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Abstract
Bayesian persuasion studies how an informed
sender should influence beliefs of rational re-
ceivers who take decisions through Bayesian up-
dating of a common prior. We focus on the on-
line Bayesian persuasion framework, in which
the sender repeatedly faces one or more receivers
with unknown and adversarially selected types.
First, we show how to obtain a tight Õ(T 1/2) re-
gret bound in the case in which the sender faces
a single receiver and has partial feedback, im-
proving over the best previously-known bound
of Õ(T 4/5). Then, we provide the first no-regret
guarantees for the multi-receiver setting under par-
tial feedback. Finally, we show how to design no-
regret algorithms with polynomial per-iteration
running time by exploiting type reporting, thereby
circumventing known intractability results on on-
line Bayesian persuasion. We provide efficient
algorithms guaranteeing a O(T 1/2) regret upper
bound both in the single- and the multi-receiver
scenario when type reporting is allowed.

1. Introduction
The Bayesian persuasion framework, introduced by Ka-
menica & Gentzkow (2011), is an economic model which
helps to explain how individuals make decisions based on
the information they receive from others, and how this in-
formation can be used to influence their behavior. This
model is particularly useful for understanding strategic in-
teractions in situations where individuals have different lev-
els of information or expertise. The framework already
found application in domains such as advertising (Bro Mil-
tersen & Sheffet, 2012; Emek et al., 2014; Badanidiyuru
et al., 2018; Castiglioni et al., 2022c; Bacchiocchi et al.,
2022), voting (Cheng et al., 2015; Alonso & Câmara, 2016;
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Castiglioni et al., 2020a; Castiglioni & Gatti, 2021), rout-
ing (Vasserman et al., 2015; Bhaskar et al., 2016; Castiglioni
et al., 2021a), security (Rabinovich et al., 2015; Xu et al.,
2016), sequential decision making (Wu et al., 2022; Gan
et al., 2022; Bernasconi et al., 2022), and in incentivized
exploration in multi-armed bandits (Kremer et al., 2014;
Cohen & Mansour, 2019; Mansour et al., 2016; Sellke &
Slivkins, 2021; Mansour et al., 2022).

In the simplest instantiation of the model, there are a sender
and a receiver with a common prior over a finite set of
states of nature. The sender publicly commits to a signaling
scheme, which is a randomized mapping from states of
nature to signals being sent to the receiver. Then, the sender
observes the realized state of nature, and they send a signal
to the receiver following the signaling scheme. The receiver
observes the signal, computes their posterior distribution
over states, and selects an action maximizing their expected
utility. The sender and the receiver obtain a payoff which is
a function of the receiver’s action, and of the realized state
of nature. An optimal signaling scheme for the sender is
one maximizing their expected utility.

The study of Bayesian persuasion from a computational
perspective was initiated by Dughmi & Xu (2016), and the
original model was later extended to more complex settings
such as games with multiple receivers (see, e.g., (Dughmi &
Xu, 2017; Bhaskar et al., 2016; Xu, 2020)). A key question
that has emerged is whether computational techniques can
be used to ease some of the assumptions made in the original
model by Kamenica & Gentzkow (2011). Two main lines of
research have emerged from this question: one is aimed at
developing robust algorithms that can bypass the common-
prior assumption (Zu et al., 2021; Camara et al., 2020), and
the other is focused on the robustness of persuasion when
the sender is unaware of the receiver’s goals (Castiglioni
et al., 2020b; 2021b; Babichenko et al., 2021).

This work follows the second perspective, and studies the
online Bayesian persuasion framework introduced by Cas-
tiglioni et al. (2020b; 2023). In this framework, the sender
repeatedly faces a receiver whose type is unknown and cho-
sen adversarially at each round from a finite set of possible
types. This framework encompasses the problem of learning
in repeated Stackelberg games (Letchford et al., 2009; Blum
et al., 2014; Marecki et al., 2012; Balcan et al., 2015).
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Contributions We start by describing a general no-regret
algorithm for online learning against an oblivious adversary
with a finite number of possible loss functions. We use this
algorithm to provide a tight Õ(T 1/2) regret upper bound
in the setting with one receiver and partial feedback, im-
proving over the Õ(T 4/5) rate by Castiglioni et al. (2020b).
This result also improves the best known bound of Õ(T 2/3)
for online learning in repeated Stackelberg games provided
by Balcan et al. (2015). Then, we show that our general
framework can be applied to obtain the first no-regret guar-
antees under partial feedback in the multi-receiver setting
introduced by Castiglioni et al. (2021b). In particular, we
provide a tight Õ(T 1/2) regret bound under the assumption
the set of possible type profiles of the receivers is known
beforehand by the sender. In each of these settings, our no-
regret algorithms may suffer from exponential per-iteration
running time, as expected from known hardness results for
the online Bayesian persuasion settings (Castiglioni et al.,
2020b). In the last part of the paper, we provide the first
no-regret algorithms for online Bayesian persuasion with
guaranteed polynomial per-iteration running time. We do
that by considering the type reporting framework introduced
by Castiglioni et al. (2022a), where the sender can commit
to a menu of signaling schemes, and then let the receivers
choose their preferred signaling scheme depending on their
private types. In such a setting, we provide a O(T 1/2) re-
gret upper bound for the single-receiver setting. Moreover,
by designing a general procedure based on the follow the
regularized leader algorithm, we show that it is possible to
achieve the same rate of convergence with polynomial-time
per-iteration time complexity also in the multi-receiver set-
ting, when receivers have binary actions and the utility of
the sender is specified by a function of receivers’ actions
that is either supermodular or anonymous.

2. Preliminaries
Vectors are denoted by bold symbols. Given a vector x, we
let xi be its i-th component. The set {1, 2, . . . , n} of the first
n natural numbers is compactly denoted as [n]. Moreover,
given a discrete set X , we denote by ∆X the |X |-simplex,
while, given a set Y , int(Y) is the interior of Y .

In the rest of this section, we formally describe the online
Bayesian persuasion framework introduced by Castiglioni
et al. (2020b; 2023). In particular, we focus on a (more gen-
eral) version of such a framework introduced in a follow-up
work by Castiglioni et al. (2021b). This models a repeated
interaction between a sender and multiple receivers.

We denote by R := [n] a finite set of n receivers. Each
receiver r ∈ R has a finite set Kr of m different types, and
a finite set Ar of available actions. We let K :=×r∈RKr
be the set of type profiles, i.e., vectors k ∈ K defining a
type kr ∈ Kr for each receiver r ∈ R. Similarly, we let

A := An be the set of action profiles a ∈ A specifying an
action ar ∈ A for each receiver r ∈ R. Notice that, for
ease of notation, we assume that all the receivers have the
same action set, i.e., Ar = A for all r ∈ R. This comes
w.l.o.g. as it is always possible to assign fictitious actions to
the receivers whenever the assumption does not hold.

The payoffs of both the sender and the receivers depend
on a random state of nature, which is drawn from a finite
set Θ of d possible states according to a commonly-known
prior probability distribution µ ∈ int(∆Θ). The sender’s
payoffs also depend on the actions selected by the receivers,
as defined by the function us : A×Θ→ [0, 1]. Moreover,
as it is customary in the literature (see, e.g., (Dughmi & Xu,
2017)), we assume that there are no inter-agent externalities,
which means that the payoffs of a receiver only depend on
the action played by them, and not on those played by other
receivers. Formally, a receiver r ∈ R of type k ∈ Kr is
characterized by a payoff function urk : A×Θ→ [0, 1].

As in the classical Bayesian persuasion framework by Ka-
menica & Gentzkow (2011), the sender gets to know the
realized state of nature θ ∼ µ, and they have the ability
to strategically disclose (part of) such information to the
receivers, in order to maximize their own utility. This is
achieved by committing beforehand to a signaling scheme,
which is a randomized mapping from states of nature to sig-
nals being sent to the receivers. Formally, let S :=×r∈R Sr
be the finite set of signal profiles, i.e., the set of vectors
s ∈ S defining a signal sr ∈ Sr for each receiver r ∈ R.1

Then, a signaling scheme is a mapping φ : Θ → ∆S . We
denote by φθ(s) the probability of sending the signals in
s ∈ S when the state of nature is θ ∈ Θ. Moreover, given
a signaling scheme φ, we define the resulting marginal sig-
naling scheme for a receiver r ∈ R as φr : Θ → ∆Sr .
Formally, for every θ ∈ Θ, the marginal signaling scheme
φr defines the distribution over receiver r’s signals that is
induced by φ, which assigns probability

φrθ(s
′) :=

∑
s∈S:sr=s′

φθ(s) to each s′ ∈ Sr. (1)

The repeated interaction between the sender and the re-
ceivers goes on as follows. At each round t ∈ [T ], the
sender commits to a signaling scheme φt (i.e., φt is publicly
known), and, subsequently, they observe the realized state
of nature θ ∼ µ. Then, the sender draws a signal profile
s ∼ φt,θ and communicates to each receiver r ∈ R (whose
type is unknown to the sender) their own private signal sr.
After observing the signal, each receiver r ∈ R updates
their prior belief µ according to Bayes rule, and, then, they
select an action maximizing their expected utility.

