an angle bisector. Moreover, in such triangles, the altitude is equal to half the hypotenuse times $\langle \sqrt{2} \rangle$. **Wait**, is that correct? Let me see.

If the legs are each $\langle x \rangle$, then the hypotenuse is $\langle x \sqrt{2} \rangle$. The altitude to the hypotenuse in a right triangle is given by $\langle h = \frac{\text{product of legs}}{\text{hypotenuse}} \rangle = \frac{x \times x \sqrt{2}}{\langle x \sqrt{2} \rangle} = \frac{x}{\sqrt{2}}$. **So**, $\langle h = \frac{x}{\sqrt{2}} \rangle$.

But we are given $\langle h = 4\sqrt{2} \rangle$, **so** setting them equal: $\langle \frac{x}{\sqrt{2}} = 4\sqrt{2} \rangle$. Multiplying both sides by $\langle \sqrt{2} \rangle$: $\langle x = 4\sqrt{2} \times \sqrt{2} = 4 \times 2 = 8 \rangle$. Yep, same result. **So**, legs are 8, hypotenuse is $\langle 8\sqrt{2} \rangle$, area is $\langle 32 \rangle$. **So**, either way, the area is 32.

Wait, maybe I can also think about similar triangles here. In an isosceles right triangle, when you draw the altitude to the hypotenuse, it creates two smaller isosceles right triangles, each similar to the original triangle. **So**, each of these smaller triangles also has legs equal to each other. Let me try to confirm.

Let me denote the original triangle as ABC, right-angled at C, with legs AC and BC each of length $\langle x \rangle$, and hypotenuse AB of length $\langle x \sqrt{2} \rangle$. The altitude from C to AB is CD, which is given as $\langle 4\sqrt{2} \rangle$. Then, triangles ACD and BCD are both isosceles right triangles. **So**, in triangle ACD, legs AD and CD are equal. Similarly, in triangle BCD, legs BD and CD are equal.

So, in triangle ACD, legs AD and CD are equal, **so** $AD = CD = \langle 4\sqrt{2} \rangle$. Similarly, $BD = CD = \langle 4\sqrt{2} \rangle$. **Therefore**, the hypotenuse AB is $AD + BD = \langle 4\sqrt{2} + 4\sqrt{2} = 8\sqrt{2} \rangle$, which matches our earlier calculation that the hypotenuse is $\langle x \sqrt{2} \rangle$, **so** $\langle x = 8 \rangle$. **So**, that's another verification.

Alternatively, using proportions: Since triangle ACD is similar to triangle ABC, the ratio of corresponding sides is the same. **So**, in triangle ACD, legs are $AD = \langle 4\sqrt{2} \rangle$, hypotenuse $AC = 8$ (since AC is a leg of the original triangle, **but wait**, no: AC is a leg of the original triangle, **but** CD is a leg in triangle ACD).

Wait, maybe this approach is getting a bit convoluted. Maybe better to stick with the two methods we already used, which both lead to the same answer.

So, in conclusion, the legs are each 8, hypotenuse is $\langle 8\sqrt{2} \rangle$, area is $\langle \frac{1}{2} \times 8 \times 8 = 32 \rangle$. **Alternatively**, using the altitude, $\langle \frac{1}{2} \times 8\sqrt{2} \times 4\sqrt{2} = \frac{1}{2} \times 8 \times 4 \times 2 = 32 \rangle$. **So**, both methods confirm the area is 32.

I think that's solid. I don't see any mistakes in my reasoning. **So**, I feel confident that the area is 32.

Final Answer**

The area of the triangle is $\boxed{32}$.

756
757
758
759
760
761Fixed-Budget762 Okay, **so** I have this problem about an isosceles right triangle where the altitude to the hypotenuse is
763 $\sqrt{4}$. I need to find the area of the triangle. Let me think about how to approach this.764
765 First, let me recall what an isosceles right triangle looks like. It has two legs of equal length and a
766 hypotenuse. The two non-right angles are each 45 degrees.767
768 In such a triangle, the altitude to the hypotenuse is a line segment from the right angle to the
769 hypotenuse, dividing it into two smaller congruent triangles. Since the original triangle is isosceles, I
770 can use the properties of similar triangles here.771 I remember that in an isosceles right triangle, the legs are equal, let's say each leg has length a .
772 Then the hypotenuse will be $\sqrt{2}a$, because for a right triangle, the hypotenuse squared is
773 equal to the sum of the squares of the other two sides.774
775 Now, the altitude to the hypotenuse in a right triangle relates to the legs. I think the formula for the
776 altitude h is $h = \frac{a \cdot b}{c}$, where a and b are the legs, and c is the
777 hypotenuse. Since it's an isosceles triangle, $a = b$, **so** the formula simplifies to $h = \frac{a^2}{c}$.778
779 Given $h = 4\sqrt{2}$, **so** substituting:780
781 $4\sqrt{2} = \frac{a^2}{c}$ 782
783 **But** $c = a\sqrt{2}$, **so** substitute that in:784
785 $4\sqrt{2} = \frac{a^2}{a\sqrt{2}}$

786 Simplify the denominator:

787
788 $4\sqrt{2} = \frac{a^2}{\sqrt{2}} = a\sqrt{2}$ 789
790 Hence:791
792 $4\sqrt{2} = a\sqrt{2}$ 793 Multiply both sides by $\sqrt{2}$:794
795 $4\sqrt{2} \cdot \sqrt{2} = a\sqrt{2} \cdot \sqrt{2}$

796 Simplify the left side:

797
798 $4 \cdot 2 = a\sqrt{2} \cdot \sqrt{2}$, **so**:800
801 $4 \cdot 2 = a\sqrt{2} \cdot \sqrt{2}$ 802
803 $4 \cdot 2 = a\sqrt{2} \cdot \sqrt{2}$ 804 So each leg is 8 units long. **Therefore**, the area of the triangle is $\frac{1}{2} \cdot a \cdot b$,
805 which is $\frac{1}{2} \cdot 8 \cdot 8$.806
807
808
809

810
811
812
813
814

815 Calculate that:

816 $\frac{1}{2} \times 64 = 32$

818 So the area is 32.

820 Wait, let me verify if my reasoning is correct.

822 Alternatively, I can think about the area in terms of the altitude. The area of the triangle can also be
823 expressed as $\frac{1}{2} \times c \times h$, where (c) is the hypotenuse and (h) is the altitude.825 We found that $(c = a\sqrt{2})$, which is $(8\sqrt{2})$.826 But wait, if $(a = 8)$, then $(c = 8\sqrt{2})$, which is correct.828 So the area is $\frac{1}{2} \times 8\sqrt{2} \times 4\sqrt{2}$.

830 Compute that:

832 First, multiply the constants: $\frac{1}{2} \times 8 \times 4 = \frac{1}{2} \times 32 = 16$ 833 Then multiply the radicals: $\sqrt{2} \times \sqrt{2} = 2$ 835 So overall: $(16 \times 2 = 32)$. Perfect, same answer.

837 Therefore, the area of the triangle is 32.

</think>

839 The problem involves an isosceles right triangle with an altitude to the hypotenuse of length
840 $(4\sqrt{2})$. We need to find the area of the triangle.

842 1. **Identify the properties of the isosceles right triangle:**

- Two legs of equal length, say (a) .
- Hypotenuse $(c = a\sqrt{2})$.

