
Published as a conference paper at ICLR 2024

KNOWLEDGE FUSION OF LARGE LANGUAGE MODELS

Fanqi Wan1∗, Xinting Huang2†, Deng Cai2, Xiaojun Quan1†, Wei Bi2, Shuming Shi2
1School of Computer Science and Engineering, Sun Yat-sen University, China
2Tencent AI Lab
wanfq@mail2.sysu.edu.cn,quanxj3@mail.sysu.edu.cn
{timxthuang,jcykcai,victoriabi,shumingshi}@tencent.com

ABSTRACT

While training large language models (LLMs) from scratch can generate models
with distinct functionalities and strengths, it comes at significant costs and may
result in redundant capabilities. Alternatively, a cost-effective and compelling ap-
proach is to merge existing pre-trained LLMs into a more potent model. However,
due to the varying architectures of these LLMs, directly blending their weights
is impractical. In this paper, we introduce the notion of knowledge fusion for
LLMs, aimed at combining the capabilities of existing LLMs and transferring
them into a single LLM. By leveraging the generative distributions of source
LLMs, we externalize their collective knowledge and unique strengths, thereby
potentially elevating the capabilities of the target model beyond those of any indi-
vidual source LLM. We validate our approach using three popular LLMs with dif-
ferent architectures—Llama-2, MPT, and OpenLLaMA—across various bench-
marks and tasks. Our findings confirm that the fusion of LLMs can improve the
performance of the target model across a range of capabilities such as reasoning,
commonsense, and code generation. Our code, model weights, and data are public
at https://github.com/fanqiwan/FuseLLM.

1 INTRODUCTION

With the continuous success of large language models (LLMs) such as GPT (Brown et al., 2020)
and LLaMA (Touvron et al., 2023) series across a wide range of natural language processing (NLP)
tasks, it has become a strategic imperative for corporations to create their own LLMs. However,
the costs associated with LLM development are astronomical. In addition to requiring vast amounts
of training data, advanced techniques, substantial computational resources, and skilled labor, the
development process also exerts significant pressure on energy consumption and the environment
(Rillig et al., 2023). While these LLMs exhibit structural and functional differences, they share
similar capabilities across a spectrum of NLP tasks. Consequently, beyond the traditional approach
of training an LLM from scratch, an alternative option is to combine existing LLMs into a new, more
powerful one, which is termed knowledge fusion of LLMs in this paper. If successful, this fusion not
only cuts the cost of initial training but also allows the integrated model to benefit from the strengths
of all the LLMs. This new model can also be fine-tuned and adapted for various downstream tasks.
Moreover, the fusion can also happen among fine-tuned LLMs that specialize in a specific task.

The endeavor to integrate the capabilities of multiple models has been a long-standing pursuit. For
example, ensemble methods (Littlestone & Warmuth, 1994; Jiang et al., 2023) directly aggregate
the outputs of different models to enhance prediction performance and robustness. However, this
approach requires maintaining multiple trained models and executing each during inference, which
is impractical for LLMs due to their substantial memory and inference time requirements. Likewise,
this approach doesn’t facilitate fine-tuning, which is essential for many LLMs. Another approach
is to directly merge several neural networks into a single network through parameter-wise arith-
metic operations (Wortsman et al., 2022; Jin et al., 2022). This approach typically assumes uniform
network architectures and attempts to establish mappings between the weights of distinct neural net-

∗ Work was done during the internship at Tencent AI lab.
† Corresponding authors.

1

https://github.com/fanqiwan/FuseLLM


Published as a conference paper at ICLR 2024

 

Weight Merging FUSELLMEnsemble

System Output

……

 Aggregation Math Operation

Model A Model B Model C

……

Model A Model B Model C

Merged Model

Source 
LLMs

…

…

Fuse Train Update

…

…

Fused 
Matrix

Target 
LLM

FUSELLM

Probabilistic
Matrices

Figure 1: Illustration of conventional model fusion techniques (ensemble and weight merging) and
our knowledge fusion approach for LLMs (FUSELLM). Different animal icons represent different
LLMs, with various species denoting LLMs possessing differing architectures. FUSELLM exter-
nalizes the knowledge from multiple LLMs and transfers their capabilities to a target LLM.

works, which is often unattainable in the context of LLMs. Moreover, weight merging may lead to
suboptimal results when substantial differences exist in the parameter space (Li et al., 2022).

In this paper, we explore the fusion of LLMs from a probabilistic distribution perspective. For
an input text, we argue that the probabilistic distributions generated by different source LLMs can
reflect their inherent knowledge in understanding this text. Therefore, the proposed FUSELLM
leverages the generative distributions of source LLMs to externalize both their collective knowledge
and individual strengths and transfer them to the target LLM through lightweight continual training.
To achieve this, we develop a new strategy for aligning tokenizations originating from different
LLMs and explore two methods for fusing the probability distributions generated by these diverse
LLMs. During the continual training, FUSELLM places significant emphasis on minimizing the
divergence between the target LLM’s probabilistic distributions and those of the source LLMs.

To empirically demonstrate the effectiveness of FUSELLM, we examine a challenging yet general
scenario of LLMs fusion, where the source models share minimal commonalities. Specifically,
we focus on three popular open-source LLMs that possess distinct architectures and functionali-
ties: Llama-2 (Touvron et al., 2023), OpenLLaMA (Geng & Liu, 2023), and MPT (Team, 2023).
Evaluations across three benchmarks, which consist of a total of 42 tasks spanning reasoning, com-
monsense, and code generation, confirm that the target model trained by our method outperforms
each source LLM and the baseline in most tasks. Moreover, we simulate the existence of function-
ally distinct LLMs with identical architecture by continually training a single base model on several
domain-specific corpora. When evaluated based on perplexity, our method demonstrates superior
potential in combining the capabilities of these structurally identical LLMs compared to traditional
ensemble and weight merging methods.

To sum up, this paper explores a novel challenge called LLMs fusion, with the goal of creating
a unified model that effectively utilizes the collective capabilities and unique strengths of diverse
LLMs. Illustrated in Figure 1, our proposed approach distinguishes itself from traditional ensemble
and weight merging techniques by prioritizing the fusion of multiple LLMs through knowledge ex-
ternalization and transfer. This study yields several findings that may spark future research. Firstly,
while we demonstrate the effectiveness of our method through lightweight continual training on a
compact, high-quality corpus, the thoughtful selection of the training corpus can be a crucial con-
sideration, particularly with regard to its relevance to downstream tasks. Secondly, in scenarios
where the capabilities of source LLMs vary significantly, the fusion function appears to be crucial
in effectively combining their respective strengths. Lastly, when compared to traditional model en-
semble and merging techniques, the field of LLMs fusion appears to be a more promising avenue
for exploration, especially in light of the diverse structures and substantial model sizes of LLMs.

2 RELATED WORK

Model Fusion The integration of capabilities from diverse models has been a long-standing ob-
jective, with existing approaches mainly falling into two categories. Firstly, the traditional tech-
nique of model ensemble combines the outputs of multiple models to enhance overall system perfor-
mance (Littlestone & Warmuth, 1994; Sagi & Rokach, 2018). Note that this technique doesn’t in-
volve the explicit merging of multiple models into a new one. Common methods for model ensemble

2



Published as a conference paper at ICLR 2024

typically employ weighted averaging (Littlestone & Warmuth, 1994) or majority voting (Monteith
et al., 2011) to consolidate predictions from various models. Recently, Jiang et al. (2023) introduced
an ensemble framework designed to leverage the diverse strengths of multiple open-source LLMs.
This framework first employs a pairwise comparison method to detect subtle distinctions among
candidate outputs. Then, it combines the top-ranked candidates to produce an enhanced output,
capitalizing on their strengths while mitigating their weaknesses.

Secondly, weight merging presents another approach that facilitates model fusion at the parameter
level. Gupta et al. (2020) and Wortsman et al. (2022) merged weights from models with identi-
cal structures, obtained through different strategies or configurations, to achieve improved overall
performance. Similarly, Cha et al. (2021), Rame et al. (2022), and Arpit et al. (2022) explored
weighted averaging of models derived from different configurations to enhance out-of-distribution
generalization. Furthermore, Jin et al. (2022) merged models designed for specific domains or tasks
to create a generalist capable of addressing all domains or tasks. Going beyond parameter merging
of entire models, Wang et al. (2022b), Huang et al. (2023), and Zhang et al. (2023) applied linear
mathematical operations to adapter parameters to achieve superior generalization performance.