The posterior ξsr ∈ ∆Θ computed by a receiver r ∈ R
1In this work, we focus on private signaling, where the sender

has the ability to privately communicate a signal to each receiver.
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after observing a signal sr ∈ Sr under signaling scheme φ
is a probability distribution over states such that

ξsrθ :=
µθ φ

r
θ(sr)∑

θ′∈Θ µθ′φ
r
θ′(sr)

for every θ ∈ Θ.2

Given a posterior ξ ∈ ∆Θ, the set of best-response actions
of a receiver r ∈ R of type k ∈ Kr is defined as follows:

Br,kξ := arg max
a∈A

∑
θ∈Θ

ξθ u
r
k(a, θ).

Moreover, assuming receivers break ties in favor of the
sender, the sender’s expected utility for selecting a signaling
scheme φ given a receivers’ type profile k ∈ K is

us(φ,k) :=
∑
s∈S

 arg max
a∈ ×

r∈R
Br,kr
ξsr

∑
θ∈Θ

µθφθ(s)u
s(a, θ)

.
We focus on the problem of computing a sequence {φt}t∈[T ]

of signaling schemes which can be employed by the sender
so as to maximize their utility. We assume that the sequence
of receivers’ type profiles {kt}t∈[T ], with kt ∈ K, is se-
lected by an oblivious adversary. At each round t ∈ [T ] of
the repeated interaction, the sender gets a payoff us(φt,kt)
and receives some feedbacks about receivers’ types. In the
full feedback setting, the sender gets to know the receivers’
type profile kt, while in the partial feedback setting the
sender only observes the action profile at ∈ A played by
the receivers at round t. In the partial feedback setting, as
in the original online Bayesian persuasion model by Cas-
tiglioni et al. (2020b), we assume that the sender observes
receivers’ actions at each round. However, our algorithms
only need that the sender observes the utility us(φt,kt)
achieved at round t, which is slightly more general.

We measure the performance of the sender by using the
regret up to round T with respect to the best fixed signaling
scheme in hindsight:

RT := max
φ

T∑
t=1

us(φ,kt)−
T∑
t=1

E[us(φt,kt)],

where the expectation is on the possible randomness of the
algorithm.3 Ideally, we would like an algorithm that gener-
ates a sequence {φt}t∈[T ] with the following properties: (i)
the regret is polynomial in the size of the problem instance,
i.e., it is poly(n,m, d, |A|), and goes to zero as T → ∞;
and (ii) the per-round running time is poly(t, n,m, d, |A|).

2For ease of notation, we omit the dependence of the posterior
distribution ξsr on the signaling scheme φ and the receiver r, as
these will be clear from context.

3This notion of regret is also known as Stackelberg regret (Bal-
can et al., 2015; Chen et al., 2020).

3. Online Learning Against Adversaries with
a Finite Number of Losses

We start by introducing a general framework that will be
crucial in proving some of our main results in the rest of the
paper. In particular, we propose a no-regret algorithm for a
general online learning problem in which the agent’s deci-
sions are only evaluated in terms ofD possible adversarially-
selected loss functions. The algorithm that we propose at-
tains a Õ(

√
T ) regret bound, which is independent of the

size of the decision space of the agent and only depends
polynomially on the number of possible losses D.

In the online learning problem that we consider in this sec-
tion, at each round t ∈ [T ], an agent takes a decision xt
from a set X ⊆ RM , and, then, an adversary selects an
element dt from a finite set D of D := |D| elements. Then,
the loss suffered by the agent is Ldt(xt), where functions
Ld : X → [0, 1] are loss functions indexed by the elements
d ∈ D. Thus, the performance of the agent over the T
rounds is evaluated by means of the regret:

RT :=

T∑
t=1

E[Ldt(xt)]− min
x∈X

T∑
t=1

Ldt(x),

where the expectation is with respect to the (possible) ran-
domization that the agent adopts in choosing xt.

Next, we introduce a general no-regret algorithm that works
by exploiting the linear structure of the online learning
problem described above. In order to do so, we intro-
duce a vector-valued function ν : X → RD defined as
ν(x) := [Ld(x)]d∈D for all x ∈ X . By observing that
Ld(x) = ν(x)>1d, where 1d ∈ {0, 1}D is a vector whose
d-th component is the only one that is different from zero,
we can cast the online learning problem as a new one with
linear losses defined over the decision space ν(X ). Since
ν(X ) may not be convex, the algorithm employs a regret
minimizer R working on the convex hull coν(X ).4 This
is possible since, instead of playing a z ∈ coν(X ), the
algorithm can replace it by a suitable randomization of
D + 1 points in ν(X ), which is guaranteed to exist by
the Carathéodory’s theorem. See Algorithm 1 for the de-
tailed procedure, where we denote by ν† the inverse map
of ν. Notice that, provided that a suitable regret minimizer
R is instantiated, the algorithm works both in the full feed-
back setting, where the agent observes dt, and in the bandit
feedback one, in which they only observe Ldt(xt).

The following theorem bounds the regret of Algorithm 1:
Theorem 3.1. Algorithm 1 guarantees a cumulative regret
RT ≤ RR

T (coν(X )), where RR
T (coν(X )) is the regret

4To see that the convex hull is necessary, let X be the unit
sphere in R2 and Ld(x) = ‖x‖2d2 for d ∈ D = {0.5, 1}. It is
easy to verify that ν(X ) = {(x,

√
x) : x ∈ [0, 1]}, which is not

convex.
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Algorithm 1 NO-REGRET ALGORITHM

Require: Regret minimizer R for the set coν(X ) and lin-
ear losses; Inverse mapping ν†

1: Initialize regret minimizer R
2: for t = 1, . . . , T do
3: coν(X ) 3 zt ← R.RECCOMEND()
4:

{(
zit, λ

i
t

)}
i∈[D+1]

← CARATHÉODORY(zt,ν(X ))

5: Draw j ∈ [D + 1] with probabilities λ1
t , . . . , λ

D+1
t

6: Play xt ← ν†(zjt )

7:
Observe dt ∈ D . Full feedback
Observe Ldt(xt) . Bandit feedback

8:
R.OBSERVELOSS(Ldt) . Full feedback
R.OBSERVELOSS(Ldt(xt)) . Bandit feedback

9: end for

bound of a suitable regret minimizer R for the set coν(X ) .

In order to run Algorithm 1, one has to implement the
CARATHÉODORY oracle and the inverse map ν†. The fol-
lowing result shows that these can be implemented in “linear
problems”. These include as special cases many interesting
settings, such as most of the online Bayesian persuasion
problems studied in this paper.

Theorem 3.2. If X is a polytope and ν is a linear map,
i.e., there exists M ∈ RD×M such that ν(x) = Mx for
all x ∈ X , then there exist algorithms implementing the
CARATHÉODORY oracle and the inverse map ν†.

Moreover, in the case of “linear problems” as in Theo-
rem 3.2, we can instantiate Algorithm 1 with specific regret
minimizes R for both the full and the bandit feedback sce-
narios, so as to obtain the following guarantees.

Corollary 3.3. Under the assumptions of Theorem 3.2, with
full feedback, there exists a regret minimizer R such that
Algorithm 1 guarantees cumulative regret

RT ≤
√
DT.

Corollary 3.4. Under the assumptions of Theorem 3.2, with
bandit feedback, there exists a regret minimizer R such that
Algorithm 1 guarantees cumulative regret

RT ≤ 16D3/2
√
T log T .

4. Optimal Regret Bounds for Online
Bayesian Persuasion with Partial Feedback

Next, we show that our general online learning framework
introduced in Section 3 can be applied to the setting of
online Bayesian persuasion with partial feedback, enabling
the derivation of novel state-of-the-art results.

A standard revelation-principle-style argument shows that
we can focus w.l.o.g. on signaling schemes that are direct

and persuasive (see, e.g., (Arieli & Babichenko, 2019)). In
particular, a signaling scheme is direct if signals correspond
to action recommendations. Formally, the set of signals of
a receiver r ∈ R is Sr = Am, with each signal defining
an action recommendation for each possible receiver r’s
type. Moreover, a direct signaling scheme is persuasive
if each receiver’s type is incentivized to follow the action
recommendations issued by the sender. Formally, the set
of direct and persuasive signaling schemes P is the set of
all φ : Θ → ∆Amn such that, for every receiver r ∈ R,
receiver r’s type k ∈ Kr, and action a ∈ A, it holds∑

θ∈Θ

∑
a∈Amn

µθφ
r
θ(a)(urk(ark, θ)− urk(a, θ)) ≥ 0, (2)

where, by slightly abusing notation, we denote as Amn the
set S with direct signals, while, given a ∈ Amn, we let
ark be the action in a corresponding to type k ∈ Kr of
receiver r ∈ R. Intuitively, the inequality requires that,
for a receiver r of type k, the utility obtained by following
recommendations given by φ is greater than or equal to
that achieved by deviating to any another action a. Notice
that the set P can be encoded as a polytope, by adding to
the persuasiveness constraints those ensuring that φ is well
defined, namely

∑
a∈Amn φ

k
θ(a) = 1 for all θ ∈ Θ.

