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Abstract

We introduce the first method for translating text embeddings from one vector
space to another without any paired data, encoders, or predefined sets of matches.
Our unsupervised approach translates any embedding to and from a universal latent
representation (i.e., a universal semantic structure conjectured by the Platonic
Representation Hypothesis). Our translations achieve high cosine similarity across
model pairs with different architectures, parameter counts, and training datasets.
The ability to translate unknown embeddings into a different space while preserving
their geometry has serious implications for security. An adversary with access
to a database of only embedding vectors can extract sensitive information about
underlying documents, sufficient for classification and attribute inference.
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Figure 1: Left: input embeddings from different model families (T5-based GTR and BERT-based
GTE [32])) are fundamentally incomparable. Right: given unpaired embedding samples from different
models on different texts, our model learns a latent representation where they are closely aligned.

1 Introduction

Text embeddings are the backbone of modern NLP, powering tasks like retrieval, RAG, classification,
and clustering. There are many embedding models trained on different datasets, data shufflings, and
initializations. An embedding of a text encodes its semantics: a good model maps texts with similar
semantics to vectors close to each other in the embedding space. Since semantics is a property of
text, different embeddings of the same text should encode the same semantics. In practice, however,
different models encode texts into completely different and incompatible vector spaces.

The Platonic Representation Hypothesis Huh et al. conjectures that all vision models of sufficient
size converge to the same latent representation. We propose a stronger, constructive version of this
hypothesis for text models: the universal latent structure of text representations can be learned and,
furthermore, harnessed to translate representations from one space to another without any paired data
or encoders.
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Figure 2: Given only a vector database from an unknown model, vec2vec translates the database
into the space of a known model using latent structure alone. Converted embeddings reveal sensitive
information about the original documents, such as the topic of an email (pictured, real example).

In this work, we show that the Strong Platonic Representation Hypothesis holds in practice. Given
unpaired examples of embeddings from two models with different architectures and training data, our
method learns a latent representation in which the embeddings are almost identical (Figure [T)).

We draw inspiration from research on aligning word embeddings across languages [62, 10} 15} 9]
and unsupervised image translation [36} 70]]. Our vec2vec method uses adversarial losses and cycle
consistency to learn to encode embeddings into a shared latent space and decode with minimal loss.
This makes unsupervised translation possible. We use a basic adversarial approach with vector space
preservation [46] to learn a mapping from an unknown embedding distribution to a known one.

vec2vec is the first method to successfully translate embeddings from the space of one model to
another without paired dataﬂ vec2vec translations achieve cosine similarity as high as 0.96 to the
ground-truth vectors in their target embedding spaces and perfect matching on over 8000 shuffled
embeddings (without access to the set of possible matches in advance).

To show that our translations preserve not only the relative geometry of embeddings but also the
semantics of underlying inputs, we extract information from them using zero-shot attribute inference
and inversion, without any knowledge of the model that produced the original embeddingsﬂ

2 Problem formulation: unsupervised embedding translation

Consider a collection of embedding vectors {1, .. ., }, for example, a dump of a compromised
vector database, where each u; = M;(d;) is generated by an unknown encoder M; : VS — R
from an unknown document d;. We cannot make queries to M and do not know its training data,
nor architectural details. Our goal is to extract any information about the documents d;.

We do assume access to a different encoder M5 that we can query at will to generate new embeddings
in some other space. We also assume high-level distributional knowledge about the hidden docu-
ments: their modality (text) and language (e.g., English). To extract information, we may translate
{uy,...u,} into the output space of M5 and apply techniques like inversion that require the encoder.

Limitations of correspondence methods. There is significant prior research on the problem of
matching or correspondence between sets of embedding vectors [1} 49, 8, 54]]. These methods
typically assume that the two (or more) sets of embeddings are generated by different encoders on
the same or highly-overlapping inputs. In other words, for each unknown vector, there must already
exist a set of candidate vectors in a different embedding. In practice, it is unrealistic to expect that
such a database be available, so these methods are not directly applicable. Some matching methods,

"Prior work has successfully translated word embeddings between languages, typically relying on overlapping
vocabularies across languages. In contrast, we translate embeddings of entire sequences between model spaces.
2Qur code is available on GitHub.


https://github.com/rjha18/vec2vec/
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Figure 3: Unsupervised embedding translation. With access to only u; = M;(d;), vec2vec
seeks to generate a translation F'(u;) that is close in M>’s embedding space to the ideal embedding
v; = Ms(d;) without access to d;, v;, or M.

however, support translation between embedding spaces without overlapping inputs. Our experiments
demonstrate that these methods struggle significantly, even when correspondence exists.

Our task is inherently more challenging than matching, because we do not assume access to encoder
M7, nor do we have additional representations of documents dy, . . ., d,, beyond their embeddings
u; = Mj(d;). Therefore, we rely solely on unsupervised translation from M to M. The effective-
ness of such unsupervised translation approaches thus critically depends on identifying and leveraging
shared geometric structures within the embedding spaces produced by M; and M.

The Strong Platonic Representation Hypothesis. Our hope that unsupervised embedding translation
is possible at all rests on the stronger version of the Platonic Representation Hypothesis [[18]. Our
conjecture is as follows: neural networks trained with the same objective and modality, but with
different data and model architectures, converge to a universal latent space such that a translation
between their respective representations can be learned without any pairwise correspondence.

Translation enables information extraction. Solving unsupervised translation will allow us to
use information extraction tools designed to operate on vectors produced by known encoders. For
example, we could apply inversion models [43}|67]] to recover unknown documents {d; }.

3 Our method: vec2vec

Unsupervised translation has been successful in computer vision, using a combination of cycle
consistency and adversarial regularization 36, |70]. Our design of vec2vec is inspired in part by
these methods. We aim to learn embedding-space translations that are cycle-consistent (mapping to
and from an embedding space should end in the same place) and indistinguishable (embeddings for
the same text from either space should have identical latents).

3.1 Architecture

We propose a modular architecture, where embeddings are encoded and decoded using space-specific
adapter modules and passed through a shared backbone network. Figure [2]shows these components.
Input adapters A; : R — RZ and Ay : R? — RZ transform embeddings from each encoder-specific
space into a universal latent representation of dimension Z. The shared backbone T : R — R?
extracts a common latent embedding from adapted inputs. Output adapters B; : R — R? and
By : R — R translate these common latent embeddings back into the encoder-specific spaces.
Thus, translation functions F, F» and additional reconstruction mappings R, R are defined as:

Fy=ByoToA), F,=BjoToAy, R =BioToA Ry=DByoToA
Parameters of all components are collectively denoted § = {A;, A, T, By, Ba}.