In a nutshell, while model ensemble requires the parallel deployment of multiple models, weight
merging is generally limited to models with identical architectures. In contrast, the approach pro-
posed in this paper supports the fusion of multiple LLMs with diverse architectures by explicitly
transferring their knowledge and capabilities to a target LLM.

Knowledge Distillation Knowledge distillation (Hinton et al., 2015), initially proposed for model
compression, involves training a student model under the guidance of one or more teacher mod-
els. In the NLP community, knowledge distillation has been widely applied to text classification
tasks. These applications include training the student model to replicate the teacher’s output distri-
bution (Sanh et al., 2019; Turc et al., 2019), as well as features (Sun et al., 2019; Jiao et al., 2020)
and relations (Wang et al., 2020) derived from intermediate layers of the teacher model. In the realm
of text generation, the conventional approach focuses on minimizing the KL divergence between
the student and teacher generation distributions. This is achieved by using the teacher’s probability
distributions at each time step as supervision (Khanuja et al., 2021; Gu et al., 2023; Agarwal et al.,
2023) or by directly training on the teacher’s generated texts (Peng et al., 2023; Xu et al., 2023).

While our method shares a framework similar to multi-teacher knowledge distillation, there are two
significant distinctions. First, in traditional knowledge distillation, the student models are typically
constrained to be smaller in size than the teachers. In our scenario, however, there are no limitations
on the size of the target model. Second, traditional knowledge distillation often results in the student
models lagging behind the teachers in performance after distillation. In contrast, we anticipate that
after the fusion, the target model will surpass any of the source models in performance.

3 KNOWLEDGE FUSION OF LLMS

The primary objective of LLMs fusion is to externalize the collective knowledge embedded within
multiple source LLMs and integrate their capabilities into a target LLM. Given K source LLMs
{Ms

j}Kj=1 with varying architectures, each having undergone individual pre-training or fine-tuning
on distinct datasets, the key idea behind our approach is to initially stimulate LLMs to manifest their
inherent knowledge by challenging them to predict the next token. The probabilistic distributions
of these predictions are thoroughly assessed, and the most accurate predictions are utilized to con-
tinually train the target LLM Mt on a corpus C using the causal language modeling objective. In
the following sections, we start with a brief introduction to the preliminaries, followed by a detailed
explanation of our LLMs fusion framework. Finally, we delve into the implementation details.

3.1 PRELIMINARIES

Let t denote a text sequence of length N sampled from the corpus C and t<i = (t1, t2, . . . , ti−1)
denote the sequence preceding the ith token. The causal language modeling (CLM) objective for
training a language model parameterized by θ is defined as minimizing the negative log-likelihood:

LCLM = −Et∼C

[∑
i

log pθ(ti|t<i)

]
, (1)

3



Published as a conference paper at ICLR 2024

where pθ(ti|t<i) is the model’s predicted probability for token ti given the preceding tokens.

The above objective decomposes sequence likelihood into token-level cross-entropy losses, compar-
ing each token’s predicted distribution to its one-hot representation. To provide a more generalized
perspective, we reframe this token-level view into a sequential distribution format. Specifically, for
the text sequence t, we aggregate token-level predictions and create a probabilistic distribution ma-
trix, Pθ

t ∈ RN×V , where the i-th row represents the distribution predicted by the model for the
ith token over the vocabulary of size V . The CLM objective can then be interpreted as reducing
the discrepancy between Pθ

t and the one-hot label matrix, Ot ∈ {0, 1}N×V , where each row is a
one-hot representation of the corresponding gold token. Formally, the CLM objective is transformed
into the following representation:

LCLM = −Et∼C
[
D(Pθ

t ,Ot)
]
, (2)

where D(·, ·) represents the discrepancy function between two matrices, and it is equivalent to Eq.
1 when implemented as the KL divergence.

3.2 LLMS FUSION

Taking this perspective on a language model, we argue that the probabilistic distribution matrix can
reflect its certain inherent knowledge in understanding the text. Consequently, different probabilistic
distribution matrices for the same text, originating from various LLMs, can be used to represent the
diverse knowledge embedded within these models. Acknowledging this, the proposed FUSELLM
approach tackles LLMs fusion through probabilistic modeling, aiming to create a unified LLM by
merging the probabilistic distributions of the source LLMs. To achieve this, when starting with a
set of LLMs to fuse, FUSELLM undergoes lightweight continual training of the target LLM on a
raw text corpus that mirrors the pre-training dataset. Instead of relying solely on the CLM objective,
FUSELLM places significant emphasis on minimizing the divergence between the target LLM’s
probabilistic distributions and those of the source LLMs.

For each text in the corpus C, we apply the provided K source LLMs and obtain a set of proba-
bilistic distribution matrices, denoted as {Pθj

t }Kj=1, where θj represents the parameters of the jth
LLM. Utilizing these matrices, we externalize the knowledge from individual models into a unified
space, essentially creating unified probabilistic representations over the text. We acknowledge that
variances in vocabulary among the source LLMs can lead to misaligned matrices {Pθj

t }Kj=1. To ad-
dress this, we employ a token alignment strategy, which is explained in Section 3.3, to foster more
coherent probabilistic interpretations across models.

Having aligned the probabilistic matrices, we proceed to fuse them into a single compact represen-
tation. Various fusion strategies can be applied for this purpose, as detailed in Section 3.3. We use
Pt to represent the fused representation matrix as follows:

Pt = Fusion(Pθ1
t ,Pθ2

t , . . . ,PθK
t ), (3)

where Fusion(·) denotes the function that combines multiple matrices, and the resulting matrix Pt

is seen as a representation of the collective knowledge and distinctive strengths of the source LLMs.

To transfer the capabilities of source LLMs to the target LLM, we enforce alignment between the
target LLM’s predictions and the fused representation matrix Pt. We use Qt to represent the output
distribution matrix of the target LLM for text t, and then define our fusion objective as follows:

LFusion = −Et∼C [D(Qt,Pt)] . (4)

The overall objective for our continual training consists of a weighted combination of the causal
language modeling objective LCLM and the fusion objective LFusion as follows:

L = λLCLM + (1− λ)LFusion. (5)

3.3 IMPLEMENTATION OF FUSELLM

In this section, we present the implementation details of token alignment and the fusion function for
fusing different LLMs in our FUSELLM method.

4



Published as a conference paper at ICLR 2024

Token Alignment Ensuring token alignment across multiple LLMs is crucial for effective knowl-
edge fusion, as it guarantees proper mapping of probabilistic distribution matrices. Fu et al. (2023)
employed dynamic programming to recursively minimize the total cost of editing one sequence of
tokens to match the other. If a one-to-one mapping exists between two tokens, the corresponding
distributions are perfectly mapped. Otherwise, the mapped distribution degenerates into a one-hot
vector. Since tokens generated by different tokenizers for the same sequence typically exhibit lim-
ited differences, we propose to enhance the success rate of token alignment by replacing the exact
match (EM) constraint in Fu et al. (2023) with a minimum edit distance (MinED) strategy, which
maps tokens from different tokenizers based on MinED. This relaxation of token alignment helps
preserve substantial information in the distribution matrices while introducing minor errors. For
more details of the token alignment, please refer to Appendix A.

Fusion Strategies To combine the collective knowledge of source LLMs while preserving their
unique strengths, it is essential to evaluate the quality of different LLMs and assign varying levels of
importance to their respective distribution matrices. For this purpose, when dealing with text t, we
utilize the cross-entropy loss between the distribution matrices and the gold labels as an indicator of
the prediction quality of the LLMs (Marion et al., 2023). A lower cross-entropy score for a source
LLM signifies a more accurate understanding of the text, and its prediction should be accorded
greater significance. Based on this criterion, we introduce two fusion functions: (1) MinCE: This
function outputs the distribution matrix with the minimum cross-entropy score; (2) AvgCE: This
function produces a weighted average of the distribution matrices based on cross-entropy scores.

The complete process of the FUSELLM method is described in Algorithm 1.

Algorithm 1 FUSELLM for LLMs Fusion

Require: Source LLMs {Ms
j}Kj=1, training corpus C.

1: Initialize the target LLM Mt with one of the source LLMs.
2: for text t in C do
3: Apply the K source LLMs to compute probabilistic distribution matrices {Pθj

t }Kj=1.

4: Align {Pθj
t }Kj=1 using the MinED alignment method.

5: Fuse {Pθj
t }Kj=1 to obtain Pt with the MinCE or AvgCE fusion function.

6: Update parameters of Mt by minimizing the overall loss fuction in Eq. 5.
7: end for
8: return Mt.