Given any direct and persuasive signaling scheme φ ∈ P ,
the sender’s utility under type profile k ∈ K is

us(φ,k) :=
∑
θ∈Θ

∑
a∈Amn

µθφθ(a)us((a1
k1 , . . . , a

n
kn), θ),

where we remark that arkr is the action recommendation
specified by a for a receiver r whose realized type is kr.
Moreover, let us observe that us(φ,k) is a linear function
in the signaling scheme φ.

As it is well known, finding an optimal direct and persua-
sive signaling scheme is NP-hard, even when there is only
one receiver and the distribution over receiver’s types is
known (Castiglioni et al., 2020b, Theorem 2). This implies
that the polytope P has exponential size, since the sender’s
utility can be represented as a linear function of direct and
persuasive signaling schemes. Moreover, classical reduc-
tions from offline to online optimization problems also show
that there cannot be an efficient (i.e., with polynomial per-
iteration running time) algorithm that achieves no-regret in
this setting (Roughgarden & Wang, 2019; Castiglioni et al.,
2020b; Daskalakis & Syrgkanis, 2022).

A natural question is whether it is possible to design no-
regret algorithm by relaxing the efficiency requirement on
the per-iteration running time. This question has already
been answered affirmatively by Castiglioni et al. (2020b)
in single-receiver settings. In the following, we show that
our online learning framework allows us to improve the
regret bound in (Castiglioni et al., 2020b) to optimality, by

4



Optimal Rates and Efficient Algorithms for Online Bayesian Persuasion

matching known lower bounds, and, additionally, it also
allows us to extend the result to multi-receiver settings.

4.1. Single-Receiver Setting under Partial Feedback

Next, we consider the case in which there is a single receiver,
meaning that n = 1.5 In such a setting, the sender can
observe a different loss for each of them different receiver’s
types. Formally, the map ν : P → Rm is defined by letting,
for every signaling scheme φ ∈ P:

ν(φ) := [−us(φ, k)]k∈K.

Then, we can apply Corollary 3.4 to obtain the following
regret upper bound under partial feedback.

Theorem 4.1. The single-receiver online Bayesian persua-
sion problem under partial feedback admits an algorithm
which guarantees the following regret bound

RT = O(m2/3
√
T log T ).

This result improves over the best known upper bound for
the partial feedback case, which is of the order of Õ(T 4/5)
and it is derived in the original paper introducing online
Bayesian persuasion (Castiglioni et al., 2020b, Theorem 4).

4.2. Multi-Receiver Setting under Partial Feedback

Castiglioni et al. (2021b) introduce the online Bayesian per-
suasion problem with multiple receivers and adversarially-
selected types. They provide an algorithm that, under full
feedback and some technical assumptions, guarantees sub-
linear regret. In particular, their regret bound depends poly-
nomially in the size of the problem instance when assuming
that the number of possible receivers’ type profiles is fixed.
This is a reasonable assumption given that the total number
of type profiles is |K| = mn, which is exponential in the
number of receivers n. Under the same assumption, we
provide the first no-regret algorithm under partial feedback.

Formally, we let K ⊆ K be the set of possible type profiles,
so that, at each round t ∈ [T ], the receivers’ type profile
kt belongs to K. We provide regret bounds which depend
polynomially on the number of possible type profiles |K|.
However, differently from Castiglioni et al. (2021b), in our
algorithm working with partial feedback we assume that
the set K is known beforehand. Indeed, an “on the fly”
construction of K as in Castiglioni et al. (2021b) seems
unfeasible under partial feedback, where, by definition, the
sender does not observe kt.

For every type profile k ∈ K, the sender gets utility us(φ,k)
by playing a signaling scheme φ. Then, we can define the
map ν : P → R|K| so that, for every signaling scheme

5In the single-receiver setting, we omit the dependence on r
from sets and other elements.

φ ∈ P , it holds ν(φ) := [−us(φ,k)]k∈K. Notice that ν
is a linear map from P to R|K|. Thus, by Corollary 3.4,
Algorithm 1 gives the following regret bound.

Theorem 4.2. The multi-receiver online Bayesian persua-
sion problem under partial feedback admits an algorithm
which guarantees the following regret bound

RT = O
(∣∣K∣∣2/3√T log T

)
.

5. Polynomial-Time Per-Iteration Running
Time through Type Reporting

In this section, we show that it is possible to circumvent the
negative results which rule out the existence of a no-regret
algorithm for online Bayesian persuasion with polynomial
per-iteration running time. We do that by enriching the
decision space of the sender. In particular, we consider
the framework of Bayesian persuasion with type reporting
introduced by Castiglioni et al. (2022a) for offline settings,
where the sender has the ability to commit to a menu of
signaling schemes, and then let the receivers choose their
preferred signaling scheme depending on their private types.

5.1. Online Type Reporting

In the type-reporting model, at each round t ∈ [T ] of the re-
peated interaction, the sender proposes a menu of marginal
signaling schemes to each receiver. We collectively denote
them by ϕt := {ϕr,kt }r∈R,k∈Kr , so that the menu proposed
to receiver r ∈ R consists of a set of marginal distributions
ϕr,kt : Θ → ∆Sr , one for each receiver’s type k ∈ Kr.
Then, each receiver r ∈ R reports a type kr ∈ Kr (possibly
different from their true type) to the sender. The reported
type kr is such that the signaling scheme ϕr,krt is the one
guaranteeing to the receiver the highest expected utility
among those in the menu.6 Finally, the sender computes
and commits to the signaling scheme φt : Θ→ ∆S which
maximizes the sender’s expected utility among the signaling
schemes whose marginals are equal to the marginal signal-
ing schemes ϕr,krt corresponding to the types kr reported
by the receivers, i.e., φrt = ϕr,kr for every r ∈ R. From
this point on, the interaction goes on as in the case without
type reporting.

Notice that, in the type-reporting setting, the sender observes
the types of the receivers at each round t ∈ [T ]. Thus, in the
type-reporting model, the sender always has full feedback.

Let us also remark that the assumption that the sender can
only propose marginal signaling schemes to the receivers

6Such a step can be equivalently implemented by extending the
interaction between the sender and the receiver: the sender can ask
each receiver r ∈ R to directly select a marginal signaling scheme
ϕr,k

t from the menu, and the receiver will be incentivized to select
the one corresponding to their own true type.
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is w.l.o.g., since the expected utility of each receiver only
depends on their marginal signaling scheme, and not on
those of the others (see Section 2). Therefore, the sender
can delay the choice of the joint signaling scheme φt until
after all the receivers reported their types.

By a revelation-principle-style argument (Castiglioni et al.,
2022a), it is always possible to focus w.l.o.g. on incentive
compatible (IC) menus ϕ = {ϕr,k}r∈R,k∈Kr , which are
those such that each receiver r ∈ R is incentivized to report
their true type, say kr ∈ Kr. Formally, for all k 6= kr ∈ Kr,∑

sr∈Sr

max
a∈A

∑
θ∈Θ

µθ ϕ
r,kr
θ (sr)u

r
kr (a, θ) ≥∑

sr∈Sr

max
a∈A

∑
θ∈Θ

µθ ϕ
r,k
θ (sr)u

r
kr (a, θ), (3)

where the max operators account for the fact that the re-
ceiver plays a best-response action after receiving a signal.

W.l.o.g., we can focus on menus that are direct, namely
Sr = A for every r ∈ R, and persuasive. We say that
a direct menu ϕ = {ϕr,k}r∈R,k∈Kr is persuasive if the
marginal signaling schemes ϕr,k satisfy persuasiveness con-
straints similar to those of Equation (2) for every receiver
r ∈ R and type k ∈ Kr. Then, we define Λ as the set of
menus which are IC, direct, and persuasive.

The sender’s goal is to compute a sequence of IC menus
{ϕt}t∈[T ] and a sequence of signaling schemes {φt}t∈[T ]

which are consistent with the menus, whose performance
over the T rounds is measured in terms of the following
notion of regret:

RT := max
ϕ

T∑
t=1

us(ϕ,kt)−
T∑
t=1

E [us(φt,kt)] ,

where, by overloading notation, we denoted with

us(ϕ,k) := max
φ:φr=ϕr,kr

us(φ,k) (4)

the maximum utility of the sender when the receivers’ type
profile is k ∈ K. We remark that the above formulation
of regret is stronger than the classical one in which a best-
in-hindsight decision is fixed for all the rounds. Indeed,
although the best menu ϕ is fixed for all t ∈ [T ], we allow
the signaling scheme φ?t ∈ arg maxφ:φr=ϕr,kt,r u

s(φ,kt)
to depend on the round t, as long as φ?t has fixed marginals
that are compatible with the best menu ϕ.