Unlike images, embeddings do not have any spatial bias. Instead of CNNs, we use multilayer percep-
trons (MLP) with residual connections, layer normalization, and SiLU nonlinearities. Discriminators
mirror this structure but omit residual connections to simplify adversarial learning.



3.2 Optimization

In addition to the ‘generator’ networks F' and R, we introduce discriminators operating on both the
latent representations of F’ (D{, DS) and the output embeddings (D1, D-).

Our goal is to train the parameters of 6 by solving:

0* =argmin  max Lo (Fi, Fa, D1, D2, DY, D5) + AgenLoen(6), 1))
0  Dy,D;,D{,Df

where L4y and Lge, represent adversarial and generator-specific constraints respectively and hyper-
parameter Age, controls their tradeoff.

Adversarial. The adversarial loss encourages generated embeddings to match the empirical distri-
butions of original embeddings both at the embedding and latent levels. Specifically, applying the
standard GAN loss formulation [13]] to both levels yields:

Laav(Fi, Fo, D1, Dy, DY, D) = Loan(D1, F1) + Loan(D2, Fa)
+ Lean(D4, T o Ay) + Lean(D5,T o Asg).

Generator. Because adversarial losses alone do not guarantee that translated embeddings preserve
semantics [70], we introduce three additional constraints to help the generator learn a useful mapping:

Reconstruction enforces that an embedding, when mapped into the latent space and back into its
original embedding space, closely matches its initial representation:

Liec(R1, R2) = Ex~pHR1(CU) - x||§ + Ey~q||R2(?J) - Z‘/H%

where p and q are distributions of embeddings sampled from M; and M, respectively.

Cycle-consistency acts as an unsupervised proxy for supervised pair alignment, ensuring that £’ and
G can translate an embedding to the other embedding space and back again with minimal corruption:

Lec(Fr, Fa) = Epny||F2(Fi () — 2|3 + Eyngl| F1 (P2 () — yli3-
Vector space preservation (VSP) ensures that pairwise relationships between translated embeddings

are consistent with the target space [46, [65]. Given a batch of B embeddings =1, ...,xp and y1, ..., Y5,
we sum their average pairwise distances after translation by both F; and F:

B B
Lysp(F1, F3) = % > [||M1(xi) - Mi(5) — Fo(Ma(yi)) - Fo(Ma(y;))ll3

i=1 j=1

+ [|Ma(ys) - Ma(y;) — Fy(My () - Fy (M ()13

Combining these losses yields: Egen(ﬁ) = ArecLrec (Rl, RQ) + AccLce (Fl, Fg) + )\VSPL‘VSP(FI» FQ),
where hyperparameters \cc, Arec, and Aysp control relative importance.

4 Experimental setup
4.1 Preliminaries

Datasets. We use the Natural Questions (NQ) [25] dataset of user queries and Wikipedia-sourced
answers for training (a 2-million subset) and evaluation (a 65536 subset). To evaluate information
extraction, we use TweetTopic [2], a dataset of tweets multi-labeled by 19 topics; a random 8192-
record subset of Pseudo Re-identified MIMIC-III (MIMIC) [28]], a pseudo re-identified version of the
MIMIC dataset [19] of patient records multi-labeled by 2673 MedCAT [24] disease descriptions; and
a random 50-email subset of the Enron Email Corpus (Enron) [21]], an unlabeled, public dataset of
internal emails from a defunct energy company. In Appendix D] we ablate a model on MS COCO
[34], a captioned image dataset, to evaluate performance on multimodal retrieval.

Models. Table [1] lists the embedding models representing four size categories, five transformer
backbones, and two output dimensionalities. Granite is multilingual; CLIP is multimodal. Since
Qwen is very compute-intensive, we only evaluate it for a single model pair in Appendix



Model Params (M) Backbone Year Dims Max Seq.

@7 gtr 110 T5 2021 768 512
150] clip 151 CLIP 2021 512 77
58] e5 109 BERT 2022 768 512
132] gte 109 BERT 2023 768 512
168] stella 109 BERT 2023 768 512
[14] granite 278 RoBERTa 2024 768 512
(69] qwen 4000 Qwen3 2025 2560 32K

Table 1: Embedding models used in our experiments.

Training. Unless otherwise specified, each vec2vec is trained on two sets of embeddings generated
from disjoint sets of 1 million 64-token sequences sampled from NQ (see Section [7]for experiments
with fewer embeddings). Due to GAN instability [53]], we select the best of multiple initializations
(see Appendix [E) and leave more robust training to future work. See Appendix [A]for compute details.

4.2 Evaluating translation

Let u; = M;(d;) and v; = M>(d;) denote the source and target embeddings of the same input d;.
The goal of translation is to generate a vector that is as close to v; as possible. We say that (u;, v;) are
“aligned” by the translator F if v; is the closest embedding to F'(u;): j = arg miny, cos(F(u;),vy).
A perfect translator F'* satisfies i = arg miny, cos(F*(u;), v;) for all 4.

Given (unknown) embeddings { Ma(d;)}"_ ordered by decreasing cosine similarity to F'(u;), let r;
be the rank of the correct embedding v; = Ms(d;). To measure quality of F', we use three metrics.
Mean Cosine Similarity measures how close translations are, on average, to their targets. Top-1
Accuracy is the fraction of translations whose target is closer than any other embedding. Mean
Rank is the average rank of targets with respect to translations. The ideal translator F'* achieves
mean similarity of 1.0, top-1 accuracy of 1.0, and mean rank of 1.0. Recall that a random alignment
corresponds to a mean rank of 5. Formally,

cos(ui, v;) = %Z[l — COS(F(Ui),Ui)] Top-1(r) = %Zl{n =1} Rank(r) = %Zh
i=1 =1

i=1

vec2vec is the first unsupervised embedding translator, thus there is no direct baseline. As our Naive
baseline, we simply use F'(x) = x to measure geometric similarity between embedding spaces. The
second (pseudo)baseline is Oracle-aided optimal transport. It assumes that candidate targets are
known and is thus strictly easier than vec2vec and the Naive baseline. We solve optimal assignment,
7 = argmin, Z?:l cos(u;, Ux(;)), Via either the Hungarian, Earth Mover’s Distance, Sinkhorn,
or (Entropic) Gromov-Wasserstein algorithms, choosing the solver with the lowest rank for each
experiment. See Appendix |B|for more details.

4.3 Evaluating information extraction

We measure whether translation preserves semantics via attribute inference: for each translated
embedding F'(M;(d;)), our goal is to infer attributes ¢; C C of d;.