4 EXPERIMENTS

In our experiments, we consider a general but challenging scenario of LLMs fusion where the source
models share minimal commonalities in architectures or functionalities. Specifically, we conduct
experiments on the 7B scale and select three representative open-source models: Llama-2, Open-
LLaMA, and MPT as the source LLMs for fusion. Regarding the target LLM, we opt for another
Llama-2 7B, which is generally the most robust one among the three source LLMs. The target LLM
starts with the same pre-trained weights as its source counterpart but differs in that it updates pa-
rameters during training. To evaluate the performance of FUSELLM, we conduct experiments on
benchmarks assessing the capabilities of LLMs in reasoning, commonsense, and code generation.

4.1 EXPERIMENTAL SETUP

Dataset for continual training To continually train the target LLM for LLMs fusion, it is essential
to have a compact yet diverse training dataset. We have chosen MiniPile, a meticulously curated
dataset resulting from a thorough clustering and filtering process. MiniPile comprises approximately
1 million documents across 22 domains and 1.8 billion tokens, constituting less than 0.1% of the 2
trillion training tokens of Llama-2. More dataset details can be found in Appendix B.

Fusion function For the fusion function, we use the minimum cross-entropy (MinCE). However,
the impact of employing alternative fusion functions will be examined in Section 4.4.

Training details We train the target LLM of Llama-2 7B using a batch size of 128 and a maximum
length of 2048 on a single node equipped with 8 NVIDIA A100 GPUs, each with 40GB of memory.

5



Published as a conference paper at ICLR 2024

Our training framework is implemented based on the Huggingface Transformers (Wolf et al., 2020)
and accelerated with FlashAttention (Dao et al., 2022). We empirically set the combination weight
λ in Eq. 5 to 0.9. The training consists of only a single epoch, which takes approximately 33 hours.
For further hyper-parameter details, please refer to Appendix C.

Evaluation We evaluate FUSELLM on three benchmarks that represent different core capabilities
of LLMs, spanning reasoning, commonsense, and code generation.

• Big-Bench Hard (BBH) (Suzgun et al., 2022) is a benchmark to evaluate the general reasoning
ability of LLMs. It contains 23 multiple-choice tasks and 4 free-form generation tasks from the
Big-Bench (Srivastava et al., 2022), which can be classified into four categories: algorithmic and
arithmetic reasoning, natural language understanding, world knowledge, and multilingual knowl-
edge and reasoning. We follow previous work (Wang et al., 2023b) to generate the predictions based
on few-shot chain-of-thought (CoT) prompts and then calculate the exact match (EM) accuracy.
• Common Sense (CS) is a benchmark to evaluate the commonsense capability of LLMs. We con-
sider 5 standard multiple-choice tasks: ARC easy and challenge (Clark et al., 2018), BoolQ (Clark
et al., 2019a), HellaSwag (Zellers et al., 2019), and OpenBookQA (Mihaylov et al., 2018). We em-
ploy lm-eval-hardness (Gao et al., 2021) to conduct a likelihood-based zero-shot evaluation. Specif-
ically, we select the option with the highest likelihood given the context and report the accuracy.
• MultiPL-E (ME) (Cassano et al., 2022) is a multilingual programming benchmark to assess the
coding ability of LLMs. It is translated from the Python benchmark (Chen et al., 2021) into parallel
datasets in 18 programming languages. We use the bigcode-evaluation-hardness (Ben Allal et al.,
2022) to perform zero-shot code generation in 10 popular programming languages in the HumanEval
category and report the pass@1 (Chen et al., 2021) based on 20 generated samples for each question.

Baselines In our experiments, we compare our FUSELLM with two sets of baselines: (1) original
LLMs, including Llama-2 7B, OpenLLaMA 7B, and MPT 7B; and (2) Llama-2 CLM: continually
trained Llama-2 7B on MiniPile using only the casual language modeling objective.

4.2 OVERALL RESULTS

Table 1 presents the overall results of FUSELLM in comparison to the baseline methods on BBH.
We can observe that the three source LLMs exhibit varying performance across the 27 BBH tasks,
with Llama-2 generally outperforming the others. After continual training with a compact and di-
verse corpus, Llama-2 CLM shows a relative improvement of 1.86% compared to Llama-2, although
this improvement is relatively modest and inconsistent across tasks. On average, FUSELLM demon-
strates an average relative performance gain of 5.16% over the original Llama-2 across all 27 tasks.
In specific tasks, the enhancements achieved by FUSELLM are substantial (e.g., from 54.40 to
65.20 in the Hyperbaton task). In tasks such as Dick Languages where simple continual pre-training
leads to a decline in performance, FUSELLM leverages the combined strengths of individual source
LLMs to recover performance improvements. Note that FUSELLM occasionally exhibits degraded
performance on tasks such as Geometric Shapes and Word Sorting, which could be attributed to two
reasons. First, the other source LLMs, apart from Llama-2, perform poorly on these tasks, affecting
the fusion results. Second, the relevance between the continual training dataset and downstream
tasks also contributes to the performance degradation.

Table 2 shows the zero-shot performance of FUSELLM and the baseline methods on the Common
Sense (CS) benchmark. The results demonstrate that FUSELLM consistently surpasses the base-
lines across all five tasks, achieving a relative performance improvement of 1.25% over Llama-2.
In contrast, Llama-2 CLM exhibits a marginal improvement, with only a 0.16% relative enhance-
ment compared to Llama-2. Notably, substantial improvements from Llama-2 to FUSELLM are
observed in the challenging ARC-challenge (2.40%) and OpenBookQA (2.71%) tasks, highlighting
the effectiveness of FUSELLM in leveraging collective knowledge to address intricate problems.

For the code generation evaluation, the zero-shot performance of FUSELLM on the MultiPL-E (ME)
benchmark is reported in Table 3. We observe that FUSELLM outperforms Llama-2 in 9 out of the
10 tasks, with a notable enhancement in the pass@1 score for specific programming languages such
as R, increasing from 4.97 to 5.84. Given that both OpenLLaMA and MPT demonstrate remark-
able performances in code generation tasks compared to Llama-2, the fusion result via FUSELLM
achieves an average performance gain of 6.36%, which is considerably higher than the 1.37% im-
provement observed in Llama-2 CLM. However, it’s important to note that FUSELLM still exhibits

6



Published as a conference paper at ICLR 2024

Task OpenLLaMA MPT Llama-2 Llama-2 CLM FUSELLM
Boolean Expressions 74.40 66.00 68.80 76.00 (+10.47%) 71.60 (+4.07%)
Causal Judgement 45.45 50.80 50.80 46.52 (-8.43%) 46.52 (-8.43%)
Date Understanding 43.60 43.60 59.60 59.20 (-0.67%) 62.40 (+4.70%)
Disambiguation QA 36.00 47.60 46.80 48.00 (+2.56%) 50.00 (+6.84%)
Dyck Languages 5.20 5.20 7.20 6.40 (-11.11%) 8.80 (+22.22%)
Formal Fallacies 50.80 52.80 49.20 48.80 (-0.81%) 49.20 (+0.00%)
Geometric Shapes 0.00 0.00 34.40 19.20 (-44.17%) 22.80 (-33.72%)
Hyperbaton 62.80 53.60 54.40 56.40 (+3.68%) 65.20 (+19.85%)
Logical Deduction (3 objects) 43.60 40.80 54.00 57.20 (+5.93%) 60.40 (+11.85%)
Logical Deduction (5 objects) 24.80 31.60 31.20 35.60 (+14.10%) 33.20 (+6.41%)
Logical Deduction (7 objects) 16.80 18.40 24.80 29.60 (+19.35%) 25.60 (+3.23%)
Movie Recommendation 39.60 52.00 72.80 71.60 (-1.65%) 73.60 (+1.10%)
Multistep Arithmetic Two 0.80 0.40 0.80 4.40 (+450.00%) 4.80 (+500.00%)
Navigate 54.00 48.80 56.00 61.20 (+9.29%) 64.40 (+15.00%)
Object Counting 49.60 40.40 49.60 51.60 (+4.03%) 55.20 (+11.29%)
Penguins in a Table 28.08 28.08 32.19 31.51 (-2.11%) 32.88 (+2.14%)
Reasoning about Colored Objects 28.00 31.60 46.40 47.20 (+1.72%) 48.40 (+4.31%)
Ruin Names 31.20 23.20 34.00 30.80 (-9.41%) 32.40 (-4.71%)
Salient Translation Error Detection 14.80 0.00 24.80 27.60 (+11.29%) 29.20 (+17.74%)
Snarks 44.94 45.51 47.75 49.44 (+3.54%) 49.44 (+3.54%)
Sports Understanding 64.40 82.40 90.00 90.00 (+0.00%) 91.20 (+1.33%)
Temporal Sequences 32.00 21.20 12.80 16.40 (+28.13%) 16.40 (+28.13%)
Tracking Shuffled Objects (3 objects) 36.40 30.40 33.20 33.20 (+3.61%) 34.40 (+3.61%)
Tracking Shuffled Objects (5 objects) 19.20 14.40 15.60 15.20 (-2.56%) 15.60 (+0.00%)
Tracking Shuffled Objects (7 objects) 10.80 2.00 11.20 9.60 (-14.29%) 10.40 (-7.14%)
Web of Lies 51.60 63.60 50.80 61.60 (+21.26%) 65.60 (+29.13%)
Word Sorting 5.60 6.80 12.80 7.60 (-40.63%) 7.60 (-40.63%)
Avg. 27 Tasks 33.87 33.38 39.70 40.44 (+1.86%) 41.75 (+5.16%)