5.2. Single-Receiver Setting with Type Reporting

We start by studying the single-receiver setting (i.e., n = 1).

In the type-reporting setting, it is not clear whether there
exists a succinct representation of the polytope of persuasive

menus or not. The reason for this is that encoding the inner
maximizations of Equation (3) as a set of linear inequalities
would require exponentially-many constraints. However,
this does not rule out the existence of a succinct represen-
tation. Indeed, even if Λ has an exponential description, it
is possible to show that it has polynomial extension com-
plexity (Fiorini et al., 2012). In particular, we can show
that there exists a succinct representation of Λ in a suit-
able higher dimensional space. This was already implicitly
shown by Castiglioni et al. (2022b). Here, we provide a
formal characterization for completeness.

Intuitively, the construction works as follows: we introduce
extra variables l, called extension variables such that the
extended polytope L is defined by variables ` ≡ (ϕ, l),
where ϕkθ ∈ R|A|+ for each θ ∈ Θ, k ∈ K encode marginal
signaling schemes, and we have one additional variable
lk,k

′

a ∈ R for each a ∈ A, k, k′ ∈ K. The polytope L can
be described by a polynomial number of constraints. This
fact, together with the linear projection map π : L → Λ
defined as π(ϕ, l) = ϕ, proves the polynomial extension
complexity of Λ. Formally, the extended polytope L can be
described by the following inequalities:∑
θ∈Θ

∑
a∈A

µθϕ
k
θ(a)uk(a, θ) ≥

∑
a∈A

lk,k
′

a ∀k, k′ ∈ Kr (5a)

lk,k
′

a ≥
∑
θ∈Θ

µθϕ
k′

θ (a)uk(a′, θ)

∀k, k′ ∈ Kr, a, a′ ∈ A (5b)∑
a∈A

ϕkθ(a) = 1 ∀k ∈ Kr, θ ∈ Θ, (5c)

where lk,k
′

a represents the maximum utility obtained by a
receiver of type k who reports type k′, when type k′ is
recommended action a.

Then, we instantiate Algorithm 1 by taking the set L as
the polytope X , where we have one loss for each of the
m types that can be reported by the receiver. We define
ν : L → Rm as the vector-valued map associating each
feasible point ` = (ϕ, l) with the m-dimensional vector
of losses ν(`) := [−us(ϕk, k)]k∈K, where the value of a
menu ϕ for the sender against a receiver’s type k ∈ K is
us(ϕk, k) as the overall signaling scheme φ coincides with
the signaling scheme ϕk, when there is a single receiver.
Then, Corollary 3.3 yields the following result.
Theorem 5.1. The single-receiver online Bayesian per-
suasion problem with type reporting admits an algorithm
which guarantees regret RT ≤

√
mT and polynomial per-

iteration running time.

5.3. Multi-Receiver Setting with Type Reporting

In this section, we focus on the problem of designing a
no-regret algorithm for the multi-receiver setting with type
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reporting. The method employed in the case of a single
receiver is not applicable here, as the number of possi-
ble type profiles becomes exponentially large, resulting in
exponentially-many possible loss functions. Moreover, it
is not possible to directly design efficient algorithms work-
ing on the joint action space, since it has exponential size.
In order to build a no-regret algorithm for this setting, the
idea is to cast the learning problem into a decision space
which is small enough to be manageable. In particular, we
observe that the sender must commit only to the marginal
signaling schemes {ϕr,krt }r∈R,kr∈Kr before observing the
receivers’ types. Then, at each round t, the sender observed
the type kr,t reported by each receiver r ∈ R, and solves
an offline optimization problem to compute an optimal joint
signaling schemes φt whose marginal signaling schemes are
{ϕr,kr,tt }r∈R. By exploiting this observation, we develop a
no-regret algorithm that operates within the smaller decision
space of marginal signaling schemes.

Let Λr be the set of IC, direct, and persuasive menus of
marginal signaling schemes for receiver r ∈ R. Formally,
Λr is defined as the set of ϕr,k that satisfy the constraints
in Equations (5a)–(5c) for every r ∈ R and type k ∈ Kr.
Moreover, let Λ :=×r∈R Λr. Intuitively, an element of
Λ includes a menu of marginal signaling schemes ϕr for
each receiver r ∈ R. Then, the action space of the learner
is given by the set of IC and persuasive marginal signaling
schemes Λ. The sender’s utility when the agents are of type
k ∈ K is defined by a function gk : Λ → [0, 1], where
gk(ϕ) is the value obtained by the following linear program
which is an expansion of the maximization in Equation (4):

max
φ≥0

∑
θ∈Θ

∑
a∈A

µθφθ(a)usθ(a) s.t. (6a)∑
a∈A:
ai=a

′

φθ(a) = ϕr,krθ (a′)

∀r ∈ R, a′ ∈ Ar, θ ∈ Θ, (6b)

where Equation (6a) is the utility of a signaling scheme φ
and Equation (6b) encodes the constraints on the signaling
scheme φ to have marginals {ϕr,kr}r∈R. The function
gk(ϕ) is the solution to a parametric (in ϕ) linear program.
If we want to solve an online problem involving gk, we first
have to show that the offline problem maxϕ∈Λ g

k(ϕ) is in
some sense computationally tractable. More precisely, we
show that for any k ∈ K the function gk is concave.

Lemma 5.1. The function gk(ϕ) is concave in ϕ on Λ for
each type profile k ∈ K.

Moreover, we show that the function is particularly well be-
haved. In particular, we prove that it is Lipschitz-continuous
with respect to the `2 norm. This will be useful to upper-
bound the norm of gradients of the function gk.

Algorithm 2 NO-REGRET ALGORITHM TYPE-REPORTING

Require: Any set of marginal signaling schemes ϕ1 ∈ Λ,
Learning rate α

1: for t = 1 to T do
2: Propose the set of marginal signaling schemes ϕt
3: Observe the receivers reported types kt
4: φt ← a solution to LP (6) for ϕt with value gkt(ϕt)
5: ϕt+1 ← arg maxϕ∈Λ

∑
τ≤t g

kτ (ϕ)− 1
2α‖ϕ‖

2
2

6: end for

Lemma 5.2. For each k ∈ K, the function gk(ϕ) is√
nd|A|-Lipschitz-continuous in ϕ with respect to ‖ · ‖2.

Since we have no access to the gradient of the functions
gk, a natural choice to implement a no-regret algorithm is
to apply follow the regularized leader (FTRL) (Abernethy
et al., 2008; Hazan & Kale, 2010). Algorithm 2 describes
the specific implementation of the FTRL-type algorithm. At
each iteration the algorithm proposes a set of IC menus of
marginal signaling schemes ϕt ∈ Λ. Then, the algorithm
observes the reported types kt (notice that the receivers
report their true types since the menu is IC). The algorithm
computes a signaling scheme φ solving LP (6) for the types
kt, returning a signaling scheme with value gk(ϕt). Finally,
the algorithm updates the set of menus of signaling schemes
by computing:

ϕt+1 = arg max
ϕ∈Λ

∑
τ∈[t]

gkτ (ϕ)− 1

2α
‖ϕ‖22. (7)

Following the standard FTRL analysis we can provide an
upper bound on the regret for Algorithm 2.

Theorem 5.2. Let α :=
√
m/T . Algorithm 2 guarantees a

cumulative regret RT ≤ nd|A|
√
mT.

5.4. An efficient Implementation for Multi-Receiver
Online Bayesian Persuasion with Type Reporting

In the previous section, we provided a no-regret algorithm
for the multi-receiver problem. However, we did not ad-
dress the question of whether Algorithm 2 can be imple-
mented efficiently. Specifically, determining φt and ϕt+1

(Line 4 and 5, respectively) is not straightforward. In gen-
eral, the sender’s utility function cannot be represented in
space polynomial in the number of players. For this reason,
computational works on multi-receiver Bayesian persua-
sion focus on succinctly representable utility functions (see,
e.g., (Dughmi, 2017; Babichenko & Barman, 2017; Cas-
tiglioni et al., 2021b)). In particular, each receiver’s action
set A is binary, and the two actions are denoted by a1 and
a0. Then, the sender’s utility function can be compactly
represented as a collection of functions f sθ : 2R → [0, 1],
where f sθ(R) denotes the sender’s utility when the state of
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nature is θ ∈ Θ and R ⊆ R is the set of receivers playing
a1. The literature usually examines three common types of
utility functions: supermodular, submodular, and anony-
mous. For the case of submodular functions, it is well known
that even in the offline setting without types, the problem
is NP-hard to approximate up to within any factor better
than (1− 1/e) (Babichenko & Barman, 2017). Therefore, in
this section, we show that Algorithm 2 can be implemented
efficiently when the sender’s utility function is monotone
supermodular or monotone anonymous.