The first method we use is zero-shot embedding attribute inference: calculate pairwise cosine
similarities between F'(M;(d;)) and the embeddings of all attributes in C, identify top k closest
attributes, and measure whether they are correct via fop-k accuracy: + 31" (1 {|cF N¢;| > 1},

The second method is embedding inversion that recovers text inputs from embeddings. Since [43]]
requires a pre-trained inversion model for each embedding space, we use [|67] instead to generate an
approximation d} of d; from F'(M;(d;)) in a zero-shot manner. We measure the extracted information
using LLM judge accuracy: the fraction of translated embeddings for which GPT-40 determines that
d’ reveals information in d. See Appendix for our prompt.

In addition to the Naive baseline, we also consider an Oracle attribute inference: zero-shot
classification with the correct embedding M5 (d) and class labels M (C).
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Figure 4: Pairwise cosine similarities of input embeddings (left) and their vec2vec latents (middle)
across different embedding pairs. The absolute difference between the heatmaps plots is on the right.
All numbers are computed on the same batch of 1024 NQ texts.

5 vec2vec learns to translate embeddings without any paired data

We first show that vec2vec learns a universal latent space, then demonstrate that this space preserves
the geometry of all embeddings. Therefore, we can use it like a universal language of text encoders
to translate their representations without any paired data.

vec2vec learns a universal latent space. vec2vec projects embeddings M o ... into a shared latent
space via compositions of input adapters (A; 2 ) and a shared translator 7T". Figure@ shows that even
when the embeddings u; = M;(d;) and v; = Ms(d;) are far apart (i.e., have low cosine similarity),
their representations in vec2vec’s latent space are incredibly close: T'(A1(u;)) =~ T(Az(v;)).
Figure [I] visualizes this (via two-dimensional projections) for vec2vec trained on GTE and GTR
embeddings: the embeddings are far apart, but their latents are nearly overlapping.

vec2vec Naive Baseline OT Baseline

M, Mo cos(:)t  T-17 Rank | cos(:)t TI11 Rank | cos(:)T T-11 Rank |

gtr 0.80 (0.0) 099 1.190.n  -0.03(0.0) 0.00  4168.73(92)  0.70 (0.0) 0.00 2773.72 8.6)*
era. gte 0.87 (0.0) 095  1.18(0.0) 0.01 (0.0) 0.00  4088.58 (9.2)  0.85(0.0) 0.00  2680.02 8.6)F
ste. 0.79 (0.0) 098  1.05 (0.0 0.01 (0.0) 0.00  4208.26 9.2)  0.67 (0.0) 0.00 344652 (8.8)F
e5 0.85 (0.0) 098  1.11(0.0) 0.02 (0.0) 0.00 4111.60 9.2)  0.83 (0.0 0.00  3569.59 8.7)F

gra. 0.81 (0.0) 099 1.020.00 -0.03(0.0) 0.00 4169.76 9.2)  0.70 (0.0) 0.00  2775.17 8.6)F
gte 0.87 (0.0) 0.93 2.31 (0.1 0.04 (0.0 0.00 4080.92 (9.2) 0.85 (0.0) 0.00 3070.69 (8.9)i

e ste. 0.80 (0.0) 0.99  1.03(0.0) 0.00 (0.0) 0.00  4198.78 9.2)  0.67 (0.0) 0.00  3559.06 (9.1)*
e5 0.83 (0.0) 0.84  2.88(0.2) 0.03 (0.0) 0.00  4082.84 92)  0.83 (0.0) 0.00  3888.01 8.9)*
gra. 0.75 (0.0) 095  1.22 (0.0 0.01 (0.0) 0.00  4079.81(9.3)  0.69 (0.0 0.00 266438 (8.6)F
ate gtr 0.75 (0.0) 091  2.64 (0.1 0.04 (0.0) 0.00  4084.159.2)  0.70 (0.0) 0.00  3064.16 (8.9)
ste. 0.89 (0.0) 1.00  1.00 (0.0) 0.56 (0.0) 1.00 1.00 (0.0)0  0.71 (0.0) 1.00 1.00 (0.0)
e5 0.87 (0.0) 099  5.19(0.5) 0.68 (0.0) 1.00 1.00 (0.0)0  0.84 (0.0) 1.00 1.00 0.0)

gra. 0.80 (0.0) 0.98  1.08 (0.0) 0.01 (0.0) 0.00  4209.08 9.3)  0.69 (0.0) 0.00  3419.44 8.8)*
gtr 0.82 (0.0) 1.00  1.10 (0.0 0.00 (0.0 0.00  419231092) 0.70 (0.0 0.00  3555.64 (9.0
gte 0.92 (0.0) 1.00  1.00 (0.0 0.56 (0.0) 1.00 1.00 (0.00  0.87 (0.0 1.00 1.00 (0.0)"
e5 0.86 (0.0) 1.00  1.00 (0.0 0.38 (0.0) 0.99 1.03 0.0)  0.83(0.0) 1.00 1.00 (0.0)"

ste.

gra. 0.81 (0.0) 099  2.20(0.2) 0.02 (0.0) 0.00  4120.60 9.3)  0.69 (0.0) 0.00  3526.02 8.7)F
5 gtr 0.74 (0.0) 0.82  2.56(0.0) 0.03 (0.0) 0.00  4080.76 (9.3)  0.70 (0.0) 0.00  3877.03 8.8)*
gte 0.90 (0.0) 1.00 1.01 (0.0) 0.68 (0.0) 1.00 1.00 (0.0)0  0.86 (0.0) 1.00 1.00 (0.0)F
ste. 0.78 (0.0) 1.00  1.00 (0.0 0.38 (0.0) 1.00 1.00 (0.0)  0.69 (0.0) 1.00 1.00 (0.0)

Table 2: In-distribution translations: vec2vecs trained on NQ and evaluated on a 65536 text subset of
NQ (chunked in batches of size 8192). The rank metric varies from 1 to 8192, thus 4096 corresponds
to a random ordering. Standard errors are shown in parentheses. Bold denotes best value. Symbols
denote the lowest-rank solver for specific experiments: Sinkhorn' and Gromov-Wasserstein®.