Table 1: Overall results of FUSELLM and baselines in reasoning evaluations on Big-Bench Hard
(BBH), where percentages indicate the rate of improvement/decrease compared to Llama-2.

Task OpenLLaMA MPT Llama-2 Llama-2 CLM FUSELLM
ARC-easy 69.70 70.12 74.58 74.54 (-0.05%) 75.04 (+0.62%)
ARC-challenge 41.38 42.15 46.33 46.50 (+0.37%) 47.44 (+2.40%)
BoolQ 72.29 74.74 77.71 76.88 (-1.07%) 78.13 (+0.54%)
HellaSwag 74.53 76.25 76.00 76.57 (+0.75%) 76.78 (+1.03%)
OpenBookQA 41.00 42.40 44.20 44.80 (+1.36%) 45.40 (+2.71%)
Avg. 5 Tasks 59.78 61.13 63.76 63.86 (+0.16%) 64.56 (+1.25%)

Table 2: Overall results of FUSELLM and baselines in commonsense evaluations on CommenSense
(CS), where percentages indicate the rate of improvement/decrease compared to Llama-2.

Task OpenLLaMA MPT Llama-2 Llama-2 CLM FUSELLM
C++ 14.47 13.11 7.45 9.88 (+32.62%) 9.25 (+24.16%)
Go 68.20 66.96 57.02 54.44 (-4.52%) 59.78 (+4.84%)
Java 14.28 13.42 10.31 10.50 (+1.84%) 10.34 (+0.29%)
JavaScript 17.61 13.01 13.17 14.25 (+8.20%) 14.32 (+8.73%)
PHP 11.24 9.53 9.75 9.04 (-7.28%) 9.41 (-3.49%)
Python 15.96 17.24 13.85 13.07 (-5.63%) 13.91 (+0.43%)
R 7.52 4.53 4.97 5.25 (+5.63%) 5.84 (+17.51%)
Ruby 10.34 12.33 10.37 10.68 (+2.99%) 11.24 (+8.39%)
Rust 6.18 8.29 6.77 6.96 (+2.81%) 7.05 (+4.14%)
TypeScript 15.31 14.13 12.61 14.19 (+12.53%) 14.50 (+14.99%)
Avg. 10 Tasks 18.11 17.26 14.63 14.83 (+1.37%) 15.56 (+6.36%)

Table 3: Overall results of FUSELLM and baselines in code generation evaluations on MultiPL-E
(ME), where percentages indicate the rate of improvement/decrease compared to Llama-2.

a performance gap compared to OpenLLaMA or MPT in this evaluation. This discrepancy can be
attributed to two primary reasons: the inferior performances of Llama-2 as the target model com-
pared to other source LLMs and an insufficient proportion of coding-related texts in the continual
training corpus, estimated at approximately 7.59%1.

1Since MiniPile lacks specific data percentages for individual domains, we approximate this by considering
the percentage of the Github domain in The Pile.

7



Published as a conference paper at ICLR 2024

4.3 THE FUSED PROBABILISTIC DISTRIBUTIONS

0.26 0.52 0.79 1.05 1.31 1.57
#Training Tokens (Billion)

39.75

40.00

40.25

40.50

40.75

41.00

41.25

41.50

EM
 A

cc
ur

ac
y

3.9x less

2.5% better

FuseLLM
Llama-2 CLM
Llama-2

Figure 2: Effect of the fused distribu-
tions in accelerating the optimization pro-
cess on BBH, where the x-axis denotes the
number of training tokens and the y-axis
denotes the exact match accuracy.

We investigate the effectiveness of the fused proba-
bilistic distributions obtained from multiple LLMs and
track the trend of performance improvement during the
training process. Figure 2 illustrates the comparison
of few-shot CoT performance between Llama-2 CLM
and FUSELLM with varying scales of training data
on BBH. Our observations reveal that FUSELLM en-
hances the exact match (EM) accuracy by 2.5% com-
pared to Llama-2 CLM and achieves the best perfor-
mance of Llama-2 CLM within 0.52 billion tokens. No-
tably, this represents a 3.9× reduction in token require-
ments compared to the 1.57 billion tokens needed by
Llama-2 CLM. These results suggest that the proba-
bilistic distributions derived from LLMs contain knowl-
edge that is more readily learnable than the original text
sequences, which accelerates the optimization process.
This finding aligns with the observations in Hsieh et al. (2023). We further conduct an experiment
to show that our performance improvement stems from the integration of knowledge from multiple
LLMs rather than solely from continual training. The results and analysis are shown in Appendix G.

4.4 ANALYSIS OF IMPLEMENTATION PROCESS

In this section, we delve into the crucial elements of FUSELLM’s implementation, including the
number of source LLMs, the criteria for token alignment, and the choice of the fusion function.

Model BBH CS ME
OpenLLaMA 33.87 59.78 18.11
MPT 33.38 61.13 17.26
Llama-2 39.70 63.76 14.63
Llama-2 CLM 40.44 (+1.86%) 63.86 (+0.16%) 14.83 (+1.37%)
Llama-2 + OpenLLaMA 41.00 (+3.27%) 64.50 (+1.16%) 15.51 (+6.02%)
Llama-2 + MPT 41.16 (+3.68%) 64.51 (+1.18%) 15.47 (+5.74%)
FUSELLM 41.75 (+5.16%) 64.56 (+1.25%) 15.56 (+6.36%)

Table 4: Results of FUSELLM by incorporating
varying numbers of models.

Number of source LLMs. In Table 4, we
present the results of fusing different num-
bers of LLMs. We note that the performance
of FUSELLM demonstrates apparent improve-
ment as the number of models increases from
1 to 3. Nevertheless, the benefits of integrat-
ing additional models exhibit variations across
benchmarks. Remarkably, a consistent per-
formance improvement is observed in BBH.
Whereas in CS or ME, the advantages are more prominent when fusing two models. This phe-
nomenon may be attributed to the considerable performance differences among the three models on
various tasks in BBH, while the performance differences in tasks of CS or ME are relatively smaller.

Criteria for token alignment. During the fusion of LLMs, ensuring the proper alignment of to-
kens and vocabularies from multiple models is of paramount importance. In Table 5 (upper), we
present a comparison of two alignment criteria. It is evident that the proposed MinED method,
which is based on minimum edit distance, consistently outperforms the EM method introduced by
Fu et al. (2023), which relies on exact matching. We suggest that this performance enhancement
results from MinED’s ability to relax the constraints of EM, as tokens separated by distinct tokeniz-
ers within the same sequence often exhibit minor discrepancies. Consequently, MinED effectively
supplements a considerable amount of useful token information while introducing negligible errors.

Choice BBH ME CS
Alignment Criteria

EM 41.57 15.49 64.24
MinED 41.75 (+0.43%) 15.56 (+0.45%) 64.56 (+0.50%)

Fusion Function
AvgCE 41.04 15.39 63.98
MinCE 41.75 (+1.73%) 15.56 (+1.10%) 64.56 (+0.91%)

Table 5: Comparison of different token alignment
criteria (upper) and fusion functions (down).

Fusion function. In Section 3.3, we intro-
duce two variations of the fusion function for
FUSELLM: one utilizing a distribution matrix
with minimum cross entropy (MinCE) and the
other adopting a weighted average of distribu-
tion matrices based on cross entropy (AvgCE).
A comparison of the two functions is presented
in Table 5 (down). The findings demonstrate
that FUSELLM with MinCE consistently out-
performs AvgCE across all benchmarks. This
can be attributed to the distortions introduced by the straightforward weighted summation used in
AvgCE, which may diminish the distinct advantages of individual LLMs.