Definition 5.3. The function f sθ is supermodular if, for
every R,R′ ⊆ R, it holds

f sθ(R ∩R′) + f sθ(R ∪R′) ≥ f sθ(R) + f sθ(R
′).

Finally, the function f sθ is anonymous if f sθ(R) = f sθ(R
′)

for all R,R′ ⊆ R such that |R| = |R′|.

We show that we can efficiently solve LP (6) and the concave
program of Equation (7) (which both have an exponential
number of variables, but polynomially many constraints) by
writing their dual formulation, and then using the ellipsoid
method with a suitable efficient separation oracle.

As a separation oracle, we use the following general opti-
mization oracle.

Definition 5.4 (Optimization Oracle). Given as inputs a
function f sθ and a vector of weights w ∈ Rn, with wr
denoting the component corresponding to receiver r, an
optimization oracleO returns a subset of receivers such that

O(f sθ, w) ∈ arg max
R⊆R

{
f sθ(R) +

∑
r∈R

wr

}
.

Moreover, will will use the following known result.

Lemma 5.3 (Babichenko & Barman (2017) and Dughmi
& Xu (2017)). The optimization oracle O(f sθ, w) can be
implemented in polynomial time when f sθ is a supermodular
or anonymous monotone utility function.

In the following, we show that when we have access to
the separation oracle O, both the optimization problems in
Line 4 and Line 5 can be solved in polynomial time using the
ellipsoid method. We start by providing a polynomial-time
algorithm for LP (6). Intuitively, the problem is equivalent
to that of finding an optimal signaling scheme in a problem
with fixed marginal signaling schemes. In particular, by
rewriting LP (6) for the specific case of a binary action
space and by taking its dual, we obtain

min
x

∑
r∈R,θ∈Θ

ϕr,krθ (a1)xr,θ s.t.

∑
r∈R

xr,θ ≥ µθf sθ(R) ∀R ⊆ R, θ ∈ Θ,

where the dual variables are {xr,θ}r∈R,θ∈Θ (more details
on the derivation are provided in Appendix D). A separa-
tion oracle for the dual problem above can be implemented
applying the optimization oracle O(f sθ,−xθ/µθ) for each
state of nature θ ∈ Θ. Let R∗θ := O(f sθ,−xθ/µθ). If there
exists θ ∈ Θ such that

f sθ(R
∗
θ)−

∑
r∈R∗θ

xr,θ
µθ
≥ 0,

then we can use the violated constraint (θ,R∗θ) as a sepa-
rating hyperplane. Then, we can run the ellipsoid method
equipped with such a separation oracle on the dual of LP (6).
This procedure, together with known properties of the ellip-
soid method (see, e.g., (Khachiyan, 1980; Grötschel et al.,
2012)), yields the following result.
Lemma 5.4. Given access to an optimization oracle O,
there exists a polynomial-algorithm that solves LP (6).

Next, we prove that the concave program of Equation (7) can
be solved efficiently when having access to the optimization
oracle O. In order to solve the concave program of Equa-
tion (7), we start by rewriting the problem on the space of
joint signaling schemes φ. To do that, we need to introduce
constraints that ensure that the joint signaling scheme φ is
well defined with respect to marginals ϕ (see Equation (9)
in Appendix D). Then, we compute the Lagrangian relax-
ation of the resulting problem. By noticing that the problem
is concave, and that Slater’s condition holds, we recover
strong duality. Finally, we use KKT conditions to remove
the exponentially-many variables φ, and thereby obtaining
a concave optimization problem with polynomially-many
variables and exponentially-many constraints. By applying
a similar procedure to the one we used for Lemma 5.4, we
can solve such a problem via the ellipsoid algorithm by
using the oracle O of Definition 5.4 as a separation oracle.
Lemma 5.5. Given access to an optimization oracle O,
there exists a polynomial-time algorithm that solves the
problem of Equation (7).

By applying Lemma 5.3, Lemma 5.4, and Lemma 5.5, we
can conclude the following:
Theorem 5.5. In settings in which receivers have binary
actions, and the sender has a monotone supermodular or
a monotone anonymous utility function, Algorithm 2 has
polynomial per-iteration running time and guarantees

RT ≤ nd|A|
√
mT.

6. Further Applications
The main motivation for introducing the reduction from on-
line problems with finite number of losses to online linear
optimization of Section 3 was to solve online Bayesian per-
suasion problems. In this section, we highlight two further
applications of our framework beyond Bayesian persuasion.
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Learning in Security Games Balcan et al. (2015) ex-
tended classic (one-shot) security games (see, e.g., (Tambe,
2011)) by introducing the problem of learning a no-regret
strategy for the defender against a sequence of attack-
ers that is adversarially selected. In their model, at each
round t, the defender chooses a strategy xt, which is a
distribution over N targets. Then, an attacker of type
dt ∈ D, best responds to such a strategy and the de-
fender experiences a loss of Ldt(xt). Our reduction yields a
Õ(poly(D)

√
T ) regret bound under partial feedback, which

improves the previously-known regret bound given by Bal-
can et al. (2015), which is of order O(poly(ND)T 2/3).

Online Bidding in Combinatorial Auction Daskalakis
& Syrgkanis (2022) studied online learning in repeated com-
binatorial auctions. In these auctions the action space is
combinatorial and, therefore, exponentially large. How-
ever, Daskalakis & Syrgkanis (2022) show that whenever
the different number of bid profiles of the other bidders
is finite and small (of size D), it is possible to design
O(
√
DT ) regret algorithms under full feedback. Our re-

duction to online linear optimization allows us to match
their bound with full-information feedback, and also gives a
Õ(poly(D)

√
T ) bound for the more realistic case of partial

feedback, i.e., each player only observes their own utility.
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A. Proofs Omitted from Section 3
Theorem 3.1. Algorithm 1 guarantees a cumulative regret RT ≤ RR

T (coν(X )), where RR
T (coν(X )) is the regret bound

of a suitable regret minimizer R for the set coν(X ) .

Proof. First, notice that, given any zt ∈ coν(X ), thanks to Carathéodory’s theorem there always exist D + 1 points
{z1
t , . . . ,z

D+1
t } ⊂ ν(X ) and a corresponding probability distribution λ = (λ1

t , . . . , λ
D+1
t ) ∈ ∆D+1 such that

zt =
∑D+1
i=1 λit z

i
t. Such points zit with their corresponding probabilities λit are those returned by the procedure

CARATHÉODORY(zt,ν(X )) called by Algorithm 1. Thus, given how the algorithm selects the xt ∈ X to be played
at each t ∈ [T ], it holds E [Ldt(xt)] = ν(xt)

>1dt = z>t 1dt .

Second, by using the no-regret property of the regret minimizer R, the following holds:

RT =

T∑
t=1

E[Ldt(xt)]− min
x∈X

T∑
t=1

Ldt(x)

=

T∑
t=1

z>t 1dt − min
z∈ν(X )

T∑
t=1

z>1dt

≤
T∑
t=1

z>t 1dt − min
z∈co ν(X )

T∑
t=1

z>1dt

≤ RR
T (coν(X ))

where the first inequality holds since ν(X ) ⊆ coν(X ).

Theorem 3.2. If X is a polytope and ν is a linear map, i.e., there exists M ∈ RD×M such that ν(x) = Mx for all x ∈ X ,
then there exist algorithms implementing the CARATHÉODORY oracle and the inverse map ν†.

Proof. If X is a polytope and ν is a linear map then ν(X ) is a polytope, and thus elements of coν(X ) correspond to
elements of ν(X ). Therefore, the CARATHÉODORY oracle can be implemented as just returning the one point density at z
for every z ∈ coν(X ).

Moreover, since ν is linear we can implement ν† by computing a generalized inverse of its matrix representation M, and
produce ν†(z) = M†z ∈ X . By definition of generalized inverse that holds for all z ∈ ν(X ), i.e., there exists an x such
that Mx = z, we have that

ν(ν†(z)) = MM†z = MM†Mx = Mx = z,

which concludes the proof.

Corollary 3.3. Under the assumptions of Theorem 3.2, with full feedback, there exists a regret minimizer R such that
Algorithm 1 guarantees cumulative regret

RT ≤
√
DT.

Proof. We can set R to be Online Gradient Descent (OGD) (Zinkevich, 2003). Indeed, we have that the gradient of the losses
in coν(X ) is bounded by 1 in the `2-norm, and that coν(X ) ⊂ [0, 1]D, which gives aD bound on the diameter w.r.t. the the
`2-norm. Thus, by setting the learning rate of OGD as

√
D/T we obtain a regret bound ofRR

T (coν(X )) ≤
√
DT (Orabona,

2019).