846 2. **Formula for the altitude to the hypotenuse:**

- The altitude (h) in a right triangle is given by $(h = \frac{a \cdot b}{c})$.
- Since $(a = b)$, this simplifies to $(h = \frac{a^2}{c})$.

849 3. **Substitute the known values:**

- Given $(h = 4\sqrt{2})$ and $(c = a\sqrt{2})$.
- So, $(4\sqrt{2}) = \frac{a^2}{a\sqrt{2}}$.
- Simplify: $(4\sqrt{2}) = \frac{a}{\sqrt{2}}$.
- Multiply both sides by $(\sqrt{2})$: $(4 \times 2 = a)$, so $(a = 8)$.

854 4. **Calculate the area:**

- The area is $\frac{1}{2} \times 8 \times 8 = 32$.

857 Thus, the area of the triangle is $(\boxed{32})$ 858
859
860
861
862
863

864

865

866

867

868

869

ABPO

870 Okay, **so** I need to find the area of an isosceles right triangle where the altitude to the hypotenuse is
 871 $4\sqrt{2}$. Hmm, let's see. First, let me recall some properties of isosceles right triangles.

872

873 An isosceles right triangle has two legs of equal length and a hypotenuse. The angles are 45° , 45° ,
 874 and 90° . The legs are equal, let's call each leg 'a'. The hypotenuse in such a triangle is $a\sqrt{2}$.

875

876 Now, the altitude to the hypotenuse is given as $4\sqrt{2}$. I remember that in a right triangle, the altitude
 877 to the hypotenuse relates to the lengths of the segments it creates on the hypotenuse. **But** in an
 878 isosceles right triangle, the altitude might have a special relationship.

879

880 **Wait**, in a right triangle, the length of the altitude to the hypotenuse can be calculated by the
 881 formula: (product of the legs) divided by the hypotenuse. **So**, in this case, the altitude h is $(a * a) / (a\sqrt{2})$. That
 882 simplifies to $a^2 / (a\sqrt{2})$ which is $a / \sqrt{2}$.

883

Given that this altitude is equal to $4\sqrt{2}$, **so**:

884

$$a / \sqrt{2} = 4\sqrt{2}$$

885

Let me solve for 'a' here. Multiply both sides by $\sqrt{2}$:

886

$$a = 4\sqrt{2} * \sqrt{2}$$

887

$\sqrt{2} * \sqrt{2}$ is 2, **so**:

888

$$a = 4 * 2 = 8$$

889

So each leg of the triangle is 8 units long.

890

Now, the area of the triangle is $(\text{base} * \text{height}) / 2$. Since it's an isosceles right triangle, both legs are
 891 equal, **so** the area is $(a * a) / 2$. Plugging in $a = 8$:

892

$$\text{Area} = (8 * 8) / 2 = 64 / 2 = 32$$

893

So, the area of the triangle is 32.

894

901 **Alternatively**, I can think in terms of the hypotenuse. The hypotenuse of the triangle is $a\sqrt{2} = 8\sqrt{2}$.
 902 The altitude is given as $4\sqrt{2}$. The area can also be expressed as $(\text{hypotenuse} * \text{altitude}) / 2$. **So**:

903

$$\text{Area} = (8\sqrt{2} * 4\sqrt{2}) / 2$$

904

Multiply the terms:

905

$$(8 * 4) * (\sqrt{2} * \sqrt{2}) / 2 = 32 * 2 / 2 = 32. \text{ Same result.}$$

906

So, I'm confident the area is 32.

907

</think>

908

The area of the isosceles right triangle is $\boxed{32}$.

909

910

911

912

913

914

915

916

917

918
919
920
921922
923
924
925
926
927
928
929
930
931
932
933**HARD**

The circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ have two common tangents, forming four points of tangency. Find the area of the quadrilateral formed by the four points of tangency.

```
[asy] unitsize(0.8 cm);
real upperparab (real x) {return (sqrt(8*x));} real lowerparab (real x) {return (-sqrt(8*x));}
pair A, B, C, D; A = (-1,1); B = (2,4); C = (-1,-1); D = (2,-4);
draw(graph(upperparab,0,3)); draw(graph(lowerparab,0,3)); draw(Circle((0,0),sqrt(2)));
draw(interp(A,B,-0.2)--interp(A,B,1.2)); draw(interp(C,D,-0.2)--interp(C,D,1.2));
draw(A--C); draw(B--D); dot(A); dot(B); dot(C); dot(D); [/asy]
```

934
935
936
937
938DeepSeek-R1-Distill-Qwen-1.5B

Okay, **so** I have this problem where I need to find the area of a quadrilateral formed by the points where two common tangents to a circle and a parabola touch each curve. The circle is given by the equation $x^2 + y^2 = 2$ and the parabola is $y^2 = 8x$. The figure provided in the Asymptote code shows the circle and the parabola, and then the tangents which intersect at four points forming a quadrilateral.

939
940
941
942
943

First, I need to understand the problem. We have a circle and a parabola, and we're supposed to find their common tangents. Each tangent will touch both the circle and the parabola at exactly one point. Since there are two common tangents, each will have two points of tangency, and these four points will form a quadrilateral. The task is to find the area of this quadrilateral.

944
945
946
947

I know that a common tangent to two curves is a line that touches each curve at exactly one point. For a circle and a parabola, the equations of the common tangents can be found by solving certain conditions. The approach is likely to involve setting up equations for the tangent lines and then solving for the points where these lines are tangent to both the circle and the parabola.

948
949
950
951

Let me start by recalling that the equation of a tangent to a circle $x^2 + y^2 = r^2$ at a point (x_1, y_1) is $xx_1 + yy_1 = r^2$. In this case, the circle has radius $\sqrt{2}$, **so** the tangent equation would be $xx_1 + yy_1 = 2$.

952
953
954
955
956

For the parabola $y^2 = 8x$, which opens to the right, the equation of a tangent can be written in the form $y = mx + \frac{1}{2}m$, where m is the slope of the tangent. **Alternatively**, the tangent can be expressed as $y = mx + c$, and for the parabola $y^2 = 4ax$, the condition for the line $y = mx + c$ to be tangent is $c = \frac{1}{4}a$. In this case, since $4a = 8$, $a = 2$, **so** $c = \frac{1}{4}a$. That seems right.

957
958

So, for the parabola $y^2 = 8x$, the tangent equations will be $y = mx + \frac{1}{2}m$.

959
960
961

Now, since these lines are also tangent to the circle $x^2 + y^2 = 2$, the distance from the center of the circle (which is at $(0,0)$) to the tangent line must be equal to the radius of the circle, which is $\sqrt{2}$.

962
963
964
965
966
967

The formula for the distance from a point (x_0, y_0) to the line $ax + by + c = 0$ is $\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$. **So**, let's write the equation of the tangent line in standard form.

968
969
970
971

972

973

974

975

976

977

978

Given $y = mx + \frac{2}{m}$, we can rearrange it to $mx - y + \frac{2}{m} = 0$. **So**, $a = m$, $b = -1$, and $c = \frac{2}{m}$.

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

The distance from $(0,0)$ to this line is $\sqrt{0 + 0 + \frac{2}{m^2}} = \sqrt{m^2 + 1}$.