8



Published as a conference paper at ICLR 2024

4.5 FUSELLM VS. KNOWLEDGE DISTILLATION

Model BBH CS ME
Llama-2 13B 47.92 66.33 18.76
OpenLLaMA 33.87 59.78 18.11
MPT 33.38 61.13 17.26
Llama-2 39.70 63.76 14.63
Llama-2 CLM 40.44 (+1.86%) 63.86 (+0.16%) 14.83 (+1.37%)
Llama-2 KD 40.88 (+2.97%) 64.41 (+1.02%) 15.45 (+5.60%)
FUSELLM 41.75 (+5.16%) 64.56 (+1.25%) 15.56 (+6.36%)

Table 6: Comparison of FUSELLM and knowl-
edge distillation. Llama-2 KD denotes the en-
hanced Llama-2 7B achieved via knowledge dis-
tillation from Llama-2 13B. Percentages indicate
the rate of improvement compared to Llama-2.

While knowledge distillation techniques can
also be utilized to enhance a LLM’s capabili-
ties, FUSELLM stands out due to two distinct
aspects, as previously outlined. In this section,
we compare FUSELLM with traditional knowl-
edge distillation. Specifically, we extract prob-
abilistic distributions from Llama-2 13B and
apply the conventional knowledge distillation
method to transfer its abilities into Llama-2 7B.
As illustrated in Table 6, the distilled model
(Llama-2 KD) outperforms the original Llama-
2 7B across all benchmarks, demonstrating the
effectiveness of knowledge distillation. How-
ever, when compared to FUSELLM, the improvement achieved by Llama-2 KD is relatively modest,
especially in the case of BBH (2.97% vs. 5.16%). This suggests that the superior results achieved by
FUSELLM through the integration of three 7B models with diverse architectures via continual train-
ing outweigh the benefits of simply distilling knowledge from a single 13B model. This observation
highlights the idea that “More is different, but different can also be more” (Tay et al., 2022).

4.6 FUSELLM VS. ENSEMBLE/MERGING

Model Phil NIH USPTO Average
Pythia 0.9008 0.6740 0.6077 0.7275
Phil 0.8397 0.6861 0.6228 0.7162
NIH 0.9248 0.6215 0.6278 0.7247
USPTO 0.9296 0.6872 0.6017 0.7395
Ensemble 0.8960 0.6647 0.6180 0.7262
Weight Merging 0.8786 0.6496 0.6054 0.7112
FUSELLM 0.8463 0.6569 0.6068 0.7034

Table 7: Comparison of perplexity between
FUSELLM and ensemble&weight merging.

As previously mentioned, conventional tech-
niques such as model ensemble and weight
merging are commonly employed to fuse mul-
tiple LLMs. To compare the efficacy of our
FUSELLM with these existing fusion methods,
we conduct experiments simulating scenarios
where multiple LLMs originated from the same
base model but were trained on distinct corpora.
We first select three relevant domains (PhilPa-
pers, NIH ExPorter, and USPTO Backgrounds)
from The Pile and use 1 billion tokens from
each domain to continually train Pythia 1B (Biderman et al., 2023), resulting in three distinct LLMs
with identical structures. Then, we apply different fusion techniques to these LLMs: (1) The ensem-
ble method calculates a weighted average of the probabilities generated by all LLMs, considering
the performance of each model; (2) The weight merging method merges multiple LLMs into a single
one within the parameter space, with the merging weights determined by model performance; (3)
FUSELLM undergoes continual training on 0.1 billion tokens sampled from the three domains. The
results of perplexity for FUSELLM and the other fusion methods on the test sets are presented in Ta-
ble 7. We measure perplexity in bits per UTF-8 encoded byte (BPB) following the implementation
in The Pile. We observe that after training with 1 billion tokens, the capabilities of the original LLM
are transferred to each domain-specific LLM, resulting in decreased performance in other domains.
While all fusion techniques can integrate the strengths of diverse models, FUSELLM consistently
achieves the lowest average perplexity across the three domains. This underscores its potential for
harnessing collective knowledge more effectively than ensemble and weight merging methods.

5 CONCLUSION

In this study, we have explored the realm of knowledge fusion for LLMs to create a unified model
that combines the capabilities and distinctive strengths of multiple structurally diverse LLMs. We
introduced a novel method, FUSELLM, which leverages the generative distributions of these source
LLMs to externalize their knowledge and employs them in the continual training of the target LLM.
Through a series of experiments, we have demonstrated the superiority of FUSELLM over individ-
ual source LLMs and established baselines. Notably, in a simulated experiment featuring multiple
structurally identical LLMs, FUSELLM has showcased its competitive effectiveness compared to
ensemble and weight merging methods. Hence, the domain of LLMs fusion emerges as a more
promising avenue for exploration, particularly given the diverse structures and substantial model
sizes of LLMs. We believe that these findings will inspire future research endeavors.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (No. 62176270),
the Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515012832), and the
Tencent AI Lab Rhino-Bird Focused Research Program.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improv-
ing model selection and boosting performance in domain generalization. Advances in Neural
Information Processing Systems, 35:8265–8277, 2022.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: A scalable and extensible approach to benchmarking neural code generation. arXiv preprint
arXiv:2208.08227, 2022.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Niehues Jan, Stüker Sebastian, Sudoh Kat-
suitho, Yoshino Koichiro, and Federmann Christian. Overview of the iwslt 2017 evaluation cam-
paign. In Proceedings of the 14th International Workshop on Spoken Language Translation, pp.
2–14, 2017.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405–22418, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019a.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D Manning, and Quoc Le.
Bam! born-again multi-task networks for natural language understanding. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 5931–5937, 2019b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

10



Published as a conference paper at ICLR 2024

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, April
2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. arXiv preprint arXiv:2301.12726, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, sep 2021.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
arXiv preprint arXiv:2306.08543, 2023.

Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste. Stochastic weight averaging in parallel:
Large-batch training that generalizes well. International Conference on Learning Representa-
tions, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 4163–4174, 2020.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2022.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

11



Published as a conference paper at ICLR 2024

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. arXiv preprint
arXiv:2307.06440, 2023.

Simran Khanuja, Melvin Johnson, and Partha Talukdar. Mergedistill: Merging language models
using pre-trained distillation. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 2874–2887, 2021.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317, 2023.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models. In
First Workshop on Interpolation Regularizers and Beyond at NeurIPS 2022, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Kristine Monteith, James L Carroll, Kevin Seppi, and Tony Martinez. Turning bayesian model av-
eraging into bayesian model combination. In The 2011 International Joint Conference on Neural
Networks, pp. 2657–2663. IEEE, 2011.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 35:10821–10836, 2022.

Matthias C Rillig, Marlene Ågerstrand, Mohan Bi, Kenneth A Gould, and Uli Sauerland. Risks and
benefits of large language models for the environment. Environmental Science & Technology, 57
(9):3464–3466, 2023.

Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 8(4):e1249, 2018.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

12



Published as a conference paper at ICLR 2024

Sunny Sanyal, Jean Kaddour, Abhishek Kumar, and Sujay Sanghavi. Understanding the ef-
fectiveness of early weight averaging for training large language models. arXiv preprint
arXiv:2306.03241, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4323–4332, 2019.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q Tran, David R So, Siamak Shakeri, Xavier Garcia,
Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, et al. Transcending scaling laws
with 0.1% extra compute. arXiv preprint arXiv:2210.11399, 2022.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable
llms, 2023. Accessed: 2023-05-05.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022a.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neu-
ral Information Processing Systems, 33:5776–5788, 2020.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level scien-
tific problem-solving abilities of large language models. In The 3rd Workshop on Mathematical
Reasoning and AI at NeurIPS’23, 2023a.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language models.
arXiv preprint arXiv:2205.12410, 2022b.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels
go? exploring the state of instruction tuning on open resources. arXiv preprint arXiv:2306.04751,
2023b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Dyiemonstrations, pp. 38–45, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

13



Published as a conference paper at ICLR 2024

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient modules
with arithmetic operations. arXiv preprint arXiv:2306.14870, 2023.

A DETAILS OF TOKEN ALIGNMENT

For an input text, token alignment involves aligning two distribution matrices from two source
LLMs. Therefore, the alignment comprises two dimensions: token-wise with respect to the text
and distribution-wise with respect to the vocabulary. To provide a clear explanation, we show an
example of different methods for token alignment in Figure 3.