TweetTopic MIMIC

My M,  cos()t Tt Rank | | cos(-)+ T11 Rank |
atr 07400 099  1.090.1) | 07400  0.60 23.38 (1.6)

ste 0.850.0) 095  1260.1) | 08500  0.08 346.21 (7.8)

gl el 07700 096 L1100 | 07200  0.13 242.23 (6.1)
e5 0.830.0) 087 31007 | 08400  0.12 361.06 (8.7)

gran.  0790.0) 098 24106 | 07800 051 3527 (1.9)

" ste 0.85(0.0) 096 12902 | 08400  0.12 279.56 (6.9)
g stel.  0.7700) 096  1.10©0) | 07200 027 127.92 (4.4)
es 0.80(0.0) 053 1338(12) | 08200 001  1413.80(18.3)

gran. 0.73 (0.0) 0.94 1.33 (0.1) 0.73 (0.0) 0.09 342.15 (7.8)

ate gtr 0.71 (0.0) 0.95 1.29 (0.1) 0.69 (0.0) 0.12 256.63 (6.4)

stel. 0.86 (0.0) 1.00 1.00 (0.0) | 0.85(0.0) 1.00 1.00 (0.0
e5 0.83 (0.0) 0.91 1.57(0.2) | 0.86(0.0) 0.54 17.71 (0.9)
gran.  0.79 (0.0) 0.99 1.09 0.1y | 0.77 (0.0) 0.14 221.95 (5.9)
stel gtr 0.77 (0.0) 1.00 1.00 0.0) | 0.75(0.0) 0.56 17.70 (1.0)
o gte 0.90 (0.0) 1.00 1.00 0.0y | 0.91 (0.0 1.00 1.00 (0.0)
e5 0.85 (0.0) 0.98 1.05 0.0) | 0.85(0.0) 0.51 26.33 (1.2)
gran.  0.79 (0.0) 0.98 1.08 (0.0) | 0.78 (0.0) 0.21 151.09 4.6
5 gtr 0.67 (0.0) 0.80 3.10 (0.6) | 0.66 (0.0) 0.01 1029.64 (14.9)
gte 0.87 (0.0) 0.99 1.02 (0.0) | 0.87 (0.0) 0.60 32.59 (2.6)
stel. 0.75 (0.0) 0.98 1.06 (0.0) | 0.75 (0.0) 0.46 3212 (1.4)

Table 3: Out-of-distribution translations: vec2vecs trained on NQ and evaluated on the entire
TweetTopic test set (800 tweets) and an 8192-record subset of MIMIC. The rank metric varies from 1
to 800 (for TweetTopic) and 8192 (for MIMIC), thus 400 and, respectively, 4096 correspond to a
random ordering. Standard errors are shown in parentheses.

vec2vec translations mirror target geometry. Table 2] shows that vec2vec generates embeddings
with near-optimal assignment across model pairs, achieving cosine similarity scores up to 0.92, top-1
accuracies up to 100%, and ranks as low as 1. In same-backbone pairings (e.g., (gte, €5)), vec2vec’s
top-1 accuracy and rank are comparable to both the naive baseline and (surprisingly) the oracle-aided
optimal transport. Although the embeddings generated by vec2vec are significantly closer to the
ground truth than the naive baseline, in same-backbone pairings the embeddings are close enough to
be compatible. In cross-backbone pairings, vec2vec is far superior on all metrics, while baseline
methods perform similarly to random guessing.

Table [3| shows that this performance extends to out-of-distribution data. Our vec2vec translators
were trained on NQ (drawn from Wikipedia), yet exhibit high cosine similarity, high accuracy, and
low rank when evaluated on tweets (which are far more colloquial and use emojis) and medical
records (which contain domain-specific jargon unlikely to appear in NQ). In Appendix[F we show
that baseline methods fail on cross-backbone embedding pairs.

vec2vec OT Baseline

M, My  cos()t T-171 Rank |  cos(-)T T-171 Rank |
gra. 0.78 (0.0) 0.35 226.62 3.2) 0.76 (0.0) 0.00 4073.58 (9,4)?
gtr 0.73 (0.0) 0.13 711.23 (5.9) 0.59 (0.0 0.00 4096.78 (9.2)*
gte clip 0.62 (0.0 0.00 3233.41 9.8) 0.76 (0.0) 0.00 4026.96 (9.4)F
ste. 0.77 (0.0) 0.31 286.69 (3.6) 0.76 (0.0 0.00 3955.71 8.9)*
e5 0.64 (0.0 0.01 2568.21 (9.4) 0.77 (0.0) 0.00 3771.52 (9.1)i

gra. 0.74 (0.0) 0.72 4.46 (0.1) 0.69 (0.0) 0.00 4053.11 9.4

gtr 0.67 (0.0) 0.27 15511 2.1 0.49 (0.0) 0.00  4096.35 9.2)F
clip gte 0.75 (0.0 0.00 267890 8.9  0.85(0.0) 0.00  4025.81 9.3)F
ste. 0.72 (0.0) 0.61 22.50 (0.5  0.67 (0.0) 0.00  3951.73 8.9)F
e5 0.73 (0.0) 0.01 1692.28 8.2)  0.83(0.0) 0.00 377138 ©.0)F

Table 4: Translations between unimodal and multimodal (CLIP) embeddings: vec2vecs trained on
NQ and evaluated on a 65536 text subset of NQ (chunked in batches of size §192). Rank varies from
1 to 8192, thus 4096 corresponds to a random ordering. Since the embedding dimensionalities are
different, only the Gromov-Wasserstein! OT baseline is run and the naive baseline does not apply.
Bold denotes best value.



TweetTopic (k = 1) MIMIC (k = 10)
M, Mo vec2vec Naive M- M- ‘ vec2vec Naive M, Mo

atr 0.25 010 030 024 0.19 011 076 088
ste 0.32 009 030 034 036 013 076 1.00

gran. el 0.24 0.10 030 0.8 0.27 004 076 096
e5 0.31 018 030 031 0.19 020 076 097

gran. 0.34 008 024 030 0.16 012 088 076

" ste 0.33 013 024 034 0.28 005 088 1.00
g stel. 0.30 010 024 028 0.25 007 088 096
es 0.30 004 024 031 0.09 009 088 097

gran 0.37 004 034 030 0.18 011 100 076

atr 0.24 013 034 024 0.10 003 100 0.88

gte stel. 0.31 020 034 028 0.68 083 100 096
e5 0.37 030 034 031 0.37 063 100 097

gran 0.35 007 028 030 0.23 009 096 076

Gl & 0.26 013 028 024 0.22 009 096 0.88
Sl gt 0.38 036 028 034 0.90 098 096 1.00
es 0.35 034 028 031 0.38 046 096 097

gran 0.33 015 031 030 0.14 007 097 076

o atr 0.26 022 031 024 0.11 004 097 088
ate 0.34 028 031 034 047 066 097 1.00

stel. 0.26 016 031 028 0.36 040 097 096

Table 5: Information leakage via top-k zero-shot attribute inference: vec2vecs trained on NQ and
evaluated on the TweetTopic test set (800 tweets) and an 8192-record subset of MIMIC. M; and M,
represent ideal zero-shot inference: attributes and embeddings are encoded using the same model.