Since this distance must equal the radius $\sqrt{2}$, we have:

$$\sqrt{m^2 + 1} = \sqrt{2}$$

Simplifying this, we can write:

$$\sqrt{m^2 + 1} = \sqrt{2}$$

Multiply both sides by $|m|$:

$$2 = \sqrt{2} |m| \sqrt{m^2 + 1}$$

Divide both sides by $\sqrt{2}$:

$$\sqrt{2} = |m| \sqrt{m^2 + 1}$$

Square both sides to eliminate the square roots:

$$2 = m^2 (m^2 + 1)$$

Expanding the right side:

$$2 = m^4 + m^2$$

Bring all terms to one side:

$$m^4 + m^2 - 2 = 0$$

This is a quadratic in terms of m^2 . Let me set $u = m^2$, **so** the equation becomes:

$$u^2 + u - 2 = 0$$

Solving this quadratic equation using the quadratic formula:

$$u = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2}$$

So, $u = 1$ or $u = -2$. Since $u = m^2$ must be non-negative, we discard $u = -2$. Thus, $u = 1$, which means $m^2 = 1$, **so** $m = \pm 1$.

So, the slopes of the common tangents are $m = 1$ and $m = -1$.

Therefore, the equations of the tangent lines are:

$$\text{For } m = 1: y = x + 1$$

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

For $(m = -1)$: $(y = -x + \frac{2}{m}(-1) = -x - 2)$

1032

1033

Wait, hold on, earlier I wrote the tangent equations as $(y = mx + \frac{2}{m}m)$. **So**, for $(m = 1)$, it's $(y = x + 2)$, and for $(m = -1)$, it's $(y = -x - 2)$.

1034

1035

But let's verify this because sometimes the signs can be tricky.

1036

1037

Wait, when $(m = -1)$, the tangent equation would be $(y = -x + \frac{2}{m}(-1) = -x - 2)$. That seems correct.

1038

1039

Now, I need to find the points where these tangent lines touch the circle and the parabola.

1040

1041

First, let's find the points of tangency on the parabola $(y^2 = 8x)$.

1042

1043

For the line $(y = x + 2)$:

1044

1045

Substitute into the parabola equation:

1046

1047

$(x + 2)^2 = 8x$

1048

1049

Expanding:

1050

1051

$(x^2 + 4x + 4 = 8x)$

1052

1053

Bring all terms to one side:

1054

1055

$(x^2 - 4x + 4 = 0)$

1056

1057

This factors as:

1058

1059

So, $(x = 2)$. Then, $(y = 2 + 2 = 4)$. **So**, the point of tangency on the parabola is $(2, 4)$.

1060

1061

Similarly, for the line $(y = -x - 2)$:

1062

1063

Substitute into the parabola equation:

1064

1065

$((-x - 2)^2 = 8x)$

1066

1067

Expanding:

1068

1069

$(x^2 + 4x + 4 = 8x)$

1070

1071

Bring all terms to one side:

1072

1073

$(x^2 - 4x + 4 = 0)$

1074

1075

Again, this factors as:

1076

1077

1078

1079

1080
 1081
 1082
 1083
 1084 $\backslash((x - 2)^2 = 0 \backslash)$
 1085
 1086 Thus, $\backslash(x = 2 \backslash)$, and $\backslash(y = -2 - 2 = -4 \backslash)$. **So**, the point of tangency on the parabola is $(2, -4)$.
 1087
 1088 Now, let's find the points of tangency on the circle $\backslash(x^2 + y^2 = 2 \backslash)$.
 1089
 1090 For the line $\backslash(y = x + 2 \backslash)$:
 1091
 1092 Substitute into the circle equation:
 1093 $\backslash(x^2 + (x + 2)^2 = 2 \backslash)$
 1094
 1095 Expanding:
 1096
 1097 $\backslash(x^2 + x^2 + 4x + 4 = 2 \backslash)$
 1098
 1099 Combine like terms:
 1100 $\backslash(2x^2 + 4x + 2 = 0 \backslash)$
 1101
 1102 Divide by 2:
 1103
 1104 $\backslash(x^2 + 2x + 1 = 0 \backslash)$
 1105
 1106 This factors as:
 1107 $\backslash((x + 1)^2 = 0 \backslash)$
 1108
 1109 **So**, $\backslash(x = -1 \backslash)$. Then, $\backslash(y = -1 + 2 = 1 \backslash)$. **Therefore**, the point of tangency on the circle is $(-1, 1)$.
 1110
 1111 Similarly, for the line $\backslash(y = -x - 2 \backslash)$:
 1112
 1113 Substitute into the circle equation:
 1114 $\backslash(x^2 + (-x - 2)^2 = 2 \backslash)$
 1115
 1116 Expanding:
 1117
 1118 $\backslash(x^2 + x^2 + 4x + 4 = 2 \backslash)$
 1119
 1120 Combine like terms:
 1121
 1122 $\backslash(2x^2 + 4x + 2 = 0 \backslash)$
 1123
 1124 Divide by 2:
 1125 $\backslash(x^2 + 2x + 1 = 0 \backslash)$
 1126
 1127 Factor as:
 1128
 1129 $\backslash((x + 1)^2 = 0 \backslash)$
 1130
 1131
 1132
 1133

1134
1135
1136
11371138 **So**, $\{x = -1\}$. Then, $\{y = 1 - 2 = -1\}$. **Therefore**, the point of tangency on the circle is $(-1, -1)$.
11391140 **So**, the four points of tangency are:
11411142 1. $(-1, 1)$ on the circle
1143 2. $(2, 4)$ on the parabola
1144 3. $(-1, -1)$ on the circle
1145 4. $(2, -4)$ on the parabola1146 Now, I need to find the area of the quadrilateral formed by connecting these four points: $(-1, 1)$, $(2, 4)$,
1147 $(-1, -1)$, and $(2, -4)$.
11481149 Let me plot these points mentally. $(-1, 1)$ is in the second quadrant, $(2, 4)$ is in the first quadrant, $(-1, -1)$ is in the third quadrant, and $(2, -4)$ is in the fourth quadrant.
11501151 Connecting these points in order would form a quadrilateral. To find its area, I can use the shoelace
1152 formula, which is a method for finding the area of a polygon when the coordinates of the vertices
1153 are known.
11541155 The shoelace formula states that for a polygon with vertices (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , the area
1156 is:
11571158 $\left(\frac{1}{2} \left| \sum_{i=1}^n (x_i y_{i+1} - x_{i+1} y_i) \right| \right)$
11591160 where (x_{n+1}, y_{n+1}) is (x_1, y_1) .
11611162 **So**, let's list the coordinates in order. Let's go around the quadrilateral clockwise or counterclockwise.
1163 Let me choose the order: $(-1, 1)$, $(2, 4)$, $(2, -4)$, $(-1, -1)$, and back to $(-1, 1)$.
11641165 Let me write them down:
11661167 1. $(-1, 1)$
1168 2. $(2, 4)$
1169 3. $(2, -4)$
1170 4. $(-1, -1)$
1171 5. $(-1, 1)$ // Closing the polygon1172 Now, applying the shoelace formula:
11731174 First, compute the sum of $\{x_i y_{i+1}\}$:
1175

1176
$$\begin{aligned} -(-1) * 4 &= -4 \\ -2 * (-4) &= -8 \\ -2 * (-1) &= -2 \\ -(-1) * 1 &= -1 \end{aligned}$$

1177

1178 Sum: $(-4) + (-8) + (-2) + (-1) = -15$
11791180 Next, compute the sum of $\{y_i x_{i+1}\}$:
11811182
1183
1184
1185
1186
1187

1188

1189

1190

1191

1192

$-1 * 2 = 2$
 $-4 * 2 = 8$
 $-(-4) * (-1) = 4$
 $-(-1) * (-1) = 1$

1196

1197

Sum: $2 + 8 + 4 + 1 = 15$

1198

1199

Now, subtract the two sums:

1200

1201

$-15 - 15 = -30$

1202

1203

Take the absolute value and divide by 2:

1204

1205

$\left| \frac{1}{2}(-30) \right| = \frac{1}{2} * 30 = 15$

1206

So, the area is 15.