In the token dimension, we utilize the dynamic programming approach to recursively minimize the
total cost of editing one sequence of tokens to align with another. When the mapped tokens are iden-
tical, such as the token “now” in the given example, these tokens are successfully aligned, allowing
for the corresponding distributions to align subsequently. However, when the mapped tokens exhibit
differences, such as the “get” and “gets” tokens in the example, the previous EM method proposed
by Fu et al. (2023) does not align these tokens, resulting in the distributions degenerating into one-
hot vectors. In contrast, our proposed MinED method successfully aligns the “gets” token with the
“get” token, as they exhibit the minimal edit distance in the vocabularies from the two source LLMs.

Concerning the distribution dimension, the alignment is performed between two vocabularies from
different tokenizers of two source LLMs. Therefore, for distribution values with identical tokens,
such as “current 0.05” and “current 0.04”, they will be aligned effectively. For distribution values
involving different tokens, such as “immediate 0.04” and “immediately 0.03”, the EM method dis-
regards this value. However, the proposed MinED method maps “immediately” to “immediate” due
to their minimal edit distance, resulting in the successful alignment of these distribution values.

LLM 1 Tokenization LLM 2 Tokenization
now

get

now

gets

now

current

immediate

now

current

immediately

0.90

0.05

0.04

0.91

0.04

0.03

token aligned

distribution not aligned

distribution aligned

distribution aligned

token not aligned

get

gains

obtains

0.50

0.38

0.10

get1.00degeneration to one-hot

LLM 1 Tokenization LLM 2 Tokenization
now

get

now

gets

now

current

immediate

now

current

immediately

0.90

0.05

0.04

0.91

0.04

0.03

token aligned

mapping to ‘immediate’

distribution aligned

distribution aligned

mapping to ‘get’

get

gains

obtains

0.50

0.38

0.10

gets

gains

obtains

0.60

0.22

0.13distribution aligned

distribution aligned

mapping to ‘get’

EM MinED

Figure 3: An example of different methods for token alignment.

B DETAILS OF MINIPILE

MiniPile is curated from The Pile (Gao et al., 2020) through a three-stage pruning process: (1)
extracting embeddings for all documents with E5-Large (Wang et al., 2022a), which is a sentence
embedding model, (2) clustering the embeddings using K-means, and (3) filtering out low-quality
clusters. Therefore, MiniPile retains a compact scale while exhibiting extensive diversity, making it
a prevalent choice for efficient training of LLMs (Kaddour et al., 2023; Sanyal et al., 2023).

14



Published as a conference paper at ICLR 2024

C TRAINING DETAILS

Our model is optimized using the AdamW optimizer with β1 = 0.9 and β2 = 0.95, with gradient
clipping set to 1.0 and weight decay to 0.1. A cosine learning rate schedule is employed, with a
maximum learning rate of 1e-5 and a warmup ratio of 0.008. To accelerate the training, we employ
packing (Raffel et al., 2020), where multiple training instances are grouped into a single sequence
separated by end-of-sequence tokens, allowing for training on more tokens in each batch.

D ADDITIONAL EVALUATION RESULTS

To further illustrate the effectiveness of FUSELLM, we incorporate additional generative bench-
marks related to knowledge-based question-answering, reading comprehension, content analysis,
machine translation, and theorem application. The results presented in Table 8 highlight FuseLLM’s
superiority over all source LLMs across all tasks.

• TriviaQA (Joshi et al., 2017) is a benchmark to evaluate the knowledge-based question-answering
ability. We conduct a zero-shot evaluation and report the EM accuracy.
• DROP (Dua et al., 2019) is a benchmark to evaluate the reading comprehension ability. We
conduct a few-shot evaluation with CoT prompts and report the EM accuracy.
• LAMBADA (Paperno et al., 2016) is a benchmark to evaluate the content analysis ability. We
conduct a zero-shot evaluation and report the EM accuracy.
• IWSLT2017 (Cettolo et al., 2017) is a benchmark to evaluate the machine translation ability. We
conduct a zero-shot evaluation and report the BLEU (Papineni et al., 2002) score.
• SciBench (Wang et al., 2023a) is a benchmark to evaluate the theorem application ability. We
conduct a few-shot evaluation with CoT prompts and report the EM accuracy.

Task OpenLLaMA MPT Llama-2 Llama-2 CLM FUSELLM
TrivialQA 39.96 28.89 52.46 53.14 (+1.30%) 54.49 (+3.87%)
DROP 22.31 23.54 27.25 28.51 (+4.62%) 28.97 (+6.31%)
LAMBADA 70.31 70.08 73.28 73.45 (+0.23%) 73.72 (+0.60%)
IWSLT2017 5.51 5.49 6.48 6.91 (+6.64%) 6.75 (+4.17%)
SciBench 0.68 0.88 0.14 0.94 (+571.43%) 1.65 (+1078.57%)

Table 8: Overall results of FUSELLM and baselines in additional generative benchmarks, where
percentages indicate the rate of improvement/decrease compared to Llama-2.

E FUSELLM VS. PREVIOUS MODEL FUSION METHODS

Model BBH ME
OpenLLaMA 33.87 18.11
MPT 33.38 17.26
Llama-2 39.70 14.63
LLM-Blender (Rank&Fuse) 24.48 0.06
LLM-Blender (Rank) 37.17 17.85
Llama-2 CLM 40.44 14.83
FUSELLM 41.75 15.56

Table 9: Comparison of FUSELLM and
LLM-Blender.

The motivation behind FuseLLM is to integrate the col-
lective knowledge of multiple LLMs with diverse archi-
tectures and pre-training corpora. Consequently, the tra-
ditional fusion method of model merging, which demands
identical model architectures, is not directly applicable in
this context. While the model ensemble technique aggre-
gates predictions from multiple LLMs, the drawback lies
in the substantial memory and time costs when maintain-
ing multiple source LLMs during inference. We further
compare FUSELLM with an ensemble method for LLMs,
LLM-Blender (Jiang et al., 2023), which ranks and com-
bines the output texts from multiple LLMs with ranker and fuser models. Specifically, we conduct
experiments on the Big-Bench Hard and MultiPL-E benchmarks using the open-source ranker and
fuser models. Notably, the CommonSense benchmark, which utilizes perplexity-based evaluation,
cannot adapt the LLM-Blender method. The experimental results are shown in Table 9, where
LLM-Blender (Rank&Fuse) refers to using the ranker to obtain the top three results and then using
the fuser to combine them, and LLM-Blender (Rank) represents simply using the ranker to obtain
the top one result. We observed a notable performance deterioration after fusion when employ-
ing both the ranker and fuser. This could be attributed to the fuser model’s training within the

15



Published as a conference paper at ICLR 2024

instruction-tuning context, potentially leading to inadequate generalization to the test tasks. Further-
more, while LLM-Blender (Rank) outperforms the LLM-Blender (Rank&Fuse), it remains inferior
to the best-performing source LLM. This suggests the ranker model’s inability to discriminate the
optimal responses when combining different LLMs efficiently.

F INCORPORATING INSTRUCTION-TUNING MODELS WITH FUSELLM

Recall that the proposed FUSELLM involves extracting distribution matrices from multiple distinct
source LLMs and continually training the target LLM. Therefore, FUSELLM is also applicable to
instruction-tuning models, provided that all corresponding continual-training samples adhere to the
instruction-tuning format and mask the instruction part when calculating the training loss.

Model Vicuna Benchmark
OpenLLaMA ShareGPT 7.23
MPT Open-Platypus 6.46
Llama-2 Evol-Instruct 7.88
Llama-2 Evol-Instruct CLM 8.03 (+1.90%)
FUSELLM 8.16 (+3.55%)

Table 10: Results of fusing instruction-
tuning models with FUSELLM.

To confirm this, we conduct new experiments on the fu-
sion of instruction-tuning LLMs. Specifically, we ini-
tially fine-tune Llama-2, OpenLLaMA, and MPT us-
ing 20k samples from Evol-Instruct (Xu et al., 2023),
ShareGPT (Chiang et al., 2023), and Open-Platypus (Lee
et al., 2023) datasets, respectively. Consequently, the
three source LLMs transitioned into instruction-tuning
LLMs. Then, we sample another 5k samples from each
of the aforementioned datasets to create a corpus for con-
tinual training, specifying Llama-2 Evol-Instruct as the target LLM for knowledge fusion. We assess
the instruction-following performance on the Vicuna Benchmark using GPT-4 as an evaluator fol-
lowing Chiang et al. (2023), which gives a score from 1 to 10 for each answer. The results shown
in Table 10 demonstrate that FuseLLM surpasses each individual source instruction-tuning LLM,
achieving the best performance with GPT-4 judgment.