Finally, Table E| shows that vec2vec can even translate to and from the space of CLIP, a multimodal
embedding model which was trained in part on image data. While the translations are not as strong as
in Table 2] vec2vec consistently outperforms the optimal transport baseline. These results show the
promise of our method at adapting to new modalities: in particular, the embedding space of CLIP has
been successfully connected to other modalities such as heatmaps, audio, and depth charts [12].

6 Using vec2vec translations to extract information

In this section, we show that vec2vec translations not only preserve the geometric structure of
embeddings but also retain sufficient semantics to enable attribute inference.

Zero-shot attribute inference. Table |5 shows that

attribute inference on vec2vec translations consistently Percentage of Emails With Leakage_ o,
outperforms the naive baseline and often does better than 9 49 52 62

the ideal zero-shot baseline which performs inference @ 70
on ground-truth document and attribute embeddings in 5 55 56 56 56 |
the same space (this baseline is imaginary since these e

embeddings are not available in our setting). =g 58 40 n -50

vec2vec translations even work for embeddings of med- 60 46 55 40
ical records, which are much further from the training 20
distribution than tweets. The attributes in this case are 56 52 40 I
MedCAT disease descriptions, very few of which occur - 20

in the training data. Attribute inference on translated €3 granite glt;: gtr stella
embeddings is comparable to the naive baseline in same-

backbone pairings and outperforms it (often greatly) in Figure 5: Leakage of information via in-
cross-backbone pairings. The fact that vec2vec pre- version. Trained on NQ and evaluated on
serves the semantics of concepts like "alveolar periosti- a 50-email subset of the Enron Email Cor-
tis" (which never appears in its training data) is evidence ~pus. Cells denote judge accuracy.

that its latent space is indeed a universal representation.

gtr

stella

Zero-shot inversion. Inversion, i.e., reconstruction of text inputs, is more ambitious than attribute
inference. vec2vec translations retain enough semantic information that off-the-shelf, zero-shot
inversion methods like [67]], developed for embeddings computed by standard encoders, extract



Ground Truth: “Subject: [Enron| Bashing on Frontline \n Body:..."

Generation: “Some emails discussing [NROn Employee/s Complaint To thePublic ..."

Ground Truth: “Subject: Trades for 3/1/02 \n Body: \n [John , \n The following trades..."
Generation: “... future transactions may await John G..."

Ground Truth: “ The following expense report is ready for approval..."

Generation: “ The upcoming expense statement from YYYY MM Dec..."

Figure 6: Examples of Enron Email Corpus inversions that infer |entities| and content .

information for as many as 80% of emails and 67% of tweets given only their translated embeddings,
for some model pairs (Figure [5] and Appendix [G). These inversions are imperfect and we leave
development of specialized inverters for translated embeddings to future work. Nevertheless, as
exemplified in Figure [f] they still extract potentially sensitive information such as individual and
company names, dates, promotions, financial information, outages, and even lunch orders. In
Appendix [H, we show the prompt we use to measure extraction.

7 Ablations

Method cos(:)t  T-17 Rank |
vec2vec 0.75 (0.0) 091 2.64 (0.1)
Naive Baseline 0.04 (0.0) 0.00 4084.15 (9.2)
OT Baseline 070 (0.0) 0.0  3064.16 (8.9)
— VSP loss 0.58 (0.0) 0.00 4196.64 (9.2)
—CC loss 0.50(0.0) 000  3941.36 (9.3)
— latent GAN 0.49 (0.0) 0.00 3897.09 (9.5)

— VSP and CC loss 0.47 (0.0) 0.00  3365.24 (9.3)
— hyperparam. tuning  0.50 (0.0) 0.00  4011.73 (9.3)

Table 6: gte — gtr translators trained without individual components of our method on NQ and
evaluated on a 65536-text subset of NQ (chunked in batches of 8192). The rank metric varies from 1
to 8192, thus 4096 corresponds to a random ordering. Standard errors are shown in parentheses.

Each component of our method is important. We ablate our method subtractively, measuring the
key metrics after removing individual components of our algorithm (described in Section[3). Table [6]
shows that each component appears to be critical to building good translations. While vec2vec’s
cos(+) is higher than the naive baseline, it performs worse across the board than the OT baseline and
does not preserve the geometry of the vector space.

N cos(:)t  TI1 Rank |
1000000 0.75 (0.0) 0.92 2.73(0.2)
10000 0.57 (0.0) 0.01 1462.21 (20.)
50000 074 (0.0) 081 3.91(0.6)
100000 0.74(0.0) 085 452 (0.4)
500000 0.75 (0.0) 0.92 2.73(0.2)

Table 7: gte — gtr translators trained with different amounts of GTE data: vec2vec models trained
on NQ and evaluated an 8192-record subset of NQ. The rank metric varies from 1 to 8192, thus 4096
corresponds to a random ordering. Standard errors are shown in parentheses.

vec2vecs can be trained with significantly less data. In Sections[5]and[6] we use 1M-point subsets
of NQ to train our vec2vec models. Now, we train the gte — gtr vec2vec with IM GTR embeddings
but fewer GTE embeddings. Table[7]shows that with as few as 10K embeddings, the translators still



learn something (i.e. are better than random). Translations trained on 50K embeddings are almost as
good as those trained on 1M. Translations generally improve with more training data.

8 Related work

Representation alignment. Similarities between representations of different neural networks are
investigated in [26 31} (59} |5} 18} |61} [30]. Methods based on CCA [42], SVCCA, [51], CKA [23}38]],
ICA [63]], time-series [39]], and GUIs [|16] have been used to compare embeddings from different
subspaces. [37}45}40,(57, 48| harness representation similarity for zero-shot stitching, substitution,
domain transfer, and multimodal adaptation. All rely on some amount of paired data, which is difficult
to reduce [6]. Our method does not just measure similarity, we learn how to translate representations
across spaces without any paired data.

Optimal transport. The problem of unsupervised optimal transport has been studied for image style
transfer 17,36, [70]], word translation (|62} |10} 15} 9} 20], and natural language sequence translation
521 27, |1}, |4, 164, 3. Our method builds on these works, which often employ a combination of
cycle-consistency and adversarial loss. Importantly, unlike prior word and sequence translation
methods, multiple representations of the same input (e.g., heavily overlapping word vocabularies) are
unavailable in our setting. [54]] proposes a solver for matching small sets of embeddings between
different vision-language models. Our method goes well beyond matching by taking unknown
embeddings and generating matching embeddings in the space of another model.