1207

1208

Wait, that seems straightforward, **but** let me double-check my calculations because sometimes the order of the points can affect the result.

1209

Alternatively, I can plot the points and see if the quadrilateral is a trapezoid or some other shape.

1210

1211

Looking at the coordinates:

1212

1213

$(-1, 1), (2, 4), (2, -4), (-1, -1)$

1214

1215

Plotting these, we see that two points are at $(-1, \pm 1)$ and $(2, \pm 4)$. **So**, the quadrilateral is symmetric with respect to both the x-axis and y-axis. **Wait**, is it symmetric?

1216

1217

Wait, $(-1, 1)$ and $(-1, -1)$ are symmetric over the x-axis. Similarly, $(2, 4)$ and $(2, -4)$ are symmetric over the x-axis. Similarly, the points $(-1, 1)$ and $(2, 4)$ are not symmetric, as are $(-1, -1)$ and $(2, -4)$. **So**, **perhaps** the quadrilateral is symmetric across both axes.

1218

1219

But regardless, the shoelace formula should work as long as the points are ordered correctly, either clockwise or counterclockwise.

1220

1221

Let me try a different order to double-check.

1222

1223

Let me arrange the points in a different order, say: $(-1, 1), (-1, -1), (2, -4), (2, 4)$, and back to $(-1, 1)$.

1224

1225

Computing shoelace formula **again**:

1226

1227

First sum:

1228

1229

1230

$-(-1) * (-1) = 1$
 $-(-1) * (-4) = 4$
 $-2 * 4 = 8$
 $-2 * 1 = 2$

1231

1232

Sum: $1 + 4 + 8 + 2 = 15$

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Second sum:

$$\begin{aligned} -1 * (-1) &= -1 \\ -(-1) * 2 &= -2 \\ -(-4) * 2 &= -8 \\ -4 * (-1) &= -4 \end{aligned}$$

$$\text{Sum: } (-1) + (-2) + (-8) + (-4) = -15$$

$$\text{Subtract: } 15 - (-15) = 30$$

Take absolute value and divide by 2: 15

Same result, **so** that's consistent.

Wait, actually, the shoelace formula requires the points to be ordered either clockwise or counterclockwise without crossing. **So**, the first ordering I did was $(-1,1), (2,4), (2,-4), (-1,-1)$, which goes around the quadrilateral in clockwise order, and the second was $(-1,1), (-1,-1), (2,-4), (2,4)$, which is also clockwise.

Either way, the area is 15.

Alternatively, maybe we can think of the quadrilateral as a trapezoid. Let me see.

Wait, looking at the coordinates, the quadrilateral is symmetric across the x-axis. **So**, if I consider the upper half and the lower half separately.

But perhaps that complicates things because it's a trapezoid.

Alternatively, think of the quadrilateral as a polygon with vertices at $(-1,1), (2,4), (2,-4), (-1,-1)$. If I connect these points, I can divide it into two triangles.

Alternatively, think of it as a kite-shaped quadrilateral because two pairs of adjacent sides are equal. **Wait**, is that the case?

Compute the distances between consecutive points:

1. From $(-1,1)$ to $(2,4)$:

$$\text{Distance squared: } (2 - (-1))^2 + (4 - 1)^2 = (3)^2 + (3)^2 = 9 + 9 = 18$$

2. From $(2,4)$ to $(2,-4)$:

$$\text{Distance squared: } (2 - 2)^2 + (-4 - 4)^2 = 0 + (-8)^2 = 64$$

3. From $(2,-4)$ to $(-1,-1)$:

$$\text{Distance squared: } (-1 - 2)^2 + (-1 - (-4))^2 = (-3)^2 + (3)^2 = 9 + 9 = 18$$

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

4. From $(-1, -1)$ to $(-1, 1)$:Distance squared: $(-1 - (-1))^2 + (1 - (-1))^2 = 0 + (2)^2 = 4$ **So**, sides are $\sqrt{18}$, 8, $\sqrt{18}$, and 2.**So**, the sides are not equal, **so** it's not a kite. Maybe it's a trapezoid? Let me check if any sides are parallel.

Compute the slopes of the sides:

1. From $(-1, 1)$ to $(2, 4)$: slope is $(4 - 1)/(2 - (-1)) = 3/3 = 1$.2. From $(2, 4)$ to $(2, -4)$: slope is undefined (vertical line).3. From $(2, -4)$ to $(-1, -1)$: slope is $(-1 - (-4))/(-1 - 2) = (3)/(-3) = -1$.4. From $(-1, -1)$ to $(-1, 1)$: slope is undefined (vertical line).**So**, sides 2 and 4 are both vertical, hence parallel. Sides 1 and 3 have slopes 1 and -1, which are not equal, **so** they are not parallel. **So**, it's a trapezoid with two sides parallel.**Therefore**, the area can be found by the formula for the area of a trapezoid: $\frac{1}{2} (b_1 + b_2) h$, where b_1 and b_2 are the lengths of the two parallel sides, and h is the height (distance between them).Looking at the trapezoid, the two parallel sides are the vertical sides from $(2, 4)$ to $(2, -4)$ and from $(-1, 1)$ to $(-1, -1)$. Their lengths are:- From $(2, 4)$ to $(2, -4)$: distance is $|4 - (-4)| = 8$ units.- From $(-1, 1)$ to $(-1, -1)$: distance is $|1 - (-1)| = 2$ units.**So**, $b_1 = 8$, $b_2 = 2$.Now, the height h is the horizontal distance between the two parallel sides. Since the sides are vertical at $x=2$ and $x=-1$, the distance between them is $|2 - (-1)| = 3$ units.**Therefore**, area is $\frac{1}{2} (8 + 2) * 3 = \frac{1}{2} * 10 * 3 = 5 * 3 = 15$.

Same result as before.

So, regardless of the method, the area is 15. **Therefore**, I can be confident that 15 is the correct area of the quadrilateral.**But wait**, before I conclude, let me just visualize the points **again**. The quadrilateral has two vertical sides at $x=2$ and $x=-1$, connecting $(2, 4)$ to $(2, -4)$ and $(-1, 1)$ to $(-1, -1)$. Then, the other two sides are the lines connecting $(2, 4)$ to $(-1, -1)$ and $(2, -4)$ to $(-1, 1)$. These cross each other, forming a quadrilateral.**Alternatively**, I can compute the area using vectors or coordinate geometry. **But** since both methods gave me 15, and my reasoning is consistent, I think it's safe.

1350

1351

1352

1353

1354

1355

1356

Therefore, the area of the quadrilateral formed by the four points of tangency is 15.