G CAUSE OF PERFORMANCE IMPROVEMENT

0 20 40 60 80
Percentage of instances with decreased BPB

Books

Github

Wikipedia

C4

CommonCrawl

StackExchange

Arxiv

FuseLLM < Llama-2 CLM
(OpenLLaMA or MPT) < Llama-2

Figure 4: Perplexity comparison on RedPajama.
The bars denote the percentage of examples with
reduced perplexity when transitioning from CLM
to FUSELLM (solid) and from Llama-2 to Open-
LLaMA or MPT (slashed).

To further demonstrate that our performance
improvement stems from the integration of
knowledge from multiple LLMs rather than
solely from continual training, we conduct an
evaluation on an alternative corpus, RedPa-
jama (Computer, 2023). To mitigate the impact
of different tokenizers, we employ the bits per
UTF-8 encoded byte (BPB) metric proposed by
Gao et al. (2020), where a smaller value indi-
cates lower perplexity. Then, we compute the
percentage of test samples in each domain ex-
hibiting decreased BPB from Llama-2 CLM to
FUSELLM and from Llama-2 to OpenLLaMA
or MPT. The results in Figure 4 suggest that
when FUSELLM outperforms Llama-2 CLM,
the performance of OpenLLaMA or MPT typ-
ically surpasses that of Llama-2, as evidenced
by the slashed bars in each domain. This phenomenon is particularly pronounced in domains such
as Arxiv, StackExchange, Wikipedia, and Github, where it exceeds 95%. This compelling evidence
suggests that the performance enhancements achieved by FUSELLM are indeed attributed to the
integration of knowledge from multiple LLMs.

H WEIGHT FOR LOSS COMBINATION

Design BBH ME CS
Dynamic 41.75 15.52 64.50
Static 41.75 (+0.00%) 15.56 (+0.25%) 64.56 (+0.09%)

Table 11: Comparison of different designs for λ.

As an alternative to the static weight for λ in
Eq. 5, we consider a dynamic design, which is
referred to as teacher annealing (Clark et al.,
2019b). This technique gradually increases λ
during the training process, giving preference

16



Published as a conference paper at ICLR 2024

to LFusion initially and subsequently shifting the focus to LCLM. In this experiment, we set the λ to
increase linearly from 0.7 to 1.0. Table 11 presents a comparison between the static and dynamic
designs of λ, demonstrating that the two approaches yield comparable performance. Therefore, we
opt for the static design for simplicity.

I USING STRONGEST LLM AS TARGET

In the experiments, we consistently employ Llama-2 as the target LLM to maintain a fixed setup.
We further conduct supplementary experiments on code generation tasks using the strongest LLM,
OpenLLaMA, as the target LLM. The results are shown in Table 12. We observe a decrease in the
performance of OpenLLaMA CLM compared to the source OpenLLaMA and MPT. This decline
is attributed to the inclusion of the StarCoder (Li et al., 2023) data in OpenLLaMA’s pre-training
corpus, whereas there is a limited amount of code data in our continual training corpus. For the same
reason, even though FuseLLM showcases improved performance compared to OpenLLaMA CLM,
it still lags behind the original OpenLLaMA.

Task OpenLLaMA MPT Llama-2 OpenLLaMA CLM FUSELLM
C++ 14.47 13.11 7.45 12.89 14.01
Go 68.20 66.96 57.02 68.48 69.32
Java 14.28 13.42 10.31 12.80 13.26
JavaScript 17.61 13.01 13.17 15.50 17.02
PHP 11.24 9.53 9.75 10.06 10.09
Python 15.96 17.24 13.85 15.16 16.06
R 7.52 4.53 4.97 6.89 6.68
Ruby 10.34 12.33 10.37 9.44 10.03
Rust 6.18 8.29 6.77 5.99 5.65
TypeScript 15.31 14.13 12.61 14.10 15.37
Avg. 10 Tasks 18.11 17.26 14.63 17.13 17.75

Table 12: Overall results of FUSELLM using OpenLLaMA as the target LLM in code generation
evaluations on MultiPL-E (ME).

J CASE STUDIES

In Table 13, Table 14, and Table 15, we present case studies to demonstrate how FUSELLM com-
bines the strengths of multiple source LLMs to produce accurate results in different tasks.

17



Published as a conference paper at ICLR 2024

BBH; Logical Deduction (3 objects);
Question: The following paragraphs each describe a set of three objects arranged in a fixed order. The
statements are logically consistent within each paragraph. A fruit stand sells three fruits: oranges, wa-
termelons, and pears. The oranges are the second-most expensive. The pears are more expensive than
the watermelons. Options: (A) The oranges are the second-most expensive (B) The watermelons are the
second-most expensive (C) The pears are the second-most expensive
Target: (A)
OpenLLaMA: Let’s think step by step. (1) The oranges are the second-most expensive: ”(expensive) ? or-
anges ? watermelons ? (expensive)”. (2) The pears are more expensive than the watermelons: ”(expensive)
? oranges pears watermelons (expensive)”. (3) Combining (1) and (2) we get the following ordering: ”(ex-
pensive) oranges pears watermelons (expensive)”. According to this ordering, the second-most expensive
fruit is the oranges. The oranges are the second-most expensive. So the answer is (A).
MPT: Let’s think step by step. (1) The oranges are the second-most expensive: ”(most expensive)? or-
anges? (least expensive)”. (2) The pears are more expensive than the watermelons: ”(most expensive)?
oranges? pears? (least expensive)”. (3) Combining (1) and (2) we get the following ordering: ”(most
expensive) oranges pears (least expensive)”. According to this ordering, the second-most expensive fruit is
the oranges. The oranges are the second-most expensive. So the answer is (A).
Llama-2: Let’s think step by step. (1) The oranges are the second-most expensive: ”(second-most-
expensive) ? oranges ? (most-expensive)”. (2) The pears are more expensive than the watermelons:
”(second-most-expensive) ? oranges pears (most-expensive)”. (3) Combining (1) and (2) we get the follow-
ing ordering: ”(second-most-expensive) oranges pears (most-expensive)”. According to this ordering, the
second-most expensive fruit is the pears. The pears are the second-most expensive. So the answer is (C).
Llama-2 CLM: Let’s think step by step. (1) The oranges are the second-most expensive: ”(second-most)
? oranges ? (most)”. (2) The pears are more expensive than the watermelons: ”(more) ? pears watermelons
(less)”. (3) Combining (1) and (2) we get the following ordering: ”(second-most) oranges pears (most)
watermelons”. According to this ordering, the second-most expensive fruit is the pears. The pears are the
second-most expensive. So the answer is (C).
FUSELLM: Let’s think step by step. (1) The oranges are the second-most expensive: ”(second-most) ?
oranges ? (most) ? (least) ? (least) ? (most) ? (second-most)”. (2) The pears are more expensive than the
watermelons: ”(more) ? pears ? (less) ? watermelons ? (most) ? (least) ? (least) ? (most)”. (3) Combining
(1) and (2) we get the following ordering: ”(second-most) oranges pears watermelons (most)”. According
to this ordering, the second-most expensive fruit is the oranges. The oranges are the second-most expensive.
So the answer is (A).

Table 13: Case studies on the Logical Deduction (3 objects) task.