Embedding inversion. An emerging line of research investigates decoding text from language model
embeddings [55}29, 43| and outputs [44} 7, 66]. vec2vec helps apply these to unknown embeddings,
without an encoder or paired data, by translating them to the space of a known model.

Bridging modality gaps. Previous work has noted an inherent “gap” between image- and text-based
models [33]] and proposed various ways to unify the modalities [56]]. Some approaches feed image
embeddings directly into language models [22} |60l |11} 35]], while others generate captions from
image embeddings [41]] or even from text embeddings themselves [43]]. [12] introduces a shared
embedding space that integrates inputs from multiple modalities, including text, audio, and vision. In
contrast, our post-hoc approach directly translates between representations and complements these
systems by enabling inputs from a wide variety of embedding models.

9 Discussion and Future Work

The Platonic Representation Hypothesis conjectures that the representation spaces of modern neural
networks are converging. We assert the Strong Platonic Representation Hypothesis: the latent
universal representation can be learned and harnessed to translate between representation spaces
without any encoders or paired data.

In Section[5} we demonstrated that our vec2vec method successfully translates embeddings generated
from unseen documents by unseen encoders, and the translator is robust to (sometimes very) out-
of-distribution inputs. This suggests that vec2vec learns domain-agnostic translations based on the
universal geometric relationships which encode the same semantics in multiple embedding spaces.

In Section [6] we showed that vec2vec translations preserve sufficient input semantics to enable
attribute inference. We extracted sensitive disease information from patient records and partial content
from corporate emails, with access only to document embeddings and no access to the encoder that
produced them. Better translation methods will enable higher-fidelity extraction, confirming once
again that embeddings reveal (almost) as much as their inputs.

Our findings provide compelling evidence for the Strong Platonic Representation Hypothesis for text-
based models. Our preliminary results on CLIP suggest that the universal geometry can be harnessed
in other modalities, too. The results in this paper are but a lower bound on inter-representation
translation. Better and more stable learning algorithms, architectures, and other methodological
improvements will support scaling to more data, more model families, and more modalities.
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A Compute

Our training and evaluation were conducted using diverse compute environments, including both
local and cloud GPU clusters. Experiments were done on NVIDIA 2080Ti, L4, A40, and A100
GPUs, listed in order of increasing computational capacity.

For our final results, we trained 25 vec2vec models fully and 30 models partially (see Appendix [E).
The full models’ training durations usually ranged from 1 to 7 days, depending on the specific GPU
and model pair (which affected convergence rates). Partial convergence was stopped after 2 days.
Due to the size of Qwen, our (qwen, gte) ablation was trained for 20 days on an A100. Taking a
conservative estimate of the average training time, this amounted to approximately 176 GPU days
(24 models x 4 days / model + 30 models x 2 days / model + 1 (qwen, gte) x 20 days / model).

Evaluation procedures varied by model type:

* The 10 main vec2vec models required ~1 hour each for NQ, TweetTopic, and MIMIC
evaluation (across GPU types), plus 30 minutes for attribute extraction on TweetTopic
and MIMIC, and 1.5 hours for inversion and downstream LLM evaluation on Enron and
TweetTopic. Naive baselines required ~30 minutes each across all datasets.

* The 15 additional fully-trained models required 30 minutes each for NQ evaluation, with an
extra 30 minutes for MS COCO evaluation of (clip, granite).

* Optimal transport baselines ran on CPU only, requiring ~1 hour per dataset (three datasets
for main models, one for others).

In total, our experiments consumed almost 176 GPU days for training and an additional 42 GPU
hours for evaluation and analysis. An additional 45 CPU hours were required for optimal transport.

B Oracle-aided optimal transport baseline

Let u; = M;(d;) and v; = M>(d;) denote embeddings of the same document d; from two different
embedding models. In Section[5] we solve the optimal assignment problem:

n
m" = argmin Z cos (Ui, Ur(i)),
i=1
using four algorithms: Hungarian (linear sum assignment), Earth Mover’s Distance (EMD), Sinkhorn,
Gromov-Wasserstein. For the Gromov-Wasserstein algorithm, we try both the entropic and non-
entropic variants with multiple hyperparameter configurations and select the best figure. Note that
the optimal transport (OT) baseline computes matchings and transports between embeddings derived
from the same underlying texts, strongly favoring OT methods. Nevertheless, OT still struggles when
embeddings originate from different model backbones.

Since the Hungarian algorithm produces a discrete matching, it is evaluated only using Top-1
Accuracy, while the other algorithms are evaluated across all metrics. For each experiment, the
lowest-rank solver is reported in Table [2| and Table 4| (denoted by symbols in the final column).
Evaluation metrics are defined as follows:

1. Top-1 Accuracy: Fraction of embeddings correctly identified as closest pairs, calculated by
either selecting the maximum transported mass per embedding or applying the Hungarian
algorithm directly to the transport plan P. We report the higher accuracy between the two.

2. Mean Rank: Average rank position of the correct embedding match v; when sorted by
descending transported mass P;; from u;:

rank(v;) = position of v; among sorted P;;.

3. Mean Cosine Similarity: Average cosine similarity between barycenters and true counter-

parts:
n
S Pijv; 1<
’ j=1114jYj e ’
v, = —————, Similarity = — cos(v;, v;).
D DY Y ”; (v, v2)
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C Translating to and from Qwen

vec2vec OT Baseline

My My  cos()T TI1  Rank| cos(-)t TI11 Rank |

gte qwen  0.50 (0.0) 092 22802 0.380.0) 0.00 42528 (1.1)?
qwen  gte 0.84 (0.0) 088 24903 0.85(0.0) 0.00  425.07 1.2)*

Table 8: Translations between GTE and Qwen embeddings trained on NQ and evaluated on a
65536 text subset of NQ (chunked in batches of size 1024). Rank varies from 1 to 1024, thus 512
corresponds to a random ordering. Since the embedding dimensionalities are different, only the
Gromov-Wasserstein® OT baseline is run and the naive baseline does not apply. Bold denotes best
value.

As shown in Table[§] vec2vec successfully translates between GTE and Qwen, significantly outper-
forming the optimal transport baseline in all metrics except qwen — gte cosine similarity, which
we hypothesize may be due to the substantial performance gap between the models—indeed, Qwen
differs from GTE in architecture (dense Qwen backbone), training methodology (unsupervised +
model merging techniques), size (14 x larger than the next largest model and 37 x larger than GTE),
context length, and recency. Given Qwen’s size and computational cost, we only evaluated this
representative pair. We leave further evaluation to future work.