1357

Final Answer

1358

$\boxed{15}$

1359

$</\text{think}>$

1360

To find the area of the quadrilateral formed by the points of tangency of the common tangents to the circle $(x^2 + y^2 = 2)$ and the parabola $(y^2 = 8x)$, we start by determining the equations of the common tangents.

1361

1. The circle $(x^2 + y^2 = 2)$ has radius $(\sqrt{2})$.

1362

2. The parabola $(y^2 = 8x)$ has the tangent equation $(y = mx + \frac{2}{m})$.

1363

1364

1365

1366

Using the condition that the distance from the center of the circle $(0,0)$ to the tangent line must equal the radius $(\sqrt{2})$, we find the slopes (m) :

1367

1368

1369

$$\left| \frac{\left| m \right|}{\sqrt{m^2 + 1}} \right| = \sqrt{2}$$

1370

1371

1372

Solving this, we get $(m = \pm 1)$. Thus, the equations of the tangent lines are $(y = x + 2)$ and $(y = -x - 2)$.

1373

1374

1375

Next, we find the points of tangency on the parabola and the circle:

1376

- For the line $(y = x + 2)$:

1377

- Tangency on the parabola: $((2, 4))$

1378

- Tangency on the circle: $((-1, 1))$

1379

- For the line $(y = -x - 2)$:

1380

- Tangency on the parabola: $((2, -4))$

1381

- Tangency on the circle: $((-1, -1))$

1382

The four points of tangency are: $(-1, 1)$, $(2, 4)$, $(-1, -1)$, and $(2, -4)$.

1383

1384

Using the shoelace formula to find the area of the quadrilateral formed by these points:

1385

1. List the coordinates in order: $(-1, 1)$, $(2, 4)$, $(2, -4)$, $(-1, -1)$.

1386

2. Apply the shoelace formula:

1387

1388

1389

$$\text{Area} = \frac{1}{2} \left| (-1 \cdot 4 + 2 \cdot -4 + 2 \cdot -1 + -1 \cdot 1) - (1 \cdot 2 + 2 \cdot -1 + -4 \cdot -1 + 1 \cdot 2) \right|$$

1390

1391

1392

1393

Calculating the sums:

1394

- First sum: $(-4 - 8 - 2 - 1 = -15)$

1395

- Second sum: $(2 + 8 + 4 + 1 = 15)$

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405
1406
1407
1408 Subtracting and taking the absolute value:
1409
1410
$$|\left| -15 - 15 \right| = 30$$

1411
$$\frac{1}{2} \times 30 = 15$$

1412
1413
1414 Dividing by 2:
1415
1416
$$\frac{1}{2} \times 15 = 15$$

1417
1418
1419 Thus, the area of the quadrilateral is:
1420
1421
$$\boxed{15}$$

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458

1459

1460

1461

1462

1463

Okay, so I have this problem where I need to find the area of a quadrilateral formed by the points of tangency between the circle $(x^2 + y^2 = 2)$ and the parabola $(y^2 = 8x)$. The figure provided is an Asymptote drawing, which shows the circle and the parabola, and some tangents with points of contact labeled A, B, C, D.

First, I need to recall how to find common tangents between a circle and a parabola. Since both are symmetric with respect to the x-axis, the points of tangency will also be symmetric. So, if point A is at (a, b) , point C will be at $(a, -b)$, and similarly for points B and D.

Next, I need an equation for the tangent lines to both the circle and the parabola. For a parabola $(y^2 = 4ax)$, the equation of the tangent at point $(at^2, 2at)$ is $(ty = x + at^2)$. Comparing this with our given parabola $(y^2 = 8x)$, which can be seen as $(y^2 = 4a x)$ with $(a = 2)$, so $(4a = 8)$.

So, the tangent equation becomes $(ty = x + 2t^2)$.

1477

Now, this line should also be tangent to the circle $(x^2 + y^2 = 2)$. The condition for a line $(y = mx + c)$ to be tangent to a circle $(x^2 + y^2 = r^2)$ is that $(c^2 = r^2(1 + m^2))$.

1480

1481

Let me rearrange the tangent line equation:

1482

1483

$$(ty = x + 2t^2) \rightarrow (x - ty + 2t^2 = 0)$$

1484

1485

So, it's in the form $(Ax + By + C = 0)$, where $(A = 1)$, $(B = -t)$, $(C = 2t^2)$.

1486

Therefore, the condition for tangency is:

1487

1488

$$(C^2 = r^2(1 + m^2))$$

1489

1490

But I need to express this in terms of t.

1491

1492

First, let's find the slope m of the tangent line.

1493

1494

From the equation $(x - ty + 2t^2 = 0)$, we can write it as $(y = \frac{1}{t}x + \frac{2t}{1})$.

1495

1496

$$(So, (m = \frac{1}{t}))$$

1497

$$(Therefore, (m^2 = \frac{1}{t^2}))$$

1498

1499

Now, plugging back into the tangency condition:

1500

1501

$$((2t^2)^2 = 2^2 \left(1 + \frac{1}{t^2}\right))$$

1502

Simplify:

1503

1504

$$((4t^4 = 4 \left(1 + \frac{1}{t^2}\right)))$$

1505

1506

Divide both sides by 4:

1507

1508

1509

1510

1511

Fixed-Budget

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

$$\backslash(t^4 = 1 + \frac{1}{t^2}).$$

Multiply both sides by $\backslash(t^2)$:

$$\backslash(t^6 = t^2 + 1).$$

This is a cubic equation in terms of $\backslash(z = t^2)$:

$$\backslash(z^3 - z - 1 = 0).$$

Hmm, solving this might be tricky. Maybe I can find rational roots. Trying $z=1: \backslash(1 - 1 - 1 = -1 \neq 0)$. $z=-1$: negative, **so** no. **So**, probably no rational roots. Maybe I can use some approximation method or use the cubic formula, **but** that might be complicated.

Alternatively, maybe I can use substitution or numerical methods. **Alternatively, perhaps** there's a substitution.

Let me consider $\backslash(z = t^2)$, **so** the equation is $\backslash(z^3 - z - 1 = 0)$.

Perhaps I can use the method for solving cubics.

The general formula for a cubic $\backslash(z^3 + az^2 + bz + c = 0)$ is:

$$\backslash(z = \sqrt[3]{-\frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{a}{3}\right)^3}} + \sqrt[3]{-\frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{a}{3}\right)^3}}).$$

In our case, $\backslash(a = 0)$, $\backslash(b = -1)$, $\backslash(c = -1)$.

So,

$$\backslash(z = \sqrt[3]{\frac{1}{2} + \sqrt{\left(\frac{1}{2}\right)^2 + 0}} + \sqrt[3]{\frac{1}{2} - \sqrt{\left(\frac{1}{2}\right)^2 + 0}}).$$

Simplify:

$$\backslash(z = \sqrt[3]{\frac{1}{2} + \frac{1}{2}} + \sqrt[3]{\frac{1}{2} - \frac{1}{2}}).$$

$$\backslash(z = \sqrt[3]{1} + \sqrt[3]{0} = 1 + 0 = 1).$$

So, one real root is $\backslash(z = 1)$, **so** $\backslash(t^2 = 1)$, **so** $\backslash(t = 1)$ or $\backslash(t = -1)$.

Therefore, we can take $t=1$ or $t=-1$.