18



Published as a conference paper at ICLR 2024

BBH; Hyperbaton;
Question: Which sentence has the correct adjective order: Options: (A) repulsive prismlike glass shoe (B)
glass repulsive prismlike shoe
Target: (A)
OpenLLaMA: Let’s think step by step. When there is more than one adjective before a noun, the adjectives
need to respect the following order before a noun: ”[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6.
origin] [7. material] [8. purpose] noun”. Option (A): ”repulsive prismlike glass shoe”. (1) ”repulsive” falls
into the opinion category. (2) ”prismlike” falls into the shape category. (3) ”glass” falls into the material
category. Option (A) has the following adjective order: [1. opinion] [3. shape] [6. material] (or, in numeric
terms, 1 3 6). Because 1 ¡ 3 ¡ 6 is correct, (A) has the correct ordering. Option (B): ”glass repulsive
prismlike shoe”. Option (B) has the following adjective order: [6. material] [1. opinion] [3. shape] (or, in
numeric terms, 6 1 3). Because 6 ¡ 1 ¡ 3 is not correct, (B) does not have the correct ordering. So the answer
is (A).
MPT: Let’s think step by step. When there is more than one adjective before a noun, the adjectives need to
respect the following order before a noun: ”[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun”. Option (A): ”repulsive prismlike glass shoe”. (1) ”repulsive” falls into the
opinion category. (2) ”prismlike” falls into the shape category. (3) ”glass” falls into the material category.
Option (A) has the following adjective order: [1. opinion] [3. material] [2. shape] (or, in numeric terms, 1
3 2 ). Because 1 ¡ 3 ¡ 2 is not correct, (A) does not have the correct ordering. Option (B): ”glass repulsive
prismlike shoe”. Option (B) has the following adjective order: [1. opinion] [3. material] [2. shape] (or, in
numeric terms, 1 3 2 ). Because 1 ¡ 3 ¡ 2 is correct, (B) has the correct ordering. So the answer is (B).
Llama-2: Let’s think step by step. When there is more than one adjective before a noun, the adjectives need
to respect the following order before a noun: ”[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun”. Option (A): ”repulsive prismlike glass shoe”. (1) ”repulsive” falls into the
opinion category. (2) ”prismlike” falls into the shape category. (3) ”glass” falls into the material category.
Option (A) has the following adjective order: [1. opinion] [2. size] [3. age] [6. origin] [7. material] (or, in
numeric terms, 1 2 3 6 7). Because 1 ¡ 2 ¡ 3 ¡ 6 ¡ 7 is not correct, (A) does not have the correct ordering.
Option (B): ”glass repulsive prismlike shoe”. Option (B) has the following adjective order: [1. opinion] [2.
size] [3. age] [4. shape] [7. material] (or, in numeric terms, 1 2 3 4 7). Because 1 ¡ 2 ¡ 3 ¡ 4 ¡ 7 is correct,
(B) has the correct ordering. So the answer is (B).
Llama-2 CLM: Let’s think step by step. When there is more than one adjective before a noun, the adjectives
need to respect the following order before a noun: ”[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6.
origin] [7. material] [8. purpose] noun”. Option (A): ”repulsive prismlike glass shoe”. (1) ”repulsive” falls
into the opinion category. (2) ”prismlike” falls into the shape category. (3) ”glass” falls into the material
category. Option (A) has the following adjective order: [1. opinion] [2. size] [3. age] [4. shape] [5. color]
[7. material] (or, in numeric terms, 1 2 3 4 5 7). Because 1 ¡ 2 ¡ 3 ¡ 4 ¡ 5 ¡ 7 is correct, (A) has the correct
ordering. Option (B): ”glass repulsive prismlike shoe”. Option (B) has the following adjective order: [7.
material] [1. opinion] [2. size] [3. age] [4. shape] (or, in numeric terms, 7 1 2 3 4). Because 7 ¡ 1 ¡ 2 ¡ 3 ¡ 4
is correct, (B) has the correct ordering. So the answer is (B).
FUSELLM: Let’s think step by step. When there is more than one adjective before a noun, the adjectives
need to respect the following order before a noun: ”[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6.
origin] [7. material] [8. purpose] noun”. Option (A): ”repulsive prismlike glass shoe”. (1) ”repulsive” falls
into the opinion category. (2) ”prismlike” falls into the shape category. (3) ”glass” falls into the material
category. Option (A) has the following adjective order: [1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] (or, in numeric terms, 1 2 3 4 5 6 7). Because 1 ¡ 2 ¡ 3 ¡ 4 ¡ 5 ¡ 6 ¡ 7 is correct,
(A) has the correct ordering. Option (B): ”glass repulsive prismlike shoe”. Option (B) has the following
adjective order: [1. opinion] [7. material] [2. size] [3. age] [4. shape] [5. color] (or, in numeric terms, 1 7
2 3 4 5). Because 1 ¡ 7 ¡ 2 ¡ 3 ¡ 4 ¡ 5 is not correct, (B) does not have the correct ordering. So the answer is
(A).

Table 14: Case studies on the Hyperbaton task.

19



Published as a conference paper at ICLR 2024

BBH; Disambiguation QA;
Question: In the following sentences, explain the antecedent of the pronoun (which thing the pronoun
refers to), or state that it is ambiguous. Sentence: The technician told the customer that he could pay with
cash. Options: (A) The technician could pay (B) The customer could pay (C) Ambiguous
Target: (B)
OpenLLaMA: Let’s think step by step. Here we need to determine who the pronoun ”he” might be refer-
ring to. There are two possible referents for ”he”, namely the technician and the customer. The verb ”told”
might be able to help us determine which one is more likely (if either). Let X be the technician and Y the
customer. The sentence is then of the form ”X told Y that (X or Y) could pay with cash.” Let’s consider
Y first: ”X told Y that Y could pay with cash.” This case makes sense, because X might want to inform Y
that Y could pay with cash. Now, consider X: ”X told Y that X could pay with cash.” This case also makes
sense, because X might want to inform Y that X could pay with cash. Because both X and Y are possible
at the same time, we conclude that the antecedent of the pronoun is ambiguous. So the answer is (C).
MPT: Let’s think step by step. Here we need to determine who the pronoun ”he” might be referring to.
There are two possible referents for ”he”, namely the technician and the customer. The verb ”told” might be
able to help us determine which one is more likely (if either). Let X be the technician and Y the customer.
The sentence is then of the form ”X told Y that (X or Y) could pay.” Let’s consider Y first: ”X told Y that
Y could pay.” This case makes sense, because Y might want to pay with cash. Now, consider X: ”X told
Y that X could pay.” This case doesn’t make sense, because X would already have the information that X
could pay, because it is information about themself. Because in this context, X is the technician and Y is
the customer, the answer should be the customer. So the answer is (B).
Llama-2: Let’s think step by step. Here we need to determine who the pronoun ”he” might be referring
to. There are two possible referents for ”he”, namely the technician and the customer. The verb ”told”
might be able to help us determine which one is more likely (if either). Let X be the technician and Y the
customer. The sentence is then of the form ”X told Y that (X or Y) could do something.” Let’s consider
Y first: ”X told Y that Y could do something.” This case makes sense, because Y is the one who is being
told that they can do something. Now, consider X: ”X told Y that X could do something.” This case doesn’t
make sense, because X is the one who is telling Y that they can do something. Because in this context, X is
the technician and Y is the customer, the answer should be the technician. So the answer is (A).
Llama-2 CLM: Let’s think step by step. Here we need to determine who the pronoun ”he” might be
referring to. There are two possible referents for ”he”, namely the technician and the customer. The verb
”told” might be able to help us determine which one is more likely (if either). Let X be the technician and
Y the customer. The sentence is then of the form ”X told Y that (X or Y) could pay.” Let’s consider Y first:
”X told Y that Y could pay.” This case doesn’t make sense, because Y is the receiver of the information, so
it is now X’s turn to pay. Now, consider X: ”X told Y that X could pay.” This case makes sense, because X
is the one who is telling Y that X can pay. Because in this context, X is the technician and Y is the customer,
the answer should be the technician. So the answer is (A).
FUSELLM: Let’s think step by step. Here we need to determine who the pronoun ”he” might be referring
to. There are two possible referents for ”he”, namely the technician and the customer. The verb ”told”
might be able to help us determine which one is more likely (if either). Let X be the technician and Y the
customer. The sentence is then of the form ”X told Y that (X or Y) could pay.” Let’s consider Y first: ”X
told Y that Y could pay.” This case makes sense, because Y is the customer, and the customer is the one
who is paying. Now, consider X: ”X told Y that X could pay.” This case doesn’t make sense, because X is
the technician, and the technician is not the one who is paying. Because in this context, X is the technician
and Y is the customer, the answer should be the customer. So the answer is (B).

Table 15: Case studies on the Disambiguation QA task.

20


	Introduction
	Related Work
	Knowledge Fusion of LLMs
	Preliminaries
	LLMs Fusion
	Implementation of FuseLLM

	Experiments
	Experimental Setup
	Overall Results
	The Fused Probabilistic Distributions
	Analysis of Implementation Process
	FuseLLM vs. Knowledge Distillation
	FuseLLM vs. Ensemble/Merging

	Conclusion
	Details of Token Alignment
	Details of MiniPile
	Training Details
	Additional Evaluation Results
	FuseLLM vs. Previous Model Fusion Methods
	Incorporating Instruction-Tuning Models with FuseLLM
	Cause of performance improvement
	Weight for loss combination
	Using Strongest LLM as Target
	Case Studies