D Text-image retrieval on MS COCO

model R@161  cos(:) 1 Rank |
granite — clip 0.23 0.23 (0.0 233.67 (3.0)
clip (baseline) 0.75 0.30 (0.0) 23.20 (0.8)

Table 9: Cross-model text-image retrieval on MS COCO: granite — clip vec2vec trained on NQ
(unimodal) and evaluated on MS COCO’s validation set. The rank metric varies from 1 to 5000, thus
2500 corresponds to a random ordering. Queries (captions) embedded with either Granite or CLIP.
Documents (images) embedded with CLIP. Each caption has a unique image. Standard errors are
shown in parentheses.

Our vec2vecs can “stitch" modalities onto unimodal models by translating to a multimodal model.
To test this, we evaluated cross-modal text-image retrieval on MS COCQO’s validation set (5000
examples) [34], translating queries (captions) embedded with Granite to retrieve documents (images)
embedded with CLIP using our unimodal granite — clip translator from section[4.3] Each caption has
a unique image. We report Recall@ 16, cosine similarities, and Rank, with CLIP (for both documents
and queries) as our baseline.

As Table [ shows, translating Granite embeddings to CLIP enables non-negligible cross-model
multimodal retrieval with a unimodal model for queries—despite zero multimodal training. Further
evaluation of this paradigm with multimodal-specific training is a promising direction.

E Initialization robustness by model backbone

GAN training is notoriously unstable to weight initialization [53]. To measure our method’s robust-
ness, we trained fifteen e5 — gte (shared backbone) and e5 — gtr (cross-backbone) vec2vecs on the
NQ dataset for a fixed 10 epochs.

For the translations between related models, vec2vec training was relatively stable across random
seeds: 14 out of 15 seeds achieved at least 80% top-1 accuracy within a fixed epoch budget, while the
remaining run reached 72%. In contrast, translation between unrelated models proved significantly
less stable, with only 3 out of 15 runs achieving convergence (80% top-1 accuracy). We leave
improving the seed stability of our training regime as future, valuable work.
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F Full out-of-distribution translation results

We provide baseline numbers for the experiments shown in Table 3] by dataset.

vec2vec Naive Baseline OT Baseline

Eq Es cos(:)t  T-17 Rank | cos(:)t T-17 Rank |  cos(:)t T171 Rank |

gtr 0.74 (0.0 0.99 1.09 0.1y  -0.04 (0.0) 0.00 415.61 @82  0.71(0.0) 0.01 220.93 (7.1
gte 0.85 (0.0) 0.95 1.26 (0.1) 0.00 (0.0 0.00  406.73 (82)  0.87 (0.0) 0.01 201.48 (6.6)F

g ste. 0.77 (0.0 0.96 1.11 (0.0 0.00 (0.0 0.00 417.27@82)  0.74 (0.0) 0.00  239.36 (6.7)F
e5 0.83 (0.0) 0.87 3.10 (0.7) 0.02 (0.0 0.00  405.53@8.1)  0.87(0.0) 0.01 244.94 (7.4)F
gra.  0.79 (0.0 0.98 2.410.6)  -0.04 (0.0) 0.00  411.53@83)  0.57(0.0) 0.01 398.29 8.2)%
atr gte 0.85 (0.0) 0.96 1.29 (0.2) 0.04 (0.0) 0.00  392.01 @82  0.86 (0.0 0.01 259.47 (7.4)F
ste. 0.77 (0.0 0.96 1.10 (0.0 0.00 (0.0 0.00  394.6983)  0.74 (0.0 0.00 29458 (7.4
e5 0.80 (0.0 0.53 13.38 (1.2) 0.03 (0.0 0.00  400.85@®.2)  0.87 (0.0) 0.01 266.04 (7.7)F
gra.  0.73 (0.0 0.94 1.33 (0.1) 0.00 (0.0 0.00  408.81(83)  0.56(0.0) 0.01 398.16 (8.2)"
ate gtr 0.71 (0.0 0.95 1.29 (0.1) 0.04 (0.0) 0.00  386.588.3)  0.71(0.0) 0.01 254.74 (1.3)F
ste. 0.86 (0.0) 1.00 1.00 (0.0) 0.58 (0.0) 1.00 1.00 (0.0 1.00 (0.0 1.00 1.00 (0.0)*
e5 0.83 (0.0 0.91 1.57 (0.2) 0.68 (0.0) 1.00 1.00 (0.0) 1.00 (0.0) 1.00 1.00 (0.0

gra.  0.79 (0.0) 0.99 1.09 (0.1) 0.00 (0.0 0.00 418.16(84)  0.57 (0.0) 0.00 399.56 (8.2)F
gtr 0.77 (0.0 1.00 1.00 (0.0) 0.00 (0.0 0.00  393.07@®.1)  0.71(0.0) 0.00  294.65 (7.4)F
gte 0.90 (0.0 1.00 1.00 (0.0 0.58 (0.0) 1.00 1.00 (0.0 1.00 (0.0 1.00 1.00 (0.0)*
e5 0.85 (0.0) 0.98 1.05 (0.0 0.37 (0.0) 0.89 1.55 (0.1) 1.00 (0.0 1.00 1.00 (0.0

ste.

gra. 0.79 (0.0) 0.98 1.08 (0.0) 0.02 (0.0 0.00  405.75@8.3)  0.57(0.0) 0.01 398.34 8.2)F
e5 gtr 0.67 (0.0) 0.80 3.10 (0.6) 0.03 (0.0 0.00 401.16 84)  0.71 (0.0) 0.00 268.28 (7.6)F
gte 0.87 (0.0) 0.99 1.02 (0.0 0.68 (0.0) 1.00 1.00 (0.0 1.00 (0.0 1.00 1.00 (0.00*
ste. 0.75 (0.0 0.98 1.06 (0.0) 0.37 (0.0 1.00 1.00 (0.0 1.00 (0.0 1.00 1.00 (0.0)*