Corollary 3.4. Under the assumptions of Theorem 3.2, with bandit feedback, there exists a regret minimizer R such that
Algorithm 1 guarantees cumulative regret

RT ≤ 16D3/2
√
T log T .

Proof. Under partial feedback, we obtain the regret bound above by equipping Algorithm 1 with a suitably-defined regret
minimizer R. In particular, R must work by observing only realizations of an unbiased estimator of z>t 1dt instead of
its actual value, since Algorithm 1 does not play zt, but it employs a sampling process that is equivalent to playing zt
in expectation. Such a regret minimizer R can be implemented by the algorithm introduced by Abernethy et al. (2008),
as any polytope in RD has a D-self concordant barrier Nesterov & Nemirovskii (1994, Theorem 2.5.1). This yields
RR
T (coν(X )) ≤ 16D3/2(T log T )1/2, which proves our statement.

12
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B. Proofs Omitted from Section 5.2
Theorem 5.1. The single-receiver online Bayesian persuasion problem with type reporting admits an algorithm which
guarantees regret RT ≤

√
mT and polynomial per-iteration running time.

Proof. By Corollary 3.3, Algorithm 1 produces a sequence (`t)
T
t=1, `t ∈ L, such that

T∑
t=1

ν(`t)
>1kt −min

`∈L

T∑
t=1

ν(`)>1kt ≤
√
mT.

Then, the sender commits to the menu which is the projection of `t onto Λ, i.e., ϕt = π(`t). Since ν(`) is independent from
the extension variables l we get that:

ν(`t)
>1kt = −us(π(`t), kt) = −us(ϕt, kt)

and similarly ν(`)>1kt = −us(ϕ, kt), which proves the statement.

C. Proofs Omitted from Section 5.3
Lemma C.1. For any ϕ ∈ Λ we can write gk(ϕ) as a solution of a standard-form linear program with |A| · |Θ| variables
and constraints, and in such a standard-form linear program, the variables ϕ, are its right-hand side vector.

Proof. We define a standard form linear program with n variables and n constraints if it is of the form:

max
x
c>x, s.t.

Ax = b,x ≥ 0,

where x, b, c ∈ Rn and A ∈ Rn×n. We define two one-to-one mappings π1 : |A| × |Θ| → [|A| · |Θ|] and π2 :
|R| × |A| × |Θ| → [|R| · |A| · |Θ|] such that π1(·) associate every tuple of actions a and state of nature θ to the index
π1(a, θ), while π2(·) associate every receiver r, action a ∈ A and state of nature θ to the index π2(r, a, θ). Then we can
define i := π1(a, θ) and j := π2(r, a, θ′) so that:

• x[i] := φθ(a)

• c[i] := µθ · us(a, θ)

• b[j] := ϕr,krθ (a)

• A[j, i] := I(ar = a, θ = θ′).

Then we can write LP 6 as maxx c
>x subject to x ≥ 0 and Ax = b. We note that the variables ϕ only appear in the

right-hand side vector b in the standard-form linear program above.

Lemma 5.1. The function gk(ϕ) is concave in ϕ on Λ for each type profile k ∈ K.

Proof. Let k ∈ K be a tuple of types. Lemma C.1 relates the solution gk(ϕ) of LP 6 to the solution of a standard-form
linear program in which ϕ is the right-hand side vector of an equality constraint. Thus, for every fixed k, the function gk(ϕ)
is known to be concave in ϕ (Bertsimas & Tsitsiklis, 1997, Theorem 5.1).

Lemma 5.2. For each k ∈ K, the function gk(ϕ) is
√
nd|A|-Lipschitz-continuous in ϕ with respect to ‖ · ‖2.

Proof. First we note that for any fixed tuple of types k, the menus ϕr,kθ for k 6= kr do not appear, thus, in this proof, we can
ease the notion by dropping kr from ϕr,krθ , which will be denoted by just ϕrθ.

Then, for ease of clarity, we define
ok(φ) :=

∑
θ∈Θ

∑
a∈A

µθφθ(a)us(a, θ),

13
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and

Mk(ϕ) :=

φ
∣∣∣∣∣ ∑
a∈A:
ar∈â

φθ(a) = ϕrθ(â), ∀r ∈ R, â ∈ Ar, θ ∈ Θ

 ,

which are the objective function and the constraints polytope of LP 6, respectively. Formally, it holds that

gk(ϕ) = max
φ∈Mk(ϕ)

ok(φ).

We will also use the function π2 : R × A × Θ → [|R| · |A| · |Θ|] introduced in Lemma C.1, that associate for every
(r̂, â, θ̂) ∈ R×Ar ×Θ an index i = π2(r̂, â, θ̂). We first prove the 1-Lipschitzness of gk w.r.t. to ‖ · ‖1. Consider any two
ϕ,ϕ ∈ Λ.

Let then φ ∈ arg maxφ′∈Mk(ϕ) o
k(φ′) and φ ∈ arg maxφ′∈Mk(ϕ) o

k(φ′) the values of the solutions of LP 6 w.r.t. ϕ and ϕ,
respectively.

The idea of the proof is to construct a new variable ϕ? and φ? that satisfies the following conditions:

1. φ? ∈Mk(φ?)

2. 0 � ϕ? � ϕ, which has to be interpreted element-wise.

3. ‖ϕ− ϕ‖1 + ok(φ?) ≥ ok(φ).

Note that we do not require that ϕ? ∈ Λ. Assume that we can have such a ϕ? and φ? then we can easily prove 1-Lipschitzness
w.r.t. ‖ · ‖1 as follows:

gk(ϕ) ≥ ok
(
φ
)

≥ ok(φ?)

≥ ok(φ)− ‖ϕ− ϕ‖1
= gk(ϕ)− ‖ϕ− ϕ‖1,

where the first inequality holds since ϕ − ϕ? � 0 by assumption and thus φ � φ? which implies that ok(φ) ≥ ok(φ?),
and the second inequality holds by assumption on ϕ?. This in turn implies that |gk(ϕ) − gk(ϕ)| ≤ ‖ϕ − ϕ‖1 since the
construction is symmetric w.r.t. ϕ and ϕ. After we prove that |gk(ϕ) − gk(ϕ)| ≤ ‖ϕ − ϕ‖1 we can easily conclude the
proof by observing that ‖ϕ− ϕ‖1 ≤

√
nd|Ar| · ‖ϕ− ϕ‖2.

Now we show the existence such a ϕ? and the related φ? ∈ Mk(ϕ?) by explicitly building it iteratively as follows. The
procedure above maintains variables (ϕt, φt) that is updated as detailed in Algorithm 3.

14
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Algorithm 3
1: ϕ0 ← ϕ
2: φ0 ← φ
3: T ← |R| · |Ar| · |Θ|
4: ϕ̃← min(ϕ,ϕ)
5: for t = 1 to T do
6: (r̂, â, θ̂)← π−1

2 (t)

7: δt ← ϕt−1,r̂

θ̂
(â)− ϕ̃r̂

θ̂
(â)

8: ϕt ← ϕt−1

9: φt ← φt−1

10: if ϕt−1,r̂

θ̂
(â) ≥ ϕ̃r̂

θ̂
(â) then

11: ϕt,r̂
θ̂

(â)← ϕ̃r̂
θ̂
(â)

12: ϕt,r
′

θ̂
(a′)← ϕt−1,r̂

θ̂
(a′)− δt

ϕt−1,r̂

θ̂
(â)

∑
a∈A:ar=â,ar′=a

′ φ
t−1

θ̂
(a), ∀r′ 6= r̂, a′ ∈ Ar′

13: φt
θ̂
(a)← φt−1

θ̂
(a)

(
1− δt

ϕt−1,r̂

θ̂
(â)

)
, ∀a : ar = â

14: end if
15: end for
16: return ϕ? := ϕT , φ? := φT

The idea of the procedure in Algorithm 3, is to maintain the constraints φt ∈Mk(ϕt) valid trough tout the procedure, and
to update φt as to guarantee that ok(φt) ≥ ok(φt−1)− δt.

Now we see that the constraints φt ∈Mk(ϕt) are maintained at iteration t, assuming that are satisfied at time t− 1.

Define (r̂, θ̂, â) = π−1
2 (t) and consider the following two cases:

• If ϕt−1,r̂

θ̂
(â) ≤ ϕ̃r̂

θ̂
(â):

Then we trivially have that φt ∈Mk(ϕt) as φt = φt−1 and ϕt = ϕt−1 and φt−1 ∈Mk(ϕt−1) by assumption.