So, the tangent lines are:

For $t=1$:

$$\backslash(y = \frac{1}{2}x + \frac{2}{2}) = x + 2.$$

For $t=-1$:

1566
 1567
 1568
 1569
 1570 $\backslash (y = \frac{1}{-1}x + \frac{2(-1)^2}{1} = -x + 2).$
 1571
 1572 **So**, the two tangent lines are $\backslash (y = x + 2)$ and $\backslash (y = -x + 2)$.
 1573
 1574 Now, let's find the points of contact on both the circle and the parabola.
 1575
 1576 For the parabola $\backslash (y^2 = 8x)$, the points of tangency are $\backslash ((2t^2, 4t))$.
 1577
 1578 **So** for $t=1$, point is $\backslash ((2(1)^2, 4(1)) = (2, 4))$.
 1579
 1580 For $t=-1$, point is $\backslash ((2(-1)^2, 4(-1)) = (2, -4))$.
 1581
 1582 **So**, the two points of tangency on the parabola are A(2,4) and B(2,-4).
 1583
 1584 Similarly, for the circle $\backslash (x^2 + y^2 = 2)$, the points of tangency can be found by solving the
 1585 system of the circle and the tangent line.
 1586
 1587 For line $\backslash (y = x + 2)$:
 1588 $\backslash (x^2 + (x + 2)^2 = 2).$
 1589
 1590 $\backslash (x^2 + x^2 + 4x + 4 = 2).$
 1591
 1592 $\backslash (2x^2 + 4x + 2 = 0).$
 1593
 1594 Divide by 2:
 1595
 1596 $\backslash (x^2 + 2x + 1 = 0).$
 1597
 1598 **So**, $\backslash (x = -1)$.
 1599
 1600 Then, $\backslash (y = -1 + 2 = 1)$.
 1601
 1602 Thus, the point of tangency is (-1,1).
 1603
 1604 Similarly, for line $\backslash (y = -x + 2)$:
 1605
 1606 $\backslash (x^2 + (-x + 2)^2 = 2).$
 1607
 1608 $\backslash (x^2 + x^2 - 4x + 4 = 2).$
 1609
 1610 $\backslash (2x^2 - 4x + 2 = 0).$
 1611
 1612 Divide by 2:
 1613
 1614 $\backslash (x^2 - 2x + 1 = 0).$
 1615
 1616 $\backslash ((x-1)^2 = 0).$
 1617
 1618
 1619

1620
 1621
 1622
 1623
 1624 Thus, $\{x = 1\}$, $\{y = -1 + 2 = 1\}$.
 1625
 1626 Thus, the point of tangency is $(1,1)$.
 1627
 1628 **So**, the four points of tangency are:
 1629
 1630 $A(2,4)$, $B(2,-4)$, $C(-1,1)$, $D(1,1)$.
 1631
 1632 Now, we need to find the area of quadrilateral ABCD.
 1633
 1634 Given the points $A(2,4)$, $B(2,-4)$, $C(-1,1)$, $D(1,1)$.
 1635
 1636 First, I can plot these points:
 1637
 1638 $A(2,4)$ is in the upper right quadrant.
 1639
 1640 $B(2,-4)$ is in the lower right quadrant.
 1641
 1642 $C(-1,1)$ is in the upper left quadrant.
 1643
 1644 $D(1,1)$ is in the upper right quadrant.
 1645
 1646 **So**, the quadrilateral is symmetric with respect to the y-axis.
 1647
 1648 To find its area, I can use the shoelace formula.
 1649
 1650 The coordinates in order are $A(2,4)$, $B(2,-4)$, $C(-1,1)$, $D(1,1)$, back to $A(2,4)$.
 1651
 1652 Compute shoelace sum:
 1653
 1654 $Sum1 = (2)(-4) + (2)(1) + (-1)(1) + (1)(4) = (-8) + 2 + (-1) + 4 = (-8+2) + (-1+4) = (-6) + 3 = -3$.
 1655
 1656 $Sum2 = (4)(2) + (-4)(-1) + (1)(1) + (1)(2) = 8 + 4 + 1 + 2 = 15$.
 1657
 1658 $Area = (|Sum1 - Sum2|)/2 = |-3 - 15|/2 = |-18|/2 = 9$.
 1659
 1660 Hence, the area is 9.
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674
1675
1676
1677
1678
1679

ABPO

1680 Okay, **so** I've got this problem where I need to find the area of a quadrilateral formed by the points
1681 of tangency of two common tangents to a circle and a parabola. The circle is given by the equation
1682 $x^2 + y^2 = 2$, and the parabola is $y^2 = 8x$. The points of tangency are four in total, and they form a
1683 quadrilateral. I need to find the area of this quadrilateral.

1684 First, I remember that common tangents to a circle and a parabola are lines that touch both the circle
1685 and the parabola at exactly one point each. Since there are two common tangents, each will touch
1686 both the circle and the parabola, resulting in four points of tangency.

1687
1688 I think the Asymptote code provided might help me visualize the figure. It shows the circle centered
1689 at the origin with radius $\sqrt{2}$, and the parabola $y^2 = 8x$ opens to the right. The points A, B, C, D are
1690 given as $(-1, 1)$, $(2, 4)$, $(-1, -1)$, and $(2, -4)$. **So**, the quadrilateral is formed by connecting these points.

1691 **But** I need to confirm this. Maybe I should derive the equations of the common tangents and then
1692 find their points of contact with the circle and parabola.

1693
1694 Let me start by recalling some properties. For a parabola $y^2 = 4ax$, the general equation of a tangent
1695 line is $y = tx + a/t$, where t is a parameter. Comparing this with $y^2 = 8x$, which is $y^2 = 4a x$ with $4a =$
1696 8, **so** $a = 2$. Thus, the tangent equation becomes $y = tx + 2/t$.

1697
1698 Similarly, the circle $x^2 + y^2 = r^2$ has a general tangent equation. The tangent to a circle $x^2 + y^2 = r^2$ at
1699 point (x_1, y_1) is $xx_1 + yy_1 = r^2$. **So**, if I have a tangent line $y = mx + c$, then the condition for it to be
1700 tangent to the circle is $c^2 = r^2(1 + m^2)$. Here, $r^2 = 2$, **so** $c^2 = 2(1 + m^2)$.

1701 **So**, the tangent lines to the circle will have the form $y = mx \pm \sqrt{2(1 + m^2)}$. These lines should also
1702 be tangent to the parabola $y^2 = 8x$.

1703 Substituting $y = mx \pm \sqrt{2(1 + m^2)}$ into $y^2 = 8x$:

1704
1705 $(mx \pm \sqrt{2(1 + m^2)})^2 = 8x$

1706
1707 Expanding the left side:

1708
1709 $m^2x^2 \pm 2mx\sqrt{2(1 + m^2)} + 2(1 + m^2) = 8x$

1710 This is a quadratic in x . For the line to be tangent to the parabola, the discriminant of this quadratic
1711 should be zero.