Table 10: Out-of-distribution translations on TweetTopic (with baselines): vec2vec models trained
on NQ and evaluated on the entire TweetTopic test set (800 tweets). The rank metric varies from 1 to
800, thus 400 corresponds to a random ordering. Standard errors are shown in parentheses. Symbols
denote the lowest-rank solver: Earth Mover’s Distance* and Gromov-Wasserstein®

vec2vec Naive Baseline OT Baseline

Eq Es cos(:)t  T17 Rank | cos(:)t  TI11 Rank | cos(-)T T-11 Rank |
gtr 0.74 (0.0) 0.60 23.38 (1.6)  -0.02 (0.0) 0.00  4010.00 (25.8)  0.82 (0.0 0.00  3962.83 26.)f

era. gte 0.85 (0.0 0.08 346.21 (7.8) 0.01 (0.0 0.00  3978.35(26.1)  0.92 (0.0) 0.00  3808.18 25.9)
ste. 0.72 (0.0 0.13 242.23 6.1)  -0.01 (0.0) 0.00  3900.74 (26.2)  0.86 (0.0) 0.02  3780.44 26.0)

e5 0.84 (0.0) 0.12 361.06 (8.7) 0.02 (0.0) 0.00  4024.92 26.1)  0.93 (0.0) 0.00  3937.63 262"

gra.  0.78 (0.0) 0.51 3527 1.9  -0.02(0.0) 0.00  4023.67 26.1)  0.87 (0.0 0.00 396483 26.)1

atr gte 0.84 (0.0) 0.12 279.56 (6.9) 0.08 (0.0) 0.00  4180.47 26.2)  0.87 (0.0) 0.00  4088.97 262
ste. 0.72 (0.0 0.27 127.92 (4.4) 0.00 (0.0) 0.00  4296.04 26.1)  0.76 (0.0) 0.00  4095.11 26.1)

e5 0.82 (0.0) 0.01 1413.80 (18.3) 0.09 (0.0) 0.00  4064.47 26.2)  0.93 (0.0) 0.00  4010.13 26.)f

gra.  0.73 (0.0 0.09 342.15 (7.8) 0.01 (0.0) 0.00  3946.19 (25.8)  0.87 (0.0) 0.00  3802.92 (259"

ate atr 0.69 (0.0) 0.12 256.63 (6.4) 0.08 (0.0) 0.00  4229.90 (26.2)  0.69 (0.0) 0.00  4094.02 26.1)*
ste. 0.85 (0.0) 1.00 1.00 (0.0 0.56 (0.0) 1.00 1.00 (0.0) 1.00 (0.0 1.00 1.00 (0.0)*

e5 0.86 (0.0) 0.54 17.71 (0.9) 0.69 (0.0) 0.98 1.04 (0.0) 1.00 (0.0) 1.00 1.00 (0.0)*

gra.  0.77 (0.0) 0.14 221959  -0.01 (0.0) 0.00  3951.42(259)  0.87 (0.0) 0.01 3776.52 26.0)

ste atr 0.75 (0.0) 0.56 17.70 (1.0) 0.00 (0.0) 0.00  4339.83(26.2)  0.70 (0.0 0.00  4093.61 26.1
’ gte 0.91 (0.0) 1.00 1.00 (0.0 0.56 (0.0) 1.00 1.00 (0.0 1.00 (0.0 1.00 1.00 (0.0)*
e5 0.85 (0.0) 0.51 26.33 (1.2) 0.35 (0.0) 0.59 12.68 (0.6)  0.93 (0.0) 1.00 1.00 (0.0

gra.  0.78 (0.0) 0.21 151.09 (4.6) 0.02 (0.0) 0.00  4008.10 (25.9)  0.87 (0.0) 0.00 393258 2621

e5 gtr 0.66 (0.0) 0.01 1029.64 (14.9) 0.09 (0.0) 0.00  4032.85(26.2)  0.82(0.0) 0.00  4010.06 26.1)
gte 0.87 (0.0) 0.60 32.59 (2.6) 0.69 (0.0) 0.98 1.09 (0.0) 1.00 (0.0) 1.00 1.00 (0.0)*

ste. 0.75 (0.0 0.46 32.12 (1.4) 0.35 (0.0) 0.86 2.49 0.1)  0.86 (0.0 1.00 1.01 .0t

Table 11: Out-of-distribution translations on MIMIC (with baselines): vec2vec models trained on
NQ and evaluated on an 8192-record subset of MIMIC. The rank metric varies from 1 to 8192, thus
4096 corresponds to a random ordering. Standard errors are shown in parentheses. Symbols denote
the lowest-rank solver: Earth Mover’s Distance*, Sinkhorn’ and Gromov-Wasserstein®

17



G Zero-shot inversion on TweetTopic

Percentage of Tweets With Leakage

n 43 42 XM 47 65
. 60
% 51 52 52 | .55
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<8 46 | 38 39 20
o -45
£ 39 48 50 54 -40
. 35
|57 42 47 I30

e5 granite gte gtr stella
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Figure 7: Leakage of information via inversion. Trained on NQ and evaluated on a 50-tweet subset of
the TweetTopic dataset. Cells denote judge accuracy.

We replicate Figure [5] on the TweetTopic dataset in Figure [7} extracting information given only
translated embeddings of tweets. We achieve non-negligible leakage for all model pairs.

H Prompt for measuring information extraction

Figures [5]and[7] utilize an LLM judge to determine whether the approximate inversion (using [67])) of
a translated email embedding leaks information about the original email. Figure [§]shows our prompt
to the GPT-40 judge:

Original email: {ground_truth}

Reconstructed email: {generation}.

Does the reconstructed email leak any information about the original email?
Answer with only ‘yes’ or ‘no’.

Figure 8: The prompt given to the LLM judge.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim is that we are (1) able to translate embeddings with high cosine
similarity across model pairs with different architectures, parameter counts, and training
datasets and (2) these translations can be used for attribute inference. These are the two
experimental sections exactly.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The key limitation of our method is the training stability of GANs. Downstream
of this limitation is long computation times and limited (while still effective) translation
quality. This is discussed at length in the discussion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not show any theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Along with our releasing our code (used for each of the experiments we
present), we describe in depth the loss functions and architecture choices we made. We also
ablate these choices in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We link to well-documented code that will help reproduce any of our experi-
ments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details necessary to reconstruct our experiments are contained in our code.
On top of that we describe our method at length in the body of our paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Wherever applicable we show error bars: the rank and cosine metrics, namely.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include compute information in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All of our experiments are on publicly-available datasets that are either fully
anonymous or pseudonymized.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: On the positive side, we provide evidence for a popular hypothesis in the ML
community. On the negative side, we highlight, discuss, and provide remediation ideas for
an emerging threat. As with many security-flavored papers, we hope to increase visibility of
emerging threats.
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Although we have none planned, future releases of model weights would be of
translators between known, open-source embedding spaces. These would not be very useful
in exfiltrating data from unknown embeddings (a concern we highlight).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data we use is publicly available, cited, and used as dictated by the licenses
and terms.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our public code release will include documentation on how exactly to recon-
struct our experiments.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not use crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We did not use crowdsourcing or human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our paper’s methodology does not involve LLMs as any important, original,
or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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