• If otherwise ϕt−1,r̂

θ̂
(â) ≥ ϕ̃r̂

θ̂
(â). We can divide the variables (r, a, θ) ∈ R×Ar ×Θ into three sets

a) A1 := {(r, θ, â)}

b) A2 := {(r, θ, a) : a ∈ Ar, a 6= â}

c) A3 := {(r′, a′, θ̂) : r′ ∈ R/{r̂}, a′ ∈ Ar′}

d) A4 := {(r, a, θ′) : θ′ ∈ Θ, θ′ 6= θ̂}

Notice that these sets are disjoint and their union isR×Ar ×Θ.

a) For any (r, a, θ) ∈ A1 we have: ∑
a∈A:ar=a

φtθ(a) =
∑

a∈A:ar=a

φt−1
θ (a)

(
1− δt

ϕt−1,r
θ (a)

)

= ϕt−1
θ (a)

(
1− δt

ϕt−1
θ (a)

)
= ϕt−1

θ (a)− δt
= ϕ̃rθ(a).

b) For any (r, a, θ) ∈ A2 we have:∑
a∈A:ar=a′

φtθ(a) =
∑

a∈A:ar=a′

φt−1
θ (a) = ϕt−1,r

θ (a′) = ϕt,rθ (a′).
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as the those variable are not updated at round t.

c) For any (r, a, θ) ∈ A3 we have:∑
a∈A:ar=a

φtθ(a) =
∑
a∈A:
ar=a
ar̂=â

φtθ(a) +
∑
a∈A:
ar=a
ar̂ 6=â

φtθ(a)

=
∑
a∈A:
ar=a
ar̂=â

φt−1
θ (a)

(
1− δt

ϕt−1,r̂
θ (â)

)
+
∑
a∈A:
ar=a
ar̂ 6=â

φt−1
θ (a)

=
∑
a∈A:
ar=a

φt−1
θ′ (a)− δt

ϕt−1,r̂
θ (â)

∑
a∈A:
ar=a
ar̂=â

φt−1
θ (a)

= ϕt,rθ (a),

where for the second equality we used the update of update of φt−1(a) in Line 13 of Algorithm 3. While the last equality
follows from the update of Line 12.

d) For any (r, a, θ) ∈ A4 we have that none of the variable are updated an thus the statement holds by inductive assumption.

This proves that φ? ∈Mk(ϕ?).

On the other hand it is evident that ϕ? � ϕ thanks to update of Line 11 in Algorithm 3. In particular it also holds that
ϕt,r̂
θ̂

(â) ≤ ϕr̂
θ̂
(â) for all t = π2(r̂, â, θ̂).

We are left to show that ‖ϕ− ϕ‖1 + ok(φ?) ≥ ok(φ). Consider the following inequalities:

ok(φt) :=
∑
θ∈Θ

∑
a∈A

µθφ
t
θ(a)us(a, θ)

= µθ̂

∑
a∈A

φt
θ̂
(a)us(a, θ̂) +

∑
θ∈Θ/{θ̂}

∑
a∈A

µθφ
t
θ(a)us(a, θ)

= µθ̂

∑
a∈A

φt
θ̂
(a)us(a, θ̂) +

∑
θ∈Θ/{θ̂}

∑
a∈A

µθφ
t−1
θ (a)us(a, θ)

= µθ̂

∑
a∈A:
ar̂=â

φt
θ̂
(a)us(a, θ̂) + µθ̂

∑
a∈A:
ar̂ 6=â

φt
θ̂
(a)us(a, θ̂) +

∑
θ∈Θ/{θ̂}

∑
a∈A

µθφ
t−1
θ (a)us(a, θ)

= µθ̂

(
1− δt

ϕt−1,r̂

θ̂
(â)

) ∑
a∈A:
ar̂=â

φt−1

θ̂
(a)us(a, θ̂) + µθ̂

∑
a∈A:
ar̂ 6=â

φt−1

θ̂
(a)us(a, θ̂) +

∑
θ∈Θ/{θ̂}

∑
a∈A

µθφ
t−1
θ (a)us(a, θ)

=
∑
θ∈Θ

∑
a∈A

µθφ
t−1
θ (a)us(a, θ)− δt

ϕt−1,r̂

θ̂
(â)

µθ̂

∑
a∈A:
ar̂=â

φt−1

θ̂
(a)us(a, θ̂)

≥ ok(φt−1
θ )− δt

ϕt−1,r̂

θ̂
(â)

∑
a∈A:
ar̂=â

φt−1

θ̂
(a)

= ok(φt−1
θ )− δt.

Then we can telescope the inequality to show that:

ok(φ?) ≥ ok(φ)−
T∑
t=1

δt.
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Then it is easy to show that δt = ϕt−1,r̂

θ̂
(â)− ϕ̃r̂

θ̂
(â) ≤ ϕr̂

θ̂
(â)− ϕ̃r̂

θ̂
(â) ≤ |ϕr̂

θ̂
(â)− ϕ̃r̂

θ̂
(â)| and thus

ok(φ?) ≥ ok(φ)− ‖ϕ− ϕ‖1,

as wanted.

Theorem 5.2. Let α :=
√
m/T . Algorithm 2 guarantees a cumulative regret RT ≤ nd|A|

√
mT.

Proof. First notice that:

max
ϕ∈Λ

T∑
t=1

gkt(ϕ) = max
ϕ∈Λ

T∑
t=1

us(ϕ,kt)

which follows from the definition of us(ϕ,k) given in Equation (4). On the other hand it is clear that gkt(ϕt) = us(φt,kt)
thanks to the update of Line 4 of Algorithm 2.

Thus we can write the regret of Algorithm 2 as:

RT = max
ϕ∈Λ

T∑
t=1

gkt(ϕ)−
T∑
t=1

gkt(ϕt).

Then, by Lemma 5.1 we have that the reward functions gk(·) are concave for all k ∈ K.

Moreover we know that the by Lemma 5.2 that for all k ∈ K the functions gk(·), are
√
nd|A|-Lipschitz w.r.t. ‖ · ‖2 and

thus, by Shalev-Shwartz et al. (2012, Lemma 2.6), we have that all the subgradients of −gk(·) have norm bounded by the
Lipschitz constant. This clearly implies G := supϕ∈Λ ‖∂gk(ϕ)‖2 ≤

√
nd|A|.

Moreover, the regularizer 1
2‖ · ‖

2
2 is trivially 1-strongly convex w.r.t. ‖ · ‖2.

Finally we have that the diameter of the polytope Λ, induced by the regularizers is bounded by 1
2ndm|A|, as Λ is a contained

in the ndm|A|-dimensional hypercube. Formally D :=
√

maxφ∈Λ
1
2‖φ‖

2
2 −minφ′∈Λ

1
2‖φ′‖

2
2 ≤

√
1
2ndm|A|.

A standard application of Orabona (2019, Corollary 7.9) gives a bound of:

RT ≤
D2

α
+

1

2
αG2T ≤ 1

2α
ndm|A|+ 1

2
αnd|A|T.

Setting α =
√
m/T gives the result.

D. Proofs Omitted from Section 5.4
Lemma 5.4. Given access to an optimization oracle O, there exists a polynomial-algorithm that solves LP (6).

Proof. We defining for any R ⊂ R, aR as the tuple in which action a1 is recommended to all the receivers in R and a0 to
the others. Formally ar = a1 for all r ∈ R, and ar = a0 for all r ∈ R/R. Then , rewriting LP 6 for the specific case of
binary actions per receiver, we obtain:

max
φ≥0

∑
θ∈Θ

∑
R⊆R

µθφθ(aR)f sθ(R) s.t. (8a)

∑
R∈R:r∈R

φθ(aR) = ϕr,krθ (a1), ∀r ∈ R,∀θ ∈ Θ (8b)∑
R∈R

φθ(aR) = 1, ∀θ ∈ Θ (8c)

The dual of such LP reads as follows:

min
x

∑
r∈R,θ∈Θ

ϕr,krθ (a1)xr,θ s.t.
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r∈R

xr,θ ≥ µθf sθ(R), ∀R ⊆ R, θ ∈ Θ,

where the dual variables are {xr,θ}r∈R,θ∈Θ. A separation oracle for dual problem can be implemented exploiting the
optimization oracle O(f sθ,−xθ/µθ) for each θ. If,for at least one θ, the value of O(f sθ,−xθ/µθ) is larger that 0 then we can
use the the violated constraint as a separating hyperplane.

Lemma 5.5. Given access to an optimization oracle O, there exists a polynomial-time algorithm that solves the problem of
Equation (7).