1712
1713 **So**, let me write it as:

1714
1715 $m^2x^2 \pm 2mx\sqrt{2(1 + m^2)} + 2(1 + m^2) - 8x = 0$

1716
1717 Arrange terms:

1718
1719 $m^2x^2 + (\pm 2m\sqrt{2(1 + m^2)} - 8)x + 2(1 + m^2) = 0$

1720
1721 For this quadratic equation, the discriminant D is:

1722
1723
1724
1725
1726
1727

1728
 1729
 1730
 1731
 1732 $D = [\pm 2m\sqrt{2(1 + m^2)} - 8]^2 - 4 * m^2 * 2(1 + m^2) = 0$
 1733

1734 This seems a bit complicated, **but** let's compute it step by step.
 1735

1736 First, compute the discriminant:
 1737

1738 $D = [\pm 2m\sqrt{2(1 + m^2)} - 8]^2 - 8m^2(1 + m^2) = 0$
 1739

1740 Let me compute the first square term:
 1741

1742 $[\pm 2m\sqrt{2(1 + m^2)} - 8]^2 = (\pm 2m\sqrt{2(1 + m^2)})^2 - 2 * 2m\sqrt{2(1 + m^2)} * 8 + 8^2$
 1743

1744 **Wait**, actually, expanding $(a - b)^2 = a^2 - 2ab + b^2$.
 1745

1746 **So**,
 1747

1748 $= (2m\sqrt{2(1 + m^2)})^2 - 2 * 2m\sqrt{2(1 + m^2)} * 8 + 8^2$
 1749
 $= 4m^2 * 2(1 + m^2) - 32m\sqrt{2(1 + m^2)} + 64$
 1750
 $= 8m^2(1 + m^2) - 32m\sqrt{2(1 + m^2)} + 64$
 1751

1752 Then subtract $8m^2(1 + m^2)$:
 1753

1754 **So**,
 1755

1756 $D = [8m^2(1 + m^2) - 32m\sqrt{2(1 + m^2)} + 64] - 8m^2(1 + m^2) = 0$
 1757

1758 Simplify:
 1759

1760 $8m^2(1 + m^2)$ cancels with $-8m^2(1 + m^2)$, leaving:
 1761

1762 $-32m\sqrt{2(1 + m^2)} + 64 = 0$
 1763

1764 **So**,
 1765

1766 $-32m\sqrt{2(1 + m^2)} + 64 = 0$
 1767

1768 Move 64 to the other side:
 1769

1770 $-32m\sqrt{2(1 + m^2)} = -64$
 1771

1772 Divide both sides by -32:
 1773

1774 $m\sqrt{2(1 + m^2)} = 2$
 1775

1776 Square both sides to eliminate the square root:
 1777

1778 $m^2 * 2(1 + m^2) = 4$
 1779

1780 Simplify:
 1781

1782
 1783
 1784
 1785
 1786 $2m^2(1 + m^2) = 4$
 1787
 1788 Divide both sides by 2:
 1789
 1790 $m^2(1 + m^2) = 2$
 1791
 1792 This is a quartic equation:
 1793
 1794 $m^4 + m^2 - 2 = 0$
 1795
 1796 Let me set $z = m^2$, **so** equation becomes:
 1797
 1798 $z^2 + z - 2 = 0$
 1799
 1800 Solve for z :
 1801
 1802 $z = [-1 \pm \sqrt{(1 + 8)}] / 2 = [-1 \pm 3]/2$
 1803
 1804 **So**, $z = (2)/2 = 1$ or $z = (-4)/2 = -2$
 1805
 1806 Since $z = m^2$ cannot be negative, $z = 1$.
 1807
 1808 Thus, $m^2 = 1 \Rightarrow m = \pm 1$
 1809
 1810 **Therefore**, the slopes of the common tangents are $m = 1$ and $m = -1$.
 1811
 1812 **So**, the equations of the common tangents are:
 1813
 1814 For $m = 1$: $y = x \pm \sqrt{2(1 + 1)} = x \pm \sqrt{4} = x \pm 2$
 1815
 1816 For $m = -1$: $y = -x \pm \sqrt{2(1 + 1)} = -x \pm 2$
 1817
 1818 **So**, the four lines are $y = x + 2$, $y = x - 2$, $y = -x + 2$, and $y = -x - 2$.
 1819
 1820 Now, I need to find the points of tangency on both the circle and the parabola.
 1821
 1822 Let's start with the circle $x^2 + y^2 = 2$.
 1823
 1824 For each tangent line, solve for the point of contact.
 1825
 1826 Take $y = x + 2$.
 1827
 1828 Substitute into circle:
 1829
 1830 $x^2 + (x + 2)^2 = 2$
 1831
 1832 $x^2 + x^2 + 4x + 4 = 2$
 1833
 1834 $2x^2 + 4x + 2 = 0$
 1835
 Divide by 2:

1836
 1837
 1838
 1839
 1840 $x^2 + 2x + 1 = 0$
 1841
 1842 This factors as $(x + 1)^2 = 0 \Rightarrow x = -1$
 1843
 1844 Then $y = -1 + 2 = 1$
 1845
 1846 **So**, one point is $(-1, 1)$.
 1847
 1848 Similarly, for $y = x - 2$:
 1849
 1850 Substitute into circle:
 1851 $x^2 + (x - 2)^2 = 2$
 1852
 1853 $x^2 + x^2 - 4x + 4 = 2$
 1854
 1855 $2x^2 - 4x + 2 = 0$
 1856
 1857 Divide by 2:
 1858 $x^2 - 2x + 1 = 0 \Rightarrow (x - 1)^2 = 0 \Rightarrow x = 1$
 1859
 1860 Then $y = 1 - 2 = -1$
 1861
 1862 **So**, the point is $(1, -1)$.
 1863
 1864 Similarly, for $y = -x + 2$:
 1865
 1866 Substitute into circle:
 1867 $x^2 + (-x + 2)^2 = 2$
 1868
 1869 $x^2 + x^2 - 4x + 4 = 2$
 1870
 1871 $2x^2 - 4x + 2 = 0$
 1872
 1873 Divide by 2:
 1874 $x^2 - 2x + 1 = 0 \Rightarrow (x - 1)^2 = 0 \Rightarrow x = 1$
 1875
 1876 Then $y = -1 + 2 = 1$
 1877
 1878 Point is $(1, 1)$.
 1879
 1880 For $y = -x - 2$:
 1881
 1882 Substitute into circle:
 1883 $x^2 + (-x - 2)^2 = 2$
 1884
 1885
 1886
 1887
 1888
 1889

1890
 1891
 1892
 1893
 1894 $x^2 + x^2 + 4x + 4 = 2$
 1895
 1896 $2x^2 + 4x + 2 = 0$
 1897
 1898 Divide by 2:
 1899
 1900 $x^2 + 2x + 1 = 0 \Rightarrow (x + 1)^2 = 0 \Rightarrow x = -1$
 1901
 1902 Then $y = 1 - 2 = -1$
 1903
 1904 Point is $(-1, -1)$.
 1905 **So**, the four points of tangency on the circle are $(-1, 1), (1, -1), (1, 1), (-1, -1)$.
 1906
 1907 Now, let's find the points of tangency on the parabola $y^2 = 8x$.
 1908
 1909 For each tangent line, solve for the point of contact.
 1910
 1911 Take $y = x + 2$.
 1912
 1913 Substitute into parabola:
 1914 $(x + 2)^2 = 8x$
 1915
 1916 $x^2 + 4x + 4 = 8x$
 1917
 1918 $x^2 - 4x + 4 = 0$
 1919
 1920 This factors as $(x - 2)^2 = 0 \Rightarrow x = 2$
 1921
 1922 Then $y = 2 + 2 = 4$. **So**, point is $(2, 4)$.
 1923
 1924 Similarly, $y = x - 2$:
 1925
 1926 $(x - 2)^2 = 8x$
 1927
 1928 $x^2 - 4x + 4 = 8x$
 1929
 1930 $x^2 - 12x + 4 = 0$
 1931
 1932 Solve using quadratic formula:

$$x = [12 \pm \sqrt{(144 - 16)}]/2 = [12 \pm \sqrt{128}]/2 = [12 \pm 8\sqrt{2}]/2 = 6 \pm 4\sqrt{2}$$

 1933
 1934 **Wait, but** then $y = x - 2$, **so** y would be $(6 \pm 4\sqrt{2}) - 2 = 4 \pm 4\sqrt{2}$.
 1935
 1936 **But** since the parabola is $y^2 = 8x$, which opens to the right, the points $(6 + 4\sqrt{2}, 4 + 4\sqrt{2})$ and $(6 - 4\sqrt{2}, 4 - 4\sqrt{2})$ are valid.
 1937
 1938 **Wait, but** maybe I made a mistake because the tangent lines are $y = x \pm 2$, **so** when solving, the
 1939 points should satisfy both the line and the parabola.
 1940
 1941
 1942
 1943

1944
1945
1946
1947

1948 **Wait, perhaps** I should approach it differently. Let's use the condition that the line $y = mx + c$ is tangent to the parabola $y^2 = 4ax$, which has the condition $c^2 = a(1 + m^2)$.

1949 For our parabola $y^2 = 8x$, $a=2$, **so** $c^2 = 2(1 + m^2)$. For the tangent lines $y = x \pm 2$, $m=1$, $c=\pm 2$.

1950

1951 **So**, substituting into the parabola equation, we can find the points of contact.

1952

1953 **Alternatively**, using the formula for the point of contact, for the parabola $y^2 = 4ax$, the point of contact for a tangent $y = mx + c$ is $(a/m^2, 2a/m)$.

1954

1955 **So**, for our case, $a=2$, $m=1$, **so** the point is $(2/1, 4/1) = (2,4)$.

1956

1957 Similarly, for $m=-1$, the point is $(2/1, -4/1) = (2,-4)$.

1958

1959 Thus, the points of tangency on the parabola are $(2,4)$, $(2,-4)$, $(-2,4)$, $(-2,-4)$. **Wait, but** according to the formula, it's $(a/m^2, 2a/m)$. **So**, if $m=1$, it's $(2,4)$. If $m=-1$, it's $(2, -4)$. Similarly, for $m=1$, it's $(2,4)$, and for $m=-1$, it's $(2,-4)$. **So**, the four points are $(2,4)$, $(2,-4)$, $(-2,4)$, $(-2,-4)$.

1960

1961 **Wait, but** in the Asymptote code, the points are $(-1,1)$, $(2,4)$, $(-1,-1)$, $(2,-4)$. **So, perhaps** the points on the circle are $(-1,1)$, $(1,-1)$, $(1,1)$, $(-1,-1)$, and on the parabola, $(2,4)$, $(2,-4)$, $(-2,4)$, $(-2,-4)$. **So**, the quadrilateral is formed by connecting these points in order: $(-1,1)$, $(2,4)$, $(-1,-1)$, $(2,-4)$, and back to $(-1,1)$. That would form a kite-shaped quadrilateral.

1962

1963 **Wait, but** the user mentioned four points of tangency, **so perhaps** each tangent touches the circle and the parabola, resulting in four distinct points. **So**, the points are $(-1,1)$, $(1,-1)$, $(1,1)$, $(-1,-1)$ on the circle, and $(2,4)$, $(2,-4)$, $(-2,4)$, $(-2,-4)$ on the parabola.

1964

1965 **So**, the quadrilateral is formed by connecting these points. Let me list them in order: $(-1,1)$, $(2,4)$, $(-1,-1)$, $(2,-4)$, and back to $(-1,1)$. This should form a convex quadrilateral.

1966

1967 Now, to find the area of this quadrilateral, I can use the shoelace formula.

1968

1969 First, list the coordinates in order:

1970

1971 1. $(-1,1)$
2. $(2,4)$
3. $(-1,-1)$
4. $(2,-4)$
5. $(-1,1)$ # Closing the polygon

1972

1973 Apply the shoelace formula:

1974

1975 $\text{Area} = 1/2 \sum \text{over } i (x_i y_{i+1} - x_{i+1} y_i)$

1976

1977 Compute each term:

1978

1979 Between $(-1,1)$ and $(2,4)$:

1980

1981 $x_i y_{i+1} = (-1)(4) = -4$

1982

1983 $x_{i+1} y_i = (2)(1) = 2$

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

Term: $-4 - 2 = -6$

2003

Between (2,4) and (-1,-1):

2004

Between (-1,-1) and (2,-4):

2005

Between (2,-4) and (-1,1):

2006

Between (-1,1) and (2,4):

2007

Term: $-2 - (-4) = 2$

2008

Between (2,-4) and (-1,1):

2009

Term: $4 - (-2) = 6$

2010

Between (-1,-1) and (2,-4):

2011

Term: $2 - 4 = -2$

2012

Sum all terms: $-6 + 2 + 6 - 2 = 0$

2013

Wait, that can't be right because the area can't be zero. I must have made a mistake in the order of

2014

the points or in the calculation.

2015

Wait, perhaps the order of the points is incorrect. Let me try a different order or check the points.

2016

Alternatively, maybe the quadrilateral is actually a rectangle or another shape, but the shoelace

2017

formula requires the points to be ordered either clockwise or counterclockwise without crossing.

2018

Let me list the points again:

2019

(-1,1), (2,4), (-1,-1), (2,-4)

2020

Compute the terms:

2021

1. (-1,1) to (2,4):

2022

 $x_i y_{i+1} = (-1)(4) = -4$

2023

 $x_{i+1} y_i = (2)(1) = 2$

2024

Term: $-4 - 2 = -6$

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052
 2053
 2054
 2055
 2056 2. (2,4) to (2,-4):
 $x_i y_{\{i+1\}} = (2)(-4) = -8$
 2057 $x_{\{i+1\}} y_i = (2)(4) = 8$
 2058 Term: $-8 - 8 = -16$
 2059
 2060 3. (2,-4) to (-1,-1):
 $x_i y_{\{i+1\}} = (2)(-1) = -2$
 2061 $x_{\{i+1\}} y_i = (-1)(-4) = 4$
 2062 Term: $-2 - 4 = -6$
 2063
 2064 4. (-1,-1) to (-1,1):
 $x_i y_{\{i+1\}} = (-1)(1) = -1$
 2065 $x_{\{i+1\}} y_i = (-1)(-1) = 1$
 2066 Term: $-1 - 1 = -2$
 2067
 2068 Sum all terms: $-6 - 16 - 6 - 2 = -30$
 2069
 2070 Area = $1/2 | -30 | = 15$
 2071
 2072 **So**, the area is 15.
 2073
 2074 **Wait**, that seems large, **but** given the points, it might be correct. Let me verify.
 2075
 2076 **Alternatively**, maybe using vectors or another method would give the same result.
 2077
 2078 **Alternatively**, since the quadrilateral is symmetric, I can compute the area by finding the area of
 2079 two triangles and adding them.
 2080
 2081 **But** the shoelace formula gave me 15, which seems plausible.
 2082
 2083 **So**, the area of the quadrilateral is 15.
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103 Figure 5: Detail visualization of model outputs on both easy and hard problems.
 2104
 2105