Proof. We defining for any R ⊂ R, aR as the tuple in which action a1 is recommended to all the receivers in R and a0 to
the others. Formally ar = a1 for all r ∈ R, and ar = a0 for all r ∈ R/R. With this definition, for any sequence of type’s
tuples, the problem maxϕ∈Λ

∑
τ∈[t] g

kτ (ϕ)− 1
2α‖ϕ‖

2
2 can be rewritten as:

max
φ≥0,ϕ∈Λ

∑
τ∈[t]
θ∈Θ
R⊆R

µθφτ,θ(aR)f sθ(R)− 1

2α

∑
r∈R,k∈Kr,
θ∈Θ,a∈A

ϕr,kθ (a)2 s.t. (9a)

∑
R⊆R:
r∈R

φτ,θ(aR) = ϕ
r,kτ,r
θ (a1), ∀r ∈ R, θ ∈ Θ, τ ∈ [t] (9b)

∑
R⊆R

φτ,θ(aR) = 1, ∀τ ∈ [t], θ ∈ Θ (9c)

We Lagrangyfing Problem (9) by introducing the following dual variables

• xr,θ,τ ∈ R for each r ∈ R, θ ∈ θ, τ ∈ [t], which is the dual variable of the constrain 6b

• yτ,θ ∈ R for each τ ∈ [t], θ ∈ Θ, which is the dual variable of the constrain 9c

• zr,k,k′ ∈ R+ for each r ∈ R, k, k′ ∈ Kr, which is the dual variable of the constrain 5a

• αr,k,k′,a,a′ ∈ R+ for each r ∈ R, k, k′ ∈ Kr, a, a′ ∈ A, which is the dual variable of the constrain 5b

• βr,k,θ ∈ R for each r ∈ R, k ∈ Kr, θ ∈ Θ, which is the dual variable of the constrain 5c

• γθ,R ∈ R+ for each θ ∈ Θ, R ⊆ R, for the constraint φ ≥ 0

• ηr,k,θ,a ∈ R+ for each r ∈ R, k ∈ Kr, θ ∈ Θ, and a ∈ A, for the constraint ϕ ≥ 0

The the Lagrangian of Problem 9 reads:

L(φ, ϕ, x, y, z, α, β, γ, η) =
∑

τ∈[t],θ∈Θ
R⊆R

µθφτ,θ(aR)f sθ(R)− 1

2α

∑
r∈R,k∈Kr,
θ∈Θ,a∈A

ϕr,kθ (a)2

+
∑

τ∈[t],θ∈Θ
r∈R

xr,θ,τ

 ∑
R⊆R:
r∈R

φτ,θ(aR)− ϕr,kτ,rθ (a1)


+
∑
τ∈[t],
θ∈Θ

yτ,θ

∑
R⊆R

φτ,θ(aR)− 1


+

∑
r∈R,

k,k′∈Kr

zr,k,k′

(∑
a∈A

∑
θ∈Θ

µθ ϕ
r,k
θ (a)urk(a, θ)−

∑
a∈A

lr,k,k
′

a

)
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+
∑

r∈R,k,k′∈Kr,
a,a′∈A

αr,k,k′,a,a′

(
lr,k,k

′

a −
∑
θ∈Θ

µθ ϕ
r,k′

θ (a)urk(a′, θ)

)

+
∑
r∈R,

k∈Kr,θ∈Θ

βr,k,θ

(∑
a∈A

ϕr,kθ (a)− 1

)
+
∑
θ∈Θ,
R⊆R

γθ,Rφθ(aR) +
∑

r∈R,k∈Kr,
θ∈Θ,a∈A

ηr,k,θ,aϕ
r,k
θ (a).

We observe that Slater’s condition holds for Problem 9. This holds since all constraints are linear and there exists a feasible
solution. This is easily seen as there exists a set of feasible menu of IC marginal signaling schemes. Moreover, given a set of
menus and a vector of types, it is possible to design consistent signaling schemes by taking the product distribution of the
marginal signaling schemes relative to the types. Therefore, by strong duality, the optimal primal and dual variables must
satisfy the KKT conditions. In particular it must hold that 0 ∈ ∂φτ,θ(aR)(L) for each τ ∈ [t], θ ∈ Θ, R ⊆ R. Formally, for
each τ ∈ [t], θ ∈ Θ, and R ⊆ R, we have:

∂φτ,θ(aR)(L) = µθf
s
θ(R) +

∑
r∈R

xr,θ,τ + yτ,θ + γθ,R = 0. (10)

Moreover, it must also hold that 0 ∈ ∂ϕr,kθ (a)(L). Formally, for each r ∈ R, k ∈ Kr, θ ∈ Θ, and a ∈ A it holds

−
ϕr,kθ (a)

α
− Ia=a1

∑
τ∈[t]:
k=kτ,r

xr,θ,τ +

 ∑
k′∈Kr

zr,k,k′

µθu
r
k(a, θ)−

∑
a′∈A,
k′∈Kr

αr,k′,k,a,a′µθu
r
k′(a

′, θ) + βr,k,θ + ηr,k,θ,a = 0,

which implies that for each r ∈ R, k ∈ Kr, θ ∈ Θ, and a ∈ A:

ϕr,kθ (a)

α
= −Ia=a1

∑
τ∈[t]:
k=kτ,r

xr,θ,τ +

 ∑
k′∈Kr

zr,k,k′

µθu
r
k(a, θ)−

∑
a′∈A,
k′∈Kr

αr,k′,k,a,a′µθu
r
k′(a

′, θ) + βr,k,θ + ηr,k,θ,a. (11)

Similarly, it must hold that 0 ∈ ∂
lr,k,k

′
a

(L). Formally, for each r ∈ R, k, k′ ∈ Kr, and a ∈ A, it holds

∂
lr,k,k

′
a

(L) = −zr,k,k′ +
∑
a′∈A

αr,k,k′,a,a′ = 0 (12)

Finally, plugging Equation (10), Equation (11) and Equation (12) back into the Lagrangian we get:

L(φ, ϕ, x, y, z, α, β, γ, η) =
1

2α

∑
r∈R,k∈Kr,
θ∈Θ,a∈A

ϕr,kθ (a)2 −
∑

τ∈[t],θ∈Θ

yτ,θ −
∑

r∈R,k∈Kr,θ∈Θ

βr,k,θ.

Finally the dual problem of Problem 9 can be written as follows:

min
ϕ,x,β≤0


1

2α

∑
r∈R,k∈Kr,
θ∈Θ,a∈A

ϕr,kθ (a)2 −
∑

τ∈[t],θ∈Θ

yτ,θ −
∑

r∈R,k∈Kr,θ∈Θ

βr,k,θ

 s.t. (13a)

µθf
s
θ(R) +

∑
r∈R

xr,θ,τ + yτ,θ ≤ 0, ∀τ ∈ [t], θ ∈ Θ, R ⊆ R (13b)

ϕr,kθ (a)

α
≤ −Ia=a1

∑
τ∈[t]:
k=kτ,r

xr,θ,τ +

( ∑
k′∈Kr

zr,k,k′

)
µθu

r
k(a, θ)−

∑
a′∈A,
k′∈Kr

αr,k′,k,a,a′µθu
r
k′(a

′, θ) + βr,k,θ,a,

∀r ∈ R, k ∈ Kr, θ ∈ Θ, a ∈ A (13c)
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− zr,k,k′ +
∑
a′∈A

αr,k,k′,a,a′ = 0, ∀r ∈ R, k, k′ ∈ Kr,∀a ∈ A (13d)

where the constraint of Equation (10) becomes the constraint of Equation (13b) since the dual variable γ is positive. Similarly,
the constraint of Equation (11) becomes the constraint of Equation (13c) as the dual variable η is positive.

We now remark that the above dual problem can be solve in polynomial time, when we have access to the optimization
oracle O.

Problem 13 is convex. Hence, we can solve it applying the ellipsoid method. The separation over Constraint (13c) can be
done in polynomial-time since there are polynomially-many constraints. Moreover, the separation problem relative to the
objective can be solved in polynomial time since there are polynomially-many variables and the objective is convex. Finally,
the separation over the constraint of Equation (13b) must solve

arg max
R

{
µθf

s
θ(R) +

∑
r∈R

xr,θ,τ

}
,

for each possible τ ∈ [t] and θ ∈ Θ, which can be done by exploiting the optimization oracle O(f sθ, xθ,τ/µθ) for all τ ∈ [t]
and θ ∈ Θ.

If any of these solution are greater than −yτ,θ, we return the relative constraint, otherwise all the constraints (13c) are
satisfied. Hence, the ellipsoid method runs in polynomial-time and find an arbitrary good approximation. For the easy of
exposition, we ignore the arbitrary small approximation error of the ellipsoid method.

Theorem 5.5. In settings in which receivers have binary actions, and the sender has a monotone supermodular or a
monotone anonymous utility function, Algorithm 2 has polynomial per-iteration running time and guarantees

RT ≤ nd|A|
√
mT.

Proof. Since, by Lemma 5.3, there exists a polynomial-time oracle O, applying Lemma 5.4 and 5.5 we can compute Line 4
and 5 of Algorithm 2 in polynomial-time. Moreover, it is easy to see that all the other operations of the algorithm can be
executed in polynomial time.
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